MultiPolynomial Resultant Algorithms

Dinesh Manocha® John F. Canny'

Computer Science Division

University of California
Berkeley, CA 94720

Abstract: Computational methods for manipulating sets of polynomial equations
are becoming of greater importance due to the use of polynomial equations in various
applications. In some cases we need to eliminate variables from a given system of poly-
nomial equations to obtain a “symbolically smaller” system, while in others we desire
to compute the numerical solutions of non-linear polynomial equations. Recently, the
techniques of Grébner bases and polynomial continuation have received much attention
as algorithmic methods for these symbolic and numeric applications. When it comes to
practice, these methods are slow and not effective for a variety of reasons. In this pa-
per we present efficient techniques for applying multipolynomial resultant algorithms and
show their effectiveness for manipulating system of polynomial equations. In particular,
we present efficient algorithms for computing the resultant of a system of polynomial
equations (whose coeflicients may be symbolic variables). The algorithm can also be used
for interpolating polynomials from their values and expanding symbolic determinants.
Moreover, we use multipolynomial resultants for computing the real or complex solutions
of non-linear polynomial equations. It reduces the problem to computing eigenvalues of
matirces. We also discuss implementation of these algorithms in the context of certain
applications.

1This research was supported in part by David and Lucile Packard Fellowship and in part by National
Science Foundation Presidential Young Investigator Award (# IRI-8958577).

1 Introduction

Finding the solution to a system of non-linear polynomial equations over a given field
‘s a classical and fundamental problem in computational algebra. This problem arises
in symbolic and numeric techniques used to manipulate sets of polynomial equations.
Many applications in computer algebra, robotics, geometric and solid modeling use sets
of polynomial equations for object representation (as a semi-algebraic set) and for defin-
ing constraints (as an algebraic set). The main operations in these applications can be
classified into two types: simultaneous elimination of one or more variables from a given
set of polynomial equations to obtain a “symbolically smaller” system and computing the
numeric solutions of a system of polynomial equations. Elimination theory, a branch of
classical algebraic geometry, investigates the condition under which sets of polynomials
have common roots. Its results were known at least a century ago [Ma64; Sal885; Wd50]
and still appear in modern treatments of algebraic geometry, although in non-constructive
form. The main result is the construction of a single resultant polynomial of n homoge-
neous polynomial equations in n unknowns, such that the vanishing of the resultant is
a necessary and sufficient condition for the given system to have a non-trivial solution.
We call this resultant the Multipolynomial Resultant! of the given system of polynomial
equations. The multipolynomial resultant of the system of polynomial equations can be
used for eliminating the variables and computing the numeric solutions of a given system
of polynomial equations.

Recently the technique of Grébner bases has received much attention as an algorithmic
method for determining properties of polynomial equations [Bu85; Bu89]. Its applications
include ideal membership besides eliminating a set of variables or computing the numer-
ical solutions of a system of polynomial equations. One of the main difficulties in using
Grébner bases is that the method may be slow for even small problems. In the worst
case, its running time may can be doubly exponential in the number of variables [MM82}.
Even in special cases where this doubly exponential behavior is not observed, deriving
tight upper bounds on the method’s running time is difficult. This behavior is also ob-
served in practice. In particular, two algorithms for eliminating variables using Grébner
bases have been described in [Ho89; Ho90]. In the first algorithm a Grébner base for
the ideal, generated by given polynomial equations with respect to a term ordering, de-
fined as elimination order, is constructed. The second algorithm evolved from a basis
conversion method and is considered to be more efficient than the first one. Moreover,
the second algorithm had been considered to be the fastest elimination method for geo-
metric applications, among all methods implemented till that time [Ho90]. It has been
applied for implicitizing rational parametric surfaces. To implicitize rational parametric
bicubic patches, the algorithm takes about 10° seconds on a Symbolics 3650, which would
be considered impractical for geometric modeling applications. As far as the problem of

LOther authors have used the term multiequational resultants [BGW88]

computing roots of polynomials is concerned, issues of numerical stability make Grobner
bases unattractive for computing numeric solutions of polynomial equations [Mo90].

For numerical applications are concerned the technique of polynomial continuation
has gained importance for computing the full list of geometrically isolated solutions to a
system of polynomial equations. They have been used in many robotics and engineering
applications [Mo87; WM90]. Although continuation methods have a good theoretical
background and in some cases a high degree of computational reliability (in some cases),
its usage is limited to applications requiring all the solutions in the complex domain and
thereby making them slow for some practical applications where only real solutions are
needed. In many cases the system of polynomial equations may have a high Bezout number
(the total number of solutions in the complex domain), but we are only interested in the
solutions in a small subset of the real domain (the domain of interest). The continuation
technique requires starting with a particular system of equations having the same Bezout
number as the given system and marching along to compute all the solutions of the given
system. It is difficult to restrict them to computing the solutions in the domain of interest.

Multipolynomial resultant algorithms provide the most efficient methods (as far as
asymptotic complexity is concerned) for solving system of polynomial equations or elim-
inating variables [BGW88]. Their main advantage lies in the fact that the resultant can
always be expressed as the ratio of two determinants and for small values of n (where n is
the number of equations), as the determinant of a single matrix. As a result, we are able
to use algorithms from linear algebra and obtain tight bounds on the running times of
multipolynomial resultant algorithms. Furthermore, in many symbolic and numeric ap-
plications, we may choose not to expand the determinants and use properties of matrices
and determinants to incorporate the use of resultants in the specific applications [MC90;
MC91a; MC91b].

In this paper we present an interpolation based algorithm to compute the resultant
of a system of polynomial equations to obtain a “symbolically smaller” system. The
algorithm can be used for interpolating polynomials from their values and expanding
symbolic determinants. We also describe an efficient implementation of the algorithm and
present its performance for applications like implicitization. To implicitize rational bicubic
patches it takes about 575 and 138 seconds? on a Sun-4 and IBM RS/6000, respectively.
Moreover, we effectively use resultants for computing the numeric solutions of a system
of polynomial equations in the domain of interest. In this case, we reduce the problem to
computing eigenvalues of a matrix. Efficient algorithms for computing eigenvalues are well
known and their implementations are available as part of standard packages like LAPACK
and EISPACK [De89; GV89]. Furthermore, in the context of floating point computations,
the numerical accuracy of these operations is well understood. The rest of the paper is
organized as follows. In Section 2 we give a brief preview of different formulations used for

2These timings correspond to the examples in [Ho90]. The actual running time is a function of
coefficient size of a parametrization.

computing the resultant of a system of polynomials. In Section 3, we present an algorithm
for eliminating one or more variables from the given system of equations and express the
resultant as a polynomial in the coefficients of given equations (which may be symbolic
variables) and finally in Section 4, we give details of the algorithm used for computing
the numeric solutions of a given system of polynomials in the domain of interest.

2 Multipolynomial Resultants

Given n homogeneous polynomial in n unknowns, the resultant of the given system of
equations is a polynomial in the coefficients of the given equations. The most familiar form
of the resultant is the Sylvester’s formulation for the case n = 2. In this case, the resultant
can always be expressed as determinant of a matrix. However, a single determinant
formulation may not exist for any arbitrary n and the most general formulation of resultant
(to the best of our knowledge) expresses it as a ratio of two determinants [Ma02]. If all
the polynomials have the same degrees, an improved formulation is given in [Ma21].
Many a time both the determinants evaluate to zero. To compute the resultant we need
to perturb the equations and use limiting arguments. This corresponds to computing
the characteristic polynomials of both the determinants [Ca87]. The ratio of the two
characteristic polynomials is termed the Generalized Characteristic Polynomial, and the
resultant corresponds to its constant term [Ca90]. If the constant term is zero, its lowest
degree term contains important information and can be used for computing the proper
components in the presence of excess components. This formulation has advantages for
both numeric and symbolic applications [Ca90; MC90; MC91b]. Many special cases,
corresponding to n = 2,3,4,5,6 when the resultant can be expressed as the determinant
of a matrix, are given in [Di08; Jo89; Mo25; MC27]. Historical accounts of resultants and
elimination theory are presented in [Ab76; Wh09)].

3 Symbolic Elimination

In this section we present an algorithm for efficiently computing the resultant of a sys-
tem of polynomial equations, whose coefficients may be symbolic variables. Computing
the resultant involves constructing the corresponding matrices from the given system of
equations and evaluating their determinants. The entries of the matrices are polynomial
functions of the coefficients of the polynomial equations. As such it should be relatively
easy to implement such an algorithm within the framework of a computer algebra system.
However, these systems take a lot of time for evaluating even low order symbolic determi-
nants. Consider the problem of implicitizing bicubic parametric surface, whose implicit
representation is a degree 18 polynomial in 3 variables, say z, y and z. In this case, the
resultant of the parametric equations correspond to a 18 X 18 determinant and each of

its entries is a linear polynomial in z, y, and z. However, standard computer algebra
systems (available on most workstations) are not able to evaluate such determinants in a
reasonable amount of time and space [MC90]. Mostly they run for a long period of time
and crash because of their memory limitations.

There are many reasons for the failure and bad performance of symbolic determinant
expansion algorithms implemented within the framework of computer algebra systems.

1. Most computer algebra systems use sparse representation for multivariate polyno-
mials and the computations become slow whenever the polynomials generated are
dense.

2. The algorithms used are symbolic in nature and perform operations like polynomial
addition, multiplication etc. on the input and the intermediate expressions being
generated. The arithmetic for these symbolic operations is expensive. For example,
the cost the multiplying two multivariate polynomials is quadratic for most imple-
mentations. Moreover the algorithms may generate large intermediate expressions.
For example when using straight-forward Gaussian elimination over the polyno-
mial entry domain, it can happen that intermediate subdeterminants are very large
polynomials while the final answer is an expression of modest size.

3. The implementations of symbolic algorithms in lisp-like environments requires a
large amount of virtual memory and thereby slows down the computations.

4. These systems use exact arithmetic and represent the coefficients of intermediate
expressions as bignums. As a result, the cost of arithmetic operations is quadratic
in the coefficient size. The coefficient size is proportional to the degree of the
intermediate polynomial expressions being generated and tends to grow linearly
with their degree.

The bottleneck in the resultant algorithms is the symbolic expansion of determinants.
We therefore chose not to work within the environment of computer algebra systems
and rather use an algorithm based on multivariate interpolation to compute the sym-
bolic determinants. As a result, the resulting algorithm involves numeric computations
and no intermediate symbolic expressions are generated. This takes care of the problem
of generating large intermediate symbolic expression. However, the magnitude of the
intermediate numbers grows and we need to use bignum arithmetic for arithmetic oper-
ations. As a result the cost of each arithmetic operation is quadratic in the size of the
operands. Moreover, it imposes additional memory requirements for each intermediate
number, which slows down the resulting computation. To reduce the memory require-
ments and cost of arithmetic operations, we perform our computations over finite fields
and use a probabilistic algorithm based on chinese remainder theorem to recover the ac-
tual coefficients. Thus, bignum arithmetic is restricted only to the computations related

to chinese remainder theorem. The complexity of the resulting algorithm is linear in the
size of the coefficients of the resultant, except for the chinese remainder step, which 1s
quadratic in the size of the coefficients. However, the running time of the algorithm is
dominated by multivariate interpolation and the chinese remainder step is a small part
of the overall computation. The algorithm has been implemented in C++ (as opposed
to using lisp) and we consider sparse, dense and probabilistic interpolation techniques for
multivariate polynomials.

3.1 Multivariate Interpolation

Let’s assume that each entry of the matrix is a polynomial in z1, Z2,...,Zn and the matrix
is of order m. If the entries are rational functions, they can be multiplied by suitable
polynomials such that each entry of the resulting matrix is a polynomial. Furthermore,
the coefficients of matrix entries are from a field of characteristic zero. The main idea
is to determine the power products that occur in the determinant, say a multivariate
polynomial F(zi,z2,...,%s). Let the maximum degree of z; in F(z1,22,...,Z,) be d;.
The d;’s can be determined from the matrix entries. F can have at most ¢, = (di +
1)(dz + 1)...(dn + 1) monomials. In some cases, it is easier to compute a bound on the
total degree of F. Any degree d polynomial in n variables can have at most ¢ = Cr(n, d)
coefficients, where

Crn,d) = ("*j‘l)

We represent the determinant as

F(z1,%2,...,%a) = 1My + aMma + ... + CgMyg, (1)
where q is bounded by ¢; or ¢2. The m; = S S £ are the distinct monomials and
the ¢; are the corresponding non-zero coefficients. The problem of determinant expansion
corresponds to computing the ¢;’s. By choosing different substitutions for (zi,...,)
and computing the corresponding F(z1,...,%.) (expressed as determinant of numeric
matrices) the problem is reduced to that of multivariate interpolation [BT88; Zi90]. Since
there are ¢ monomials, we need to choose g distinct substitutions and solve the resulting
q X q system of linear equations. The running time of the resulting algorithm is O(¢?) and
takes O(q?) space. To reduce the running time and space of the algorithm we perform
Vandermonde interpolation.

Let p1,p2,...,Pn denote distinct primes and b; = p'li“‘ pg“ pi"" denote the value
of the monomial m; at (p1,p2,...,Pa). Clearly, different monomials evaluate to different
values. Let a; = F(p!,ph,...,pL), ¢ = 1,4. a’s are computed by Gauss elimination.

Thus, the problem of computing ¢;’s is reduced to solving a Vandermonde system system

VC = A, where

1 1 1 c1 ay
b b b c a

V = _1 .2 -k ’ C = : ’ A= ’ (2)
O Cq a,

Computing each a; takes O(m?®) time, where m is the order of the matrix. As far as
solving Vandermonde systems is concerned, simple algorithms of time complexity O(q?)
and O(q) space requirements are known [Zi90]. In [KL88] an improved algorithm of time
complexity O(M(q)log(q)) is presented, where M (¢) is the time complexity of multiplying
two univariate polynomials of degree g. Thus, the running time of the resulting algorithm
is O(gm® + M(q)log(q)) and space requirements are O(m? + q). However, due to simplic-
ity we use the O(g?) algorithm for Vandermonde interpolation and the rest of the time
complexities are presented in terms of that.

Before we use Vandermonde interpolation, the algorithm for computing symbolic de-
terminant needs to know ¢ and the m;’s corresponding to nonzero ¢;’s. In the worst case,
q may correspond to g; or g2 and the resulting problem is that of dense interpolation
[Zi90]. The m;’s are enumerated in some order (e.g. lexicographic) and b;’s are computed
by substituting p; for z;. In general, d is larger than n and q; or ¢2 tend to grow expo-
nentially with the number of variables and as a polynomial function of the degree of each
matrix entry. Furthermore, this approach becomes unattractive when the determinant is
a sparse polynomial.

A sparse interpolation algorithm for such problems has been presented in [BT88]. Its
time and space complexity have been improved in [KL88].

3.1.1 'Sparse Interpolation

The algorithm in [BT88] needs an upper bound T > ¢ on the number of non-zero
monomials in F(z,...,%.). Given (pi,p3,-..,p}), it computes the monomial values
b = pipt . pi™* by computing the roots of an auxiliary polynomial G(z). These b;’s

are used for defining the coefficient matrix of the Vandermonde system.

The polynomial G(z) is defined as

T
G(z)=[[(z=b) = 25+ g1 2+ L+ go.
i=1
Its coefficients, ¢;’s, are computed by solving a Toeplitz system of equations {BT88]. The
Toeplitz system is formed by computing the a;’s and using the property G(b;) = 0. Given
G(z), the algorithm computes its integer roots to compute the corresponding to b;’s. The

6

roots are computed using p-adic root finder [Lo83]. The running time of the resulting
algorithm for polynomial interpolation is (ndT3log(n) + m*T). The dominating step is
the polynomial root finder which takes O(T?log(B)), where B is an upper bound on the
values of the roots.

This algorithm is unattractive for expanding symbolic determinants due to the fact
that it is rather difficult to come up with a sharp bound on 7. We only have the choice
of using T = ¢ or T = ¢, and the resulting problem corresponds exactly to dense
interpolation. As a result, b;’s can be computed directly and we do not need to use
any algorithm for solving a Toeplitz system or computing integer roots of univariate
polynomials.

Thus, neither the deterministic sparse nor the dense interpolation algorithms are well
suited for our application.

3.1.2 Probabilistic Interpolation

[Zi90] presents a probabilistic algorithm for interpolation which does not expect any in-
formation about the non-zero terms of the polynomial being interpolated. It expects a
bound on the degree of each variable in any monomial. Such a bound is easy to com-
pute for a symbolic determinant. In fact, this bound is tight. The algorithm proceeds
inductively, uses the degree information and develops an estimate of the number of terms
as each new variable is introduced. As a result its performance is output sensitive and
depends on the actual number of terms in the polynomial. We present a brief outline of
the algorithm below. It has been explained in detail in [Z190].

Choose n random numbers rq,...,r, from the coefficient field used for defining the
polynomial coefficients. The algorithm proceeds inductively and introduces a variable at
each stage. Let us assume we are at the kth stage and have interpolated a polynomial in
k variables. The resulting polynomial is of the form

Fie(zq,.. . zk) = F(T1,T2, .+ Thy Tty - - - ,Tn) = CLeM1k + ...+ CokMak-
In this case, a < ¢. F; is a polynomial in ¢ variables z1,. .., ;.
To compute Fit1(1,. .., Tks1) from Fi(zq, ... ,Tk), it represents Fii; as
Frpa(z, .- o Thtr) = F(T1, 0 Thpts Thezs - - - yTn) = hy(zkpr)mik + ... + Pa(Zr41) Mok,

where each each h;(zx+1) 1s a polynomial of degree dy41. dk+1 is a bound on the degree of

Tiy1 in any term of F(zy,...,2,). It computes hi(zk+1) by Vandermonde interpolation.
Thle value of each hi(zxy1) are obtained for diy1 + 1 values 1,pk+1,pﬁ+1,...,pziﬁ‘ as
follows:

Fisr(L, oy L, Phpts Thtzy -9 Tn) = hy(Phpy) + -+ ha(Phyr)

7

Fk+1(P1, cee 7Pk’Pi+1a Tht2y .- \Tn) = hl(Pi+1)bi,k +...+ ha(P;cH)ba,k
Fk+1(p§’ v ,pi,Pi+1,7‘k+2, v ,Tn) = hl(p£+1)b?,k +...+ ha(p?ﬂ-l)bi,k

Fk+1(p;!_17 e ,P}:_I,P@.p Tht2s+ - 7rn) = hl(p-li+1)b?:l—c_1 +...+ ha—l(p{-+1)bgl~l

This is a Vandermonde system of a equations in a unknowns and can be solved for
hi(phy1)- The computation is repeated forj =0,...,dpe1. Given hi(1), hi(Pes1), Ri(PE4r)s- -
h,-(p:'_‘,_*l1), use Vandermonde interpolation (for univariate polynomials) to compute hi(Zx+1)-
These hi(zi+1) are substituted to represent Fi41 as a polynomial in k 4 1 variables.

Frp1(z1,- -, Tksr) can have at most (a * (drs1 + 1)) < g terms.

The algorithm starts with F(rq,...,7s) and computes the n stages as shown above.
There is a small chance that the answer produced by the algorithm is incorrect. This
happens for a choice of r;....,r, and can be explained in the following manner. Let the
stage I of the algorithm result in a polynomial of the form

Fi(z1) = F(21,72,.--,Tn) = co+ c1zd + ... + gz
Fy(z1,z2) actually is a polynomial of the form
Fy(zy,22) = F(z1,22,73,...,7a) = ha(z2) + ho(z2)z1 + ha(z2)zl + ... + ha,+1(z2)zi.
This implies
hi(r2) = co, ha(rz) =0, ha(ry) = 0,..., k4 41(r2) = cp.

In practice, h2(z2) and hs(z;) maybe nonzero polynomials, but for the choice of r3, where
ha(rs) = 0, ha(rz) = 0, the algorithm assumes them as zero polynomials and proceeds.
As a result the algorithm may report fewer terms in F° (Z1,. -, Tn)-

Such an error is possible at each stage of the algorithm. Let us assume that r;’s are
chosen uniformly randomly from a set of size S, than the probability that this algorithm
gives a wrong answer is less than

nd*q*
S k)

(3)
where d = maz(dy, .. ., dn) [Zi90].

Later on we use this probability bound for the choice of finite fields used for modular
computation. The running time of the algorithm is O(ndq® + m®ndq). This has been
improved in [KL88].

A deterministic version of this algorithm of complexity O(ndq*T + m®ndqT) is given
in [Zi90] as well. T is an upper bound on the number of non-zero terms in the polyno-
mial. In the worst case, T' corresponds to ¢; or g;. However, the resulting algorithm has

8

better complexity than the deterministic sparse or dense interpolation algorithms. Due
to simplicity and time complexity of the algorithm, we use the probabilistic version for
our implementation. However, we give user the flexibility of imposing a bound on the
probability of failure and choose the finite fields appropriately. Furthermore, we introduce
simple, randomized checks in the algorithm to detect wrong answers. These checks corre-
spond to substituting random values for z1,...,Zx in the matrix entries and computing
the resulting numeic determinant. We verify the result by substituting the same values for
Z1,...,Zn in the polynomial obtained after interpolation and comparing it with numeric
determinant.

3.1.3 Modular Arithmetic

An important problem in the context of finite field computations is getting a tight bound
on the coeficients of the resulting polynomial. Since the resultant can always be expressed
as a ratio of determinants (or a single determinant), it is possible to use Hadamard’s
bound for determinants to compute a bound on the coefficients of the resultant [Kn81].
In practice, we found such bounds rather loose and use a randomized version of chinese
remainder algorithm to compute the actual bignums. The main idea is to compute the
coefficients modulo different primes, use the chinese remainder theorem for computing the
bignum and make a check whether the bignum is the actual coefficient of the determinant.
This process stops when the products of all the primes (used for finite field representation)
is greater than twice the magnitude of the largest coefficient in the output. It is possible
that for a certain choice of primes, the algorithm results in a wrong answer. We show
that the probability of failure is bounded by !/p, where | corresponds to the number of
primes used in the chinese remainder algorithm, p is the magnitude of the smallest prime
number used in this computation.

The algorithm proceeds in stages. At the kth stage a random prime number (px) is
chosen and Gi(z1,...,2n) = F(z1,... ,Zn) mod pi is computed using the interpolation
algorithm. Let

Gr(Z1,- .-y Tn) = CLAML + .. F CqpMg.

Thus, the coefficients of various G;’s satisfy the relation

Cia =6 mod p

¢k = ¢ mod pg,

These ¢; ;'s are used for computing the bignum, r;; using chinese remainder theorem, and
satisfying the relations [Kn81]

rik mod p; =Cijj,] = 1,k

9

While using chinese remainder theorem it is assumed that r;; are integers lying in the
range (—PiZ=Ph BIPZ-Pk) At this stage we compare the bignums corresponding to the

(k —1) and k stage. If

Tik—1 =Tiks 1=1,¢
it is reasonable to assume that r;, = ¢i, 1 = 1,¢ and the algorithm terminates. The base
case is k = 2. Otherwise we repeat the computation for the (k + 1) stage.

In general, [+ 1 prime numbers are being used, where [is the minimum integer
satisfying the relation
2lc;| < pip2--- P

and |c;| corresponds to the coefficient of maximum magnitude of the resultant and p;’s
are randomly chosen primes. Thus, the algorithm is:

1. Compute the ¢;;’s using the probabilistic interpolation algorithm.
2. Given ¢;1,Ciz2,- - - »Cij, use chinese remainder theorem to compute r;; for 2 = 1, 4.

3. ifrijo1 =rijfor =14, then c; = ry;, else repeat the steps given above.

3.1.4 Probabilistic Analysis

In this section we analyze the probability of error of the chinese remainder algorithm
presented above. Let’s consider a particular coefficient ¢; of the determinant. The analysis
can be extended to all the coefficients of the polynomial. Let us consider a sequence of
prime numbers py, pa, . . ., pi such that

pps ... pio1 < 2leil < p1p2--- P
We assume all the primes have the same order of magnitude. Furthermore, let
cij=cimodp;, j=1LI

and r; ; correspond to the bignums defined in the previous section. The main assumption
is our analysis is:

Assumption ¢ ; are integers distributed uniformly in the interval (—2,B) and r;;

are integers distributed uniformly in the interval (=Bl BLta),

Under normal circumstances the algorithm would compute ¢; ; for j = 1,1 and termi-
nate. However, it is possible that the algorithm stops after k (k < I) stages. This is due
to the fact

Tik-1 = Tik
and leading us to the incorrect conclusion ¢; = 4. This can happen if and only if

rig € (—B=fe=l PloBe=l) Gince, ryj are uniformly distributed over (—25Pk Bl=Pk) the

10

probability of that happening is 1/px. We need to add this over all stages of computing
¢; and the overall probability of failure is bounded by

1—(1=1/p)(1—=1/ps)...(1 = 1/p1) = 1/p2+ 1/pa + .- + /P11

In the worst case, all coefficients of F(zi,...,Zn) are equal and therefore, the prob-
ability of failure of overall algorithm is bounded by {/p, where [is number of primes
used to bound the coefficient and p is the magnitude of the primes used (since all primes
have nearly the same order). Since, ! is generally less than 10 and p is of the order of
230 (explained in next section), the algorithm has very high probability of success. This
bound can be improved by choosing an additional prime pi41, computing ¢; j+1, Ti+1 and
verifying the fact r;; = rii41, ¢ = 1,¢. In the latter case the probability of failure is
bounded by [/p®.

3.2 Implementation

We have implemented the above algorithm in C++ on Sun-4’s. The code was ported over
to an IBM RS/6000 for performance analysis. Given a system of polynomial equations,
it expresses the resultants in terms of determinants. Given matrices with polynomial
entries, it computes the degree bound for each variable by adding the degrees of that
variable in various entries of the matrix.

We have implemented the dense as well as probabilistic versions of the interpolation
algorithm. It can be easily interfaced with computer algebra systems. The total amount
of space required for resultant computation is O(m? + |c|g), where m is the order of the
matrix, g is the number of terms in the determinant and |c| correspond to the size of the
largest coefficient in the determinant. The algorithm is not constrained by any form of
memory requirements, performs efficiently on the workstations and can be even be made
to run on personal computers. Moreover given g, it is possible to come up with a tight
bound on the running time of the resulting algorithm.

3.2.1 Choice of Finite Fields

The interpolation algorithm based on the randomized version of chinese remainder theo-
rem is output sensitive. In other words the time complexity of the algorithm is directly
proportional to k, the number of primes used in the finite field computation. To minimize
k, we use primes of maximum magnitude possible.

Most of the workstations are 32 bit machines. In other words, all machine instructions
for integer arithmetic operate on operands, whose magnitude is bounded by 2%2. However,
if we use operands of order 232, simple operations like addition, subtraction can resuit in
overflow and to implement them correctly we need to resort to bignum arithmetic.

11

In our case, we chose primes of the order 2% (in fact always less than this number) to
represent the finite fields. Thus, each operand of the finite field is bounded by 2%°. As a
result the addition and subtraction operations, (a+b) mod p, (a —b) mod p, work correctly
in the hardware implementation and there is no overflow error. However, multiplication
can still result in overflow. A simple solution is to use finite fields of order 2'®, which slows
down the algorithm by almost a factor of two. Depending upon the architecture of the
machine on which the algorithm is being implemented, we suggest following techniques
for implementing the multiplication subroutine:

e Many workstations provide a hardware implementation of the instruction (a*b) mod p.
There may be no equivalent function defined in the higher level languages. As a
result, we recommend an assembly level implementation of this subroutine, which
takes as arguments a, b, p and return (a * b) mod p.

e The instruction presented above is rather sophisticated and as a result is not avail-
able on most RISC machines. However, most architectures have a multiplication
instruction, which takes the operands in two different registers and return the result
as a 64 bit number in two different registers, as well. Many machines, like the Sun-3,
have a division instruction which assumes that the dividend is in two registers. As
a result an instruction like (a * b) mod p can be implemented as a combination of
multiplication and division instructions. Otherwise, let the result of multiplication
be contained in registers r1 and r2. Thus,

axb=rl*2%47r2
The fact a < 2%, b < 2% implies r1 < 228, Thus,
(a*b) mod p = ((((r1 * 2%%) mod p) + (r2 mod p)) mod p
= (((r1 * ¢) mod p) + (r2 mod p)) mod p,

where ¢ = 232 mod p is a precomputed constant. In fact the primes, are chosen
such such that c is rather small and the multiplication (r1 * c) does not result in a
overflow. Otherwise the multiplication routine is called recursively. Thus, we find
that the implementation of the multiplication subroutine uses two multiplication
instructions, three remainder instructions (to compute the remainder of integer
division) and one addition instruction for 32 bits integers. The actual impact of
this multiplication routine on the speed of the overall algorithm is a function of
machine’s architecture. However, it seems faster (at least on Sun-3 and Sun-4’s)
than using finite fields of order 2!® and for each field we compute the coeflicients of
the polynomials and bignums using chinese remainder theorem.

It is not possible to choose any arbitrary prime for finite field computation. Let
Vz = (vq;) represent the elements of the second row of the Vandermonde matrix, as shown
in (2), used in the interpolation algorithms. pi; can be used as a prime for finite field
computation, if and only if all the elements of the vector V,r = (vi;) mod py are distinct.

12

3.2.2 Choice of Random Numbers

The robustness of the Zippel’s probabilistic interpolation algorithm is a function of the
random numbers 71, ..., T, chosen at the first stage of the algorithm. The probability of
obtaining an incorrect answer is bounded by nd?q*/S (as shown in (3)). We work over
finite fields of order S ~ 2%, In many applications we expect ¢ to be of the order of 10*.
Moreover, n is at least 3 or 4 and d can be anywhere in the range (10,40). As a result,
the upper bound on the probability of incorrectness is close to one.

The probabilistic chinese remainder algorithm computes the answer over various finite
fields (of order ~ 2%°). The actual number of finite fields used is a function of the size
of the coefficients of the determinant. However, at least two prime fields are used. As
a result we choose random numbers R; € (0,2%°) and at each iteration corresponding to
the chinese remainder theorem, we compute r; = R; mod p;. As a result S = 2% and the
probability of failure is bounded by 10~ for these applications. Moreover, it is possible
to decrease the upper bound on the probability of failure by choosing R;’s from a domain
of appropriate size.

3.2.3 Implicitization

The resultant algorithm has been used for implicitizing rational parametric surfaces.
Given a parametrization, expressed in projective coordinates,

(z,y,2,w) = (X(s,1),Y(s,1), Z(s,t), W (s, 1)),
we formulate the parametric equations
wX(s,t) —zW(s,t) =0

wY (s, t) —yW(s,t) =0
wZ(s,t) — zW(s,t) =0

and the problem of implicitization corresponds to computing the resultant of the above
equations, by considering them as polynomials in s and t [MC90; MC91b]. Some experi-
ments with the implementations of Grébner bases and resultants in Macsyma 414.62 on
a Symbolics lisp machine (with 16MB main memory and 120MB virtual memory) are
described in [Ho90]. For many cases of bicubic surfaces (whose highest monomial is of
the form s%t3), these systems are unable to implicitize such surfaces and fail due to insuf-
ficient virtual memory. Only a new algorithm for basis conversion is able to implicitize
such surfaces, however it takes about 10° seconds, which would be considered impractical
for most applications [Ho90].

13

'8

Y
z

Lets consider the bicubic parametrization given in [Ho90]. It is

—3t(t— 1)+ (s —1)°+3s
3s(s — 1) +t° + 3¢
—3(s(s? — 55 + 582 + (s° + 657 —9s + 1)t* — (26° + 3s? — 65+ 1)t + s(s — 1)).

We use the dixon formulation of computing the resultant of bicubic formulation (Di08]
and the resultant corresponds to the determinant of

0 15 -2821 -95 -3 -3 19 -186 =5 3 -9 3 1117 - _3_-1866 —87 57 —15 0 12 -39 60 —4815—-1 7 —159 3 -3]
-3-16 -950 6 1 -3 6-50-30 -2110 0 39-7257-150 3 -2145-4815 0 1 -1212 3 -30
-1 6 -9 5 00 1 -3 6 =500 0 -2 1100 3 -1827-150 0 -3 9 -1815 0 00 6 -3-300
-21 24 4 —-186 -539 —63 33 1 1 1 —-18 27 -15000 36 —42 -9 60 -48 15 -1934 -30 9 3 -36 -9 5 0 0 0O
33 -14-3 6 =50 -5730 -2 1 1 0 27 -15 0 000 -51 9 45 -4815 0 28 -2712 3 -3 0-95 0 00O
—14-3 6 =50 0 30 -2 1 1 00-150 0 000 27 9 -1815 0 0 -156 -3 -3 0 05 0 0 00 O
48 —81 48 1 1 1 -3663 ~45 0 0 0 9 -18 15 000 _3770-60 9 3 -315-2720 0 0 0-36 -5000
-7545 -2 1 1 0 63 -45 0 0 0 0 -1815 0 000 64 -5712 3 -3 0 -2720 0 0 O 06 -5 0 0O0O0
45 -2 1 1 0 0-450 O 0 0 0 15 0 0 000 456 -3-3 0 0 20 0 0 0 0 0-50 0 000
3060 -48 0 0 0 -3-1221 0 0 O 6 -3 -3000 X + 3 -2126 0 0 6 3 3 -8 0 0O0-21 1000
60 =48 0 0 0 0-1221 0 O O 0 -3 -3 0 000 —2126 0 0 0 0 3 -8 0 0 001 1 0000
-480 0 0 0021 0 0 0 00 -3 0 0 000 26 0 0 0 0 0 -8 0 0 0 0 01 0 O0OO0O
-3-1221 0 00 6 -3~-3 0 00 0O 0 0000 3 3 -80 0 0 -21 1 0 0O00O0 0000
-1221 0 0 0 0 -3 -3 0 0 00 O O 0000 3 -80 0 0 0 11 0 0 00O0O OOCOO
21 0 0 0 00 -3 0 0 0 0O O0C O 0 000 -80 0 0 0 01 0 0 0 0O0O0O0OOCOOCGO
6 -3-3 0 00 0 0 0 0 00 O0 0 0000 -21 1 0 0 0 0 0 O 0 0O0OO0O OOOO
-3-30 0 00 0 O 0O 0 0O OO O 0000 1 1 0 0 0 0O OO 0O 0OO0O0OO0OOCOGOGO
-30 0 0 00 O O 0 0 0O O O 0000 | 1 o o 0 0 0 0O 0O 0O O 0 0O0O0O O OCOO |
9 18 -3000 9 -3615000-618 -8000 7 - 0 15 —-28 21 -9 5 -3 -3 19 -18 6 -5 3 -9 3 1 1 1
18 -3 0000-3615 000018-8 0 000 -3 —10—105 189 —13930 6 10 42 —120121 —-30 -3 -12 42 -29-11 6
-3 0 000015 0 0000-80 0000 -1 3 18 -13-2430 1 -12 9 13 &6 =30 O 6 —-19-5 12 6
9 -3615000 —6 18 —80000 0 0000 ~21 =30 —23 117 -111 10 48 -—-45 21 -71 109 —-14 -27 42 20 -33-15 3
-36 15 0000 18 -8 00000 0 0000 33 76 159 —237 136 —30 —66 ~75 -30 79 —-26 6 24 83 -42-153 O
15 0 0000 -8 0 00000 0 0000 ~14-57 —-81 28 6 =30 18 42 44 -20 12 6 -7 -24-153 0 O
-6 18 -8000 0 0 00000 O O0OOO 48 —108 345 —530 424 —89—207 348 -307 273 —285 78 96 —120 1 57 21 -15
18 -8 0000 0 0 00000 0O 0000 ~75 60 —390 394 —101 6 303 —-136 219 —285 78 0 -138 -8 60 21 -15 0
-8 0 0000 0O 0 00000 O OOOO 45 6 251 —95 12 6 —-172 21 -195 78 O O- 82 24 27-150 O
0 0 0000 0O O 00000 O 0000 z+ ~30 141 —345 513 —447118 168 —309 240 ~105 159 —55 —57 102 —51-28~-10 8
0O 0 0000 O O 00000 O 0O0O0O 60 —165 426 —447 118 0 -309 258 —111 159 -55 0 114 —87 -12-10 8 O
0 0 000 0O O 00000 0 0000 -48 66 —288118 0 O 231 -39 126 -55 0 0 -93 6 -188 0 O
0 0 0000 O O 00000 0 000Q0O -3 —-12 30 -105 159 —55 15 48 -63 -28 —10 8 -21 -3 30 ¢ 0O O
0O 0 0000 O O 00000 O 00OO ~12 48 -111159 -55 0 60 -99 —12 -10 8 0 -3 30 0 0 O O
0 0 0000 O O DOOOO O 0O0OO 21 -39 126 -55 0 O -105 6 ~18 8 0 0 3 0 0 0 0 O
0O 0 0000 0 0O 00000 O 0000 6 —-15 39 -28 —-10 8 -30 15 15 O 0O 0 6 -3 -3 0 0 O
0O 0 0000 O O 00000 O 0000 -3 3 ~-12-10 8 0 15 15 O Q 0 0 -3 -3 0 0 O O
0O 0 0000 O O 00000 O 0000 L -3 6 -18 8 0o o0 15 O 0] 0 0 0 -3 0 0 0 0 O

Straightforward use of the determinant computation function available on Mathemat-
ica and Maple fails to expand such a determinant. The computer algebra systems run for
a long period of time and fail due to memory requirements on a Sun-4.

Our interpolation algorithm takes about 575 and 138 second on a Sun-4 and IBM
RS/6000, respectively. The implicit computations are performed over various finite fields
and the algorithm works over 5 different fields in all. This is due to the fact the coefhicient

14

of maximum magnitude lies in the interval (—2%°,-2) or (2%%,280). Since the implicit
formulations are dense polynomials, in general, we use a dense interpolation algorithm.
The total number of monomials is given by

d+3

q= 3
where d is the degree of the implicit equation. As a result it is possible to derive a tight
bound on the running time of the algorithms. In Table I, the running time of various

parametrizations, over a single iteration of a finite field are presented. The actual number
of iterations is a function of the size of the maximum coefficient of the determinant.

Parametrization | Implicit Degree | Terms | Sun-4 | IBM RS5/6000
52 4+ t? 4 10 1 sec. 1 sec.
s° + 3 9 220 6 sec. 3 sec.
s%t? 8 165 4 sec. 2 sec.
s$3t3 18 1330 | 114 sec. 26 sec.
St 24 2925 | 430 sec. 118 sec.

Table 1: The performance of resultant algorithm for implicitization (a single iteration
over a finite field)

3.2.4 Symbolic Determinants

We used the algorithm for expanding symbolic determinants, where each entry of the
matrix is a polynomial. In particular, we present a symbolic determinant arising in a
high energy particle physics calculation. Each entry of the matrix M (shown below) is a
polynomial in e, k and r (after substituting the various variables). However, the entries
can be complex polynomials. We treat j = +v/—1 as a symbolic variable and substitute
the value in the final determinant.

The entries of the matrix are polynomials in the intermediate variables defined below.
However, we find it useful to express the determinant as a polynomial in as few variables as
possible. This gives us a better bound on the number of terms used for dense interpolation
algorithm, and reduces the number of stages (and hence the overall running cost) for the
probabilistic interpolation algorithm. We therefore, treat the determinant as a polynomial
F(6,k,n,¢e), where § = kr andn = jk. The maximum degrees of §, k,n and e in F(6, k,7, €)
are 32,16, 16, 8, respectively. For dense interpolation, the bound on the number of terms
is ¢; = 85833.

15

The matrix M

D00 O0D OV ROOW FOOWcO0OLWOOWO FOWO
| t !

CO00 0 FOLCWOO WO FVWOO gOO0ORVO cOWOO
] | |

COD0DODWO FOWLOOW s00WFOO0OWROOWD 0
| | |

b

COOO®wWO F0wWO0ORYOO cLOO FWOOwwO FO

| |
_ -
COOMOCOOLROOw FOOWpOOW.uOOWO FO &0
| I
oo

1 | |
O BOC0CO0CO0WROOW OO FOOWRDOO T
| |
3OO0 0000O0DWOORWOO pwWOO FOUOO.g T F
[=]

COMOOODOOLWOO FLYOO gWOORDWO g0 T
o

0 -n
es3 O
€3

I
coo0oMo _ﬂ050000 TO Ow __rIOO,oL_AOO_W
COMO TOLWOOOLOOO ﬂ&OO.ﬂﬁOOk o
©C QOO DWO FOOOOOwY ._11006 FTOO0 -0
a000504100000600_ﬂ600 rl~100..__~
coonoe 4/06k0050000 ._UOO 7:..»006
ocoXQo rl0500L_~6000000 _ﬂ~,00k50_ﬂ
O IO0OO0O WO UOEL_AOOOOOO T EFEO0OO0OwWRROO
OO0 O0OwO JIOEOOkOOOOHOO ﬂ&OOLﬂEOrI
L]

cooXQo JIOcokOOco .7/0070000..40060."
[cN=R) rl0500.u_~600ﬂ7000000k60._rl
CTO0OO0O0wR ﬂOSJOOW.ﬂOOOOOOSkOO
3OO O0OWwO %OSOOk 700_00000500.._»60
cCoOO0OQO 4/06.&007"006_.'100500000"
coQo rIOEOOL_n TOO FwWOO _ﬂ60000041
O30 O0ODwWO &0 7..4006 _ﬂ006 SO0 000Q
OO0 _UO 700k600_ﬂ800 FOQ0O0O0OYwWO
oQo ~_110 TR OOoOw 0006__4006..40060
OCNO TO TOOCLWOO FTWOOD fLWOOLRWOOO

(=]

0 6§ 00—y
0 n 0 6§ 0 7
§ 0 n 0 &§ O
0 6§ 0-p O 6
0 0 e3 0 O O

¢ -n
e3 O
0 e3

0 §

§ 0 n 0 & O
0 6§ 0—-n O 6
0 0 e3 o o0

5
0
0 -n
0

n
€3

0
0
0
0o 0 0 O
o 0 0 O

| |
[=NN<REol=] n061__~006 ,_0006 TOQwROO
coo© 704/0600k600r_4600 ﬂ600..._AOO
ococo o _ﬂOcokOOE O 0w _0006.40060 T o
OO,m.O ﬂO:uOOL_n&OO (SN~] 41600k60 ,_.10800
O JoOoO0OwD rzOSL.~006 _ﬂ006 TO0OWROOWO 410

&..000000 n0500k600ﬂ600n500k60n00
[l] l 1

a 0 O

1)
0

0

sy

0 14 eqld

0

0 1+ e

0
For this
12384

0 1l+es

0

rder 2%, so

9

that the probability of obtaining a wrong answer is bounded by 2.5 x 107,

determinant the various stages of the algorithm proceed as:

0
€4

We recommend

€4
0

ea, é=—kr, n=3k, j

0o 0

€4

0 €4 1] 0
eﬂ7 €4

€3
0o 0 O
e+)87 €3

€4

eta, ez
-increasing degrees. Since the determinant can
16

e3 0 O
€4
es 0 O 0 eq

0 0

0
—k(=14r), y=1—kr, &

0 0 0
es

€4

, respectively. As far as the probabilistic interpolation is concerned the running

€3
0

We used dense as well as probabilistic interpolation algorithm for this problem. The
terms.

dense interpolation algorithm takes about 280 and 94 minutes on a Sun-4 and an IBM

RS/6000
e F(6,k,n,r4) has 1376 terms, whereas the upper bound is 225 17 = 3825 terms.

o F(8,k,r3,r4) has 225 terms, whereas the upper bound is 33 * 17 = 561 terms.
e Finally, F(6,k,n,e) has 8746 terms, whereas the upper bound is 1376 * 9

o F(68,r5,73,74) has 33 terms and the upper bound is 33 as well.

o 0
—k(1+r)7 IB

0
have up to 85833 terms, the primes are chosen randomly from a field of o

time of the algorithm is a function of the ordering of the variables.
ordering the variables in the order of non

where
(84

0 0 0 0
0 0 0 0 0o O

0
LO

The algorithm takes 64 and 21 minutes on a Sun-4 and an IBM RS/6000 respectively.
The upper bound at each stage gives a bound on the running time of the algorithm for
that stage. After substituting for 6, 5, j and simplifying the resulting expression, the
determinant is

(=1 =k + k2r2)12(—Tek® + Tek*r® + k — kr — ek — e2kr — 6ekr + €)?
(—Tek® + Tek’r® —k — kr + e’k — e2kr — 6ekr + €)’.

The performance can be improved by using complex arithmetic. The main idea is
to treat the coefficients of the determinant as complex entires. As a result the number
of variables doubles. Moreover, we work over finite fields of the form a + bj, where a, b
are integers in the set [0,p) and j2 = —1. The operations of addition, subtraction and

multiplication are defined as a combination of complex and finite field operations. To
compute the inverse of a + bj, we represent is as ¢ + dj and

ac—bd=1 mod p,
ad+bc=0 mod p.
As a result,

1
(C, d) = E(a’ _b)7

where g = a? + b%. All these operations are performed modulo p.

4 Numeric Solutions

In this section we present an algorithm to compute the numerical solutions of a given
system of polynomial equations. However we are only interested in the solutions lying in
a subset of the real domain.

Given n homogeneous equations in n+1 unknowns, F1(zo, 1, .- -, Tp)y -y Fu(To, 21,. ..

where the domain of variables is limited to 1 x [ay, b] X [az, b2] X .. . X [@n, bn]. It is assumed
that the algebraic set defined by these equations has no excess components, otherwise we
perturb the given equations and use limiting arguments for computing the roots. zo is
the homogenizing variable and we are only interested in the affine solutions. Let

Fo(Zo, T1y . - -y Tn) = UoTo + W1T1 + ... + UnTn,
be a linear polynomial and R(uo,u1,...,un) be the resultant of Fy, Fi,..., F, obtained
by considering them as polynomials in zo, Z1, ..., Tn- It is a homogeneous polynomial

in u;’s and its degree is equal to the product of the degrees of Fy’s. R(ug,...,uy) is the
u-resultant of the given system of equations and factors into linear factors of the form

Qoo + a1uy + ... + Qply,

17

) Tn)s

where (ap, a1, . ..,) correspond to the solution of the original system [Wd50]. However,
computing the expression R(uo,...,us) and factoring into linear factors can be a time
consuming task, even for low degree polynomials. We therefore, specialize some of the u;’s
and reduce the problem to computing roots of univariate polynomials in a real interval.
For many small values of n and certain combinations of the degrees of Fi’s, the resultant
can be expressed as determinant of a matrix. Otherwise the resultant can be expressed as
a ratio of two determinants and in either case the entries of the matrices are polynomials in
Ug, U1, - - -, Un. After specialization, these entries are univariate polynomials in uo and the
problem of computing roots of the univariate polynomial corresponding to the determinant
(or ratio of determinants) can be reduced to an eigenvalue problem. Efficient algorithms
for computing the eigenvalues of matrices are given in [GV89] and good implementations
are available as part of standard packages like EISPACK and LAPACK [De89].

We apply a generic linear transformation to the coordinates, (zo,Z1,...,Tx). This is
to insure that the u-resultant does not vanish identically after we have specialized some
of the variables. The domain of the modified system of equations is suitably adjusted.

Let
fl(uo) = R(UQ, 1,0, e ,0)

be a polynomial of degree d. It is assumed that f (uo) does not vanish identically, owing
to the linear transformation on the coordinates. Since it corresponds to a projection of
the u-resultant, it can be factored into linear factors of the form

kuo™ (uo + a11)(uo + azz) ... (uo + a1q),

where each ay; corresponds to the projection on the z; coordinate. We are only interested
in roots lying in the interval (a1, bi]. However, fi (uo) has been expressed in terms of matrix
determinants. To compute its roots we need to expand the determinants and compute
the roots of the resulting univariate polynomials. As a result we use the interpolation
algorithm presented in the previous section for computing the determinants and the Sturm
sequence method to compute the roots of the resulting polynomial in [a1, b;]. However, this
procedure is slow and becomes unattractive in the context of floating point computations.
In the next section we reduce the problem of root finding to computing eigenvalues of
matrices.

Let there be p, such roots, L1 = (cuj,...,0p) of fi(uo) in (a1, b1]. Similarly we
compute the roots of
f2(Uo) = R(U0,0, 1, 0, e ,0)

in the interval [az,bs], say L2 = (a1, 22, .- ,Qp,). However, two projections are not
enough for establishing the correspondence between the projections on u; and u; coordi-
nates and therefore, we take a generic combinations of these two coordinates and let

fl,2(u0) = R(UO, kla k27 07 DR 0)’

18

where k; and k, are two positive random numbers. Let Li2 = (B1, B2y .-+ Bp,,) be its
roots in the interval [kia1 + k2a2, k1b1 + kyby]. To establish the correspondence between
the projections on u; and u; of the actual roots, we compute all the combinations of the
form kyay + ksae, where ay € Ly and ag € Lo and compare them with the elements in
Ly Since our projection on u; and uz is a generic projection, it is reasonable to assume
that the exact matches correspond to the projections of the roots of Fi’s on z; and x4
coordinates.

In a similar manner, we compute the roots of f3(to), f1,2,3(t0), - - -, fa(to), fr.2,..n-1.2(u0)
in the corresponding intervals, where

fi(U'O) = R(UO, Uty ey u'n.)u1 =0,...,8i—1=0,u;=1,8;41=0,...,un=0
and
f1,2,...,j(u0) = R(uo, Uy - -y un)u1=k1'...,uj=kj,uj+1=0,...,un=0-
ki, ka,...,k; are random positive integers. These roots can be used to compute the rest

of the x; coordinates of the solutions of the original system of equations. It is possible
that the resulting solution set contains some extraneous solutions. As a result, we back
substitute the roots in the original system of equations to eliminate the extraneous roots
from the solution set.

4.1 Reduction to Eigenvalue Problem

In the previous section we reduced the problem of computing solutions of a system of
multivariate polynomials (in the domain of interest) to finding roots of univariate poly-
nomials in suitable intervals. The univariate polynomials, like fi(uo), are expressed as a
determinant or as a ratio of two determinants and we are interested in roots lying in the
interval [a, b]. Let us consider the case when it is expressed as a ratio of two determinants
and the corresponding matrices are denoted as M(uo) and D(uo). If the resultant corre-
sponds to a determinant of a matrix, Determinant(D(uo)) = 1. Each entry of M(uo) and
D(uo) is a polynomial in uo. Let its degree be bounded by d. Depending upon the value
of Determinant(D(uo)) there are two possible cases.

e Determinant(D(ug)) # 0. Thus,

Determinant(M (uo))
Determinant(D(uo))

fi(uo) =

Let S; and S, be the solution sets corresponding to the roots of Determinant(M (uo)) =
0 and Determinant(D(ug)) = 0 lying in the interval [a, b], respectively. As a result,
the roots of fi(ug) correspond to S; \ S;. We reduce the problem of computing S,
or S; to an eigenvalue problem.

19

o Determinant(D(uo)) = 0. As a result Determinant(M(uo)) = 0. It is possible to
use perturbation technique and thereby express the resultant as the constant term
of the ratio of characteristic polynomials of M(uo) and D(uo) [Ca90]. However,
this procedure may be expensive and we consider a minor of M(ug), say M(uo) of -
maximum possible rank (among all its minors), such that Determinant(M(uo)) # 0.
It follows from the construction, fi(uo) divides Determinant(M(uo)). The roots of
Determznant(M M{(uo)) are computed by reducing it to an eigenvalue problem. For

each root uy = a, we compute the constant term of the ratio of characteristic
polynomials of M(a) and D(a). It turns out that fi(a) = 0 iff the constant term is
zero.

Let us assume that M(uo) is a matrix of order n. Each entry of M(uo) is a polynomial
of degree d and it can therefore, be represented as

M(uo) = qud + u Md—l +. (4)

where M;’s are matrices of order n with numeric entries. Let us assume that My is a
non-singular matrix. As a result, the roots of the following equations are equivalent

M(uo)) =0,
Determinant(M; ') Det(M(uo)) = 0.

.+ uoM; + Mo,

Determinant(

Let

M(uo) = el + ud " My_1 + ...+ uoM, + Mo, (5)

where

M;=M;'M;,, 0<i<d
and I, is an n x n identity matrix. Given M (uo), we use Theorem 1.1 [GLR82] to construct
a matrix of the form

- -

0 I, 0 0
0 0 I, 0
C= : : : :) (6)
0 0 0 I,
I -M, -M, M, M,]

such that the eigenvalues of C correspond exactly to the roots of Det(M(u))=0. Cis a
numeric matrix of order dn.

If M, is a singular matrix the roots of the matrix polynomial represented by (4) can

be obtained by constructing companion matrices [GLR82, Section 7.2]

-

0 I, 0 0 0 —I. 0 0
00 I ... 0 0 0 -l ... O

Cr=|: t + i i|, C=| 1 &+ i :
0 0 L 0 0 0 0 —I
(0 0 Mg 0 | Mo M, My, My,

20

The roots of the polynomial Determinant(Ciuo + C2) = 0 correspond to the roots of
Determinant(M(uo)) = 0. However, C is a singular matrix and the problem of comput-
ing roots correspond to a generalized eigenvalue problem [GV89].

4.1.1 Implementation

The bottleneck of the root finding algorithm are the eigenvalue routines. We used EIS-
PACK routines for computing the eigenvalues of matrices. Many special purpose algo-
rithms are available for computing the eigenvalues of matrices, which make use of the
structure of the matrix. As far as matrix C in (6) is concerned, we treat it as a gen-
eral unsymmetric matrix. We used the routine RG from EISPACK for computing the
eigenvalues [GBDM?77]. Given a general unsymmetric matrix, it makes use of balancing
techniques, reduces it to upper Hessenberg form and uses the shifted QR algorithm on
the resulting matrix to compute the eigenvalues [GV89]. The current implementation of
these routines compute all the eigenvalues. The performance of eigenvalue computation
routines for matrices of different order (generated randomly) are given in Table II. The
timings correspond to the implementation on an IBM RS/6000. As far as generalized
eigenvalue problems are concerned, we used the routine RGG from EISPACK. Details of
the algorithm being used are given in [GV89].

Order of Matrix | Time in seconds
15 8631.839844 x 10~°
20 15717.63965 x 10~°
25 25753.00000 x 10~
30 38763.23828 x 10~¢
35 57124.16016 x 10~
40 77398.03906 x 10~°
45 103343.5234 x 10~°
50 133956.2344 x 10~°
55 165395.0469 x 10~
60 212041.2812 x 10~°
65 262103.1250 x 10~°

Table 11

The performance of eigenvalue computation routines

4.1.2 Example

Let’s consider the intersection of a sphere and two paraboloids, represented by the fol-
lowing equations

Fi(z,y,z,w) = z° + y% + 2% — w?

21

—z? —y2 + zw

Fy(z,y, z,w)

Fi(z,y,z,w) = —z? — 22 +yw.

We are only interested in the real solutions.

Let

Fy(z,y,z,w) = uow + w1 T + Uy + Usz.

Determinant(M)/Determinant(D),

We use the Macaulay’s formulation [Ma02] to compute the resultant, which expressed it

as a ratio of two determinants, R(uo,u1,u2,us)

where

0 0 017
0

0
0

[¢]

-1 0 O

0
0
0
0
13
10

0 0 0 O
10 0 0 0 0
3

-4 0 0 3 O

0
0

r6 -—4-8 0 3 10 0 13 0 -10

0

0

0

-4-8 0 0 0 0 3

06 0 O

0 0 10 13 0 O

0o 0 0 O

-4 0 -80 0 O

00 0 6 0 O

00 6 0 O

0

10 0 0 -1

0

0

3 0 0 O

-80 0
00 0 O 6 00 0 0 0-4-820 3100

-4 0

-1 0

0

0 0 0 -1 0 0 O
0

-8 0 0 O

-4 0 0 3 O

0
0
0
0

00 0 0 0 6 00 000

-10 O

0

0
0

10
0
3

00 0 00 0 6 0 0 00

-8 0 10 13
-8 0

-4

3

0 0 0 O
0 0 0 0 O

00 0 0 0 6 O 6 0 0O

-4 0 0 0 0 0 ~10

0
13

13

10

00 0 0 0 0 0 0 6 00

-4-8 0 10 0 0 -1

0

0

0 0 0 O

00 0 00 0 0 0 0 6 0

0 0 0

-2 0 0 0 O

0

0-20 0 0-4-20 0 0 -2 -4 1

0 -4 -4 3

0

0
0

—-4-20 0

00-20 0 00O

0

1 3 0 0 O

-4

-2 0 0 O

00 0-20 0 0 0 -4-20
-20 0 0 0 0 O
00 0 0 0-20 0 00O

00 0 O

-4 -2-2-41

0

0
0

0
3

-2 0 0 O

o
0

-2 0 -4
-2 0

0o 0
0 0 0

0
0
0
0
0

-4 -2 0 0

0

¢
-4

-4

-4

-20 0 0 O

00 0 0 0 O

-4 -2 -4
0 -4 0

0
0

-2

0 0 0 0

-2 0 0 O
0 0 0 O

00 0 0 0 0 O

-4

-4

0
-2

-2
0

0
0

0

-2 0 O

00 0 0 0 0 O0COO-20

00 0 0 0 0 0O

3

0 —4-2 -4 1

0

—4

o0 0 0 0 O

0
0 -10-13 O

0 -13 0

0
0
0

0 0 0 -2-10-10 0 O

1
-50 0 2 0 8

0-50 0 2 8

00

0
0

-1 0 0 0 O
0

0
0

-2 0 0 0 O 0
-13 0

1 00

0

-10-10 0

0

0
0

0
-13 0
0 -13 0

0
¢]
0
8

0
0 0 -20 -10-1 0 8

-2 0 0 O

0
2
0
0
0
0

u2

0

00 0 0 0-500 00O

00 00 0 O

-50 0 2 0 8 1

00 O

0
0
1

0

-10-1 0

2 0 0 -2 0

-50 0 0 O

0

-13 0
0

-10 -1 -13 O

0 0 00 -2 0 0 2

-50 0 O

00 0 0 0 0O

-1 0 0 O
-10-1 0 O

0
1

0

2

-13 0

-10 0

0

o}
0
0
0

o0 0 0 O
0 0 0 O

-5 0 0

00 0 0 0 0 0 O

2 8
0 0 O
u 0 O

-2

0
0

-5 0

00 0 0 0 0 0 0 O

0
0
0
0

uo

0 0 0 0 O 0 0 0 O u3

00 0 0 0 u

o
0
0

uo

u3

wp 0 O O

0
0
0
Q
0
0
0

0o 0 0 O

00 0 0 0 0 uw

0 up O

u2

0 0 0 O
0 0 0 O
0O 0 0 0

0 0 0 O

0 0

00 0 0 0 0 0 0 u

0

uz U3 ug

0
0
0
0
0

0

00 0 0 0 0 0 0 O u
00 0 0 0 0 00 0 00O

0 0 O
ug 0 O
0 ug O

o 0 0

u

uz

0 0 wus

u1

u2

0

00 00 O OOOCOOO

u; 0 ug

0

u3

0 0 0 0

0 0 0 O

00 0 00 0 OO0 00O

0 0 w1 0 wup uz uplJ

0

00 0 0 O OO 0O O 0O

22

and

r 6 0 -4 0 -8 0 3 0 O 0 o 13 0 0 0 7
o 6 0 0 O ©o 0 ©0 13 o0 -1 © 0 0 0
o o 6 0O 0O ©0 -4 3 0 10 O 0 13 0 0
6 o o 66 o0 o0 0 o0 3 0 0 0 0 0 ~1
o 0 0 0 6 0 0 O O 3 0 -8 10 13 0
o o o 0O O 6 0 0 O 0 3 0 0 0 13
-2 0 0 0 -4 -2 =2 0 O 0 0 -4 0 0 0
D= o 0 -2 0 0 o0 ©0 -2 0 -4 1 0 -4 0 0
o 0 0 -2 0 ©o O o0 -2 o0 0o -2 1 3 0
o o 0 0o -2 0o 0O 0O © -2 0 -4 -4 -4 3
o 0 0 0o 0O -2 o0 o0 O o -2 o0 0 0 -4
-5 0 2 0 8 1 =2 0 0 0 0 -13 o 0 0
o o -5 o 0 O 2 -2 0O -0 -1 0 -13 O 0
o 0 0 O -5 06 0 0 o0 -2 0 8 -10 —-13 ©

L o o o o o -5 0 o0 O o -2 O 0 0 -13 J

In this case, D is a non-singular matrix and its entries are numeric. As a result,
R(uo, uy,uz,us) = Determinant(M). To compute the roots we take the projections
along different coordinates and reduce the problem to a generalized eigenvalue problem.

Let fi(uo) = R(uo,1,0,0). We specialize these values into the matrix and break it
up into a generalized eigenvalue problem of the form Cjug + Ca, where C; and C, are
numeric matrices. The resulting system has 27 eigenvalues at infinity and there are only
two real solutions in the affine domain

L, = (—0.2594548,0.10494635).
Similarly, we compute the real roots of fa(uo) = R(uo,0,1, 0) and
Ly = (—0.87748883, —0.51308763).

To establish a correspondence between the roots, we consider fi2(uo) = R(uo,3,4,0),
(where 3 and 4 are chosen randomly) and its real roots are

L2 = (—4.28831990, —1.73751148).

We consider all pairs of the form (3ay + 4cz), where aq € L, and ay € L, and match
them with the elements of L; ;. This results in matches of the form

(1,—0.2594548, —0.87748883,u3), (1,0.10494635, —0.51308763, us).

Finally we compute the roots of fa(uo) = R(u0,0,0,1) and fi23(uo) = R(uo,—2,3,1)
and express them as
L3 = (0.44700477,0.32553770)

and

Ly23 = (—1.78801910, —1.30215083).

After considering the possible matches, the real roots of the original system are (in the
order (z,y,2z,w))

(—0.2594548, —0.87748883,0.32553770,1) (—0.2594548, —0.87748883,0.32553770, 1).

23

5 Conclusion

In this paper we have presented algorithms to efficiently compute the resultants of polyno-
mial equations and using properties of matrices and determinants used them to compute
the roots of a system of polynomial equations. As a result, it is possible to perform sym-
bolic elimination from a given set of polynomial equations in a reasonable amount of time
and space requirements. We have used these algorithms for implicitizing parametric sur-
faces, inverse kinematics, computing the configuration space for curved objects for robot
motion planning and solving systems of non-linear equations.

6 Acknowledgements

We are grateful to Prof. J. Demmel and Prof. W. Kahan for productive discussions.

7 References

[Ab76] Abhyankar, S.S. (1976) “Historical ramblings in algebraic geometry and related
algebra”, American Mathematical Monthly, vol. 83, pp. 409-448.

[BGW88] Bajaj, C., Garrity, T. and Warren, J. (November 1988) “On the applications of
multi-equational resultants”, Tech. report CSD-TR-826, Computer Science Deptt., Pur-
due University.

[Bu85] Buchberger, B. (1987) “Grébner bases: An algorithmic method in polynomial ideal
theory”, in Multidimensional Systems Theory, edited by N.K. Bose, pp. 134-232, D.
Reidel Publishing Co..

[Bu89] Buchberger, B. (1989) “Applications of Grébner bases in non-Linear computa-
tional geometry”, in Geometric Reasoning, eds. D. Kapur and J. Mundy, pp. 415-447,
MIT Press.

[BT88] Ben-Or, M. and Tiwari, P. (1988) “A deterministic algorithm for sparse multivari-
ate polynomial interpolation”, 20th Annual ACM Symp. Theory of Comp., pp. 301-309.
[BSY91] Bernard, C., Soni, A. and Yee ,K. (1991) “Gauge Dependence of Quark Mass in
Strong Coupling”, to be published.

[Ca87] Canny, J. F. (1987) The complexity of robot motion planning, ACM Doctoral
Dissertation award, MIT Press.

[Ca90] Canny, J. F. (1990) “Generalized characteristic polynomials”, Journal of Symbolic
Computation, vol. 9, pp. 241-250.

[De89] Demmel, J. (1989) “LAPACK: A portable linear algebra library for supercomput-
ers”, IEEE Control systems society workshop on computer-aided control system design,
Tampa, Florida.

[Di08] Dixon, A.L. (1908) “The eliminant of three quantics in two independent variables”,

24

Proceedings of London Mathematical Society, vol. 6, pp. 49-69, 473-492.

[GLR82] Gohberg, 1., Lancaster, P. and Rodman, L. (1982) Matriz polynomials, Academic
Press, New York.)
[GV89] Golub, G.H. and Van Loan, C. F. (1989) Matriz computations, The John Hopkins
Press, Baltimore, Maryland.

[Ho90] Hoffmann, C. (1990) “Algebraic and numeric techniques for offsets and blends”,
in Computation of Curves and Surfaces, eds. W. Dahmen et. al., pp. 499-529, Kluwer
Academic Publishers.

[Jo89] Jouanolou, Jean-Pierre (1989) “Le Formalisme Du Résultant”, Department of
Mathemetics, Université Louis Pasteur, France.

[KL88] Kaltofen, E. and Lakshman, Y.N. (1988) “Improved sparse multivariate polynomial
interpolation algorithms”, in Lecture Notes in Computer Science, vol. 358, pp. 467-474,
Springer-Verlag.

[KLW9O0] Kaltofen, E., Lakshman, Y.N. and Wiley, J. (1990) “Modular rational sparse mul-
tivariate polynomial interpolation”, in Proceedings of ISSAC’90 pp. 135-140, Addison-
Wesley, Reading, Massachusets.

[Kn81] Knuth D. (1981) The art of computer programming: seminumerical algorithms,
Addison-Wesley.

[Lo83] Loos, R. (1983) “Computing rational zeros of integral polynomials by p-adic ex-
pansion”, SIAM Journal on Computing, vol. 7, pp. 286-293.

[Ma02] Macaulay, F. S. (May 1902) “On some formula in elimination”, Proceedings of
London Mathematical Society, pp. 3-27.

[Ma21] Macaulay, F. S. (June 1921) “Note on the resultant of a number of polynomials of
the same degree”, Proceedings of London Mathematical Society, pp. 14-21.

[Ma64] Macaulay, F. S. (1964) The algebraic theory of modular systems, Stechert-Hafner
Service Agency, New York.

[MC27] Morley, F. and Coble, A.B. (1927) “New results in elimination”, American Journal
of Mathematics, vol. 49, pp. 463-488. _

[MC90] Manocha, D. and Canny, J. (1990) “Algorithms for implicitizing rational para-
metric surfaces”, to appear in Proc. of IV IMA Conference on Mathematics of Surfaces,
Claredon Press, Oxford. Also available as Tech. report UCB/CSD 90/592, Computer
Science Division, Univerisity of California, Berkeley.

[MC91a] Manocha, D. and Canny, J. (1991) “A new approach for surface intersection”, in
proceedings of First ACM Symposium on Solid Modeling Foundations and CAD/CAM
Applications. Also available as RAMP memo. 90-11/ERSC 90-23, Engineering System
Research Center, University of California, Berkeley.

[MC91b] Manocha, D. and Canny, J. (1991) “The implicit representation of rational para-
metric surfaces”, to appear in Journal of Symbolic Computation .

[Mi90] Milne, P. (1990) “On the solutions of a set of polynomial equations”, manuscript,
Department of Computer Science, University of Bath, England.

[MM82] Mayr E. and Meyer A. (1982) “The complexity of the word problem in com-
mutative semigroups and polynomial ideals”, Advances in Mathematics, vol. 46, pp.

25

305-329.

[Mo25] Morley, F. (1925) “The eliminant of a net of curves”, American Journal of Math-
ematics, vol. 47, pp. 91-97.

[Mr87] Morgan, A.P. (1987) Solving polynomial systems using continuation for scientific
and engineering problems, Prentice-Hall, Englewood Cliffs, New Jersey.

[Mr90] Morgan, A.P. (1990) “Polynomial continuation and its relationship to the symbolic
reduction of polynomial systems”, presented at the workshop on Integration of Numeric
and Symbolic Computing Methods, Saratoga Springs, New York.

[Sa1885] Salmon, G. (1885) Lessons introductory to the modern higher algebra, G.E.
Stechert & Co., New York.

[Wd50] van der Waerden B. L. (1950) Modern algebra, (third edition) F. Ungar Publishing
Co., New York.

[Wh09] White, H.S. (1909) “Bezout’s theory of resultants and its influence on geometry”,
Bulletin of the American Mathematical Society, pp. 325-338.

[WM90] Wampler, C. and Morgan, A. (1990) “Numerical continuation methods for solving
polynomial systems arising in kinematics”, ASME Journal on Design, vol. 112, pp.
59-68.

[Zi90] Zippel, R. (1990) “Interpolating polynomials from their values”, Journal of Sym-
bolic Computation, vol. 9, 375-403.

26

