I

s te ey
F
-

L) . .

..

s

Stabbing Isothetic Boxes and Rectangles in
O(nlg n) Time

Michael E. Hohmeyer and Seth J. Teller

Report No. UCB/CSD 91/634
June 1991
Computer Science Division (EECS)

University of California
Berkeley, California 94720







Stabbing Isothetic Boxes and Rectangles in
O(n lg n) Time

Michael E. Hohmeyer
Seth J. Teller
Computer Science Division
University of California at Berkeley

Berkeley, California 94720
June 12, 1991

Abstract

An algorithm is presented for determining in O(n 1g n) time whether there exists a line
that stabs each of n polygons whose edges are from three sets of parallel lines. Using
this algorithm, one can determine in O(n lg n) time whether there exists a line that
stabs each of n isothetic boxes or rectangles. If any stabbing line exists, the algorithm
computes and returns one such stabbing line.

1 Introduction

Suppose one wishes to determine if it is possible to see into a region in R 3 through a series
of opaque planar barriers with polygonal holes. If it is possible to see into the region,
then there must be a line that stabs all of the polygonal holes. Avis and Wenger present
the first algorithm to determine if such a line exists and to calculate a representative
line [1]. This algorithm runs in time O(n* lg n). Pellegrini presents an O(g?n? lg n)
algorithm for this problem where g is the number of distinct orientations of the normals
of the polygons [5,4]. Thus, for the special case where there are a fixed number of distinct
polygon normals, Pellegrini’s algorithm runs in O(n? lg n) time. In practice it may be



the case that all of the polygons are isothetic rectangles, that is, rectangles whose edges
are from lines parallel to one of the three principal axes [7]. In this paper we present
an O(n lg n) algorithm that computes a stabbing line through n isothetic rectangles or
boxes, or determines that no such line exists.

2 Dual of 2-D Problem

Figure 1: An oriented line.

Before considering the problem in three dimensions we consider it in two. In the plane,
instead of stabbing rectangles we stab line segments. The stabbing line will be oriented;
1.e., specified by a point p and a direction v. The line segments are oriented in the sense
that they are an ordered pair of end points (e, e;). A line is feasible if

(vx(es—p))-220 (1)

2



((e1—p)xv)-220 (2)
as depicted in Figure 1. If the line segements are not isothetic, the problem of orienting
them is quite difficult itself. However, when they are isothetic in 2-D one can fix the
orientation of the vertical lines to admit solution lines going left to right and to orient
all of the horizontal lines first to admit solution lines going upward and then to admit
solution lines going downward. Thus, there are only 2 meaningful orientations in 2-D.
Similarly in 3-D there are only 4, so that it is not too expensive to consider them all.

Since the line segments are axis-aligned, we can transform this into the following
problem. Given two sets of points, {p;} and {g¢;}, find a line that passes above the {p;}
and below the {¢g;}. We will refer to points that constrain a line to pass by another line
in a particular fashion as oriented points. Thus we have reduced the problem to finding
a feasible line passing by a set of oriented points in the correct fashion.

Given a set of n oriented points in the plane we can describe the space of feasible lines.
Refering to Figure 2, the points below the feasible region constrain lines to pass above
them while the points above the feasible region constrain lines to pass below them. The
feasible region appears as a bowtie-shaped shaded region. If we parametrize the feasible
lines by their intercepts, a and b, with the two vertical lines, A and B, respectively, we
see that each line in z — y space corresponds to a point in a — b space. The set of lines in
z —y space through a point in £ — y space corresponds to a line in a — b space. The set of
lines passing an oriented point in the correct fashion corresponds to a half plane in a — b
space, indicated by the arrows in Figure 2. The set of feasible lines is then the intersection
of these half spaces, i.e. a convex polygon. This polygon has at most n vertices. Each
vertex of the convex hull of the set of feasible lines in a — b space corresponds to a line
In £ — y space.

A feasible line can be found in linear time using a linear programming algorithm [3,6]
We recommend [6] since it is straightforward to implement and fast for low dimensions.

3 3-D Algorithm

Lines in R? are oriented as follows. Let L; and L, be lines in R3. Let p; be a point on
L, and v, be a vector along L,, and similarly for p,, L, and v,, as depicted in Figure 3.
The line L, will be feasible with respect to L, if and only if

vi X V2 (p1 —p2) >0 (3)

Note that if one line is considered fixed and the other variable, then the above constraint
1s quadratic.



Duality Relationship

/ 77N\ N\

Figure 2: Lines in R? and their dual representation.



2

Figure 3: Oriented lines in R3.

This is not simply a case of choosing the parametrization of the variable line badly;
there is no coordinatization of feasible lines so that the feasible region is bounded by
hyperplanes. To see this, consider the line constraints that arise from requiring a line
to pass through the axis-aligned rectangles pictured in Figure 4. There is no way to
smoothly move from one of the solutions pictured to the other. If we could parametrize
the space of feasible lines in such a way that the constraints were linear then the space
of feasible lines would not only have to be connected but, in fact, convex. This example
shows that no parametrization exists which causes the constraints to be linear. Thus, an
application of linear programming as in the 2-D case is ruled out.

We wish to solve the following problem: given a set S of n oriented, axis-aligned lines
in R? representing constraints, we wish to determine if there is a satisfying line. We will
present the O(n lg n) algorithm first as a slower algorithm and then show how it can be
made more efficient. We begin by making the following observation:

Lemma 1 If there is any feasible line, then there must be a feasible line intersecting four
constraint lines.

Proof: Coordinatize the all lines by their intercepts with the planes containing two

5



Figure 4: The space of feasible lines can be disconnected.

constraint rectangles. Call the coordinates of the feasible lines S4 C R* The edges of the
rectangles bound the coordinates S,. The constraints are not strict inequalities so that
S 1s closed and thus compact. Thus, there must be a feasible line L which minimizes the
first coordinate of S4. Clearly L must be on the boundary of the S4. Thus, it intersects
a constraint line, C;. Now coordinatize a subset of the feasible lines by their intercepts
with C; and their intercept with a plane P containing a rectangle R and not containing
C;. Call the coordinates of the feasible lines S35 C R3. The edges of the rectangle that
meet C; bound the first coordinate of S3. R bounds the second two coordinates of Ssj.
S3 1s again compact. The feasible line which minimizes the first coordinate of S3; must
be on the boundary of Sj, i.e., intersecting a second constraint line C,.

Case 1: If Cy and C; intersect then coordinatize the set of lines passing through C,
and C; by their intercepts with a plane P containing a rectangle R and not containing
C} and C,. Call the coordinates of the feasible lines S, C R2. S, is bounded by R and is
again compact. The feasible line minimizing the first coordinate of S, must intersect a
third constraint line C3. Coordinatize the lines passing through C,, C; and C3 by their
intercept with Cs. Call the coordinates of the feasible lines S; C R. S; is bounded by
the rectangle edges that meet C5. Thus S, is compact. The feasible line in S; minimizing
its coordinate must intersect a fourth line Cj,.



Case 2: If C; and C; do not intersect then coordinatize the set of lines passing through
C, and C, by their intercepts with C; and C;. Call the coordinates to the feasible lines
S, C R2. The first coordinate of S; is bounded by the rectangle edges that meet C,
and the second coordinate is bounded by the rectangle edges that meet C,. Thus S; is
compact. The feasible line which minimizes the first coordinate of S, must intersect a
third constraint line C3. Coordinatize the lines passing through C;, C; and C3 by their
intercept with C;. Call the coordinates of the feasible lines S; C R. S; is bounded by
the rectangle edges that meet C;. Thus S} is compact. The feasible line in $; minimizing
its coordinate must intersect a fourth line Cj,.

[

Let X, Y, and Z be the set of x-aligned, y-aligned, and z-aligned constraint lines,
respectively. Since each constraint line belongs to one of X, Y, or Z, it is clear that there
must be a feasible line intersecting two lines from the same set.

This is the key to exploiting the fact that the lines come from three sets of parallel
lines. Consider a set of lines through two parallel lines A and B. Coordinatize the lines
by their intercepts with A and B. If we restrict the set of lines to be feasible with respect
to an additional line in R3, the restriction can be expressed as a linear constraint on the
coordinates of the lines. This is because the solution lines lie in a plane through A and
B. This would not be true if A and B were skew.



We can devise an O(n?®) algorithm as follows:

Stabbing_ Line_1 (X,Y,Z2)
(1) S=XuYuzZz
(2) for G=X,Y,Z

(3) F=§5-G

(4) for each pair (A,B) € G

(5) determine the plane P defined by A and B

(6) for each C € F

(7) let pc be the point where C intersects P

(8) endfor

(9) use a linear programming algorithm to
determine if there exists a line L in P satisfying
the pc’s.

(10) If there ezists an L return (L)

(11) endfor

(12)  endfor
(13) return (infeasible)

The outer loop (from line 2 to 12) is executed 3 times, the next (from line 4 to 11) is
executed O(|G|?) times, the innermost loop (lines 6 to 8) is executed O(|F|) times, and
the linear programming algorithm takes O(|F|) time. Thus, the total running time is
O(n®).

The first optimization to this algorithm is to note that the loop over all pairs in G
(from line 4 to 11) is considering too many pairs. Consider, for example, the case when
G = X (on line 2), as depicted in Figure 5. Let @ be a plane perpendicular to the x-axis.
Let T be the set of intersections of the lines in X with the plane Q. A line L in R? will
be feasible with respect to the set of lines S only if the projection ! of L onto @ is feasible
with respect to the points T. Let a and b be the intersections of the (z-aligned) lines A
and B with the plane Q). All of the lines intersecting A and B will project to the same
line in @, namely the line [ that intersects a and b. For many of the pairs (4, B) € G the
projection of L will not be feasible with respect to T'. Thus, many of the pairs (A, B)
can be removed from the second loop (lines 4 to 11) in Stabbing _Line_1. At most |G|
lines defined by pairs of points from T' will be feasible with respect to T, as explained in
Section 2.



P

.

.
.

z-aligned constraint lines

n p’s
C
v A clementsof T

Figure 5: Many planes determined by A’s and B’s contain only infeasible lines.



We can now describe an O(n?) algorithm:
Stabbing Line 2 (X,Y,Z)
(1) S=XuYuZ
(2) for G=X,Y, 27

(3) F=S-G

(4) let @ be a plane perpendicular to the lines in G

(5) let T be the intersections of G with Q

(6) let H be the convezx hull (in the dual space) of the
lines in Q feasible with respect to T

(7) for eachle H

(8) determine the plane P defined by l and the

direction of the lines in G.

(9) for each C € F

(10) let pc be the point where C intersects P

(11) endfor

(12) use a linear programming algorithm to
determine if there ezists an L in P satisfying
the pc’s.

(13) If there ezists an L return ( L)

(14) endfor

(15)  endfor
(16) return (infeasible)

Let Xp be the intersection of the lines in X with the plane P, and similarly define
Yp and Zp. Let X'(P) be the convex hull of the lines in P feasible with respect to X},
and similarly define Y(P) and Z(P).

Consider again the case when G = X (on line 2). In the inner loop we are testing
|X'| times whether Y(P) and Z(P) intersect. Each test takes O(|Y|+ |Z|) time if we use
a linear programming algorithm as in Stabbing Line_2. The key to reducing this cost
is to note that while the specific coordinates of Y(P) and Z(P) depend on the plane P,
the structure of Y(P) and Z(P) does not depend on P as depicted in Figure 6. In [2]
an O(lg n) algorithm is described for testing whether convex polygons intersect. We can
build the necessary query structures outside of all of the loops. When a particular value
in the query structure must be used it can be computed in constant time. Thus, we can
compute whether V(P) intersects Z(P) in O(lg(|Y| + |Z|)) time. The final O(n 1g n )

algorithm is as follows:

10



Z(P(A,B))

Figure 6: The structure of the region of feasible lines does not depend on P.

11



Stabbing Line 3 (X,Y,Z)

(1) construct X(), Y(), and Z()
(2) Let S[0] = X()

(8)  Let S[]=Y()

(4)  Let S[2] = Z()

(5) for : =0,1,2

(6) for each vertez L of S[¢] (L is a line)
(7) determine the plane P defined by L and the direction
of the lines in S[i].
(8) If S[(i + 1) mod 3](P) intersects S[(i + 2) mod 3)(P)
return (the line corresponding to the point of intersection)
(9) endfor

(10)  endfor
(11) return (infeasible)

4 Stabbing Isothetic Boxes

When one has polygons that are not axis-aligned, then the following approximation might
be used. The polygons to be stabbed can be enclosed in bounding boxes and the fol-
lowing question posed instead: “Is there a line that stabs all of the boxes?” A line that
stabs all of the boxes must stab at least one face from each box. Thus, one could run
Stabbing Line_3 on each of the 6™ n-tuples of faces. This would lead to a 6™n Ig n
algorithm. Fortunately we can do better.

Any line, whether it stabs all of the boxes or not, must fall into one of the four
following categories.

1. dy/dz > 0, dz/dz > 0
2. dy/dz > 0,dz/dz <0
3. dy/dz <0,dz/dz >0
4. dy/dz <0, dz/dz <0 .

For each category of lines we can pick out a set of six significant edges as depicted in
Figure 7. A line of a certain type will stab the box if and only if the line passes correctly
around each of the box’s significant edges. For instance, in the coordinate system of

12



type 1 type 2

dy/dx > 0, dz/dx >0 dy/dx £ 0, dz/dx > 0
type 3 type 4
dy/dx > 0, dz/dx <0 z dy/dx < 0, dz/dx <0

y

X

Figure T: Significant edges for the four categories of line.

13



Figure 7, all of the lines of sight from the reader’s eye are of type 3. Thus, the significant
edges for this case are exactly the silhouette of the box.

One can determine if there exists a line that stabs each of n boxes by running Stab-
bing Line_3 first on the edges appropriate for lines of type 1 then on those edges for
type 2 lines and so on until either a stabbing line has been found or one has tried all four
types. Since there are only four types, this algorithm requires at most O(n lg n) time.

If one knows beforehand that the solution lines can only be from a smaller set of the
types of lines then clearly the others need not be checked. For example, if a pair of boxes
B, and B, are are such that the z-minimum of B, is greater than the z-maximum of B,
and the y-minimum of B, is greater than the y-maximum of B; then any feasible line
must be either type 1 or type 2. In general, if two of the coordinates of a pair of boxes
are separate then only two types must be checked, and if three of the coordinates of a
pair of boxes are separate then only one type must be checked.

5 Acknowledgements

The authors thank Nina Amenta, Raimund Seidel, and Carlo Séquin for their helpful
discussions regarding this work.

References

[1] D. Avis and R. Wenger. Algorithms for line traversals in space. Proceedings of the
3rd annual symposium on computational geometry, pages 300-307, 1987.

(2] David P. Dobkin and Diane L. Souvaine. Detecting the intersection of convex objects
in the plane. Technical Report 83-9, DIMACS, 1989.

[3] N. Megiddo. Linear-time algorithms for linear programming in R 3 and related prob-
lems. SIAM Journal of Computing, 12:759-776, 1983.

[4] M. Pellegrini and P. Shor. Finding stabbing lines in 3-dimensional space. Proceedings
of the Second Annual ACM-SIAM Symposium on Discrete Algorithms, pages 24-31,
1990.

[5] Marco Pellegrini. Stabbing and ray-shooting in 3-dimensional space. Technical Re-
port 540; Robotics Report No. 230, New York University Courant Institute of Math-
ematical Sciences, Computer Science Division, 251 Mercer St., NY NY, 10012, 1990.

14



[6] Raimund Seidel. Linear programming and convex hulls made easy. In ACM Sympo-
stum on Computational Geometry, pages 211-215. ACM Press, 1990.

[7] Seth J. Teller and Carlo H. Séquin. Visibility preprocessing for interactive walk-
throughs. In SIGGRAPH 91 Conference Proceedings, August 1991. To appear.

15



