INTERACTIVE PROCEDURAL MODEL GENERATION
Carlo H. Séquin
With contributions by:

Alonzo C. Addison,
Laura Downs,
Tom Funkhouser,
Mark Halstead,
Milind M. Joshi,
Raja Kadiyala,
Ashutosh Rege,
Joseph M. Rojas,
Ajay Sreekanth,

Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

ABSTRACT

This is a report on the fifth offering of a special graduate course on
geometric modeling and computer graphics, CS 285: ‘‘Procedural Generation of
Geometrical Objects’’. This document is a collection of the student’s course
projects with a brief introduction and an overview over this year’s course
syllabus. The projects described include several interactive editing tools for the
Berkeley UniGrafix modeling environment, a couple of utilities useful for the
analysis of algebraic surfaces and for the visualization of the stability domain of
dynamical systems, as well as a highly prameterized generator for tree models of
trees for use in architectural scenes. Most projects have been developed on SGI’s
personal IRIS workstation.

Table of Contents

Carlo Séquin: CS285 Course OVEIVIEWcccecuerieriineecirniennecnesseesserssresseassseessesee 1
Alonzo C. Addison: gm2ug - A Geometry Translator from Alias QuickModel

1.4 to Berkeley UniGrafix3c.ccooviminiiiiiiniiniiiircninesc s sesetcsesessseenesnne 9
Thomas Funkhouser: An Interactive UNIGRAFIX EQitOrcccooveevemnenieniennennne. 17
Mark Halstead: The UGCLAY SyStemcccoeiiiiinianiiniieneeerece e eereceneeeeeeeseneens 35
Ajay Sreekanth: Ugiris4d - An Interactive Viewer for 4-Dimensional

UnIGIafix ODJECTS .eceiiiriirrirreerernereentreesteentieestecsesieessssessessesssesseestsnsessessesssessaessassases 49
Milind M. Joshi: Mechanism Editorcccociiniiiiiinniiniiniiicnecrenseeneesseneens 57
Ashutosh Rege: A Graphical Tool for Algebraic Curvesccocceeveererncericennneenneeenn 69
Raja R. Kadiyala: Three Dimensional Mandelbrot Like Sets with Applications

0 Stability POTMIAILScccvievvieeiiiiieieiienneeeseeesneesieessrnsassasessasssseesssnssssaesssasssssaesnsasassens 83
Joseph Maurice Rojas: Final Report on GLUEHEDRONcccccooiiviinninnniiinennenanns 95

Laura DOWNS: UGTREE ...ttt seeeeeeeeeseeesseeeessateeeesessssasesasnnnnnssessssssaees 105

CS 285, SPRING 1991: OUTLINE OF TOPICS

WEEK 1
« COURSE OVERVIEW
» POSTSCRIPT LANGUAGE
« PROCEDURAL SHAPE GENERATION: POLYGONS
WEEK 2
+ PROCEDURAL SHAPE MODIFICATION: OFFSET PATH
+ ANISOTROPIC 3D ETCHING
+ POLYGON TESSELLATIONS
WEEK 3
+ UNIGRAFIX OBJECT REPRESENTATION
« POLYGON INTERSECTIONS IN 2D
» SWEEP-PLANE ALGORITHMS
WEEK 4
¢« POLYGON INTERSECTIONS IN 3D
« SATHER LANGUAGE & CLASS LIBRARIES
WEEK 5
« 3D CURVES, SPACE-FILLING CURVES
+ MAKEWORM GENERATOR
« MAZES
WEEK 6
» MITRING AND BRANCHES
» KNOTS & TANGLES
WEEK 7
+ REGULAR POLYTOPES
+ SEMI-REGULAR SOLIDS
» ANIMATION PROGRAM
WEEK 8
» EULER RELATIONS IN POLYHEDRA
+ NET DIAGRAMS
+ EDGE ROUNDING
WEEK 9
+ UNICUBIX
+ DEVELOPABLE SURFACES
+ RECURSIVE STRUCTURES, FRACTALS
WEEK 10
» TILINGS AND PATTERNS
+ SYMMETRY GROUPS IN 2D AND 3D
» SPACE PARTITIONS
WEEK 11
+ TALKS: SHORT FORMAL PROJECT PROPOSALS
« CONVEXHULL
+ THE CURSE OF HIGH DIMENSIONALITY
WEEK 12
+ SPHERE PACKING
+ APERIODIC TILINGS
» PUZZLE DESIGN
+ FINITE ELEMENT MESHES
WEEK 13
»+ 3DMESHES
*+ GEOMETRICAL PROBLEM SOLVING
« POLYHEDRAL TOROIDS, MINIMAL TOROIDS
WEEK 14
+ REPRESENTING ASSEMBLIES
» CONCEPTUAL DESIGN
» MECHANISM DESIGN
+ DESIGN STRATEGIES
WEEK 15
» TALKS: FINAL FORMAL PROJECT PRESENTATIONS
+ PROJECT DEMONSTRATIONS

TABLE 1.

CS 285, COURSE OVERVIEW

In 1983 a new graduate course, "Creative Geometric Modeling" was added to the catalog of
our offerings in the area of computer graphics.! This course which is being offered every other
year has seen significant changes over time. Originally it carried the title CS 292A, *‘Creative
Geometric Modeling’’. In this course the students developed some new generator and modifier
programs in the UNIGRAFIX framework.2 These programs were then used to create artistic
displays.

In the second half of the 1980’s, the emphasis of the course shifted towards algorithms from
the field of computational geometry that are useful in the generation of geometric objects such as
might be encounterd in CAD/CAM applications by a mechanical engineer or an architect.3 The
students were exposed to a few important algorithms such as offset surface generation or polygon
intersections, and they leamed about relevant data structures and coding techniques through
actual implementation of these algorithms and by testing them on a range of ever ‘‘nastier’’ test
examples.

This document is a report on the fifth offering of this course course in Spring 1991, under
the title CS 285, ‘‘Procedural Generation of Geometric Objects.”’ The course extended over 15
weeks with three 1-hour lectures per week. Table 1 gives an outline of the topics covered in this
year’s offering roughly in the order in which they were presented. This year, the course had a
stronger focus on interactive techniques, and the students were asked to emphasize graphical
feedback in their projects. This change in focus was a direct consequence of a donation of a clus-
ter of Personal Iris workstations from Silicon Graphics Corporation. The presence of these
workstations certainly triggered extra enthusiasm in most of the students, and led to interactive
projects which would not have been possible previously.

The course had formal homeworks during the first half of the term and concentrated on indi-
vidual course projects during the second half. The homeworks during the first half of the course
could be grouped into two classes: design exercises at the conceptual level and actual program
implementations for a few select tasks. These are briefly outlined in the following pages.

ACKNOWLEDGEMENTS

The class consisted of a group of hard working and enthusiastic students. Many thanks go
to Lon Addison, Laura Downs, Tom Funkhouser, Mark Halstead, Milind Joshi, Raja Kadiyala,
Ashu Rege, Maurice Rojas, Ajay Sreekanth, for their active class participation and creative con-
tributions.

I would also like to thank Silicon Graphics Inc., and in particular Jim Clark, for their dona-
tion of a cluster of ‘Personal Iris’ graphics workstations which were used intensively in this
course.

1 C.H. Séquin, **Creative Geometric Modeling with UNIGRAFIX,* Tech. Report (UCB/CSD 83/162),
U.C. Berkeley, Dec. 1983.

2 C.H. Séquin and K.P. Smith, *‘Introduction to the Berkeley UNIGRAFIX Tools, Version 3.0,”" Tech.
Report (UCB/CSD 90/606), U.C. Berkeley, Nov. 1990.

3 C.H. Séquin, *‘Procedural Generation of Geometric Objects,”” Tech. Report (UCB/CSD 89/518), U.C.
Berkeley, June 1989.

THE DESIGN EXERCISES

Every week for the first nine weeks, often from one lecture to the next one two days later,
the students had to propose some attack to one or two small open-ended design problems and to
outline a possible approach to a solution. No long, detailed write-ups were expected — just
enough to make the presented ideas understandable. The various proposed approaches were then
discussed and compared in class. These were the design problems posed:

RANDOM POLYGON GENERATORS

Describe in one paragraph your proposal for an algorithm to generate a simple convex
polygon that could be used as a test vehicle for various computer graphics algorithms concerning
such polygons. Among other criteria (for you to discover), the polygons should be reasonably
‘page-filling’ and should be representative of all conceivable such polygons.

In a second paragraph describe your proposal for a generator of such random polygons that also
produces concave but non-self-intersecting polygons.

POLYGON TESSELLATIONS

Make a proposal for an algorithm to tessellate a general concave polygon with possibly
several non-intersecting contours into (a) triangles, (b) into monotone (in the y-direction)
polygons {i.e., every horizontal scan-line has at most one contiguous cutting segment with a
monotone polygon}. Use only existing vertices for these tessellations.

Think about how you might partition such a polygon into a reasonably small number of convex
polygons.

POLYGON INTERSECTIONS

Outline a possible algorithm to cut up two general co-planar polygons into mutually
exclusive parts. Specifically, assume that you have a file with two polygons A and B with possi-
bly multiple contours in the xy-plane. How would you produce three files poly.difl, poly.dif2,
and poly.intr that contain the partial polygons A-B, B-A, and AnB ? Point out potential sources
of difficulties and ways to cope with them. In your approach, give preference to robust, logically
correct operations that will do the right thing even in the presence of numerical inaccuracies.

In a second paragraph, describe an algorithm to make all intersections among two polygons in R3
explicit: One or both of the polygons may be cut into separate parts by the other polygon. If they
intersect only partially, their contours should show infinitely narrow slits (an edge that is used in
both directions). All intersection vertices that become part of more than one contour must be
explicitly shared by the various output contours.

3D SPACE-FILLING CURVE

Often people design new things by analogy with familiar things. You will try to experience
that approach by creating a 3D analog to the familiar 2D space-filling Hilbert curve. Find a
piece-wise linear, self-similar curve in R3 that has some "similar properties." To present your
solution, make a sketch or a model (wires, pipes, paper), or create a suitable UniGrafix ‘wire’
description and produce a ugplot output of an early recursive level. Describe the construction
procedure for the higher recursive levels. List the criteria that you used to judge the suitability of
potential solutions and by which you selected your submitted solution as the ‘‘best’’ among other
candidates that you may have considered.

3D MAZE GENERATION

Outline an algorithm to make a challenging 3D maze. Split the task into (1) a topological /
geometrical part that defines the paths, and (2) into an embellishment part which makes the maze
look interesting.

Suppose you wanted to publish 2D projected pictures of your maze (e.g., in a magazine) — what
would be the special considerations in the generation of a maze for that purpose ?

VERTEX TRUNCATION IN 3D

Outline an algorithm to truncate the comers of a 3-dimensional polyhedral object. This is
not quite as straight-forward as the truncation of a face in 2D that you did recently. For one
thing, there are "saddle vertices" that are neither strictly convex nor strictly concave.

Think of ways to make your approach robust so that legal UniGrafix objects will be produced
under practically all possible legal inputs. Think of some reasonable user-settable parameters.

SEMI-REGULAR POLYHEDRA

Make a list of all combinations of three or more regular polygons of less than eleven sides
sharing a vertex for which the total angle is less than 360 degrees. Which of these combinations
lead to regular or semiregular polyhedra ?

Behind each combination write the name of the polyhedron if you recognize it, or indicate in
some other way that you are convinced it will form a closed object when the vertex constellation
is suitably repeated through R3. Also mark those combinations that will clearly NOT result in a
sensible object, and indicate why. See how many combinations you can mark in some way.
Explain in a few sentences how you reasoned about these questions.

EDGE-ROUNDING FOR POLYHEDRAL OBJECTS

Make a conceptual plan for an algorithmic approach that would round the edges of
polyhedral objects and output the resulting object as a UniCubix file with a mixture of flat and
curved patches. Basically the program should preserve a flat center section for each polyhedral
face that is "large enough” and "more or less” preserve the original shape of the face. Edges
would be converted into pieces of "cylinders” with either a specified or a "suitable" default
radius. Think about the terms in the quotation marks.

The user should have some options for explicitly specifying some parameters such as, for
instance, the rounding radius. More complicated specifications may lead to pieces of cones rather
than cylinders for each of the edges. Discuss other possible parametric specifications of the
rounding process. Then discuss what you consider desirable default values for all the parameters
that you specified and what the default result of rounding an arbitrary polyhedron should be.
Think about how you would deal with convex and concave comers. Think about potential
"problem-geometries” where simple rounding procedures might fail. Give a short outline of the
algorithm or of the main program modules that would achieve the above goals.

RECURSIVE SIERPINSKY-INSPIRED SURFACES IN R3

Your assignment is to propose a recursive generation procedure for a volumetric object in
R3 bounded by a polyhedral surface with self-similar parts. Look at the Sierpinsky curve for
inspiration by considering it the surface of a 2D object.

-2

Your construction need not follow this particular shape; it is just one example how a surface
might be constructed in a recursive self-similar manner. Present sketches of an early level of
recursion of your object and give a short description that explains the construction. Feel free to
use UniGrafix if that makes it easier for you. Mention some of the conceptual difficulties that
you encountered when you tried to construct such a shape in 3D.

2D PUZZLE GENERATION

Consider puzzles in 2D consisting of identical or different, marked or unmarked tiles. Try
to give answers to the following questions:
e What makes such puzzles hard ?
e What is the hardest puzzle you can construct with only unmarked rectangular tiles ?
e What is the hardest puzzle you can construct with only marked square tiles ?
e What is the hardest puzzle you can construct with only three unmarked pieces of arbitrary
shape ?
Make a proposal for one type of puzzle generator.

FIND THE SIMPLEST TOROID

To further develop your 3D visualization, design, and sketching skills, I ask you to contem-
plate the following polyhedral solid objects of genus 1, so called "toroids."
e Design a toroid with a minimal number of faces.
e Design a toroid with a minimal number of vertices.
e Design a toroid with a minimal number of regular faces, i.e., a mixture of regular n-gons.
e Design a toroidal polyhedron of genus 5, that is as highly symmetrical as possible, i.e., which
has the most symmetry operations that put the object back onto itself.

Convey your ideas in some appropriate form: sketch, paper model, UniGrafix description, or pro-
cedural outline of construction ...

3-FOLD HIGH-WAY CROSSING

Design a ‘clover-leaf’ structure to interconnect three major divided high-ways that cross
more or less in one spot.

To present your solution: make a sketch or model (wires, paper) of the basic topology of this
‘cloverleaf.” Describe in one paragraph the criteria that you used to judge the suitability of poten-
tial solutions and by which you selected your submitted solution as the ‘‘best’’ among the candi-
dates that you considered.

MOSTLY UNSTABLE POLYHEDRON

Design a convex polyhedral solid made from material of uniform density that is stable (i.e.,
that does NOT roll over an edge to an adjacent face) on as FEW of its faces as possible.
To present your solution: make a sketch or model and describe in a couple of paragraphs how

you started your search, what kind of bounds you established, and how you might continue your
search or refine an initial design.

PROGRAMMING ASSIGNMENTS

On a few occasions, the class was then asked to follow up with an actual implementation of
one of the more promising looking approaches. In some instances, algorithms were limited to
two dimensions to keep coding complexity and implementation time reasonable. It was sug-
gested that some of these algorithms could be carried to 3 or 4 dimensions as individual projects
in the second half of the course.

OFFSET-PATH GENERATION AROUND CONVEX POLYGON

An offset-path is a path that runs at a fixed distance from a given path. It is used to describe
the result of growing a polygon by a strip of fixed width or of etching away a certain thickness of
material from the contour of the polygon. It is also the path along which a circular milling tool
has to be moved to cut a certain shape from a larger piece of material.

Implement suitable algorithms for (a) generating a simple convex polygon and (b) the offset-path
at distance of 0.5 inch around such a polygon. (Suitable circular arcs should be constructed
around convex corners). Program (b) should output a PostScript file describing the original
polygon (filled) as well as the offset path at a distance of 1/2 inch (36 units) around it. Hand in
your program listings and pictures of the output of program (b) for two of your own generated
polygons. You may want to modularize your efforts and provide the two programs with-a "stan-
dard" ASCII interface. Program (a) should then produce its result as a file with N lines, each con-
taining an x,y coordinate pair for one of the polygon vertices, listed in CCW-order around the
contour. The coordinate pairs should be integer numbers in PostScript units, i.e., 1/72 of an inch;
the result should fit into a rectangle of 5 by 8 inches. Program (b) should then read such a file of
X,y pairs and do its job.

CONCAVE POLYGON TRIANGULATION

Implement a suitable algorithm for tessellating a simple concave polygon (single non-self-
intersecting contour, no holes) into triangles. There will be two test polygons, ‘tessell’ and
‘tessel2’, provided. They will be described as an ordered list of vertices, one integer coordinate
pair in PostScript units per line such as:

36 72 {vertex with x=36 points and y=72 points}

Hand in the most relevant parts of your program listings (but not more than 4 pages) plus pictures
of the outputs of your program for the tessellated polygons ‘tessell’ and ‘tessel2’.

POLYGON TRUNCATIONS

This is an exercise to get familiar with and leamn to use the UniGrafix ug3-data structures.
You will write a program to truncate arbitrary "well-behaved" polygons (non-intersecting con-
tours with nesting with alternating orientations). Construct your program around the ug3 data
structures using some of the existing routines (e.g. reading/writing UniGrafix files).

Your program should truncate all inside and outside comers of the given polygons. For each ver-
tex it should move along the two attached edges by some user-definable fractional amount "t"
between 0.0 and 0.49 (default: t=0.25) of the edge length, establish two new vertices, connect
them by a chord — thus cutting off and eliminating the original vertex. Don’t worry about possi-
ble intersections.

w

Your program should also have an option to repeat the truncation process on the established data
structure "n" times, thus producing finer and finer truncations and smoother and smoother curves.
(As an escape, if this repetition feature is taxing your programming skills or patience, you can
also run your program repeatedly over its own ASCII output.)

Apply your program to the test polygons truncl and trunc2. For each polygon show the output
for a single pass (n=1, and t=0.4) and also for a triple pass (n=3, t=0.25). Hand in the most
relevant parts of your program listings, 4 pictures of outputs produced by ugplot, and 2 listings of
the UniGrafix ASCII output for the single-pass truncations.

UNIGRAFIX FURNITURE GENERATOR

This is an exercise to learn how to describe 3D objects in UniGrafix format. Your assign-
ment is to write a program that produces a limited parameterized furniture assembly as specified
below. The generator program should read the necessary arguments from the command line and
produce as output a UniGrafix ASCII file describing that assembly. Do one of these generators:

(a) Books_on_Shelves. Create a simple wall of bookshelves, H inches high, D inches deep,
and overall L inches long. These shelves should consist of several simple sections with
sidewalls and shelves (transformed cubes), loaded with books (also transformed cubes) in a
not totally boring manner.

(b) Terminal Room. Create the basic furnishing of a terminal room: a block of depth D and
width W, containing (optionally specified) R rows of tables with S workstations on each at
regular spacings. For the tables use simple top plates supported by simple legs (could all be
transformed cubes). Use a call to a couple of definitions for the actual workstations and for
the chairs in front of them. Build yourself a trivial model of each definition for debugging
purposes. Later we will substitute fancier models.

(c) Conference_Table. Create the basic furnishing of a small seminar or conference room: an
area of length L and width W, containing a rectangular, octagonal, hexagonal, or oval
conference table with chairs around its perimeter. Construct the table and its supporting
structure, but call macro definitions for the chairs for which you should make only a trivial
placeholder model.

All these generators need a little decision tree that sets some of the explicit low level parameters
based on the overall dimensions or more global parameters specified. For instance, bookshelf
sections should be about 2-3 feet wide, and chairs should be spaced about 3-4 feet apart. The
overall dimensions thus determine how many sections or chairs will fit; but this calculated
number could be overridden by an explicit specification. It is OK to be creative.

Hand in a paragraph from the "manual page" that describes the options and decisions in your gen-
erator and pictures of the outputs of your program for two different parameter specifications.

DESIGN A SIMPLE KNOT AND RENDER IT WITH UGWORM

Create a simple, closed, piece-wise linear path through space that forms a knot. Create by
hand or with a simple program a corresponding "closed wire" definition describing the axis of the
desired prismatic tube through R3. Then run ugworm with some suitable radius and with a low
number of prism sides. (e.g.: ugworm axis_wire -r 0.2 > Your_knot) Inspect the resulting object
with ugiris and render it with ugplot.

MODIFICATION OF REGULAR POLYHEDRA

Apply some of the existing object modifiers to some regular or semi-regular polyhedra from
the library { "ug/lib }. Play with several modifier programs for a couple of hours and watch the
results with ugiris.

Then fabricate TWO interesting creations and produce hardcopy that you will hand in. The crea-
tions do not have to be overly complex. I will be more impressed with original combinations of
2-4 modifiers applied in series to a simple object. On your hand-in, describe the process by
which you have created your artwork.

ANIMATE: FISH INTO FOWL

Create a simple, closed surface that represents object A (FISH) and another surface with the
same connectivity of its edges that represents object B (FOWL). A simple way to do this is to
make a two-dimensional outline of the desired shape and then ugsweep it to give it some thick-
ness. Of course it would be nicer if the surface is not simply prismatic. This can be achieved by
using a more complicated sweep or by subjecting the prismatic object to ugstar.

Now use FISH and FOWL as the endpoints of an animate sequence and waich the transformation
occur as you move the slider. Produce hardcopy output of four plots: FISH, FOWL, and two
intermediate shapes. Describe in a couple of sentences how you generated the initial objects.

As a second assignment think of a way to transform an icosahedron into a dodecahedron. Pro-
duce a plot of the object about half-way in between the two Platonic solids.

UNICUBIX WORKOUT

This exercise is aimed at getting you familiar with the UniCubix program and at finding its
limitations. Make a somewhat irregular but pleasing looking object that has a genus of at least 2,
which is mostly smooth, but has at least one sharp edge. It is OK to construct the original
polyhedral shape by using some of the generator and modifier programs that you have explored in
a previous assignment — but keep the object simple !

Hand in plots of your starting shape and of two different versions of the final shape produced with
different UniCubix parameters. Also add a short description of how you generated your object
and what problems you encountered with UniCubix.

COURSE PROJECTS

In the second half of the course, The students had a chance to choose a project of their own
design or to pick one from a list of suggestions. This provided them with an opportunity to take a
deeper look at some area of graphics, modeling, or geometry that they were particularly interested
in,

The main part of this document is the collection of the final project reports. I did no editing on
the text, except for culling out lengthy source code listings or almost redundant figures. I hope
the authors will forgive me for taking these editorial liberties.

qm2ug
A Geometry Translator from Alias QuickModel 1.4 to Berkeley UniGrafix3

Alonzo C. Addison

Computer Science 285/299—
Procedural Generation of Geometrical Objects/Independent Study
Professor Carlo Séquin
Spring 1991

Introduction

The Berkeley UniGrafix 3 Tools, developed over the years in the Department of Computer Science
at UC Berkeley, provide a powerful set of geometric generation, manipulation, and visualization
algorithms. In the wake of Silicon Graphics’ generous gift of Personal IRIS classrooms to the UC
Berkeley campus, UniGrafix has been adapted to take advantage of the IRIS’ legendary 3D
hardware and has thus become more accessible and useful. However, despite the power of the
individual UniGrafix tools, the absence of a 3D modeler has limited their penetration outside of
Computer Science.

The QuickModel to UniGrafix Translator (gm2ug) was written to simplify the creation of
UniGrafix models and to help bring the UniGrafix tools into the domain of the non-technical user.
Students in the Department of Architecture at Berkeley are exploring 3D design and visualization
on the IRIS workstations. Although several high-end modeling/rendering/animation packages
have been donated (Alias Research’s Alias/3, Wavefront’s entire Visualizer family of products, and
Sigma’s ARRIS CAD), many of the sophisticated UniGrafix routines (which are essentially not
available in any commercial software) could prove useful to these students in creative projects.

The Department of Architecture currently owns numerous modelers, each with its own proprietary
geometry format. These include Alias/3, the Wavefront Visualizers (Personal, Data, and
Advanced) and ARRIS CAD on the IRIS; McDonnell Douglas GDS on the MicroVAX;
AutoCAD/11 on the IBM PC; and MacArchitrion, Swivel3D, Super3D, ModelShop, and Upfront
on the Macintosh. Clearly, attempting to support all of these would be impossible. Since Alias/3
and the IRIS are the current package and machine of choice, this project started out as an Alias/3
‘wire’ format translator. However, as work got under way it was realized that although an Alias/3
translator might be useful, the high cost and complexity of Alias/3 would limit the usefulness of the
tool.

Alias QuickModel, an entry-level modeler provided free of charge with Silicon Graphics
workstations, provided a nice compromise. Although less powerful than other modelers in use, it
is a straightforward package with basic 3D modeling abilities. Its availability (free with IRIS
workstations) and ease of use (documentation is also provided) made it the ideal candidate for a
basic modeling front-end to UniGrafix. As the lowest common denominator among modelers on
the IRIS, QuickModel is supported by the more powerful packages—Alias provides a QuickModel
to Alias/3 translator (qmtoalias) and Wavefront supports the QuickModel format in the Personal
Visualizer (also available free of charge with the IRIS).

Technical Description

gm2ug translates Alias QuickModel 1.4 geometry to Berkeley UniGrafix 3 format. Its features,
structure, and limitations are described below.

If called from the command line, it will translate the file directly and place it into a new file,
“output.ug”. In addition to the manual page, usage information is available. If called without any
arguments or with incorrect arguments, the usage information shown below will appear:

Usage: gm2ug [-aAngles#] [-sSphere#] [-w] [-v] [-0 outfile.ug] infile.gm

Where: -aAngles# is the number of facets of a conic section
(default 8; wvalid range 6 to 720)
-sSphere# is the sphere complexity
(default 1; valid range 1 to 4)
-W specifies wireframes instead of faces
(default is to use faces) (NOT fully functional)
-v specifies verbose mode...

(data on progress will appear)
-0 outfile.ug forces output to the named file instead of ‘outfile.ug'

The program structure is relatively straightforward. It performs its task in the following steps:

» scan command line for arguments

» set flags as appropriate based upon arguments

« read in input file one line at a ime

« verify that it is a QuickModel file

« switch to appropriate routine based upon the object type

» generate appropriate UniGrafix equivalents for types as shown in the table below
« formats statements in appropriate order and writes out results

G, Gr tion

cube vand f 6 faces arranged to form a cube
cone v and f x faces + 1 cap arranged to form a cone
cylinder vand f x faces + 2 caps arranged to form a cylinder
sphere vandf 1 of 4 faceted spheres of increasing complexity
surface f appropriate faces

cv \4 vertices for the surface
translation i-x -ty -tz translation portion of an instance statement
rotate i-rx -ry -rz rotation portion of an instance statement
scale i-sx -sy -sz scale portion of an instance statement
tm i-M4 homogeneous transformation matrix
light 1 point light (with intensity 1 in all axes)
color c color transformed from RGB to HL.S format
diffusion {qm...} placed in a comment field
specularity {qm...} placed in a comment field

gm2ug handles all QuickModel objects types as shown in the table above. These include the
primitives (cube, cone, cylinder, and sphere) as well as curves and rotated, patched, and extruded
surfaces. It should be noted that there is a model limit of 50 objects in any single QuickModel file.
If a user wants to create a larger object, they should split it across multiple files (this will also
enhance performance and response in QuickModel.

The first time a new type of primitive is encountered, its vertices are written into the UniGrafix file
as a definition. For every primitive the faces are placed into a separate definition file with the
appropriate colors tagged onto them. It was necessary to separate them from the vertices (instead
of making a single definition of vertices and faces) as the UniGrafix manual indicates that colors
can only be set in face, wire, or vertex statements and not it the patch or array staternents. If this is

really the only way to handle colors, it is a limitation of UniGrafix which needs to be addressed.

Cubes are defined by the 8 vertices of a unit cube. Cones and cylinders are handled jointly since
the vertices of one end of the primitive cone & cylinder are equivalent and it seemed wasteful to
write them twice. The number of vertices around the great circle is definable in the -a (angles)
command line flag. The default is 8. To be able to use the UniGrafix include command, the
vertices of the cube/cone generated are written out to files in the current directory. Spheres are
similarly defined via a command line flag. The -s flag may be used to specify one of 4 increasingly
detailed spheres. They are similarly called via include statements in the UniGrafix file, so need to
be available in a known directory.

gm2ug handies all QuickModel surfaces (which may be generated by patching, rotating, or
extruding curves). gm2ug currently translates curved surfaces as planar faces. To ensure planarity
of faces, the translator divides the faces (even planar ones—it does not stop to check) of surfaces
into triangular pieces. Although QuickModel has curved surfaces, a transformation to UniGrafix’s
UniCubix extension was not straightforward. This is an area for a future addition. If the user
wishes to view the surface in QuickModel as it will appear in UniGrafix, the smooth/straight toggle
should be set to straight. This will modify the u and v flags for the appropriate vertex of the
surface. However, since the translator currently ignores the u and v flags, toggling the surface to
“straight” is not required.

The transformations (rotate, scale, translate, and tm) are placed in the UniGrafix instance call.
Although I considered multiplying all the transformations out to generate a single matrix, I decided
it was better to leave them unaltered. Since QuickModel places them in the incoreect order when
generating its file (this appears to be a QuickModel bug/flaw), I read them all in and rearrange them
before writing out the instance statement.

Although UniGrafix supports faces with holes, QuickModel is unable to generate them so they did
not need to be handled. (QuickModel can create a multi-faceted surface with a hole by patching
between two planar curves—this is transformed as a normal patched surface.) It is possible for the
user to create self-intersecting polygons in QuickModel. No attempt is made to intercept these in
the transformation.

The only form of light source available in QuickModel is a UniGrafix point source of uniform
intensity in all axes. It is transformed without problem. Note that there is a limit of 8 light sources
in any QuickModel scene.

Specularity and diffusion are not handled as the basic UniGrafix3 library does not include them
(they are stored in comment statements for future translation back into QuickModel however).
Since UniGrafix utilizes the double-coned HLS (Hue, Lightness, Saturation) color model, the
translator makes the conversion from QuickModel’s RGB (Red, Green, Blue) color definition.

Summary

I have enjoyed writing gm2ug and am hopeful that it will prove useful to both technical and non-
technical (such as the architecture students in my home department) UniGrafix users. Although

perhaps structurally straightforward, gm2ug proved challenging given my limited programming

background. Writing it was a very worthwhile educational experience and has given me greater

confidence in my ability to program. Perhaps if there is demand I will tackle the task of ug2qm,
alias2ug, ug2alias, etc. in the future!

I am hopeful that this effort will help to foster interdisciplinary collaborations between the
Departments of Computer Science and Architecture at UC Berkeley, as the members of both
groups would I believe benefit greatly.

11

12

s

o
2 T S T S

3

SRR
A

%
Z;

z
%

..%\N\N\

S

L,
.aa,,m,ﬁvt.

=

13

gmz2ug (1) UC Berkeley UniGrafix (May 1991) amZug (1)

NAME
gm2ug - convert from QuickModel to UniGrafix format

SYNOPSIS
gm2ug [-aAngles#] [-sSphere#] [-w] [-v] [-0
outfile.ug] [filename...]

DESCRIPTION
ug2qgm (QuickModel to UniGrafix) converts Alias Research
QuickModel 1.4 geometry files to Berkeley UniGrafix3 format.

All QuickModel object types (cube, sphere, cylinder, cone,
light, color, surface (and cv), diffusion, and specularity)
are handled. Note that diffusion and specularity, which are
undefined in the basic UniGrafix format are put into comment
statements however.

OPTIONS
-aAngles#
is the number of facets of a conic section (default 8;

valid range 6 to 720)

-sSphere#
is the sphere complexity (default 1; valid range 1 - 4)

-w specifies wireframes instead of faces (default is to
use faces) (NOT fully functional)

-v specifies verbose mode... (data on progress will
appear)

-0 outfile.ug forces output to the named file instead of
‘outfile.ug’

SEE ALSO
gmtoalias - a translator from QuickModel to Alias/3.

DIAGNOSTICS
Exit status is normally 0. If the last file was not

correctly translated, an error message will appear and exit
status will be 1.

Error Messages —-- should be self-explanatory
Usage: gm2ug [-aAngles#] [-sSphere#]]
Error: trouble opening ’filename’
Error: ‘filename’ is not an Alias QuickModel 1.4 file

Error: Encountered undefined geometry type in ‘filename’

(printed 5/15/91)

gm2ug (1) UC Berkeley UniGrafix (May 1991) am2ug (1)

Error: Unmatched brackets in QuickModel file

Error: uh oh... serious internal problems...

BUGS
Quick testing has not revealed any "bugs". Please notify

the author if you come across any.

There are several "flaws". If one creates a self-
intersecting polygon it will be translated as is, creating
potential problems in UniGrafix. Curves and surfaces are
approximated as polygonal facets. The "-w" (wire) mode is
not yet fully functional. It is recommended that the user
simply use the default face mode and use the wireframe
toggle in another UniGrafix tool such as ‘ugiris’ if a
wireframe view is desired.

AUTHOR
Alonzo C. Addison (addison@ced.berkeley.edu)

Dept of Architecture, UC Berkeley

(With examples from Kevin Smith and the UniGrafix library
authors.)

(printed 5/15/91)

CS285 Final Report:
An Interactive UNIGRAFIX Editor

Thomas Funkhouser

May 14, 1991

1 Introduction

The UNIGRAFIX environment [2] includes numerous batch tools for making global modifications
to polyhedral objects. For instance, there are tools that truncate all the corners, tesselate all
the faces, or bevel all the edges of a polyhedron. However, until this semester, there was no
universally available interactive UNIGRAFIX tool that allows a user to make small, local changes
to a polyhedron. I think such a program would be extremely valuable. It could be used for creating
simple irregular polyhedra or making local modifications to existing polyhedra. As a result, I
decided to build an interactive UNIGRAFIX editor for my CS285 class project.

In short, the major features of the program are: 1) creating, opening and saving UNIGRAFIX
files, 2) translating, scaling and rotating UNIGRAFIX files, 3) running existing UNIGRAFIX tools,
4) creating, deleting, merging and moving vertices, 5) creating, deleting, collapsing and subdividing
edges, 6) creating, deleting, collapsing and flipping wires, and 7) creating, deleting, collapsing,
flipping, and subdividing faces. All these operations are invoked interactively using a combination
of direct-manipulation and command-based interfaces with real-time feedback.

Rather than write a new program from scratch, I decided to enhance the Animator [3] since it
already supported most of the file manipulation, viewing and modeling tool features required by
my program. For readers not familiar with the Animator, I have included a brief overview of the
original version of the Animator in the second section. The third section is the bulk of the report
- it describes the new interactive editing features. For each feature, I include a description of the
user interface and decisions I made during design and implementation. In the fourth section, I
discuss some of my experiences using the program and present several objects I created using the
program. Finally, the last two sections contain suggestions for future work and a brief conclusion.

2 Overview of the Animator

The original version of the Animator is an interactive modeling tool written by Kevin Smith that
allows a user to view polyhedral objects and globally modify them using a suite of UNIGRAFIX
tools. In particular, the Animator allows one parameter of a UNIGRAFIX tool to be linked to a
slider, in which case the polyhedron is modified in real-time as the value of the slider is changed
by the user. The new version of the Animator is similar to the original one, but it also includes an
interactive interface for making local changes to UNIGRAFIX objects.

As shown in Figure 1, the Animator has three windows - the main viewing window, the control
panel and the slider. The main viewing window allows the user to view the polyhedron - rotating,

17

18

scaling and translating it in real-time using combinations of the mouse buttons and keyboard keys.
The user also may control several aspects of how the polyhedron is displayed in the main viewing
window. There are options for toggling on or off face display, wire display, edge display, vertex
display, backfacing face display, or transparency of the polyhedron.

The control panel is used to enter commands and specify options. At all times, it contains
pull-down menus with commands for loading and saving UNIGRAFIX files, running UNIGRAFIX
tools, executing editing commands and selecting program options. In addition, it displays controls,
such as buttons, checkboxes and edit fields, with which the user can specify settings for tool or
program options.

The slider window appears whenever the user runs a UNIGRAFIX tool with a dynamic pa-
rameter. The value of the slider is linked to the value of the dynamic parameter. When the user
manipulates the slider, the value of the dynamic parameter is changed, then the tool is run with
the new parameter, the polyhedron is modified accordingly, and the display is updated.

trunc
Tuncates a polyhedron

-C Set color

Truncatevalue

0.0 03 1.0

Figure 1: The three windows of the Animator

3 New Interactive Editing Features

This section describes the new interactive editing features of the Animator.

3.1 Creating UNIGRAFIX Files

The original version of the Animator has a pull-down menu interface for loading and saving UNI-
GRAFIX files. Using this pull-down menu, the user can open any existing UNIGRAFIX file, or save
the current polyhedron in a file. The Animator now has an additional file manipulation command
on this pull-down menu that allows the user to open a new, empty UNIGRAFIX file. Using this
command, the user can create a new UNIGRAFIX file from scratch, rather than having to derive
it from another file. In fact, when the Animator starts, an empty UNIGRAFIX file is opened by
default. At this point, the user may either begin adding UNIGRAFIX objects to this default file
or load another file.

3.2 Creating UNIGRAFIX Vertices

The Animator allows a user to create new vertices in the currently open UNIGRAFIX file. The
user can create a new vertex at the current 2D cursor position by double-clicking with the left
mouse button. Since the 2D cursor position represents a line through 3D, the actual position of
the new vertex is dependent on what type of object lies under the cursor position at the time of
the command. If the interior of a face lies under the cursor position, then a new vertex is created
positioned at the intersection of the 3D line representing the 2D cursor position and the plane of
the underlying face. The new vertex is connected to the other vertices of the face by constructing
new edges and contours that tessellate the face, as shown in Figure 2. On the other hand, if an
edge lies under the cursor position, then a new vertex is created positioned at the intersection of
the 3D line representing the 2D cursor position and the 3D line along the edge. In this case, the
underlying edge is split into two new edges that connect its endpoints through the new vertex, as
shown in Figure 3. Otherwise, if no face or edge lies under the cursor position, a new vertex is
created that is not attached to any other object in the file. The position of the new vertex is set
to be the intersection of the 3D line representing the 2D cursor position and the axial plane (XY,
XZ or YZ) whose normal vector is directed most toward the viewer, as shown in Figure 4. Using
these commands, the user can add any number of vertices to a UNIGRAFIX file.

Figure 2: Creating a vertex Figure 3: Creating a vertex Figure 4: Creatinga vertexin
on a face 'on an edge space
'

3.3 Selecting UNIGRAFIX Objects

The user interface for interactively editing polyhedra is based on a currently selected set of UNI-
GRAFIX objects (vertices, edges, wires and/or faces). All objects in the currently selected set are
drawn in a special color (yellow) and all local editing operations are applied only to these objects.
The user replaces the previously selected objects with a new object by simply clicking on the object
with the left mouse button. To extend the current selection (i.e. add an object to the currently
selected set without replacing the previously selected objects), the user must hold down the shift
key when clicking on the object with the left mouse button.

The code for selecting the front-most object with the mouse was one of the most difficult aspects
of this project. The GL library provides a function (pick) that returns all objects lying under the
current cursor position. In order to select the front-most object, I had to find the line in 3D space
representing the 2D position of the cursor, and then sort the parametric values of the intersections
between this mouse line and all the objects returned by the GL pick function, as shown in Figure 5.
Furthermore, since many objects can intersect the mouse line at approximately the same parametric
value, my code had to resolve conflicts in such situations. I chose to give vertices priority over edges,

19

and edges priority over faces.

’
74

3D line representing -
2D mouse position

Y Viewing plane

Figure 5: Selecting Objects

3.4 Moving UNIGRAFIX Vertices

The user can move the currently selected set of vertices by moving the mouse with the right mouse
button down. When the right mouse button is pushed down, an axial triad cursor appears whose
origin corresponds with the first vertex in the currently selected set (the triad is intended to help
the user visualize the 3D movement). Then, while the right mouse button is held down, each
movement of the mouse in 2D results in a movement of the all the currently selected vertices in
3D, as shown in Figure 6. When the right mouse button is released, the triad disappears and the
selected objects keep their new positions.

Y

N .

Figure 6: Moving vertices

Mouse movements in 2D are mapped to vertex movements in 3D along the axis whose 2D
projection points in the direction most closely resembling the vector of the mouse movement, as
proposed by Nielson and Olsen [1]. 3D vertex movement is allowed along only one axis at a time.
The net effect is that the 2D space of the mouse is partitioned into six zones corresponding to
movement along the positive and negative directions of the three axes, as shown in Figure 7.

<
<

5
g

24 "’//////<//////// +X

7o
2 |
7
2N

»

Figure 7: Mapping 2D mouse movements to 3D vertex movements

3.5 Editing UNIGRAFIX Objects

The remaining operations supported by the program are command-based operations that act on the
currently selected set of objects. These commands can be invoked by the user with the keyboard or
by using the Edit menu in the control panel, which is shown in Figure 8. The Edit menu currently
supports commands to create, delete, collapse, flip, and subdivide the currently selected faces;
create, delete, collapse and flip the currently selected wires; create, delete, collapse and subdivide
the currently selected edges; and delete and merge the currently selected vertices. The remaining
sections describe each of these editing operations in detail.

Delete Face

Collapse Face
Subdivide Face
Flip Face

Create Wire

Delete Wire

Collapse Wire
Flip Wire

Create Edge
Delete Edge
Collapse Edge
Subdivide Edge

Delete Vertex
Merge Vertices

Figure 8: The edit menu

3.6 Creating UNIGRAFIX Faces and Wires

The user creates faces and wires using the Create Face and Create Wire commands. These com-
mands construct a face or wire from the currently selected vertices, as shown in Figure 9. The
order in which the vertices are arranged in the new face or wire corresponds to the order in which
they were selected. When a face or wire is created, a default name and color are chosen.

21

*ee % »
% 5%% e®, Creae Face
o0 g

Figure 9: Creating a face

3.7 Deleting UNIGRAFIX Faces and Wires

The user deletes all the currently selected faces or wires using the Delete Face or Delete Wire
commands. These commands are the converse of the Create Face and Create Wire commands.
They delete only the selected faces or wires, and do not delete the attached vertices, as shown in
Figure 10.

o9
®
‘.0. ...‘....
—» o° °

o0
Delete Face % 3%%e o°,
00 g

Figure 10: Deleting a face

3.8 Subdividing UNIGRAFIX Faces and Edges

The user subdivides all the currently selected faces or edges using the Subdivide Face or Subdivide
Edge commands. These commands create a new vertex at the centroid of each selected face or
edge, connecting this new vertex to all other vertices of the face or edge. More specifically, when a
face is subdivided, a new vertex is created at the centroid of the face, the original face is deleted,
and then triangular faces are constructed connecting the new vertex to each of the original face’s
vertices, as shown in Figure 11. The net effect is to triangulate the face, and so this command
is very useful for subdividing non-planar faces. The process of subdividing an edge is similar - a
new vertex is created at the midpoint of the edge, the original edge is deleted, and new edges are
constructed between the new vertex and the original endpoints of the edge. The effect is to add a
new vertex to the edge. This is a very useful command for adding detail to a polyhedron.

———>
Triangulate

Face

Figure 11: Subdividing a face

3.9 Collapsing UNIGRAFIX Faces, Wires and Edges

The user collapses all the currently selected faces, wires or edges using the Collapse Face, Collapse
Wire or Collapse Edge commands. These commands create a new vertex at the centroid of each
selected object, and then "collapse” all the boundary vertices of the object into this new vertex.
The effect of collapsing a face is shown in Figure 12 - a new vertex is created at the centroid of
the face, and then all vertices on the contours of the face are merged into this new vertex, deleting
all vertices, edges and contours of the original face. Collapsing an edge is similar - a new vertex is
created at the midpoint of the edge, and then the two endpoints of the edge are merged into this
new vertex. This is a very useful command for removing detail from a polyhedron.

_>
Collapse Face

Figure 12: Collapsing a face

3.10 Flipping UNIGRAFIX Faces and Wires

The user flips the orientation of all the currently selected faces or wires using the Flip Face or Flip
Wire commands. These commands reverse the order of edges in the edge lists of all contours of the
face or wire. In the case of the Flip Face command, the direction of the face normal is reversed, as

shown in Figure 13.

Figure 13: Flipping a face

3.11 Deleting UNIGRAFIX Vertices

The user deletes all the currently selected vertices using the Delete Vertez command. When a
Delete Verter command is executed, all edges attached to the selected vertices are deleted, then all

23

24

contours that end up with less than 3 edges are deleted, then all faces that end up with no contours
are deleted, and then finally the selected vertices are deleted. An example is shown in Figure 14.

—

—_—
Delete Vertex

Figure 14: Deleting a vertex

3.12 Merging UNIGRAFIX Vertices

The user merges all the currently selected vertices into one using the Merge Verter command. This
command deletes all the selected vertices and then creates a new vertex at the position of the first
selected vertex that has a topology that is the union of the topologies of all the selected vertices.
The net result is that all the selected vertices are merged into one that has the position of the
first selected vertex and the topology of them all. This is a very powerful command for connecting
objects. An example is shown in Figure 15.

Merge Vertices

Figure 15: Merging two vertices

4 Discussion

In summary, the Animator supports basic interactive editing operations - creating, deleting and
moving UNIGRAFIX objects - along with a few high-level operations that edit the object topology.
It is a very simple editor, and therefore is not competitive with commercial 3D modeling systems for
constructing complex, irregular polyhedra. On the other hand, it reads and writes UNIGRAFIX
files directly and allows execution of UNIGRAFIX tools from within the editor, and so is very
useful for creating simple or semi-regular polyhedra, and making small, local changes to existing
polyhedra.

During initial experiments using the program, I found that I was able to accomplish several
types of tasks quickly that would have been very tedious otherwise. For instance, it was easy
to construct simple scenes by interactive creating vertices and then connecting them into faces
and wires. A couple examples of this type are shown in Figures 16 and 17. Also, I was able to
create semi-regular polyhedra quickly by making local changes to polyhedra constructed using the
UNIGRAFIX tools. Some examples of this type are shown in Figures 18 and 19. Finally, it was
fairly easy to fix-up and modify UNIGRAFIX files imported from other programs using high-level
editing commands such as flip face, merge vertex, delete vertex, etc. The final example, shown in
Figure 20, shows a chair (courtesy of Greg Ward) that has been fixed-up and then simplified using
these commands. The original chair (in the top left) has 173 faces, while the simplified versions
have 83, 22, and 10 faces respectively.

The most disappointing aspect of this project is that I found it very difficult to move a vertex to
a precise 3D position using the mouse in my program. The difficulty is not due to the Nielson and
Olsen approach, which I found to be quite intuitive, but rather due to inadequate 3D positional
feedback during movement of the vertex. The root of the problem is that the 2D point at which the
vertex appears on the screen represents a line through 3D space. Even with the axial triad cursor
and bounding box feedback, it is rather difficult to tell exactly where along that line the vertex
lies in 3D. Often in my experiences, after positioning a vertex, I would rotate the view only to find
the vertex in a completely different position than I had imagined. Perhaps a combination of better
graphical feedback, textual feedback, and constraining 3D movement can help with this problem.

5 Future Work

This project has just scratched the surface of the features possible in a UNIGRAFIX editing
program. The following are some ideas for future extensions:

e Provide textual feedback about the currently selected UNIGRAFIX object(s). For instance,
separate panels for each UNIGRAFIX object type could display information such as the name,
color, or position of the most recently selected object of its type. Perhaps the user could edit
the information in these panels - while the results of the changes are reflected in the display
window.

o Allow the user to constrain 3D movement. For instance, 3D movement could be constrained
to a user-settable grid or along the normal of the vertex, edge or face that is being moved.
Or even better, a 3D snap-dragging approach could be used.

e Support inclusion and interactive positioning of UNIGRAFIX files within other UNIGRAFIX
files. For instance, the user might add a cube defined in a UNIGRAFIX file to the currently
open UNIGRAFIX file - interactively translating, scaling and rotating it such that it exactly
attaches to a certain face in the current UNIGRAFIX file.

¢ Allow UNIGRAFIX tools to be run on only the currently selected objects. For instance, the
user might run ugsphere on only a portion of a polyhedron, rather than the entire polyhedron.
Perhaps all local editing commands could be implemented as UNIGRAFIX tools using such
a mechanism.

25

6 Conclusion

This report has described the interactive editing features added to the Animator for my CS285 class
project this semester. These features include creating, deleting and moving UNIGRAFIX vertices,
edges, wires and faces, as well as several high-level editing operations. All these operations are
invoked interactively using a combination direct-manipulation and command-based interface with
real-time feedback. They co-exist with the original functionality of the Animator, viewing poly-
hedral objects and running UNIGRAFIX tools, resulting in a very useful and powerful interactive
modeling tool. Hopefully, this program will be used by many future generations of CS285 students.

References

[1] Nielson G. M. and D. R. Olsen, “Direct Manipulation Techniques for 3D Objects Using 2D Lo-
cator Devices,” Proceedings 1986 Workshop on Interactive 3D Graphics, ACM Press, October,
1986, p175 - 182.

[2] Séquin C. H. and K. P. Smith, Introduction to the Berkeley UNIGRAFIX Tools, Report No.
UCB/CSD 90/606, Computer Science Division (EECS), University of California, Berkeley,
California, November, 1990.

[3] K. P. Smith. Interactive Modeling Tool, Unpublished, 1990.

7 Examples

Figure 16: A 2D flower

27

: A 2D scene

Figure 17

Figure 18: A Semi-Regular Polyhedron

29

id of Genus Seven

: A Toro

19

igure

F

30

Figure 20: Simplified Versions of a Chair

31

ANIMATOR (UG) UNKNOWN SECTION OF THE MANUAL ANIMATOR (UG)

NAME
animator — an interactive viewing, editing and modeling tool

SYNOPSIS
animator

DESCRIPTION
The animator is an application that allows the user to interactively view, edit and run modeling tools on
UNIGRAFIX files. These man pages describe the new interactive editing features of the program.

CREATING UNIGRAFIX FILES

The original version of the Animator has a pull-down menu interface for loading and saving UNIGRAFIX
files. Using this pull-down menu, the user can open any existing UNIGRAFIX file, or save the current
polyhedron in a file. The Animator now has an additional file manipulation command on this pull-down
menu that allows the user to open a new, empty UNIGRAFIX file. Using this command, the user can
create a new UNIGRAFIX file from scratch, rather than having to derive it from another file. In fact, when
the Animator starts, an empty UNIGRAFIX file is opened by default. At this point, the user may either
begin adding UNIGRAFIX objects to this default file or load another file.

CREATING UNIGRAFIX VERTICES

The Animator allows a user to create new vertices in the currently open UNIGRAFIX file. The user can
create a new vertex at the current 2D cursor position by double-clicking with the left mouse button. Since
the 2D cursor position represents a line through 3D, the actual position of the new vertex is dependent on
what type of object lies under the cursor position at the time of the command. If the interior of a face lies
under the cursor position, then a new vertex is created positioned at the intersection of the 3D line
representing the 2D cursor position and the plane of the underlying face. The new vertex is connected to
the other vertices of the face by constructing new edges and contours that tesseliate the face. On the other
hand, if an edge lies under the cursor position, then a new vertex is created positioned at the intersection of
the 3D line representing the 2D cursor position and the 3D line along the edge. In this case, the underlying
edge is split into two new edges that connect its endpoints through the new vertex. Otherwise, if no face or
edge lies under the cursor position, a new vertex is created that is not attached to any other object in the
file. The position of the new vertex is set to be the intersection of the 3D line representing the 2D cursor
position and the axial plane (XY, XZ or YZ) whose normal vector is directed most toward the viewer.
Using these commands, the user can add any number of vertices to a UNIGRAFIX file.

SELECTING UNIGRAFIX OBJECTS

The user interface for interactively editing polyhedra is based on a currently selected set of UNIGRAFIX
objects (vertices, edges, wires and/or faces). All objects in the currently selected set are drawn in a special
color (yellow) and all local editing operations are applied only to these objects. The user replaces the pre-
viously selected objects with a new object by simply clicking on the object with the left mouse button. To
extend the current selection (i.e. add an object to the currently selected set without replacing the previously
selected objects), the user must hold down the shift key when clicking on the object with the left mouse
button.

MOVING UNIGRAFIX VERTICES
The user can move the currently selected set of vertices by moving the mouse with the right mouse button
down. When the right mouse button is pushed down, an axial triad cursor appears whose origin
corresponds with the first vertex in the currently selected set (the triad is intended to help the user visualize
the 3D movement). Then, while the right mouse button is held down, each movement of the mouse in 2D
results in a movement of the all the currently selected vertices in 3D. When the right mouse button is
released, the triad disappears and the selected objects keep their new positions.

Sun Release 3.4 Last change: 1991-4-24

ANIMATOR (UG) UNKNOWN SECTION OF THE MANUAL ANIMATOR (UG)

Mouse movements in 2D are mapped to vertex movements in 3D along the axis whose 2D projection
points in the direction most closely resembling the vector of the mouse movement, as proposed by Nielson
and Olsen during the 1986 Workshop on Interactive 3D Graphics in Chapel Hill. 3D vertex movement is
allowed along only one axis at a time. The net effect is that the 2D space of the mouse is partitioned into
six zones corresponding to movement along the positive and negative directions of the three axes.

EDITING UNIGRAFIX OBJECTS
The remaining operations supported by the program are command-based operations that act on the
currently selected set of objects. These commands can be invoked by the user with the keyboard or by
using the Edit menu in the control panel. The Edit menu currently supports commands to create, delete,
collapse, flip, and subdivide the currently selected faces; create, delete, collapse and flip the currently
selected wires; create, delete, collapse and subdivide the currently selected edges; and delete and merge the
currently selected vertices. The remaining sections describe each of these editing operations in detail.

CREATING UNIGRAFIX FACES AND WIRES
The user creates faces and wires using the Create Face and Create Wire commands. These commands
construct a face or wire from the currently selected vertices. The order in which the vertices are arranged
in the new face or wire corresponds to the order in which they were selected. When a face or wire is
created, a default name and color are chosen.

DELETING UNIGRAFIX FACES AND WIRES
The user deletes all the currently selected faces or wires using the Delete Face or Delete Wire commands.
These commands are the converse of the Create Face and Create Wire commands. They delete only the
selected faces or wires, and do not delete the attached vertices.

SUBDIVIDING UNIGRAFIX FACES AND EDGES

The user subdivides all the currently selected faces or edges using the Subdivide Face or Subdivide Edge
commands. These commands create a new vertex at the centroid of each selected face or edge, connecting
this new vertex to all other vertices of the face or edge. More specifically, when a face is subdivided, a
new vertex is created at the centroid of the face, the original face is deleted, and then triangular faces are
constructed connecting the new vertex to each of the original face’s vertices. The net effect is to triangu-
late the face, and so this command is very useful for subdividing non-planar faces. The process of subdi-
viding an edge is similar - a new vertex is created at the midpoint of the edge, the original edge is deleted,
and new edges are constructed between the new vertex and the original endpoints of the edge. The effect is
to add a new vertex to the edge. This is a very useful command for adding detail to a polyhedron.

COLLAPSING UNIGRAFIX FACES, WIRES AND EDGES

The user collapses all the currently selected faces, wires or edges using the Collapse Face , Collapse Wire
or Collapse Edge commands. These commands create a new veriex at the centroid of each selected object,
and then "collapse” all the boundary vertices of the object into this new vertex. The effect of collapsing a
face is that a new vertex is created at the centroid of the face, and then all vertices on the contours of the
face are merged into this new vertex, deleting all vertices, edges and contours of the original face. Collaps-
ing an edge is similar - a new vertex is created at the midpoint of the edge, and then the two endpoints of
the edge are merged into this new vertex. This is a very useful command for removing detail from a
polyhedron.

FLIPPING UNIGRAFIX FACES AND WIRES
The user flips the orientation of all the currently selected faces or wires using the Flip Face or Flip Wire
commands. These commands reverse the order of edges in the edge lists of all contours of the face or wire.
In the case of the Flip Face command, the direction of the face normal is reversed.

Sun Release 3.4 Last change: 1991-4-24

ANIMATOR (UG) UNKNOWN SECTION OF THE MANUAL ANIMATOR (UG)

DELETING UNIGRAFIX VERTICES
The user deletes all the currently selected vertices using the Delete Vertex command. When a Delete Vertex
command is executed, all edges attached to the selected vertices are deleted, then all contours that end up
with less than 3 edges are deleted, then all faces that end up with no contours are deleted, and then finally
the selected vertices are deleted.

MERGING UNIGRAFIX VERTICES
The user merges all the currently selected vertices into one using the Merge Vertex command. This com-
mand deletes all the selected vertices and then creates a new vertex at the position of the first selected ver-
tex that has a topology that is the union of the topologies of all the selected vertices. The net result is that
all the selected vertices are merged into one that has the position of the first selected vertex and the topol-
ogy of them all. This is a very powerful command for connecting objects.

FILES
~ugfug3/src/bin/animator/*

SEE ALSO
ugiris (UG)

BUGS
Yet to be reported.

AUTHOR
Tom Funkhouser

Sun Release 3.4 Last change: 1991-4-24

The UGCLAY System
Mark Halstead

1. Introduction

This report describes the ugclay extensions to the animator program. It concentrates mainly on
ugclay concepts and implementation; for more information on using the system refer to the relevant
manual pages.

The original animator program provided an environment in which the user could view and modify
existing Unigraphix objects. The current Unigraphix object was displaved in a window and this
view could be rotated, scaled and translated. To modify an object, the user could select from a
variety of tools which performed such operations as truncation, beveling and tesselation. either on
the current object or Unigraphix definitions contained in files. The result could be displayed and
“animated” by changing a single degree of freedom in the operation with a slider.

Extensions to the animator have been developed which allow the user to interactively edit the
current Unigraphix object (refer to Tom Funkhouser’s report). Vertices, edges and faces may be
created, deleted and moved. To move vertices, the user first points and clicks with the mouse to
select a set of vertices. These are then dragged to new positions in 3D space (keeping the same
relative positions within the set). Only the selected vertices are dragged, resulting in the elongation
of some edges and the stretching of some faces.

The idea for ugclay arose from the experience of constructing real objects in clay. The natural
qualities of clay — its softness and reshapeability — make it an ideal medium for modeling solid
objects. It would be nice if we could imitate these qualities within the framework of a Unigraphix
object editor. This is the aim of the ugclay system.

2. Concepts

One observation that can be made of clay models is that forces applied to the surface - for example
pushing or pinching - result in a non-local change in the object. In other words a push may result
in a bend or squash over an area larger than the area of contact. Translating this into the context
of Unigraphix model editing we realize that dragging a set of vertices should somehow affect those
vertices which are not part of the dragged set. The job of ugclay then is to move these vertices in
such a way that the user feels as though they are manipulating a piece of clay.

In fact the ugclay system is general enough to model substances with a variety properties, such as
cloth or jello!

3. Approach

The interface between the object editor and ugclay is simple. As a set of vertices is dragged ugclay
is provided with a list of those vertices and an offset vector in 3-space representing the latest drag
increment to be applied to the vertices. Ugclay decides on the basis of the current movement model
and user controlled settings how this change will affect every vertex in the model.

35

Two movement models are provided.
4. Movement Models

4.1 Drag mode

4.1.1 Description

This is the simplest mode available — it basically consists of adding some fraction of the offset vector
to each vertex. Two effects are simulated: translate and squash.

Translate: each vertex in the drag set is moved by the offset vector ¢. Each vertex in the “fringe”
of vertices connected by an edge to a vertex in the drag set is moved by an offset f© where
f is the translate factor 0 < f < 1. Each vertex in the fringe connected by two vertices is
moved by f%¢ and so omn.

Squash: each vertex in the drag set is moved by the offset vector 5. Each vertex p in the “one
edge fringe” is shifted by a vector & where | @ |= f | @ |, f is the squash factor and 0 < f < 1.
The vector @ is the (uniformly) weighted average of the vectors pg where g is a vertex of the
initial drag set. For vertices in the “two edge fringe” | |= f? | 7 | etc.

4.1.2 Motivation

The motivation behind the drag mode effects is simple: dragging on a few vertices causes the other
vertices to move some amount in the same direction. in other words the object is stretched. This
basic effect is provided by translation. The movement will also tend to have some component iu
the direction of the vertices being dragged. an effect provided by squash.

Depending on the properties of the object, vertices close to those being dragged move more than
those further away. due of course to the stretching of the intervening material. The translate and
squash factors control this property.

With the correct settings of the translate and squash factors some quite realistic looking effects
can be generated. Low factor settings give the feel of a soft material where changes are very local;
high factors cause a widespread stretch. Setting the translate factor to 1 and the squash factor to
0 allows the user to drag an object around without changing its shape. Setting both factors to 0
causes only the vertices in the initial drag set to move.

High settings of the translate factor have the effect of both stretching and moving the object. If
only stretching is required the user is given the option of pinning the object. In this case the
vertices furthest (in terms of number of edges) from the drag set of vertices remain fixed in space
and only stretch effects are simulated.

It would of course be possible to develop other effects based on a similar approach. For example
one could take into account the directions of the edges at a vertex and allow more general pinning.
However the aim of the drag mode was to provide the simplest possible movement model. The
more complex spring mode has these abilities.

4.1.3 Implementation

To implement the drag mode it is necessary to perform a breadth first search of the Unigraphix
object. beginning with the vertices in the initial drag set. This is accomplished by maintaining a
queue of vertices; we repeatedly remove a vertex from the head of the queue, update its position
by the appropriate vector and add those as yet unvisited neighbours to the end of the queue. The
neighbours of a vertex are found by iterating over the incident edges which are easily accessed
through the Unigraphix statement structure.

To aid the search each vertex is assigned a wisit number as it is added to the queue. This helps
to identify those vertices which have already been visited and to identify where in the queue a
new fringe level begins (each successive fringe has a higher visit number assigned). This visit
number must be stored with the vertex: to allow this each vertex has attached to it an eztra
structure pointed to by the Unigraphix statement extra pointer. This extra structure also contains
additional information pertaining to the spring mode.

As the breadth first search proceeds the current translate vector and drag vector length are main-
tained. As each new fringe of vertices is encountered this translate vector and drag length are scaled
by the appropriate factors. As the last fringe is processed it is possible that a nonzero translate
vector is being added, which implies that the object is translated by this much as well as stretched.
If the object is pinned then it is necessary to go back and subtract this amount from each vertex
to ensure that only stretch effects are produced (in other words the last fringe of vertices remains
fixed in space).

4.2 Spring Mode
4.2.1 Description

Spring mode is more complicated than drag mode and thus provides a wider range of interesting
effects. It is not, however, able to imitate all the effects of drag mode and so the two complement
each other in utility.

The idea behind spring mode is to model elastic materials. The materials of drag mode are inelastic
~ once stretched they remain in that state. Materials in spring mode on the other hand have a
natural tendency to return to their original shape.

This behaviour is accomplished by treating each vertex as a point mass and each edge as a damped
viscoelastic spring unit. Thus a Unigraphix object naturally defines an arrangement of point masses
connected by springs.

Briefly, the theory of spring elasticity is as follows. A spring has a natural rest length z . If it is
stretched or compressed to a length z the restoring force generated by the spring is:

F: k(l‘—.’l)o)

where F is a force vector lying along the line of the spring and k is the spring factor.

An arrangement of point masses and springs is in a state of equilibrium (rest) when the force vectors

37

acting on each mass sum to zero. If the sum is nonzero the mass is accelerated according to the
formula:

where m is the mass and @ is the acceleration vector lying in the same direction as F.

Therefore. for a given mass/spring svstem we can determine whether equilibrium has been reached
by summing the forces acting on each mass. These forces are calculated by comparing the extension
of each spring to its rest length. If the system is not in equilibrium the masses can be accelerated.
In fact this is exactly how ugclay works. It repeatedly performs this operation until the vertices
move into a state of equilibrium.

Before this process is described further there are a number of details that require dicussion. First
of all there must be a method by which the user controls the shape of the object. By necessity this
involves changing the state of equilibrium. The method employed is the pinning, unpinning and
dragging of vertices. A pinned vertex maintains a fixed position in space. The user is able to select
vertices to be pinned and unpinned and can drag pinned vertices around.

Depending on the requirements of the user the unpinned vertices can be either completely free or
restrained. This restrainment is provided in terms of springs connecting each unpinned vertex to
a fixed point in space. This fixed point is usually the initial position of the vertex when the user
began editing. A method is provided for relocating the fixed point to the current vertex location.
These restraining springs are very useful as they provide a means of maintaizing a solid’s general
shape. Without them a solid would be able to collapse inwards.

Another fact to note is that the springs used are not simply elastic. They also have a damping
ability. which means that the spring generates a force proportional to the rate of change of extension
in a direction that will resist this change. By controlling the constant of proportionality the user
can affect how quickly the system will reach its equilibrium point after vertices are dragged. That
is, it will control the oscillations inherent in non-damped systems.

Of more importance is the viscoelastic property of the springs. This is the ability to stretch (increase
or decrease rest length) with a rate proportional to the amount of extension. This is important
because it models real materials where an applied force causes extension and stretching.

The above properties are easily incorporated into the general method for finding the equilibrium
state and vet add greatly to the functionality of the system. Two additional effects are also taken
into account: gravitational acceleration and medium damping. Gravitational acceleration is simply
an acceleration vector acting on each mass. It can either be directed along the negative y-axis in
object space coordinates or in a direction which appears to be “vertically downwards” on the screen
(and so changes with respect to the object coordinates after each rotation). Medium damping is an
effect which models the motion of the masses through a viscous medium such as water. It generates
an additional force vector on each mass which acts in a direction opposite to and in proportion to
the velocity of the mass in order to slow its motion.

It should be noted that ugclay provides the user with the means to change all the constants of

proportionality mentioned above along with the amount of gravitational acceleration. By varyving
these properties the user can simulate a range of different materials, from clay through to cloth.
To find the “right” settings requires a certain amount of experimentation.

After stretching an object around until it is in the required shape the user may “freeze” the model.
This unpins all vertices. sets all spring rest lengths to the current edge lengths and moves the fixed
points of each restraining spring to lie on the corresponding vertex. In other words the model is put
into a stable unpinned state. This model may then be saved as new Unigraphix object description
or modified using a tool or drag mode.

4.2.2 Implementation

The implementation of spring mode is conceptually straightforward. As mentioned previously each
vertex has an extra structure attached. For use in spring mode this extra structure stores:

e a flag to indicate whether the vertex is pinned
e the current velocity of the vertex

o the position of the fixed end of the restraining spring (if the vertex is not pinned)

the rest length of the restraining spring

In addition. each edge has an attached extra structure containing the rest length of the spring
represented by the edge.

The iterative solution process to find the equilibrium position is carried out as follows. The animator
contains a main event loop where it waits for input events generated by the user. Each time through
the loop a procedure is called to update the positions of all vertices. Assume that the time between
calls is At. Then in pseudocode this update procedure is:

for each vertex stmt do

add vertex velocity. At to vertex position
force_so_far = 0
if vertex is restrained

calculate spring extension
add resulting force to force_sofar

end

add force due to medium damping to force_so_far
end
for each edge

calculate edge extension and resultant force

calculate edge damping force
add forces to force_so_far of incident vertices

adjust rest length of spring according to acting forces
end
for each vertex

divide forceso_far by mass to get acceleration
add gravitational acceleration

add acceleration. At to vertex velocity

end

This scheme is essentially an explicit Euler method for solving in discrete time steps a set of first
order differential equations. It does not require a matrix approach as each vertex has a known small
number of attached edges. An implicit method such as Runge-Kutta could have been implemented
but in general this is not necessary as we are dealing with highly damped systems where the vertex
velocities are small. We are more interested in the equilibrium state than the motion of the svstem.
There is a problem sometimes with the svstem oscillating wildly but this can usually be remedied
by reducing At. Hence the user is provided with the ability to control this value.

5. Controls
5.1 Overview

Throughout the previous sections it has been mentioned that the user has the ability to change a
number of factors and constants of proportionality to control the ugclay mode of operation. The
user is given this control by means of the clay control panel.

The animator program itself includes facilities for toggle buttons in its control panel. However
ugclay requires extensive use of sliders in addition to a variety of buttons. Thus the decision was
made to use an available panel library and editor to construct the clay control panel. The drawback
of this approach is that the user interface now consists of two different styles. The best way to
resolve this problem would be to reimplement the original animator controls in the new panel
library. This has not been done as integration with the object editing code (using the old interface)
was only possible at the end of the project.

The operation of the clay control panel is fairly self-explanatory. It involve setting toggle switches
and changing sliders to control various functions. Refer to the ugclay manual pages for further
information.

5.2 Implementation

Using the panel library was not as simple as it was hoped. Theoretically the only requirement was
to include a call to the panel code within the main event loop. In practice however the panel code
wreaked havoc with the event queue operation, as it would consume important events required

for the correct operation of the animator. Fixing this satisfactorily required changes to the panel
librarv. The fixes made are satisfactory for the current application but in the long term, if the
panel library is to be useful, extensive changes will be required within the panel code to correctly
handle the event queune. Specifically. it will be necessary for the user to read events and pass these
to the panel code rather than let the panel code read from the queue itself.

6. Interface Issues

The program interface between the ugclay system and the animator is kept as simple as possible.
Only five calls are necessary to implement the major functions:

pin a set of selected vertices

unpin a set of selected vertices

drag a set of vetices by a given amount

e solve for the spring forces and vertex movements

handle the clay control panel

All other calls are necessary only to:

e initialize the ugclay system

e allocate/free the extra structures attached to vertices/edges when these statements are created
or deleted

Ensuring that ugclay continued to work correctly as faces were collapsed and subdivided required
some effort.

7. Summary

This report has described the motivation behind ugclay and its implementation. Overall the project
has been quite successful in its attempt to provide a more useful object editing environment. It has
also provided an interesting environment for animation — it is possibly more fun to watch objects
assume their rest positions than it is to mould them!

Of course there are always a number of improvements which could be made to make the system
more useable. These fall outside the bounds of what was possible within the limited time avail-
able, especially given the constraint that we were working with Unigraphix models. It would be
interesting to look further into ways of providing a more realistic “claylike” environment.

On the following pages are some example illustrations from ugclay. They are taken directly from
the screen during a ugclay session and hopefully demonstrate some of the utility of the system.

41

.
\\‘Q\Q‘N

N
MRS

SRR :

TRER
*i R
.

X
X
o

R
R

S’rreid\({\% a+essa”aj(e/o(wboc‘('a)\aolfon in a‘f‘acsmod(&

A ' SU\SP@“O‘&(‘J (\e/+ !

in

SP“"% M@Je/

R

O

3
\\\\‘;\\
X

o

;E\\Q
R

N ‘\\.\ ST
__ R :
.

S

N
N
R

v;:R 3

.~

AR \\\\:\\ \
R ':"\"\'\\\\

R

3 R N X \

R
SRR

43

verhee s

g mole pianed

show

net

SV\S\:)U\O(QO‘(

Another

UGCLAY(UG) UNIGRAPHIX MANUAL UGCLAY(UG)

DESCRIPTION

This manual describes the ugclay additions to the animator program. These additions allow the user
to interactively manipulate the currently displayed object by moving vertices.

Ugclay has been integrated with object editing extensions to the animator which allow the creation,
deletion and movement of faces, wires and vertices. Most important to the ugclay user is the ability
to select a set of vertices which can be dragged in three dimensions. As the user does so, ugclay at-
tempts to aid the user by deforming the entire object as if it were made of a stretchy substance such
as clay or jello. This is done by moving each vertex in the object according to: (i) the current move-
ment mode selected by the user, (ii) various user definable parameters and (iii) the initial drag given
to the set of vertices.

The original functions of the animator system have been retained.
OPERATION

The ugclay system is controled via the clay control panel which appears in the lower half of the
screen. This panel contains buttons and sliders which define the current mode of operation.

The On button in the top left comer of the panel switches ugclay on and off. In the gff position
ugclay will not affect the operation of the animator and objects may be edited in the normal way. In
particular, dragging a set of vertices will not invoke the ugclay module and only local changes to the
set of vertices itself will occur.

Object Editing

The user should consult documentation on the animator program and its editor extensions for infor-
mation on loading objects and the selection of sets of vertices. Two functions which pertain directly
to ugclay are provided in the animator control panel. To pin the currently selected set of vertices
select the Pin option from the edit menu. Similarly to unpin a set of vertices select the Unpin option.
The uses of pinned vertices will be discussed in a later section. Pinned vertices appear as blue
squares in the object display.

If ugclay is turned on and the user drags a set of selected vertices then all the vertices in the object
will be shifted according the current movement mode.
Movement Modes

Two movement modes are provided in the ugclay system. Select one by pushing the appropriate
mode button on the clay control panel.

Drag Mode

This is the simplest mode. The new position of each vertex depends on: (i) the change in position of
the dragged vertex (translate) and (ii) the new relative position of the dragged vertex (squash).

Translate

The change of position vector v of the dragged vertex is calculated. A fraction f of v is added to the
position of each vertex connected by a single edge to the dragged vertex. A fraction f*f of v is added
to each vertex two edges away from the dragged vertex and so on. The fraction f may vary between 0
and / and is controled by the setting of the translate slider in the clay control panel. This factor con-
trols the amount of "stretch” applied to the object.

For high translate factors the vertices furthest from the dragged vertex (in terms of number of edges)
may shift. In other words the object is moved as well as stretched. If the user pushes the toggle but-
ton marked Pinned, the furthest vertex (or vertices) will remain pinned in space and only stretching
will be observed.

Squash

The length [of the vector v is calculated. For each vertex one edge away from the dragged vertex a
vector w of length f*! which points towards the dragged vertex is added to vertex position. For ver-
tices two edges away the length of w is f**I and so on. The squash factor f is determined by setting
the squash slider on the control panel.

Both translate and squash effects may be applied simultaneously. The translate and squash factors
can be used to vary the response of the object to vertex movements. Finding the desired settings will
require experimentation. To help the user, two frequently used settings have been provided with con-
trol panel buttons. Push the required button to establish the settings. The choices are:

Move entire object The translate factor is set to 1, the squash factor to 0 and the Pinned option is
turned off. The result is that dragging one vertex drags all connected vertices (usually the entire ob-
ject).

Move single vertex The translate and squash factors are set to 0. Only the dragged vertex will move.
Spring Mode

In drag mode the user should feel as though they are constructing an object out of clay. That is, once
the model has been deformed it retains its new shape. In contrast, spring mode allows the user to
model objects out of a "rubbery” substance such as jello. The objects in this mode have a natural ten-
dency to rebound into their original shape.

This is accomplished by setting up a mass/spring system in the object. Each vertex is treated as a
point mass and each edge as a spring unit with damping. Each vertex may be either (i) pinned (its
position in space is fixed) (ii) free (the vertex is free to move anywhere) or (iii) restrained (the vertex
is connected by a spring to its original position).

As mentioned previously a set of vertices is pinned or unpinned by selecting the appropriate option
from the edit menu. Vertices which are dragged by the user are automatically pinned. The Free un-
pinned vertices button on the clay control panel indicates whether vertices which are unpinned are

free or restrained.

The shape of the object being edited is determined by balancing the spring forces acting on each ver-
tex to find an equilibrium position. This shape can be changed by dragging and pinning vertices.

A number of other parameters also affect the equilibrium point of the system: the mass of the ver-
tices, the spring constant of the springs, the value of gravity and the rest length of the springs. The
first three parameters are controllable by setting sliders on the control panel. The rest length of the
springs is set equal to the current edge length when either spring mode is selected or the reset button
on the control panel is pressed. In other words this reset state will be an equilibrium point as long as
the current gravity factor is zero.

The rest length of the springs can also be changed by setting a non-zero factor on the Viscoelasticity
slider. This factor controls the stretching of the springs over time. Any spring that is not at its rest
length will stretch by the given viscoelasticity factor (between 0 and 7) at each time step (see
below).

To determine the equilibrium point of the object an iterative solution process is used. The inter-
mediate steps of this solution process are displayed and so the user is presented with an animation of
the object bouncing around until it settles into its new shape. To control this solution process three
sliders are provided: the damping factor sliders control how quickly the vertex motion will subside,
the time step slider controls the length of the time steps taken in the solution process. Note that if
damping is set to zero the inaccuracies of the solution method may make the object oscillate wildly!

Pressing the reset button should freeze the solution as it is currently displayed. This action also sets
the gravity slider value to zero (otherwise the unpinned object would fall off the screen!)

Note that pressing the reset button changes the rest lengths of the springs and unpins all vertices.

Note also that you should pin some vertices before turning up the gravity so that the object will be
suspended by some points.

SUMMARY
A brief summary of the pertinent controls follows.
On the edit menu:
Pin: the currently selected vertices are pinned

Unpin: the currently selected vertices are unpinned

Buttons on the clay control panel:

On/Off: turns the ugclay module on and off

Drag mode: selects the drag movement mode

Spring mode: selects the spring movement mode
Pinned: prevents the object from moving in drag mode

Move entire object: sets slider values in drag mode so the user can drag an object around (without
stretching)

Move single vertex: sets slider values in drag mode so the user can move a single vertex
Reset: in spring mode freezes the object in its current shape and unpins all vertices

Rotating gravity: if this toggle button is on then gravity acts in the vertical screen direction, other-
wise it acts in the y-axis direction of object coordinates

Free unpinned vertices: if this toggle button is set then any unpinned vertices will be free to move,
otherwise they are restrained

Sliders on the clay control panel:

Translate: controls the fraction of translate effect in drag mode
Squash: controls the fraction of squash effect in drag mode

Vertex mass: controls the mass of vertices in spring mode

Spring factor: controls the "springiness" of the springs in spring mode

Spring damping: controls the amount of damping in vertex motion along the direction of attached
springs

Viscoelasticity: controls the amount of spring stretching over time

Medium damping: controls the amount of general motion damping due to the medium in which the
object is moving

Gravity: controls the acceleration of gravity
Time step: controls the time step taken in the iterative solution process
SEE ALSO

animator(UG)

AUTHOR
Mark Halstead

CS 285 Final Project Report
Ugiris4d - An Interactive Viewer for 4-Dimensional

UniGrafix Objects

Ajay Sreekanth

May 14, 1991

1 Introduction

Ugiris{d is an interactive viewer for 4-dimensional polyhedral objects. It allows a user to
interactively transform the object in 4-dimensional hyperspace, in real time. It is believed
that such a viewer could serve as an invaluable educational tool in trying to understand
higher dimensional spaces, and that was the motivating factor behind its development.

Ugiris{d is modeled on ugiris , the already existing interactive viewer for 3-dimensional
UniGrafix objects. The power of ugiris lies in its ability to display 2-dimensional projections
of 3-dimensional objects, and vary the projection at interactive speeds depending on how
the user transforms the object. This temporal variation of projected views greatly aids
the process of conceptually reconstructing the third dimension, or the true 3-dimensional
shape of the object. It seems natural to expect that the understanding of 4-dimensional
structure would similarly also be greatly aided by the temporal variation of its projections,
and ugiris{d seeks to accomplish that.

2 Viewing a 4-D Object

The two popular ways of viewing a higher dimensional object in a lower dimensional space
are by using lower dimensional slices or shadows (projections).

Ugiris4d first calculates a perspective projection of a 4-dimensional object, resulting a 3-
dimensional object. This 3-dimensional object is then rendered using the SGI Iris hardware,
and this performs another perspective transformation resulting in a final 2-dimensional
image.

49

3 Object Transformations in 4-D

3.1 Zoom/scale

A combination of keys pressed, and mouse movement allows the user to zoom in and out
to view the object. Basically, this moves the eyepoint along the line that connects it to
the origin in 4-space. The scaling option simply scales the final image on the screen and is
useful when certain features want to be examined closely.

3.2 Rotate

For a 4-dimensional object, specifying an axis of rotation and an angle of rotation (as in
3 dimensions) does not uniquely define a rotation. This is due to the fact that there are
two distinct and nonequivalent axes perpendicular to a given plane of rotation. However,
it remains true in 4-dimensions as well, that a rotation can affect only two dimensions at a
time.

It can be proved, that any 4-dimensional rotation can be achieved by a sequence of
rotations that are limited to rotations in the six planes defined by the coordinate axes.
Combinations of keys pressed and mouse movement allow the user to rotate the object in
each of the coordinate planes individually. A sequence of these rotations can be used to
achieve any given rotation.

3.3 Translate

Again, a combination of key strokes and mouse movement allows the user to translate the
object along each coordinate axis independently. Obviously, a combination of these can be
used to achieve any desired translation of the object.

4 Lighting and Shading

Color information can be used as a visual cue to represent additional information. For
example, the 3-dimensional projection of a 4-dimensional object could be colored so that
the color of any point depends on the value of its fourth coordinate (which has been lost
in the projection). This is essentially identical to the idea of depth cueing used in displays
of 3-dimensional objects. This approach has been adopted, and these color cues certainly
help in trying to comprehend 4-dimensional structure.

In this shading model, the colors of all the vertices are calculated from their 4th coordi-
nates, and then the faces (or wires) are Gouraud shaded, so as to represent the variation of
the coordinate value. Initially interpolation was performed across the visible color spectrum
(from violet to red), but the visual cues obtained from this were not intuitive, so color is
now interpolated between red and yellow to represent the variation of the 4th coordinate
value. The colors are contrasting enough to allow easy detection of the color difference, and
also the eye intuitively perceives shades of orange as between the colors red and yellow, so

Figure 1: Projection of a Hypercube

this visual cue is effective.

With such a shading model, or even in the case of normal rendering where adjacent
faces have the same color, it is extremely difficult to detect edges without a proper lighting
model. It would have been necessary to use a lighting model in 4 dimensions to render
these objects, as first projecting to 3 dimensions and then using a standard 3-dimensional
lighting model will not produce correct results. An accurate lighting model in 4 dimensions
is not a simple extension since now volume elements are shaded, rather than surfaces as in 3
dimensions. It was beyond the scope of this project to study and/or develop a 4-dimensional
lighting model, so currently no lighting model is used.

In order to help distinguish adjoining faces, a wireframe option is provided. This basi-
cally draws a wireframe along the edges of all defined faces.

When drawing only wireframes, the lack of thickness of a wireframe drawn might make
it difficult to see. An option is provided whereby the thickness of the wireframes drawn can
either be increased or decreased.

5 Revealing the Inner structure of Objects

The 3-dimensional projection of a 4-dimensional object often contains faces that are com-
pletely enclosed by other faces, and are thus not visible from the outside. It is tough to
fully comprehend the entire spatial structure without these faces being visible.

One way of revealing the inner structure of such objects is to model each face as being
translucent, so that faces enclosed by others are still partially visible. Some SGI Irises
have Alpha planes that can be used to render such faces with interpolated transparency.
However, using these planes requires that the faces of the object be drawn in an order that
is sorted according to decreasing depth. Since the list of faces would have to be sorted for

Figure 2: Projection of a 4-D Klein Bottle

each view refresh, this would have drastically slowed down the refresh, and so this method
is not used.

Another way of revealing internal structure is to consider successive slices through the
object. The user interface allows the user to vary the location of the near clipping plane,
and moving this while it intersects the object displays successive slices through the object
that is formed by the projection.

The third method of displaying internal structure is to consider a hole cut out of each
face in 4-dimensional space. The inside of the object is now visible through these holes, and
since parts of the original faces are preserved, it helps in visualizing the entire structure.
The program ugdhole cuts such holes in the faces of an input 4-dimensional polyhedron,
and the output of this program can be viewed with ugiris{d to better view the structure.

6 Implementation Details

Ugiris makes use of the specialized hardware on the SGI Iris machines to perform a lot of the
rendering. It retains the static UniGrafix object structure, and all the lighting calculations
and viewing transformations are performed using the Iris graphics pipeline.

Ugiris{d also retains the static UniGrafix object structure, but cannot make use of the
Iris hardware for the viewing transformations since GL allows only 3-dimensional transfor-
mations and not 4-dimensional transformations. So for each view refresh (when the object
is transformed), the projection into 3 dimensions has to be recalculated in software, and
this is then rendered in a manner similar to ugiris . Having to recompute the projection for
each view refresh significantly slows down the viewer, but it still is fast enough to achieve
interactive speed.

AN

AVRAA
Al

[V ,

Figure 3: Another Projection of a 4-D Klein Bottle

6.1 Projecting From 4-D to 3-D

A perspective projection is performed, and it is done analogously to a perspective projection
from 3 dimensions to 2 dimensions. This is done by first calculating the transformation so
that the viewing direction is along the w axis. This transformation can be calculated by
first calculating the rotation needed in the X — W plane to make the z coordinate of the
view vector zero, and then repeating this procedure to make zero the y and z coordinates
of the eye vector, by rotating it in the corresponding planes. The object has also to be
transformed by this transformation. Now the perspective projection can be computed by
the perspective division of the z, y, and z coordinates by the w coordinate.

6.2 Transformations

Rather than apply each transformation to all the vertices in the UniGrafix file structure, the
effective transformation is achieved by applying the inverse of the desired transformation to
the eyepoint and leaving the original vertices intact. Now, the projection has to be calculated
again with the new eye point, but this is done anyway when the view is refreshed.

7 'Writing a 3-D projection to a file

At times it can be instructive to closely examine the object that is created by the 3-
dimensional projection of a 4-dimensional object. The structure of this 3-dimensional pro-
jection could ideally be viewed with ugiris .

Ugiris{d allows the 3-dimensional projection to be saved to a file, at any stage. This
file can now be viewed using ugiris .

8 Syntax Changes

The syntax of UniGrafix is changed only very slightly to allow the definition of 4-dimensional
polyhedral objects. The only statement altered is the vertex statement, and its new syntax
is:

vidxyzw;

The previously optional color id specification is ignored.

9 Observations

The most important observation is that on using ugiris4d , it is immediately obvious that
4-dimensional transformations are not at all intuitive. This makes it very difficult for a user
to perform a series of transformations to obtain a desired effect. This is probably not a
reflection on the effectiveness of the interface, but rather an illustration of the difficulties
encountered in trying to visualize the 4th dimension.

An important issue seems to be the necessity of being able to interactively view a
particular 3-dimensional projection of an object.

10 Future Work

Some of the extensions (as already discussed above) could be:

Integrate ugiris{d with the Unigrafix animator so that a given 3-dimensional pro-
jection can be viewed in 3-dimensions alone.

e Implement efficient 4-dimensional clipping.

o Implement a 4-dimensional lighting model.

-

Explore efficient methods of performing all the above, and all the transformations on
the Iris graphics pipeline.

UG4IRIS (UG)

NAME

UNKNOWN SECTION OF THE MANUAL UG4IRIS (UG)

Ugiris4d — interactive unigrafix viewer for 4-dimensional objects

SYNOPSIS

ugirisdd [-e x y z w] < object

DESCRIPTION

ugirisd4d is an interactive viewer for 4-dimensional extended UniGrafix objects that is essentially similar to
ugiris in functionality. The input vertex statements must have 4 coordinates each. The other UniGrafix
statements are unchanged. ugiris4d forms a 3-dimensional projection of the 4-dimensional object that is
then rendered in a manner similar to ugiris.

Available options:

~e<XyZWwW>

Sun Release 3.4

Initially sets the eyepoint at the specified location in 4-dimensional space. The default eyepoint is
0033).

After the object is displayed initially, it can be interactively manipulated in real-time as follows.

Zooming: The image can be resized by using the left mouse button. While the button is
depressed, moving the mouse to the right will move the eyepoint closer towards the origin, and
moving it to the left will do the opposite - move the eyepoint further away from the origin.

Scaling: Holding down the left shift key and depressing the middle mouse bution causes the
image to be scaled. When the mouse is moved to the left, the image is scaled down, and it is
scaled up when the mouse is moved to the right. This does not change the eye point or the object
position - only the final size of the displayed image is affected.

Rotation: The object can be rotated by using the middle mouse button in combination with certain
keys on the keyboard. Even in 4-dimensional hyperspace, rotation can affect only 2 dimensions at
a time. Consequently, there are 6 types of rotations that are sufficient to represent an arbitrary
rotation. There are the rotations in the 6 coordinate planes. When the middle button is depressed,
moving the mouse to the lefyright will rotate the object in the X-Z plane, and moving it up/down
will rotate in the Y-Z plane. When the left shift key is held down and the middle mouse button is
depressed, moving left/right will rotate in the X-Y plane, and moving up/down will rotate in the
Z-W plane. When the right shift key is held down and the middle button is pressed, moving
left/right will rotate in the X-W plane, and moving up/down will rotate in the Y-W plane.

When the projection is frozen in 3-D, the resulting 3-dimensional object can be rotated as
follows: When the middle mouse button is depressed, moving the mouse to the left/right will
rotate the object about the Y-axis, and moving it up/down will rotate the object about the X-axis.
When the left shift key is held down and the middle mouse button is depressed, moving the mouse
to the left/right will rotate the object about the Z-axis.

Translation: The object can be translated along the 4 coordinate directions using the right mouse
button. When the right mouse button is depressed, moving the mouse to the left/right will
translate the object along the X axis, and moving up/down translates along the Y axis. When the
left shift key is held down and the right mouse button is pressed, moving the mouse to the
left/right translates along the Z axis, and moving up/down translates along the W axis.

When the projection is frozen in 3-D, the resulting 3-dimensional object can be translated
as follows: When the right mouse button is depressed, moving the mouse to the left/right will
translate the object along the X-axis, and moving it up/down will translate the object along the Y-
axis. When the left shift key is held down and the right mouse button is depressed, moving the
mouse to the left/right will translate the object along the Z-axis.

Slicing: The inner structure of the 3-dimensional projection can be revealed by slices through it.
Holding down the right shift key, and then depressing the left mouse button helps control the posi-
tion of the near clipping plane. Moving the mouse to the left moves the near clipping plane closer

Last change: 1991-4-23

55

UGA4IRIS (UG)

EXAMPLE

UNKNOWN SECTION OF THE MANUAL UGA4IRIS (UG)

to the eye, and moving it to the right moves the plane farther away from the eye.
Pressing the space bar prints a menu that lists the available key stroke options.
S : Writes the current 3-D projection to file ugiris.out

G : Toggles whether or not to Gouraud shade the object with the colors at the vertices indicating
the values of their 4th coordinate

W : Toggle whether or not to display a wireframe along the edges around all the faces.
R : Raise thickness of wireframes.

L : Lower thickness of wireframes.

E : Print out current position of the eye point.

D : Toggle whether or not to use depth cueing.

B : Toggle whether or not to display back faces.

3 : Toggles whether or not to freeze the projection in 3-D. When the projection is frozen, then the
resulting 3-dimensional projection can be manipulated using an interface similar to that of ugiris.

cat “ug/lib/Hcube | ugiris4d -¢ 1.02.03.04.0

SEE ALSO

ugiris (UG), ugéto3 (UG), ugdhole (UG)

BUGS

I haven’t implemented clipping in 4-dimensions, as that would slow things down tremendously since this
clipping would have to be performed in software each time the image is refreshed. This leads to incorrect
images when the eyepoint enters the object, but as long as the eyepoint is constrained to lie outside the
object, there are no problems.

Also, I haven’t implemented lighting in 4-dimensions. This leads to problems in detecting edges if adja-
cent faces are colored the same.

AUTHOR

Ajay Sreckanth

Sun Release 3.4

Last change: 1991-4-23

Mechanism Editor

Milind M Joshi

1.0 Introduction

The design of mechanisms usually involves two phases. The designer has to first decide
the sizes of the links and the positions of the joints. Once he has put together a mechanism
he has to check if it functions properly. The function of any mechanism is the motion of a
subset of its links relative to the ground. In case the function is unsatisfactory, the designer
has to go back and change the links and/or joints and try again.

Our program is designed keeping these two phases in mind. It is thus made up of two
loosely coupled modules viz.

e Mechanism Editor
+ Mechanism Animator

To speed up the animation process, we have another module which precomputes the
invariants for the animation.

In the following sections we described the data-structures and implementation of each of
these modules. We then describe how these three modules can be put together to build a
tool for interactive design of mechanisms.

2.0 The Editor

The editor is a very simple graphical editor which allows you to add/delete links, wheels
and joints. The exact user interface is described in the manual pages. In this report we dis-
cuss the implementation issues.

2.1 Data Structures

The editing of a mechanism involves adding and deleting components. The inserts and
deletes have to satisfy some constraints e.g. whenever a link is deleted, all joints involving
that link have to be deleted.

We use a list of links and a list of joints as our data structures for storing the mechanism
during the edit phase. With each link we also keep a set of pointers pointing to the joints
connected to it and with each joint we keep pointers to the pair of links it joins. The set of
pointers gives us a quick way of finding the interconnection between links.

Mechanism Editor May 15, 1991

2.2 Implementation

The editor is implemented as a finite state machine which waits for mouse events and
takes appropriate action depending on the current state and the mouse event.

As new links and joints get added, corresponding entries are added to the data structure.
Whenever user finishes drawing a link or a pair of wheels a new g/ object is created for
that link or pair of wheels.

3.0 The Planner

The job of the planner is to precompute the invariants so that the animator can be speeded
up. The planner generates a linked list of pseudo-instructions which are executed by the
animator.

3.1 Data Structures

Any mechanism has a natural graph representations with joints as nodes and links as
edges. But for the purposes of solving a mechanism, it is better to consider the dual of this
representation i.e. a graph with links as nodes and joints as edges.

Mechanism Editor May 15, 1991

e.g. consider a simple mechanism

FIGURE 1. a simple mechanism

Where the revolute joints are represented as circles. and the prismatic joints are repre-
sented as thick lines.

Mechanism Editor May 15, 1991

The mechanism shown above can be represented as

FIGURE 2. Graph

where G is the ground link.

The planner needs to find solvable subgraphs of the mechanism graph as described in the
next section. Thus we store the graph in its matrix representation in the planning stage.
There are two reasons for choosing this representation -

1. It is very easy to find the solvable subgraphs and rigid subgraphs using the matrix rep-
resentation.

2. The number of links does not change between the planning stage and the animation
stage and thus use of matrix representation does not cause dynamic allocation prob-
lems.

Thus we store the above graph as a matrix shown below

Mechanism Editor May 15, 1991

XGABCDE

G010101
A102000
B0201160
101000
D001001
E100010

FIGURE 3. The matrix representation.

Note the different numbers appearing in the graph. Here 0 means no joint, 1 means revo-
lute joint and 2 means prismatic joint. This information helps planner to decide which sub-
graph-solver function to use.

The other important data structure is the output of the planner. The planer generates a list
of pseudo instructions which gets executed by the animator. It will be easier to understand
the structure of these pseudo-instructions once we have seen the implementation of the
planner.

3.2 Implementation

The purpose of the planner is to plan out the steps in animating a particular mechanism.
Let us use the above mechanism to show how a plan can be generated to animate it.

Before we can make a plan we need to know the link that will be rotated. In our program,
we allow only the grounded links with revolute joints to rotate. One such link is C. Let us
build a plan to animate the mechanism when C is rotated uniformly.

If we know the amount of rotation of C, we can find the position of the joint BC. Since A
is connected to ground, it can only rotate about the joint AG. Thus given the position of
the joint BC the position of both B and A can be determined since those are rigid links. To
put this in more abstract terms, we are trying to find a path with four nodes in the mecha-
nism graph where the position of the two end nodes in the path is known. The path we dis-
covered was GABC with position of G and C known.

The reason for emphasizing the word end in the above description is as follows. If the two
known links are not the end nodes, and since we have a four node path, two things are pos-
sible.

1. One of the unknown links may be connected to two known links. But when this hap-
pens, it may not be possible to find a position for the unknown link. e.g. when B,G are
known and A is unknown it may not be possible to have a possible position for A which
preserves its length. We use this condition to eliminate rigid submechanisms.

Mechanism Editor May 15, 1991

2. The other possibility is that, one of the unknown links is not connected to any known
link. To solve a link we need at least one connection to a known link and thus we have
to wait till that happens.

Following the path algorithm described above we can see that after solving A and B we
get a new path GEDB in our example which is solvable. Once GEDB is solved we know
the positions of all the links and thus we have a complete plan.

To solve any 4 node path we also need to know the structure of the edges i.e. the joints
connecting them, since the joints determine the possible motion of the links relative to
each other.

Thus our planner essentially looks like
1. output the name of the link being rotated
2. while (there exist unknown nodes){

3. look for nodes with unknown position connected to two known nodes. If such
nodes exist, generate an error message and return.

4. find a path with 4 nodes where the position of the end nodes is known and the other
two nodes is unknown. If no such paths exist, generate an error message and stop.

output the names of the nodes and the structure of the edges between them.
6. }

Another important point in the implementation of the planner is the representation of
wheels. We allow wheels only at grounded joints and in pairs. Thus wheels are always
connected to two links determining their relative rotation. Thus a pair of wheels acts like a
normal link connected to two other links and we store the pair as a link ignoring 1its con-
nection to the ground. The only difference is that we assume that there are pseudo-wheel-
joints which connect the pair of wheels to other links. The wheel links can be solved as
usual.

4.0 The Animator

4.1 Data structure

The data structure used by the animator is the output of the planner i.e. a linked list
describing the sequence in which positions of nodes can be found.

1. or rather implicitly assuming.

Mechanism Editor May 15, 1991

Thus the structure for the above example will look something like

list
C G G
motor A E
~~ B D
C B
RPR RRR
™

FIGURE 4, The list of instructions generated by the planner

The job of the animator is now very simple. It essentially does the following -
1. while (animation is going on){

2. for (current_instruction = list; current_instruction!= NULL; cur-
rent_instruction = current_instruction->next){

3. call the appropriate solver with the known and unknown links to find new posi-
tion of the links.

4. }

5. render the links;

6. }

5.0 Conclusion

We can see that a powerful design tool for designing mechanisms quickly and easily can
be build by putting together three simple components an editor, a planner and an animator.
The key component of the tool is the planner which gets closed form solutions for the
mechanism so that it can be animated easily.

We hope that animating mechanism will speed up the mechanism design process by help-
ing the designer in visualizing the function of a mechanism.

Mechanism Editor May 15, 1991

63

6.0 Acknowledgment

It would have been impossible to implement this project in 4 weeks without a lot of help
from Eric Enderton’s Master’s thesis. The key idea of planning out the steps for solving
the mechanism is taken directly from his thesis.

7.0 The program

The program can be found in the directory ~c285-af/project. The executable is called
MeAn. The man page in TeX form is stored in the file man_ani.tex

8.0 Comments

The project was made simple by the theoretical work done by Eric. All T essentially did
was hacked up a program. But there was an important thing to be learned from this. The
job of writing a program becomes very easy once you have understood what needs to be
done and planned out how it can be done. In my case all the designing was already done
by Eric and all I had to do was understand his design and implement it.

9.0 Adding other subgraph solvers

There are three things that need to be done by anyone adding other subgraph solvers -

1. Modify the loop in the plan function so that the function next_step gets called in case of
the subgraph solver being added.

2. Add another else if to the next_step function so that it builds an instruction for the
solver being added.

3. write a solver which takes the instruction as an argument and modifies the translation
and rotation parameters for the unknown links.

Mechanism Editor May 15, 1991

UGMECH(UG) UNIGRAFIX User’s Manual UGMECH(UG)

NAME

ugmech - a mechanism editor and animator

SYNOPSIS

ugmech

DESCRIPTION

ugmech has two loosely coupled modules viz. mechanism editor and mechanism animator.

The mechanism editor can be used to design a planar mechanism consisting of polygonal links.
friction wheels, revolute joints and prismatic joints.

The animator allows one to check the function of a mechanism by moving a link connected to
ground. The animation is continuous and can be frozen in between. To use the animator the
mechanism should have only one degree of freedom.

USAGE

ugmech is structured as a hierarchical set of states. Each state has a corresponding menu with
options to go up and down the hierarchy. The right mouse button can be used to pop-up the menu
corresponding to the current state. There is a set of functions which can be executed from each
set. The left and middle mouse button along with some of the menu options help in the execution
of these functions.

The following paragraphs describe the states along with the menus and functions associated with
them.

Top

This is the top level state and ugmech always starts in this state.

Meiiu

Edit
Changes the state to Edit.

Animate
Changes the state to Animate.

Save
Allows one to save the mechanism in a text file. It pops up a sub-window
to input the name of the file in which the mechanism is to be saved.

Load

Loads a new mechanism into the editor. The filename is accepted via a
sub-window. Note that this deletes the old mechanism from the editor.

Printed 5/15/91 Version 0.0 Page 1

UGMECH(UG)

Quit

Debug

Mouse Buttons

UNIGRAFIX User's Manual UGMECH(UG)

Allows one to quit ugmech.

Dumps the current state of the mechanism.

The left and middle mouse button have no function in this state

Edit

This is the mechanism editor module.

Menu

Add

Delete

Pop

Printed 5/15/91

Link

Wheel

Ground

Lets vou add a link to the mechanism. To begin a link. move the
cursor to the desired point and click the left mouse button. Addi-
tional points can be added by moving the cursor and clicking the
left mouse button. To complete the link press the middle mouse
button. Whenever the cursor moves near a point (vertex of the
polygon corresponding to a link) of a preexisting link. it automat-
ically snaps to that point. Adding a new point there will create
a revolute joint between the two links. Whenever two links have
a pair of revolute joints connecting them. the pair of joints gets
converted to a prismatic joint between those points. During the
creation of the link, rubber banding is used to show the current
shape.

Wheels can only be added between two preexisting grounded points.
The two points can be chosen with left mouse clicks. Once the two
points are chosen, two wheels are displayed with a radii ratio depen-
dent on the current position of the mouse. Whenever the desired
ratio is obtained, click the middle mouse button to add the wheels.

To ground a point of a link, move to that point and click the left
mouse button.

Allows one to delete a link or a pair of wheels. To delete just move the
cursor over the link to be deleted and click the left mouse button.

Takes you back to the top level.

Version 0.0 Page 2

' UGMECH(UG)

Mouse Buttons

UNIGRAFIX User’s Manual UGMECH(UG)

The function of left and right mouse button depends on the function chosen.

Animate

This is the mechanism animator module. To animate a mechanism select a grounded link
by clicking the left mouse button over it. To freeze the animation press the middle mouse
button. To go back to the top level use the pop menu option.

Menu

Speed

Pop

OPTIONS

None!

Printed 5/15/91

very slow

rotate the chosen link 0.002 radians per step.

slow

rotate the chosen link 0.004 radians per step.

medium

rotate the chosen link 0.01 radians per step.

fast

rotate the chosen link 0.02 radians per step.

very fast

rotate the chosen link 0.04 radians per step.

Go back to the top level.

Version 0.0 Page 3

67

UGMECH(UG) UNIGRAFIX User's Manual

FORMAT OF THE MECHANISM DESCRIPTION FILE

The format for a mechanism description file is as follows.
description of the links
description of the wheels
edscription of the joints

Fach link is described as

Xnyn

1 i+1

To describe a wheel use the following format
w i+2

ratio of the radii

UGMECH(UG)

The centers of the wheel are automatically defined by the joints. To describe a joint,

j

from from’s point to 1o ’s point

BUGS

Load and save options don’t do anything! Use *DEBUG* to dump the mechanism.

Only RRR, RPR. RWR solvers are implemented.

The mechanism specification language is too terse. We are assuming that nobody will manually

enter it.

AUTHOR

Milind M Joshi

Printed 5/15/91 Version 0.0

Page 4

A Graphical Tool for Algebraic Curves

Ashutosh Rege

Abstract

This project deals with solving various problems involving planar algebraic curves. These
include plotting algebraic curves, determining critical points, intersections, and solving planar
decomposition problems. A software framework has been created which should make devel-
opment of further tools, such as those for three and higher dimensions, an easier task. The
framework provides an environment for solving various algebraic problems which arise in con-
nection with algebraic curves such as computing pseudo-remainders, greatest common divisors,
resultants, Sturm sequences etc.

1 Introduction

Algebraic curves arise in a variety of situations. The following examples give an idea of the ap-
plications in which manipulating algebraic curves and solving problems concerning them play an
important role.

e Piano Mover’s Problem One of the classical approaches to solving robot motion planning
problems is to formulate it as a problem of finding a path for a point object through config-
uration space avoiding the obstacle space contained therein. The obstacles are modelled as
semi-algebraic sets, i.e. sets whose boundaries are given by algebraic surfaces. In the two-
dimensional case, as shown in Figure 1, the boundaries are given by algebraic curves. The
decision problem then is to determine if the start point and end point for the object lie in
the same connected component. In most algorithms for the Piano Movers’ Problem, e.g. the
Roadmap algorithm [Ca], the basic idea is to project the higher dimensional surfaces down
one level and ultimately to the plane determine the critical points there and fold back to the
higher dimensions. Thus determining intersections and critical points in the plane forms an
important component of such algorithms.

e Geometric Reasoning A typical problem in geometric reasoning is shown in Figure 2. Here the
problem has to be solved in an algorithmic manner. One approach to solving such problems
is to formulate them as a decision problem in elementary algebra. Algorithms for solving such
decision problems use quantifier elimination which in turn can be done by solving systems of
polynomial equations and inequalities. A typical approach is provided by Collins [Col] and
is called a cylindrical algebraic decomposition or CAD. The basic idea behind the approach
is to obtain a decomposition of higher dimensional space by proiecting down on to lower
dimensions. Details can be found in [Col,Ar].

69

Figure 1: The Piano Movers’ Problem

e Grasping One formulation of the grasping problem for smooth objects is to parametrize the
location of the fingers over the curve defining the object. A grasp is stable iff the line joining
the points of contact is contained within the friction cones of both fingers. This condition
gives rise to set of algebraic equations in the two parameters corresponding to the location
of the two fingers. Thus, we obtain algebraic curves as shown in Figure 3, corresponding
to the stable regions. A grasp is stable if and only if it lies within the regions bounded by
the curves. Thus the solution to the problem of determining whether a given grasp is stable
involves solving the point-location problem in a cellular decomposition of the algebraic curves;
the inverse synthesis problem of developing a grasp for the object involves determining the
cellular decomposition, i.e. the regions bounded by the curves.

e Offsets and blending ((HH]) Mechanical parts tend to have secondary surfaces whose purpose
is to connect the primary surfaces which provide the functionality of the part. Further in

Is the elipee with equation 16(x-§)*+ §557= 1 in tha tnterior of the unit cirde ?

?

?

Vz Vy (16(:—%)’4»;% Y=l mPeytcl)

Figure 2: Geometric Reasoning

some applications such surfaces and curves provide functionality of their own such as fillets
for stress reductions, transition surfaces for enhancing fluid flow etc. Algebraic curves also
arise in the computations of offsets to planar shapes such as mechanical parts.

In this report we describe a graphical tool for solving various problems involving planar algebraic
curves. The immediate goal of this project is to implement algorithms for algebraic curves’ problems
such as intersections, critical points, decomposition etc. More generally, though, the project has
involved developing software tools to deal with planar algebraic curves and provides a framework
for further development of tools for manipulating planar and higher dimensional algebraic curves.

1.1 Overview of the report

In subsequent sections, we provide a description of various aspects of the project. In section 2, we
describe various methods for plotting algebraic curves. We show how Sturm sequences combined
with an intelligently directed planar sweep can provide fast plotting of curves. Section 3 deals
with computing intersections and critical points and Section 4 describes some of the computational
algebra issues that arose during the course of the project.

2 Plotting Algebraic Curves

In this section we describe the various approaches considered for plotting algebraic curves. More
specifically, we are given some planar algebraic curve, i.e. a polynomial equation f(z,y) = 0 and
ranges for z and y, Z € [Zmin,Zmaz), ¥ € [Umins Ymaz] and a value of the desired resolution €. The
output should be a plot of the curve within the ranges given and up to the desired resolution (up

71

(s) A stable grasp. (b) An unstable grasp.

(b)

uz A
235
ec2
234 o2
1
Fet—
233 T
12
232 o1 E |
1231
110 1s ‘912 113 ' 114 1I6ne "7 w1

Figure 3: Grasping

to the inherent resolution of the monitor/window). The figures at the end of the report show the
output of the plctter for various algebraic curves.

2.1 Marching Boxes

The idea here is to determine the sign of the polynomial at the 4 corners of a box of a certain size,
in the planar region under consideration, preferably of the order of a few pixels. Assuming we start
out with a box which contains some section of the curve, the algorithm proceeds by examining
the signs of the function (in this case a polynomial) at the four corners of the box. If any two
adjacent corners of the box are of opposing signs we can conclude that the function has a zero in
between the two corners and therefore a piece of the corresponding curve passes between them. We
next examine the boxes adjacent to the corners the curve passed through and so on. Proceeding
in this fashion, we can plot the curve. The advantage is that we will consider a number of boxes
proportional to the size of the curve. There are two problems with this approach : the first is that
the algorithm needs a start point for each connected component of the curve. This can be handled
without much ado. One could, for example, use some logarithmic search scheme to determine
the initial points. The second problem is more serious. The algorithm suffers from the flawed
assumption that between any two corners of the curve there is only one zero of the function. In
general there can be an arbitrary number of zeros (depending on the degree of the polynomial) and
the approach as described above would not locate them - in fact it would located none if the number
of zeros was even. This is true even if the smallest possible pixel-box was used. The problem lies
in the fact that the algorithm has no way of determining the multiplicity of zeros. Of course we
could fix the algorithm so that at each box it determines the number of zeros in between any two
corners. We can do this using some of the techniques outlined below. However, it seems a prior:
that the added computations may well make this approach slower than some of the others below.

2.2 Sturm sequences

The basic idea behind this approach is to exploit the fact that we are dealing with curves which
are zeros of polynomials. If we could determine the zeros within the ranges given we could plot
the curve. The first approach one would consider is to instantiate the curve for various values of z
(depending on the resolution required) and then solve for the zeros of the resulting polynomial in
y. This brings us to the problem of determining roots for a polynomial :

Let f(z) be some univariate polynomial. Let g(z) be a polynomial such that the greatest
common divisor, (f,g) = 1. A Sturm sequence is a negative remainder sequence of polynomials
{pi} i.e.

pi+1 = —remainder(p;_1,pi) O Pi—1 = €iPi — Pi+1

with the Sturm property,
sign(pi-1) = —sign(pi+1)
Now define SA(f,g,zo) to be the number of sign alternations in the Sturm sequence evaluated

at zg i.e. the number of sign alternations in the sequence pg = f(zo), p1 = 9(20), P2(%0), ... We
then have

73

Lemma 1 (Sturm) The number of real roots in the interval [a,b] is given by SA(f, g, a)-SA(f,g,b).

The above lemma implies an obvious sub-division algorithm for finding all the real roots of f :
start with the interval under consideration. At each step subdivide the interval(s) which contain a
zero into two intervals of equal size. Repeat till the intervals are refined to the desired accuracy or
resolution.

We therefore have the basic approach for plotting planar algebraic curves :

1. Instantiate ¢t = 0, Z; = Tmin + 1 * €. If Z; > Tmqr terminate.

2. Let F(y) = f(zi,y). Let F’ be the derivative of F. If F and F” have a non-trivial ged, divide
each one by the ged.

3. Determine the roots of F by computing the Sturm sequence for F and F".
4, Seti=1+1. Gotol.

Here € is the desired resolution. The number of steps required is given by

(zma, -€— $min)E(m) log (yma:c : ymin) + (zma:r : xmin)(s(m) + E’(n))

where

o E(m) is the time required to determine sign alternations for a polynomial remainder sequence
with first polynomial of degree m.

e S(m) is the time required to compute the Sturm sequence of a univariate polynomial of degree
m

e E’(n) is the time required to instantiate in the first variable a bivariate polynomial of degree
n in the first variable.

2.3 Improved algorithms

The algorithm in the previous subsection could do much better if it didn’t have to compute the
Sturm sequence at each value of z. Instead the Sturm sequence could be computed for the bivariate
polynomial f(z,y) by treating it as a polynomial in z with coefficients which are polynomials in
y. Then at each step computing the Sturm sequence would simply mean instantiating the Sturm
sequence already computed with the value of z under consideration. This would speed up the time
to

(zma:r: : mmin)E(m) log (ymax : yrm'n) + (xmaz : Zmin)(nE/(n)) + S'(n, m)

where §’(n,m) is the time required to compute the Sturm sequence for a bivariate polynomial with
the first variable having a degree n and the maximum degree of the coefficient polynomials (in the
second variable) being m.

We can further improve the running time of this algorithm if we could provide the algorithm
with a better guess for the intervals in which the roots lie. This would substitute the logarithmic
search with a constant time search. We can use the Chain Rule

0 0
df = a—idm + %dy

Along the curve f(x,y) = 0, so the change in f corresponding to the steps (dz,dy) is zero, i.e. df =0

giving
0
dy _ -5t
]
dz 36
Given a current value (z,y) and a change h in z, , we can use this identity to predict k in the

next value (z + k,y + k). Thus we will give the algorithm a better guess for the range of the roots
instead of [Ymin, Ymaz]- This will reduce the search to a very small interval.

3 Determining Intersections and Critical Points

Determining the intersection points of two curves is obviously equivalent to determining the points
at which the polynomial equations defining them disappear simultaneously. In the univariate case

we are given two polynomials F' = 223 ;z' and G = E;:{," g;z?. The two polynomials have no
common root iff (f,g) = 1. That is, iff the following determinant is non-zero.
fn fn—l e fo 0 cos 0
0 fn ... h fo ... 0
0 ... 0 fo fac1 oo fo
g9m GGm-1 --- 9o 0 ... 0O
0 9m -+ N 9o ... 0
0 e 0 gm Gm-1 -.-.- 9o

The determinant is called the Sylvester resultant of F and G.

The above result can be generalized to multi-variate polynomials. In the bivariate case we can
write the polynomial as one in say z with coefficients which are polynomials in y. We can then form
the determinant as above to get a polynomial in y - this polynomial is denoted Res:(f,g). However
since the coefficients are polynomials we get additional conditions as to when the two polynomials
share a common root.

Lemma 2 Res;(f,g) = 0 iff there is a common solution of f and g, or the leading coefficients of
f and g vanish simultaneously or the coefficient polynomials of f or of g have a common root.

Thus in order to determine the intersection points of the two curves we first compute their
resultant, determine its roots and at each root check if both polynomials vanish identically.

A point on a curve is said to be criticalif the curve and its derivative intersect. Thus determining
critical points is the equivalent to the previous problem of determining intersections, the only
additional requirement is the computation of the derivative of the polynomial which defines the
curve.

4 Algebraic computations

All of the various operations on algebraic curves outlined above require the computation of various
algebraic entities such as Sturm sequences, greatest common divisors, resultants etc. In this section
we sketch briefly or provide pointers to algorithms for such computations.

Pseudo-remainders : Computing the Sturm sequence or the GCD of polynomials requires the
computation of polynomial remainder sequences as described earlier. In computing Sturm sequences
we are interested only in the signs of the polynomials involved. Thus we are not restricted to using
the Euclidean remainder sequence sketched in the previous section. The same holds true for ged’s
: we need only determined the gcd up to similarity (i.e. multiplication by a constant). In fact,
computations over the rationals as required by the Euclidean algorithm are slower than computing
over integers since rational arithmetic involves many more evaluations of ged’s of integers at each
step. Thus a faster way to compute remainder sequences and GCD’s is to use pseudo-division to
generate pseudo-remainders [Bu,Kn]. The basic idea is to multiply part of the dividend polynomial
by the leading coefficient of the divisor polynomial in order to generate all integer values. Details
can be found in [Kn,BT].

Subresultant polynomial remainder sequence algorithm : The resultant as defined earlier would
seem to require the computation of the determinant of a sparse matrix. However a faster approach
to computing the resultant is to use the subresultant algorithm outlined in [BT,Bu]. This algorithm
is particularly suited for sparse multivariate polynomials.

5 Program Output

The figures at the end of the report show the output of the program including features such as
critical point computation and intersection computation. The first figure shows the plot of a degree
4 curve, the conchoid along with its critical points. The next figure shows the intersection points
of another curve, the deltoid, with the conchoid. Finally we have the intersection of a third curve
with both previous curves.

6 References
[ACM] Arnon et al., ”Cylinder Algebraic Decomposition”, Siam J. Computing, 1984.

[BKR] Ben-Or et al. "The Complexity of Elementary Algebra and Geometry”, JCSS, 1986.
[Bu] Buchberger et al., Computer Algebra, Springer-Verlag, 1983.

[BT]

[Cal
[Col]

(HH]

[(Kn]
[SS]

Brown, W and J. Traub, ”On Euclid’s algorithm and the theory of subresultants”, JACM
18, 1971.

J. Canny, "The Complexity of Robot Motion Planning”, Ph.D. Thesis, MIT, 1987.

G.E. Collins, "Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic
Decomposition:, Proc. 2nd GI Conf. on Automata Theory and Formal Languages, 1985.

Hoffmann, C. and J. Hopcroft, "The potential method for blending surfaces and corners”,
Geometric Modeling : Algorithms and New Trends, G.E. Farin, ed. SIAM, 1987.

Knuth, D.,”The Art of Computer Programming”, vol II, Addison-Wesley, 1981.

J. Schwartz, M. Sharir, ”On the ‘piano movers’ problem II”, Advances in Applied Math,
1983.

PLOTTER N —

(Quit) (Input/Output v) (Draw Commands v) ((Algebra v)

Epsilon (10 -§ ([a]=)

X min —20 -100 cwmee{}———— 100 2 (aI+)
X max 20 -100 e} 100 2 (a[+)
Ymin 20 -100 eom{}—————s 100 2 [(a]v]
Ymax 20 =100 ecomel}— 100 2 v

v

Conchoid_of _Nicomedes

4 3 22 2 2 2
X —4x +xy —60x —dxy + 4y

ad

B0 PLOTTER |

(Quit) (input/Output v) ((Draw Commands v) (Algebra v)

Epsilon (10" —-§ «I=)

X min 10 -10 (3 > 10 0o [

Xmax 10 -10 esess—(] 10 0 (a[=]

Ymin-10_ -10 (= , 10 0 @

Ymax 10 =10 eosm] 10 0 (a]+]
=
{
L 4
=]
=

Deltoid

4 3 22 2 2 4 2 =

x =—24x +2xy + 162x + 72xy +y + 162y - 2187

-
B0 PLOTTER (N
(Quit) (Input/Output v) ((Draw Commands v) (Algebra v)

Epsilon (10**%) -9 (a]+]

X min -10__ =10 (= > 10 1 Ee
Xmax 10 -10 ee——{] 10 1 [+
Ymin -0 -10 (= = 10 IR =C)

Y max 10 “10 one——] 10 1 (a[+]

13

Devil’s_Curve

4 2 4 2 =
-x +9% +y -4y

MANUAL PAGE

NAME

plotter - graphical tool for algebraic curves
SYNOPSIS

plotter

DESCRIPTION

plotter is a program which runs under the X window system using the XView tools library. It is
a tool for plotting planar algebraic curves and computing various properties such as critical points,
intersections between curves, planar decomposition etc. plotter can be started up by simply typing
in plotter. The various commands available are described below.

COMMANDS

plotter provides three basic command facilities : input/output, draw commands and algebra.
These are the three main pop-up menus. The menu-choices within each can be accessed by clicking
on the desired option with the right mouse button. In what follows NYI stands for Not Yet
Implemented. Watch this man page for further changes to plotter.

Input/Output :

¢ Monomial Form Clicking on this option allows input to be typed in from standard input
(stdin). The format for the algebraic curve to be input is : coeffl xdegl ydegl coeff2 xdeg2
ydeg2 ... followed by some non-number character. Here the degrees have to be integers. E.g.
to type in the equation for the circle z2 + y2 — 1:

120102-100a
Following the non-number entry will be a prompt for the name of the curve.
All white-space, carriage returns etc. are ignored.

e Coefficient Form (NYI) Reads input polynomial in coefficient form. E.g. (y**2 + 1)*x**3
- (y+10)*x

Load File Prompts for file name to be read in. The file should be in the same format as the
monomial form. Each curve should also have its name as in above format.

Eg.120102-100 a Circle
Save (NYI) Will save desired polynomial(s) to the specified file.

Draw Commands

Decomp Attempts to perform planar algebraic decomposition of the curves given. The algo-
rithm implemented at present is not complete and needs to be debugged to handle complicated
input.

Plot Plot the algebraic curve specified.

Intersect Computes and displays the intersection of two specified curves.
Intersect All Computes and displays the intersection of all curves.
Critical Points Computes and displays the critical points of given curve.

Clear Clears the display.

Algebra

Derivative Computes and displays the derivative of specified polynomial; prompts for vari-
able to differentiate w.r.t.

PseudoRem Computes and displays the pseudo-remainder of two specified polynomials.

Sturm Sequence Computes and displays the Sturm sequence of a polynomial and its deriva-
tive

Resultant Computes and displays the resultant of two specified polynomials with respect to
a specified variable

PARAMETERS

All of the following parameters can be set by sliders provided in the display.
Epsilon This controls the accuracy of computation. Defaults to 1.0e-8
Xmin,Xmaz, Ymin, Ymaz Controls the display ranges.

AUTHOR

Ashutosh Rege

Three Dimensional Mandelbrot Like Sets
with Applications to Stability Portraits

Raja R. Kadiyala

12 May 1991

CS 285
Final Report

Abstract

We have all seen the familiar Mandelbrot sets in two dimensions
in both plain black and white and the enhanced color versions where
a color is mapped to the escape time of a given point. We can also
consider this as a problem in system theory where our equation of
interest is zx41 = f(Zk)+g(zk)uk. It is easy to see that the case of the
Mandelbrot sets is a subclass of the above equation with f(zx,ux) =
zx + ¢ and g(zx) = 0 where z,c € C. If we consider the situation
where z € R3 and u € R™ with f(.) taking R to R® and ¢(-) taking
R3 to R®*™, we then have a general description of a nonlinear discrete
time system with a state space dimension of three which we can use
to generate three dimensional Mandelbrot like sets and observe the
stability characteristics of a system.

83

Figure 1: Unenhanced Mandelbrot Set

1 Introduction

So called phase portraits have been used to study the stability characteristics
of two dimensional systems with a good deal of success, but we are truly
limited by this visualization scheme since we have the restriction of two
dimensions. We will show that a natural extension is to use a framework
similar to the equations for the Mandelbrot sets but defined in three space.

One can see quite readily that this will be a rather large computational
task. If we note that a majority of the calculations do not depend on each
other, then we can see that the algorithm is ideal for parallel computing. We
will show such a procedure for this problem using multiple workstations to
offload the computation.

We will also present the visualization tools developed to survey all the
information inherent in these plots.

2 Extension into Three Dimensions
The defining equation for the Mandelbrot sets is given by:
Th41 =f($k)+R (1)

where z, R € C. This gives rise to the familiar vanilla mandelbrot set shown

in figure 1.

These sets may be enhanced by color to give a more artistic flair and
display more information about the system dynamics. A typical mapping
is to assign each point a color according to how many iterations it takes to
escape some finite area (the so called escape time).

Equation (1) is very similar to a general class of nonlinear discrete time
systems which is affine in the control input. These systems may be described
by:

Tre1 = f(zr) + g(Tr)us (2)

where
e x is known as the state vector (¢ R™)

— The state vector x describes the current configuration of the sys-
tem.

e u is called the control input (€ R™)

— The control input u is what you have control over to move the
system.

e f(-) and g¢(-) describe how the system behaves.

It is quite easy to see that the Mandelbrot sets are a subclass of the above
system definition. Hence we have a simple extension into three dimensions.

3 Computational aspects

The computation of the dynamics in three space can become quit large very
fast since we essentially grid up a cube of specified size (see figure 2) and
compute the characteristics of each subcube. Since the calculation of the

S L LS
y [S LS

lx////

ANANANIAN
AN

NN

Figure 2: Gridding of the State Space

dynamics in each subcube depends only on itself, we can carry on the com-
putations in parallel. With this in mind, a graphics server/computational
client scheme was set up to offload the calculations. This also alleviated the
need to write a full blown parser to gather the information necessary to de-
fine the system equations since some prewritten could be used that would
dynamically link in a subroutine.

The software to link in routines worked for Sun computers but not for the
Silicon Graphics machines, hence the logical choice was made to make the SGI
the graphical sever which would then talk to the various Sun computers over
ethernet using sockets. So we gained the ability to do parallel computation
and had a simple way to specify the system equations (i.e. the equations
could be described in a simple C or FORTRAN subroutine).

In the current version there can be up to sixteen computational clients
that would receive the subroutine, dynamically link it in and wait for the
chunk of state space points to calculate the escape time properties on and
report back to the graphics server where the results would be displayed. This
cuts down the time to calculate immensely. A pictorial description is given
in figure 3 and we have the following loop performed over and over again:

1. Server initiates communication to each client (max of 16).

2. Server downloads (to each client) a source file which describes the dy-
namics of the system.

3. Each client dynamically links in the routine and is ready to compute.

4

Sun SparcStations

Client 1

Graphics
Server

Client 2

Sys_View

OO0

Client N

Figure 3: Graphics Server/Computational Client Set Up

4. Server grids up the state space and divides it into equal portions for
each client.

5. Clients report back with results.

Since computations are essentially done in parallel we get an N times
speed up, with hardly any overhead, and we again get the advantage of
using dynamic linking to pull in the system description in the form of a C
or FORTRAN subroutine. In addition, if we are only changing the grid size
parameters and not the subroutine describing the system, then only steps 4
and 5 need be repeated.

4 Viewing the Results

One of the original ideas to view the data was to traverse along some axis
and look at 2-D slices of the system (much like CAT scans). Multiple slices
could be stored and in conjunction with transparency one could look past
the initial slice to get more global information. Since the Iris’ we have in our
lab do not have « -planes and hence do not allow for transparency, this idea
was not used. One could still display one slice at a time, but we feel that the
global information lost would make this option not as attractive.

5

E Sys-View Control Panel
F

Axis Def

" Redefine)

0. oooooo

X center
lo. oooooo

Y center
lo. oooooo

2 center
fi1. coonoo

X size
(h.oooooo

Y size

1. 000000
2 size

I
_

Vieu

Rotate Translate

M@ (YA
: M@ M@A

Scale

¥ @

Options
Toggles

Dﬂepth Cueing
Perspect ive

DBox Mode
ﬂiiﬂrau It

Bound ing Box

Computation

Actions

[Jeo
Eﬂuunload Source
[:]Racalculate
EConnact
[:]Dlsconnect
Duu it

(0. 250000] ["start Recording)
Densit v
il ' Stop Recording]
30 |
Iterations I\Start PlagingA]
[;aja I | Stop Playing]

Login Nane

X E [a] E [a] [New Machine . Dndd

Face Views

¥ (]

{

Machines

Files

L

| oo 1t]

Color Map Source
Ihgs_uieu.uut l E:]Do It[J
Load Routine
Hsgs_u ieu.out l Dﬂo It l I

Save Script File

—]

Figure 4: Sys-view Control Panel

The route taken was to create a portrait cloud of points that was not
fully dense (thus allowing us to see through things to view the behavior of
the system at various points). This was accomplished by defining a random
point constrained to be in a subcube of the gridded cube from figure 2. This
allows us to see quite a bit of detail in the global aspect of the dynamics
while still allowing us to view the local nature. Depth cueing is also available
to give some depth perception in the visualization.

The randomness of the state space points was necessary to see the dis-
tant points and it should be noted that it is easier to view the data in an
orthonormal projection then in a perspective projection.

A control panel was created as the main user interface (see figure 4).
It allows the user to chose from the plethora of various combinations given
to view the data, and a complete description is given in the man pages for
sys-view. A couple of features worth mentioning are the ability to record a
sequence of button clicks in the control panel and then play them back for
a sort of movie to traverse the escape portrait and secondly the ability to
define your own color map for the escape portrait. Along with the control
panel a plotting window to view the data is poped open (see figure 5 for a
black and white version).

The region of attraction for a system is the locus of initial conditions
whose trajectories steer towards the origin and is valuable piece of informa-
tion to compute for a system. The region of attraction may be simply plotted
by using a predefined color map which defines the 0% entry to be white and
all others to be black. Hence the points that do not leave the region are
white while all points that do leave are black, thus giving us the region of
attraction.

5 Conclusions

A tool for viewing the dynamics of three dimensional discrete time systems
has been developed in an interactive environment. With the addition of
computational clients on remote machines the calculations necessary can be
carried through relatively quickly. Possible additions for the future would
be to include the CAT scan like slices mentioned above as another possible
viewing scheme and to add continuous time systems into the domain of pos-
sible systems to view. The latter would entail adding a runge-kutta type

89

Figure 5: Sys-view Plotting Window

integration scheme to the computational clients and would most likely add
in the computational delay, but would further enhance sys-view’s ability to
help visualize more systems.

SYS_VIEW (6) GAMES AND DEMOS SYS_VIEW (6)

NAME
sys_view — Interactively view a three dimensional dynamic system

SYNOPSIS
sys_view [-b box mode] [-c color mapping] [-d pixel density] [-1 -j -k position of bounding box |} [-1 login
name to use on client 1 [-m remote machine] [-n number of iterations] [-0 output file] [-p use perspective
projection] [-q turn on depth cueing] [-r routine } [-s source _file] [-x -y -z dimensions of bounding box]

DESCRIPTION
sys_view creates a three dimensional escape portrait of a dynamical system described by the subroutine in
source_file, which may be either C or FORTRAN and is called by the name in routine. sys_view creates
connections up to the machines specified through repetitive uses of the -m option (i.e. sys_view -m machl
-m mach? ...) and then downloads the file to the clients. The clients then dynamically link in this routine
and compute equal portions of the trajectories. The results are then reported back to the server machine
and a plot is created which the user may interactively view. Up to 16 machines may be used as clients.

OPTIONS
—b go into box mode which will draw cubes instead of pixels at the grid point. This is useful if a low den-

sity is used.

—c color mapping; Use the file contained in color mapping to define the colors to use in the escape por-
trait. This should be an ASCII file with each line containing four integers ranging from 0 to 255 specifying
the index and the standard red, green, and blue (rgb) color values. (i.e. 0 12 87 39 would specify entry O to
have a red value of 12, a green value of 87, and a blue value of 39). Typically entry O will be black and
entry 255 will be white.

—d density; Use floating point value density as the parameter defining how dense of a pixel cloud to use
when generating the escape portrait; valid range is O to 1, the default is 0.25 (anything larger than 0.6 will
take more than a few minutes to run).

—i —j -k center of bounding box; Use these three numbers to define the origin of the bounding box. This
is useful for studying behavior away from the origin; the default is zero.

-1 login name; If the account name on the remote machine is different than on the local machine then this
option must be set accordingly. The remote machine should allow entry of the local account through an
entry in .rhosts.

—m machine; Specifies which machines to run the calculations of the trajectories on. For a low density it
is not necessary to specify too many machines. In fact this may hurt you since the overhead involved in the
communication may slow things down. For large densities it will be well worth the effort to spread the
computing across as many machines as possible. A maximum of 16 machines may be specified in the fol-
lowing fashion: sys_view -m mach -m mach2 ...

—n number of iterations; Use the integer value iteration number as the parameter defining how many
times to iterate a state point before evaluating its escape characteristics for the escape portrait; the default is
30.

—o output file; Use output file as the file to save to; the default is sys_view.out.

—p perspective projection; This allows the user to specify a perspective projection be used as opposed to
the default orthonormal projection.

—q turn on depth cueing; This will allow the user to gain some depth perception as points further away
are darker than closer points. This will, however, slow down the redrawing of the plot in interactive mode.

Sun Release 4.1 Last change: 12 May 1991 1

SYS_VIEW (6) GAMES AND DEMOS SYS_VIEW (6)

—r routine; Use routine to tell sys_view the name of the routine to call to execute the system equations.
—s source_file; Use source_file as the file to dynamically link in to get the system equations.

—x —y —z bounding box dimensions; Use these three numbers to define the boundary of the plot. If not
specified sys_view tries to set them automatically.

USER INTERFACE

The user interface may be divided into two sections. The first being the control panel and the second being
the interactive or plot window. The control panel is partitioned into seven groups. The characteristics of
the bounding box may be defined in the Axis Def group, while various attributes may be toggled on and off
in the Toggles group. These attributes include depth cueing, perspective projection, box/cube mode, draw
it, and turn on and off the bounding box. The third subgroup is the Actions group which allows the user to
start calculations, download a new source file, disconnect, reconnect to the clients and to quit. Note that
this is the only way to quit sys_view. The Computation group allows the user to specify the density and
number of iterations and also allows the addition of a new machine to the client list which is also displayed.
It is suggested that a disconnect occur before the addition of a new client followed by a connect. The next
subgroup is the Scripting group which allows the user to record a series of button clicks thus creating a
movie to be played back. Typically one records the actions from the View group which allows the user to
rotate, translate, and scale the portrait in a precise manner. The Face Views section is a simple pair of up-
down buttons which allows the user to view all six of the viewing cube’s faces in an easy manner. The
final group is the Files group which allows the user to specify the load/save files and the source and routine
names.

The plot window allows for interactive viewing of the portrait much like the View group above, but in a
less precise but faster manner. The left mouse button controls scaling, while the middle mouse button con-
trols rotations and the right mouse button controls translations. All operations are made with the given
mouse button down and moving the mouse on the pad in the appropriate direction. Z axis rotation and
translation may be obtained by holding the shift key down and performing the normal rotation or transia-
tion. Pressing the ¢ key will recenter the portrait.

Example C Program
The following is an example C program which will show the format necessary to be linked in and run by
the remote computational server. The routine takes three arguements with the first being flag which is zero
for the initialization call and one for calls to get the state equations (i.e. if flag = 0 then the routine should
do any initialization it needs to do. When flag = 1 the value for x sould be set). The second arguement is
the state variable x which is of length len and is the return information for the system.

#include <math.h>

test(flag, x, len)
int flag, len;
double *x;

{

register i;
if (flag==1)

for (i = 0; i < len; i++)
x[i] = exp(sin(x[(i+1) %3]) *x[(i+2)%3));

Sun Release 4.1 Last change: 12 May 1991 2

SYS_VIEW (6) GAMES AND DEMOS | SYS_VIEW (6)

AUTHOR
Raja R. Kadiyala, Dept. of EECS U.C. Berkeley. email: raja@robotics.berkeley.edu

BUGS
The error checking for the client processes aborting is poor. A close eye should be kept on the window
which sys_view was started in to locate possible problems. There is no error checking on the validity of
the subroutine specified in source_file. If sys_view dies for some reason the remote process (named
create_x) may still be running.

Sun Release 4.1 Last change: 12 May 1991 3

FINAL REPORT ON GLUEHEDRON

by

Joseph Maurice Rojas

Computer Science 285
Prof. Carlo H. Séquin

May 15, 1991

1 Description

GLUEHEDRON is a fast, simple tool for gluing together polyhedra in a regular fash-
ion. Through a few simple heuristics, GLUEHEDRON provides a canonical method
for such gluings. Thus if polyhedra are viewed as abstract symbols, GLUEHEDRON
can be seen as a tool for generating a regular grammar of polyhedra. The goal of this
tool is to provide a playground for experimentation in this grammar, i.e., a playground
for constructing polyhedral fractals and families of polyhedral “gluings.”
GLUEHEDRON originally evolved from a fractal generation tool named GRO-
HEDRON. The latter tool simply took one polyhedral shape and appended self-similar
copies of itself according to some user-specified parameters. GLUEHEDRON is more
general in the sense that more than one polyhedron can be used in the gluing pro-
cess. The present tool is also well suited for use in custom-tailored shell-scripts for
generating complex objects with a specific structure. For instance. one could write

2

a shell-script invoking GLUEHEDRON to construct trees with a specific branching
pattern.

It thus seems useful to have a canonical method for attaching polyhedra, but
then how does one define “canonical.” The algorithm used by GLUEHEDRON makes
a plausible definition in terms of incircles, and the resulting images reveal that our

method is quite reasonable. We now describe our algorithm in greater depth.

2 Algorithm

The cornerstone for our gluing algorithm is a “glue-list.” A glue-list is simply list
of pairs that specifies which faces are glued to which. Bearing this in mind, our

algorithm can be described as follows:

INPUT ¢ = “twist” value,s = “scale” value, R = randomness flag gluefile = glue-list,
oldfile = old polyhedral shape in UNIGRAFIX format, capfile = polyhedral cap

shape in UNIGRAFIX format
OUTPUT newfile = new polyhedral shape in UNIGRAFIX format

(G1) Find the inward normals, incircles, max vectors, and tangency angles of the
“from” faces. The “from” faces are simply the faces of oldfile which will be

glued.

(G2) Find the inward normals, incircles, max vectors, and tangency angles of the
“to” faces. The “to” faces are simply the faces of capfile which will be glued.

3

(G3) Find {L;} - the set of all affine transformations moving a “to” face, T, to
a “from” face, F'. Moving T to F in this context means that their incenters
coincide, their max vectors lie on the same ray, and their inward normals lie on

opposite rays.

(G4) For any pair of “to” and “from” faces, T and F occuring in gluefile, glue a
copy of capfile to oldfile using the appropriate L,. Further scale the transformed
copy of capfile so that the max vector of T has the same length as the the max
vector of F'. Then scale down again by a factor of s. Now rotate capfile by an
angle of ta where « is the tangency angle of F' and scale one last time by a

factor of cos(alpha)/cos((1 — t)a).

We must of course define what we mean by “max vector” and “tangency

»

angle.” These definitions relate the boundary of a polygon to the polar coordinates
defined by its incenter. Let P be a convex polygon in R® and c its incenter. Then
the maz vector of P is simply z — ¢ where z is the point of P farthest away from c.
The tangency angle of P is simply half the angle between the tangents of the incircle
of P through x. Though these definitions perhaps seem ad-hoc and abstract, they

actually make good sense geometrically and are based on the intuitive notion that

“less over-hang looks better” when taking the union of two polygons.

3 Running

The source code for this tool is in the file gluehedron.c in the FINAL directory of the
author’s torus-cluster account. The author’s login is ¢285-ak. The author is currently

4

a student in the Ph.D. math program at U.C. Berkeley and may be reached via e-
mail at rojas@math.berkeley.edu. He will gladly answer any questions relating to this
project.

The FINAL directory also contains a makefile for simple compilation, a copy of
the man pages of GLUEHEDRON (gluehedron.man), and a latex copy of this report

(glue.tex).

4 Graphics

The following postscript print-outs briefly illustrate the myriad shapes that can be
generated with GLUEHEDRON. For convenience sake, we list the files necessary for

building the first shape.

5 Conclusion

This project was a great learning experience for the author in that he had almost no
prior knowledge of C or UNIX. Writing the code for GLUEHEDRON gave the author
an interesting crash-course in software for survival. Nevertheless, the author would
like to add the following few remarks:

A fundamental portion of the code was devoted to exploiting the power of
UGS3 - a tool for manipulating the geometric data structures defined in UNIGRAFIX.
From coding this project, the author learned that UG3 is indeed quite powerful - but
slightly lacking. What would have made this project this project almost trivial is a
few macros for simple UNIGRAFIX file manipulation. Such macros do exist (such as

5

UGcopyfile, etc...) but certain very intuitive ones are lacking, e.g., UGrenamestmt.
Thus with the right macros, the code could have been done within mere hours.

Another large portion of the code was devoted to using MAT3 - the matrix
manipulation library. This library was quite useful, but poorly documented. For
instance, it took a few dozen errors before the author realized that the MATangle
function returned angles in degrees. This fact was never documented.

As far as future directions and improvements, there are many. One can cer-
tainly write shell-scripts for interesting special-purpose applications of GLUEHE-
DRON but it would be nice to have a small library of the common applications,
e.g., fractals and spirals. Also, the code for GLUEHEDRON is a bit hackish in the
sense that it was written quickly without much thought for memory usage. Efficient
memory allocation becomes particularly important for generating beautiful large frac-
tals quickly. These are concerns the author would have truly liked to address more
strongly. However, for the present, GLUEHEDRON is quite fun and provides the

groundwork for a greater systematic study of polyhedral grammars.

99

7(MLMJJOA -FT .S —) j(un Frta TO iree W - rege S~ 2> Tite t

gluehedron
gluehedron
gluehedron
gluehedron

I
ot ot ot oot

(G2 G U6,

-g gluetree
~g gluetree
-g gluetree
-g gluetree

=0

-0
=0

treel
treel
treel
treel

-C
-C
=C
-C

treel
treel
tree2
tree3

- C

> treel
> tree?2
> tree3
> treed

T/“QLI

> Tree L

101

Joseph Maurice Rojas
CS 285

Prof. C. Sequin

May 15, 1991

GLUEHEDRON (1) UNIGRAFIX User’s Manual GLUEHEDRON (1)

NAME
gluehedron -~ Glues input polyhedra in a visually pleasing way,
according to certain specified user parameters.

SYNOPSIS
grohedron [-t twist] [-s scale] [-R] [-g gluefile]
[0 oldfile] [-c capfile] > newfile
DESCRIPTION

This tool takes the UNIGRAFIX description of 2 polyhedra and
creates a "glued" output polyhedron in UNIGRAFIX format. The
algorithm takes an old shape and glues on scaled rotated copies of
a cap shape face-to-face. The user can specify exactly which faces
are glued to which, and the resulting new shape is written to

a UNIGRAFIX file. This simple process can be repeated many

times with different objects (perhaps with the aid of shell-scripts)
to produce interesting shapes such as spirals or fractals. The
possibilities are endless and the options are as follows:

-t Faces are glued in a canonical manner. The variable "twist"
introduces an additional rotation of angle "twist" on each glued
cap shape to produce a more interesting shape. The default
"twist" value is 0.2

-s Introduces an additional scaling by a factor of "scale." The
default "scale" value is 1.0

-R Negates the -t option and introduces a random twist.

-g Allows user specification of the gluing: a small rotated copy of

the cap shape is placed so that the b_i face of the copy lies flat

on the a i face of the old shape. This is done for for all i from
1l to n. The glue file must be of the following format:

al b1l
a2 b2

an bn

The ith face of an input polyhedron is simply the ith face occuring

in its unigrafix description. If no file is supplied, then
gluehedron assuems a default of (a_1 , b_ 1) = (1, 2). The a i

are referred to as ‘‘from’’ indices, while the b_i are referred to as

*‘to’’ indices.
EXAMPLES
grohedron -t .3 -s .9 -g gluetree -o treel -c treel > treel
grohedron -t .3 -s .9 -g gluetree -0 treel -c treel > tree2

grohedron -t .5 -s .2 -g glueico -o icosa -c tree2 > planet

WARNINGS

The gluing algorithm is based on the assumption that all polyhedral faces
are convex. Also, there is a minor bug which appears only if there is a
polyhedral face which lies on a plane that goes through the origin. The
first restriction is fairly minor, while the latter can be fixed by a
generic perturbation, i.e., translating the vertices by a small random
amount. Lastly, the ‘‘from’’ indices in a glue file must occur in
increasing order.

For more information, please see the latex file gluehedron.report

Final Project Report for

UGTREE

May 15, 1991

Laura Downs

Purpose:

The function of ugtree is to generate UNIGRAFIX descriptions of trees which are
realistic in appearance and yet reasonable to render. The tree generation should occur
quickly. Also the method of description should be understandable to the user. To achieve
realism, I believe that the user should have a lot of control over the description of the tree
and therefore I allow the user to set any of the shape parameters that ugtree uses to determine

the tree.

Design:
The execution of ugtree follows these steps:
¢ If an option file is specified, read in the options
e Generate an interior representation of the tree
¢ Generate a UNIGRAFIX description of the tree

Reading the Option File:

Before reading the option file, all of the parameter names are entered into a hash table.
Then the scanner reads in tokens from the option file and looks up their codes in the hash
table. After a parameter has been identified and if it is not a flag, the scanner reads its new
value. There are a large number of parameters and it is very easy to add more so the hash
table does speed things up considerably. Comments can be included in the option file by
starting a line with a '#. Any errors in the option file are reported to stderr. If the option
file contains errors, a tree description is not generated.

Generating the tree representation:

This is the meat of the program. A record is created for each branch segment which
contains its length and radius, the number of leaves along the segment, the number of
branches off the segment, and a turtle representation of its orientation consisting of an axis, a
left vector, and an up vector, . These values are computed in the routines
grow_branch () and grow_tree (). For each branch off of a segment, the length is

105

calculated by the length of the parent segment X a contraction ratio. The radius is calculated
by the radius of the parent segment x a width ratio. The orientation is calculated from the
parent segment's turtle by rolling it along its axis by a divergence angle for the branch and
then twisting it around its up vector by a branching angle. The orientation may also be
affected by flattening - which overrides the divergence rotation - or by tropism - a global
force on the tree in the direction of gravity or wind or some other unidirectional force.

Tropism:

The tropism vector represents an overall force on the tree and so is useful for
making trees like a weeping willow or a cypress. The actual computation on each
branch segment is to rotate the turtle toward the tropism vector by an angle equal to the
magnitude of the cross product of the branch axis with the tropism vector scaled by the
ratio of the length of the branch to its area. This computation has the effect that
branches growing orthogonal to the force and which are thin will be affected most

strongly by the force.

Branch Flattening:
The branch flattening imposes a horizontal branching constraint such that at any

branching juncture the two branches lie in the plane which is closest to horizontal of
any plane through the parent branch. The computation is to roll the turtle so that its left
vector is orthogonal to the z-axis. This is calculated only on the branches, not on the
trunk.

Terminating a Branch:
A branch is terminated by one of two constraints. If it is shorter or thinner than the

minimum size (designated by the option "t wig") the branch is ended. This creates
reasonably natural branch terminations. The other limit to branch growth is a
maximum depth of branching. This is mostly useful to limit the complexity of the tree
description. If the level of branching is K, the maximum number of final branches
will be 2K in the case of binary branching or 3K in the case of ternary branching.
Since this growth is exponential, K should be kept small if you want an effective cap.

ating Leaves:
To specify a leaf description, the option "leaf file" should be set to the name
of a file which contains a UNIGRAFIX description of a structure called "1eaf". This
file will be included in the final UNIGRAFIX description file of the tree. The ugtree

program does no processing whatsoever on the leaf file, not even to check if ‘contains
the needed definition.

In the tree description, one leaf is always created at the end of each final branch.
Leaves may also be created along the branches of the tree by setting the parameters

m"non

"leaves',"leaf level",and "leaf radius" which control the number of
leaves per branch, the branching level at which leaves start and the branch radius at
which leaves start. The actual placement of the leaves along the branch is calculated

when the UNIGRAFIX description is generated.
Generating the UNIGRAFIX description:

Wir ription:

A UNIGRAFIX wire description of a tree can be generated by setting the number
of sides of the prisms to a number less than 3. If the level is 1 or 2, the description
will include leaves. This is particularly useful for designing new tree descriptions
because a picture of the output can be created almost instantaneously in which such
variables as branching angles, divergence angles, contraction ratios, tropism and

flattening can be observed easily.

Level 2:
This is the most general representation of the tree. Every branch segment is

represented as a prism (8-sided default) with a cap on the top. The ends of its child
branches will be embedded in the cap. This creates reasonably nice pictures of most
trees. All leaves are included in this representation.

Level 1:

This is much the same as Level 2 except that the branches which are smaller in
radius than 4 times the minimum radius are represented as wires. Because of the
exponential growth in the number of branches of each smaller radius, this effects most
of the branches. This representation can be rendered by ugiris in about 1/3 the time of
the Level 2 representation.

Level O:
One branch segment between each level of branching is created up to the third level
of branching. Then one big green segment wider than the actual branch is created

extending to the tip of the branch to represent leaves. This representation is only good

at a very great distance.
Getting help:

Command Line Options:

To get a list of all of the command line options, just call ugree with an illegal
command line option (like most programs).

Option Files:
Call ugtree with the command line option —h to get a list of all of the possible
option file parameters along with a description of each one. Either redirect this into a
file or copy an existing tree description file and then change the parameter values that

you want to change.
Extending ugtree:

Adding Parameters:
This is very easy. To add a new parameter to ugtree, you just have to include its

name, type, and a description of it in the parameters. c file, include it in the
enumerated type OP TCODE, and write whatever code is necessary to achieve the
desired effect of that parameter. I will include a more detailed description of this in a
README file along with the program.

N-ary branching:

One addition I would like to make to ugtree is the ability to generate trees with
more than ternary branching. Also it would be useful to be able to specify different
degrees of branching for the trunk and the branches. Neither of these would be
difficult. The second requires the addition of one new parameter : "branch_n" with
the flags "branch binary"or "branch ternary" and using that parameter in
the routine grow_branch (). The other requires more decisions. If any number of
branches can be specified then it is not reasonable to specify a branch angle,
divergence angle, and contraction ratio for each one. Perhaps they could all use the
same branch angle and contraction ratio after the third branch and increment the

divergence angle by some fixed amount.

eating Better Tr iptions:

I would like to have a representation of the tree in the spirit of ugworm. The main
problem is that at each juncture there might be four prisms meeting, all of different
radii. However, if I could create such a representation, then the resulting description
would contain about 1/4 the number of vertices and about 1/2 the number of faces.
Also the faces in different segments would share vertices so that Gouraud shading
would make the tree look much nicer. As it is, Gouraud shading makes my trees

resemble sausage links.

Printing Directly:
I could make my program generate Iris graphics calls to render the tree directly.
This would make the tree viewing much faster. It would require that I break down my
segment structures and perform all of the transformations on them - which is not and
unreasonable amount of work. It would also require me to parse the leaf description
file and generate some internal representation of that and I would need to borrow the
ugiris interface for viewing the object from different rotations and distances. Perhaps

this summer I will have some time to work on this,

Texture Mapping:
Well it would sure be cool if UNIGRAFIX had texture mapping for tree bark and
other fun things ...

Conclusions:

The actual process of generating the tree is pretty simple. Once the parameters are
specified, the tree generation is mostly a lot of easy math. Most of the work came up in
reading and interpreting the option files and in generating the UNIGRAFIX description. 1
think that my solution to reading the option files was quite satisfactory since it gives the user
a lot of flexibility in creating option files and it will work quickly even if large numbers of
options are added to the program.

I would really like to have better representations of the trees. The solution I used gives
reasonable descriptions of trees in most cases but it is not very efficient in the number of
faces and vertices and it could definitely be improved upon. I would like to continue to look
for a solution to joining the prismatic branches in a nice way.

The problem of generating trees is only a small subset of the problem of generating
plants. If what we want is a set of plant generators so that we can create an entire landscape,
more than just my tree generator is necessary. A library of different botanical generators

could be used to describe any garden using grammars, growth models, and other methods.
Using L-sytems, a wide variety of plants could be generated. I think that a program which
understood L-system grammars with a reasonable set of primitives could be used to generate
some very interesting plants - including all of the trees which can be created with ugtree. 1
think it would entail a lot of work to make that fully general but it would be very interesting.
There are several models for generating leaves and flowers which could be added for more
detail as well. L-systems can also be used to model plant growth which can lead to some
interesting animations or which can be used to generate plants which appear to have grown
naturally and plants, like vines, which interact strongly with their environment. Some more
unique generators, such as fractally generated ferns could also be included. Grass and other
ground cover plants is a somewhat different issue since you don't in general want to model it
explicitly, but to give an impression of grass, moss, or flowers underfoot. Much work has
been done in this area. All we have to do is implement it.

Finding ugtree:
The files for ugtree are in the directory ~laura/tree on the torus cluster. They
include the Makefile and the README files.

References:
Aono M., Kunii T., "Botanical Tree Image Generation", IEEE Computer Graphics and
Applications, vol. 4, no. 5, May 1984

Prusinkiewicz P., Lindenmayer A., The Algorithmic Beauty of Plants, 1990

Reffye (de) P., Edelin C., Frangon J., Jaeger M., Puech C., "Plant Models Faithful to
Botanical Structure and Development”, Computer Graphics, vol. 22, no. 4, Aug 1988

Smith A., "Plants, Fractals, and Formal Languages", Computer Graphics, vol. 18, no. 3,
July 1984

PINT

— ’)
PH\H:, Level 2

PIVE

leared

PINE, Level 1

PINE
lavel O

PINE, Level C

YHLYY

el 2

PALM, Level 2

CAK,

Level 2

UGTREE (UG) UNIGRAFIX User’s Manual UGTREE (UG)

NAME
ugtree - generate a UNIGRAFIX format description
of a randomly created tree
SYNOPSIS
ugtree [options]
DESCRIPTION

Ugtree is a generator program for a UNIGRAIX
description of trees consisting of prismatic branches
with polygonal leaves.

Ugtree takes a few parameters on the command line
which relate to the final UNIGRAFIX description of the
tree and many parameters which may be set in an option
file which is specified on the command line.

Command line options:

-h
This option causes a help file to be printed to the
screen which describes all of the command line options
as well as a description of the format of the option
files and the parameters which may be specified.

-f <filename>
This option specifies the name of the option file which
contains the set of parameter values for the desired
tree description.

-0 <filename> Default: stdout
This option specifies the name of the file which
will contain the final description of the tree.

-1 <0-=-2> Default: 1 = 2

This specifies the level of description of the tree.

0 - Only the trunk and first level of branching will
be shown with only a couple of polygocns to suggest
the shape of the tree.

1 - The trunk and the first few levels of branching
will be shown with a somewhat better suggestion
of the location of further branches and leaves.

2 - All of the branches will be shown and leaves will
be represented as individual polygons.

-s <integer> Default: s = 1
This specifies the seed for the random number generator.
Two trees created with the same parameter file, the
same height, and the same seed will represent different
descriptions of the same tree even if the level of
representation or the number of sides to a prism is different.

Release 1991 <1991-5-15> 1

UGTREE (UG) UNIGRAFIX User’s Manual UGTREE (UG)

-n <integer> Default: n = 4,6,0r 8
This specifies the number of sides that each prism sec-
tion should have. There is a built=-in limit of 24. If
n is specified to be less than 2, the output
will be the UNIGRAIX description of a wire along the axes
of the branches of the tree. The default value depends on
the level of representation.

-H <real> Default: H = 25 feet
This specifies the height of the tree. Other default
heights may be specified in the option file, but the
cormmand line specified value takes precedence.

The final tree description will be a UNIGRAFIX format
file which describes the branches as prisms which
join with mitred corners in the spirit of mkworm.

These are most of the parameters which can be set in a ugtree option file.
Not every parameter need be set in any file. Many of them will

override each other such as ’binary’ and ’ternary’ branching.

For a more current list type: "ugtree -h"

#hhEdHEEE
flags
##fEdHEEE
binary # Causes binary branching
ternary # Causes ternary branching
trunk # Causes branches off of the trunk to
follow different shape parameters
and rules than branches off of other
branches
no_trunk # Causes all branches to follow the same
parameters
The basic parameters will be used
i.e. alphal instead of branch_alphal
flatten # Causes every branch to lie flat to
gravity before branching which causes
the branches to split horizontally
no_ flatten # Causes branches not to be flattened so
that they can split at any angle

2333333323323 TETIT T LS
string valued parameters
22222 IIL T L3

leaf file = "OAK_LEAF"
The file "OAK LEAF" will be included in
the final description and should contain
a UNIGRAFIX description of the structure ’leaf’

Release 1991 <1991-5-15> 2

UGTREE (UG) UNIGRAFIX User’s Manual UGTREE (UG)

313332333 LTI LI ITILITLESLLE S
integer valued parameters
323233 2I 3T LI LI LTITL:

seed = 5

max_depth = 12

leaves = 10

leaf level = 3

Mt

-

Seed the random number generator with
the number 5

Do not create more than 12 levels of
branching

10 leaves will grow off the side of each
branch after leaves start

leaves will begin to grow off of branches
after the third level of branching

22222 IR LI ITTIL LIS LIL LTI EE L
real vector valued parameters
#HEdd4dHd A4S EEA SRS SRR HHELSS

tropism = (0, O

0
—_

color 1, 0,

green (1, 120

14
#
#
#
#
#

HH= =

14

#
#

-1)

Let the tropism vector be in the negative
z direction (down)

All branches will tend in this direction.
The larger the magnitude of T, the more
the branches tend that way.

)
An intensity-hue-saturation triple.
The trunk will be this color.

1)
An intensity-hue-saturation triple.
The leaves will be this color.

2223332 TLI LI LLLLTEIILLL:
real valued parameters
232332332 ILLLILTEI L L

height = 12
radius = 0.5
length = 0.3
twig = 0.03

leaf radius = 0.

leaf distance =

Release 1991

The tree will be about 12 feet tall

At 12 feet in height, the radlus of the

trunk will be 0.5 feet

The initial branch segment will be 0.3 feet long
Any branch under 0.03 feet in radius will end

in a leaf

1

Any branch under 0.1 feet in radius will have

leaves along its sides.

0.1

The ratio of the length of a branch segment to
the number of leaves on it will be at least 0.1
<1991-5-15> 3

UGTREE (UG) UNIGRAFIX User’s Manual UGTREE (UG}

#HEFEHEF#HEERF RS FR AR EF RSB ERE R ES SRR HE
real valued angle parameters between ~180 and 180
I AT TS LS LIS SISLL LSS SIS ES LTI I LIS ITLEL LT

twist = 5

leaf angle = 30
bend = 10
alphal

alpha?
alpha3

[
w
w

27

76
178
-57

divergel
diverge?
diverge3

branch _bend = 10

branch_alphal
branch_alpha2
branch_alpha3

branch_divergel
branch_diverge2
branch_diverge3

Release 1991

HH= H 4= H= W +* HH H

e

<1

The trunk and branches will twist by 5 degrees
on any segment where there is no branching.

Leaves grow from the side of a branch at 30 degrees

The trunk will bend by 10 degrees on any segment
where there is no branching

The trunk, first, and second branches will
create 2, 35, and 27 degree angles respectively
with the axis of the previous trunk segment

The trunk, first and second branches will be
rotated radially around the trunk by 76, 178
and -57 degrees respectively

A branch will bend by 10 degrees on
any segment where there is no branching

#
#
The first, second, and third branches will
create 26, 37, and 57 degree angles
respectively with the axis of the
previous branch segment
12 # The three branches will be rotated
118 # radially around the trunk by 12, 118,
235 # and 235 degrees

991-5-15> 4

119

UGTREE (UG}

UNIGRAFIX User’s Manual UGTREE (UG)

#HEFESHEFFEHEREEREFFREAFEH S A SRS S SR A
real valued parameters between 0 and 1
#EEEEFFEFESFE AR SR SRS ERERF A H SRR REH

prob =

0.3

width_sigma
alpha sigma
diverge_sigma
leaf sigma

contractl

contract?2
contract3

widthl
width2
width3

branch_contractl
branch_contract?2
branch_contract3

O OO

oy O

branch_widthl
branch_width2
branch width3
You must be
(branch_widthl) "2 + (branch_width2) "2 + (branch_width3)"2 =1

Release 1991

0.3

The probability of branching occurring at any
segment is 0.3

Any width ratio may vary up to 10%

Any branching angle may vary up to 20%
Any divergence angle might vary up to 35%
The number of leaves on a branch and the
angle at which leaves grow from a branch
might vary up to 30%

I oo

1
.2
0.35

H o W

Each trunk segment will be 0.96 times as
long as the previous trunk segment.

A good value for this is (widthl) " (prob)

The first and second branch off of each
trunk segment will be 0.87 and 0.5 times

as long as the trunk segment.

Similarly (width2)” (prob) and (width3)" (prob)
are good values for these.

o
T T T T

The trunk will decrease in radius by 0.8 at any
branch and the first branch have a radius 0.6 times
the radius of the previous trunk segment. This
choice of values is assuming binary branching.

You must be sure that:

(widthl)”~2 + (width2)72 + (width3)"2 =1

H= 3 e W

= 0.93 # The first, second, and third branches
= 0.7 # off of each branch segment will be
= 0.6 # 0.93, 0.7 and 0.6 times as long as the
branch segment.
(branch_widthl) " (prob),
(branch_width2) "~ (prob) and
(branch_width3) ~(prob) are good values
for these.
= 0.8 # The first branch will decrease in radius
= 0.6 # by 0.8 and the second by 0.6. This choice
= 0 # is assuming binary branching.

sure that:

<1991-5-15> 5

UGTREE (UG) UNIGRAFIX User’s Manual UGTREE (UG)

EXAMPLE
ugtree -f PINE -f mypine -H 30 -1 2 -n 12 -s 234

will generate a 30’ pine with all branches explicitly
described as 12 sided prisms and leaves described as
polygons. The output file is called 'mytree’ and the
number 234 will be used to seed the random number
generator. This assumes that the file PINE contains
the parameter values (such as branching angles) of

a pine tree.

FILES
~laura/tree/ugtree
SEE ALSO
mktree (UG)
BUGS
Let me know if you find any!
AUTHCR

Laura Downs

Release 1991 <1991-5-15>

