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Abstract

In this report we compare the cost and performance of
a new kind of restricted instruction cache architecture
| the stall cache | against several other conventional
cache architectures. The stall cache minimizes the size
of an on-chip instruction cache by caching only those
instructions whose instruction fetch phase collides with
the memory access phase of a preceding load or store
instruction.
Many existing machines provide a single cycle exter-

nal cache memory [6, 17, 2]. Our results show that, un-
der this assumption, the stall cache always outperforms
an equivalent sized on-chip instruction cache, reducing
external memory access stalls by approximately 10%.
In addition we present results for a system using an on-
chip data cache, and for one with a double width data
bus and short instruction prefetch bu�er.

1 Introduction

RISC instruction sets are designed to facilitate pipelin-
ing, with many architectures aiming to issue at least
one instruction per clock cycle [19, 20, 8, 18]. To sus-
tain this instruction bandwidth, most RISC machines
employ some form of instruction cache. Current device
technology does not allow large on-chip caches, and so
many designs employ a large external cache to achieve
low miss-rates over a wide range of applications. Since
instruction fetch rate limits processor execution rate,
processor cycle time is often the same as the external
cache cycle time. It is likely that this style of design
will remain popular for device technologies where large
on-chip caches are not feasible. In particular, device
technologies such as GaAs o�er high speed but rela-
tively low integration density [23].

On most RISC architectures, the only instructions
that access memory are loads and stores. Usually vari-
ables and intermediate results can be kept in regis-
ters, reducing the number of data accesses as compared
to memory-memory or register-memory architectures.
However, studies have shown that loads and stores still
account for around 25{40% of all instructions executed
[9].
If a processor is to avoid memory access stalls, the

memory subsystem must be capable of delivering at
least one instruction word every cycle while servicing
data accesses. A CPU that has only a single bus to ex-
ternal cache memory might encounter a structural haz-
ard and have to stall during the memory access phase
of a load or store instruction. There are several ways to
reduce the number of these load and store stalls. One
solution is to have separate data and instruction busses;
another possibility is to have caches on chip.
In this report we evaluate the cost and performance

of a number of existing solutions for removing these
stalls against a new proposal: the stall cache [7]. We
�rst present the architectural alternatives, then develop
a cost and performance model for each, and �nally
present experimental results for traces taken from pro-
grams in the SPEC benchmark suite.

2 Architectural Alternatives

We considered the following seven processor alterna-
tives, each of which is connected to a single cycle ex-
ternal cache system:

1. No caching on chip with a single memory port.

2. No caching on chip with dual instruction and data
ports.
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Figure 2: Harvard Architecture

3. Full instruction cache on chip with a single memory
port.

4. Full data cache on chip with a single memory port.

5. Full instruction and data cache on chip with a sin-
gle memory port.

6. Stall cache on chip with a single memory port.

7. Single double-width memory port with an on-chip
instruction bu�er.

The �rst alternative is shown in Figure 1. This un-
enhanced processor has a single external bus but no
caches on chip, therefore every load or store causes a
stall. We include separate o�-chip data and instruction
caches so that we will have consistent external cache
miss rates for all options. The second alternative |
the Harvard architecture (Figure 2) | has separate in-
struction and data busses, and hence never has a mem-
ory access conict. Of all our alternatives, the �rst and
second schemes represent the worst and best case per-
formance respectively.
The next four alternatives add some form of caching

on chip. An on-chip cache attempts to reduce the num-
ber of access conicts by avoiding coincident use of the
single external memory bus. However, memory access
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Figure 4: Stall Cache Architecture

conicts can still occur on cache misses. The most gen-
eral scheme, as shown in Figure 3, has both instruction
and data caches on chip. Two further variants are to
have only an on-chip instruction cache, or only an on-
chip data cache.

Figure 4 shows the stall cache. This is a variant of the
on-chip instruction cache with a single external mem-
ory port: Instead of providing a full instruction cache
only those instructions whose instruction fetch phase
coincides with the memory access phase of a load or
store instruction are cached. For the majority of execu-
tion time, the instruction fetch unit can monopolize the
memory port. When a load or store is encountered, the
next instruction is fetched from the stall cache thereby
freeing the memory port for the data access. If the next
instruction is not in the stall cache, we add a stall cy-
cle to the pipeline to fetch the missing instruction from
external cache. Therefore the stall cache is a restricted
instruction cache employing a similar philosophy as a
branch target bu�er [15], but for data access stalls in-
stead of branch stalls.

The single double-width memory port, as shown in
Figure 5 provides the bandwidth of two separate ports
without the overhead of two sets of address lines [3]. We
assume that instructions occupy only one word each,
and hence that every external cache access can return
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two instructions. The instruction prefetch bu�er can
fetch ahead of the current pair of instructions on those
cycles where the memory port is not required for a data
access, allowing execution to continue from the instruc-
tion bu�er during a data access. A big advantage with
this approach is that data accesses can make use of the
extra data bus width to allow single cycle double pre-
cision loads and stores.

3 Cost and Performance

Models

In this section we describe the cost and performance
models we used to compare these architectures.

3.1 Cost

A complete CPU cost model would include chip area
and packaging costs. A formula to compute the total
cost for a CPU chip is

Cost = f(Basic Area + Cache Area + Pad Area)+

g(Unenhanced pin count + Extra Pins)

Ideally, one would derive for each architecture the
die area required for additional circuitry and for any
extra bond pads. This area would be added to the
die area required for the simplest system with a single
memory port and no cache. For the caching schemes,
die area is required for cache memory and control logic.
The instruction bu�er consumes die area for the bu�er
memory and the associated control logic. Each extra
pin we add to the system will add at least the area of
a bonding pad and signal bu�ers to the die area.
The additional pins required can be added to the pin

count of the simplest chip to give a total pin count. A
Harvard architecture requires pins for an additional ad-
dress and data bus, hence nearly doubling the number

of pins required. The instruction bu�er requires dou-
ble the number of data bus pins, or approximately 50%
more pins in total than the unenhanced system.
In practice, it is di�cult to relate cost of pins to

cost of die area since this relationship is very technol-
ogy dependent. In addition, pin count may already be
determined by higher level system considerations. We
chose to only directly compare the costs of the cache
alternatives, where the increase in die area is roughly
proportional to the gross cache capacity. We therefore
use a simpli�ed cost model that takes into account only
the total storage requirement for a cache including tag
and valid bits.

3.2 Performance

We measure performance by counting the total number
of clock cycles taken to execute our benchmark pro-
grams, as given by the expression

Cycles = I-count + Stall cycles

where I-count is the dynamic instruction count. Sources
of stall cycles include load delays, branch delays, and
oating point stalls in addition to memory system
stalls.
All our results are for the MIPS R3000 [13]. Com-

pilers for this architecture must �ll unused load and
branch delay slots with NOP instructions since there are
no hardware interlocks. Thus for the MIPS architecture
the instruction count includes these delay stall cycles.
The number of oating point stalls and external

cache miss stalls will be common to all of our alter-
natives, and will dilute the bene�t of any scheme to re-
move memory access stalls. Since the sources of these
stalls are very implementation dependent, we have cho-
sen to present our results without including these stalls.
Hence we assume all MIPS instructions take one clock
cycle. We later present �gures for some typical system
con�gurations that indicate the impact of these stalls
on the speedups in our results.
The Harvard architecture has no memory access

stalls, hence run time is given by

CyclesHarvard = I-count

The unenhanced system has no on-chip caches and a
single port to memory. Every load or store instruction
generates a memory stall giving a total run time

CyclesUnenhanced = I-count+ Loads+ Stores

For the system with a full I-cache on chip, we note
that we can fetch in parallel from external memory
whenever the instruction currently in the memory ac-
cess phase of the pipeline is not a load or store. Hence
we only incur a penalty if an I-cache miss coincides with
a data access. The resulting run time is
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CyclesI-Cache = I-count + Coincident misses

A write-back D-cache on chip with write-allocate only
needs to use the external memory bus if there is a load
miss, in which case we need to stall in order to fetch the
missing word, and whenever we need to copy back dirty
words either on a load miss or store miss. There is no
I-cache so instruction fetches always use the external
bus. Here the total run time is

CyclesD-Cachewb = I-count + Load misses+Copybacks

An on-chip write-through D-cache needs to use the
external bus on every store and on load misses resulting
in a total run time

CycleD-Cachewt = I-count + Load misses+ Stores

We could consider implementing a system that has
both an instruction cache and a data cache on chip.
When the instruction in the memory access phase of
the pipeline is not a load/store, the instruction fetch
unit can access the external cache, avoiding stalls due
to misses of the on-chip instruction cache. When the in-
struction in the memory access phase of the pipeline is
a load/store, either an instruction fetch or a data access
could use the port to the external cache. If the instruc-
tion fetch unit uses the port to the external cache, then
we must stall whenever the on-chip data cache misses
and needs to transfer data. Alternatively, if we allow
the data access to use the port, a stall occurs whenever
the on-chip instruction cache misses. The number of
stalls is the same as if we had only a data cache or in-
struction cache respectively. We therefore discount the
case of having both caches on chip.
The stall cache architecture incurs a penalty when-

ever there is a miss in the stall cache. The stall cache
is only accessed during the memory access phase of a
load or store, and must then always wait a cycle before
fetching a missing instruction.

CyclesStall Cache = I-count+ Stall Cache misses

The instruction bu�er fetches two instructions at a
time over the double width bus whenever the bus is
free, providing there is space in the bu�er. The bu�er
is ushed on taken branches. Stall cycles only occur
if the bu�er is empty when a load or store instruction
requires a memory access. The execution time is

CyclesI-bu�er = I-count + Bu�er stalls

4 Methodology

We used trace driven simulation to evaluate the di�er-
ent con�gurations [21].

We took our traces from the SPEC benchmark suite
running on a MIPS R3000 [4, 5]. The SPEC bench-
mark suite consists of ten di�erent programs, 4 written
in C and 6 in FORTRAN. The number of references
generated by execution of these programs reach into
the tens of billions on the MIPS R3000. We wanted to
include all the di�erent programs in the suite to cover
a wide range of program behaviors. We also needed to
simulate hundreds of di�erent cache con�gurations.
The conventional approach for trace driven simula-

tions would be to generate the entire address trace once
for each benchmark and then use the trace as input
to many simulations of di�erent cache con�gurations.
However, it is not practical to store the entire trace
for programs in the SPEC benchmark suite since the
number of references is far too large. Even if we could
store traces of this size, or generate them on the y, we
would still have been limited by the speed of our cache
simulators given that we needed to perform thousands
of cache simulations.
Our solution was to adopt a sampling technique sim-

ilar to Laha et al [14] to generate a shorter | and
hence storable | trace. At evenly spaced intervals over
the entire execution of the benchmark we take samples
of the address trace. The results in [14] show that as
few as 35 samples can give accurate estimates of both
the mean value and the distribution of the miss ratio.
The advantage of this scheme is that with only a small
fraction of the total address trace the original program
behavior can be reproduced. In [1] and [24] alterna-
tive schemes are presented for trace compaction and
e�cient trace-driven simulation. We chose the simpler
approach because it was satisfactory for our purposes,
saving both disk space and cache simulation time.
For the results in this report we took 50 samples for

each benchmark with 200,000 instructions per sample,
for a total of 10,000,000 instructions per benchmark
program. We chose the sample length to be approxi-
mately the duration of a Unix time slice and each sam-
ple was preceded by a cache ush to simulate multi-
programming. The caches under study are small, and
their contents are unlikely to survive context switches.
This sampling represents a compression by a factor of
between 100-2000, with a corresponding reduction in
simulation time. Each simulation still required around
25 minutes of CPU time on a Sun Sparcstation-1+, and
the results in this report represent over 1600 such sim-
ulations.
This scheme worked well for all the benchmark pro-

grams except tomcatv. This is a very small FORTRAN
program, exhibiting strong periodicity that unfortu-
nately correlated with our sampling frequency. In [14]
this problem is mentioned and sampling at random in-
tervals is recommended for these cases. We repeated
the sampling of tomcatv using 37 equally spaced sam-
ples, and this simple alternative approach gave good
results. The espresso benchmark is the only SPEC
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program to require multiple runs using di�erent inputs.
To simplify our sample gathering, we selected only the
longest running of the four input �les, tial. We in-
clude results for 8 out of the 10 SPEC benchmarks;
we did not manage to obtain traces for gcc and fppp.
Note that for this study, we are not overly concerned
with determining the absolute performance of our al-
ternative architectures on the SPEC benchmarks. We
merely require a representative sample set with which
to make comparisons between the alternatives.
We compiled the benchmark programs using version

2.11 of the MIPS cc and FORTRAN compilers for a MIPS
M/2000 running RISC/os 4.50. We used pixie to in-
strument the object code to generate the instruction
and data references [16]. We ran each instrumented
benchmark program twice; once to count the total num-
ber of instructions executed, and again to take the
evenly spaced samples. We then used this stored se-
quence of samples as input to our cache simulations.
The main simulation tool used was the dinero cache

simulator [10, 11]. We had to make a number of modi�-
cations to dinero to record coincident instruction and
data misses. We also wrote an instruction bu�er simu-
lator that reads dinero format traces.

5 Results

In Section 5.1 we present dynamic memory reference
statistics for the individual benchmarks. Section 5.2
discusses our selection of cache con�gurations, and Sec-
tion 5.3 our speedup calculations. Section 5.4 presents
result curves obtained by combining the individual
benchmark results, and Section 5.5 considers the bench-
mark results individually.

5.1 Memory Reference Statistics

Table 1 presents dynamic memory reference statistics
for the benchmark programs. For each program the up-
per line gives �gures for a complete execution, the lower
for the sampled trace. The columns in the table reading
left to right contain: number of instructions, percentage
of data references, percentage loads, percentage stores,
and load/store ratio. The percentages are relative to
the total number of instructions.
The instruction count for a complete benchmark

run varies from a little over 1.1 billion instructions
for espresso up to nearly 22 billion instructions for
spice2g6. The samples always total 10 million instruc-
tion references, except for tomcatv where we took 7.4
million. Data references account for between 17% and
51% of all instructions executed. The C programs in
this benchmark suite tend to have fewer data accesses
than the FORTRAN programs. Overall the ratio of
loads to stores is approximately 2.8:1.

This table gives an indication that our sampling tech-
nique has managed to capture the overall behavior of
these benchmark programs. The relative ratios of types
of data access agree to within 1% except for tomcatv
with 50 samples. We used the 37 sample trace for our
simulations of tomcatv.

5.2 Cache Con�gurations

We focused on smaller caches as these are more relevant
to designs for which a stall cache might be considered.
We simulated cache sizes from 64 to 64K bytes. Since
external memory accesses are single cycle, the cache
miss penalty will be the same as the cache �ll time
for single word blocks. Fetching other than individual
words on demand will cause a drop in performance.
Hence we restricted ourselves to single word blocks, or
larger blocks with single word sub-block placement. We
investigated the e�ect of changing block size from 4 to
32 bytes on direct mapped caches.
To assess the e�ects of changing associativity we var-

ied associativity from direct mapped to 8-way for caches
with single word blocks. Previous studies have shown
little performance improvement for degrees of associa-
tivity greater than 8-way [21].

5.3 Speedup Calculation

We measure performance as the speedup of a con�gu-
ration relative to the time required for the unenhanced
processor

SpeedupCon�guration =
CyclesUnenhanced
CyclesCon�guration

This speedup should be reduced to take into account
oating point stalls and external cache misses. Our
simulations show that a system using the MIPS R2010
FPU would add between 10{15% oating point stall
cycles to the basic instruction count for the FORTRAN
programs, in addition to 10% stalls from other sources.
We simulated a direct mapped external cache consisting
of 64Kbytes of instruction cache and 64Kbytes of data
cache, with 32-byte blocks. For the C programs the
miss ratio was less than 1%, with a 15-cycle cache miss
penalty we need to add around 15% stall cycles to the
basic instruction count. For the FORTRAN programs
the miss ratio was between 3-5%, with a 15-cycle cache
miss penalty we need to add around 60% stall cycles to
the basic instruction count. These stalls will add the
same number of cycles to the execution times of each
of our architectural alternatives. This will reduce the
maximum obtainable speedup, and reduce the relative
advantage of those schemes that are more successful at
eliminatingmemory access stalls. We have not included
the e�ect of these stalls in our results, since they are
extremely implementation dependent.
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Benchmark Instructions Data Loads Stores L/S Ratio

espresso 1,160,836,913 22.04 % 17.62 % 4.42 % 3.98
10,000,000 21.84 % 17.42 % 4.42 % 3.94

spice2g6 21,967,654,691 29.11 % 24.14 % 4.97 % 4.86
10,000,000 30.04 % 24.63 % 5.41 % 4.55

doduc 1,645,045,552 38.19 % 28.21 % 9.98 % 2.83
10,000,000 38.35 % 28.28 % 10.07 % 2.81

nasa7 9,261,864,986 50.97 % 36.83 % 14.15 % 2.60
10,000,000 50.03 % 36.35 % 13.68 % 2.66

li 6,036,802,819 33.86 % 22.00 % 11.86 % 1.85
10,000,000 33.84 % 21.92 % 11.92 % 1.84

eqntott 1,248,622,981 17.44 % 16.50 % 0.94 % 17.55
10,000,000 17.48 % 16.28 % 1.20 % 13.57

matrix300 2,775,939,665 47.11 % 31.39 % 15.72 % 2.00
10,000,000 47.75 % 30.78 % 16.97 % 1.81

tomcatv 1,812,801,534 49.59 % 36.64 % 12.95 % 2.83
50 samples 10,000,000 70.94 % 47.95 % 23.00 % 2.08
37 samples 7,400,000 50.49 % 37.07 % 13.42 % 2.76

arith. average 36.04 % 26.67 % 9.37 % 2.85
36.23 % 26.59 % 9.64 % 2.76

Table 1: Dynamic Memory References

5.4 Combined Results

The results for the SPEC benchmarks are summarized
in Figure 6 for direct mapped caches with a block size
of one word. This �gure plots performance versus cost
for each of our alternative con�gurations. The overall
speedup is computed as the geometric average over the
benchmark set. The cost represents the gross cache
capacity for the caching alternatives.
The cost of the Harvard architecture is constant. Its

speedup is the maximum possible for any of our alter-
natives since there are no memory access stalls. Rather
than plotting a single cost/performance point for this
architecture we ignore cost and show its performance
as a horizontal line. The Harvard architecture achieves
a speedup of 1.36 over the unenhanced architecture.
The main aim of this study was to compare the stall

cache with a full instruction cache. If we consider hor-
izontal lines of constant speedup on this graph, we
see that a full instruction cache architecture requires
roughly 1.5{2 times the capacity of a stall cache ar-
chitecture to give the same speed-up. This shows how
restricting the entries stored in a cache, as is done in
the stall cache, can substantially reduce the required
capacity. If we consider vertical lines of constant cost,
we see that a stall cache organization can add 3{5%
to the speedup achieved by a conventional instruction
cache organization with the same area. Note that stall
detection logic has to be present in both cases. A 512
byte stall cache (gross cost nearly 1 Kbyte) achieves an
average speedup of 1.26 over the unenhanced processor.
In practice this could eliminate nearly 75% of the stalls
due to loads and stores across a single port.
We simulated the same cache con�gurations for data

caches, using a write-through cache. As can be seen on
the graph, its average performance is much worse than
any of the other architectural alternatives. Even a 64K
byte data cache achieves less than 50% of the potential
increase in speedup. Further disadvantages are that
data caches are more complex than instruction caches,
given that they must handle writes as well as reads.

The instruction bu�er achieves impressive perfor-
mance, attaining a maximumspeedup of 1.28. This rep-
resents nearly 80% of the potential increase in speedup.
The MIPS R3000 instruction set has no double word
load and store instructions so we couldn't evaluate the
extra speed-up possible due to the expanded data bus
width. For this graph we have shown the cost of the
instruction bu�er as solely that of the bu�er storage
required. In reality, the cost of the instruction bu�er
is substantially higher due to technology dependent pin
and packaging costs. We simulated bu�er lengths rang-
ing from 4{512 bytes, but the results show that in-
creasing bu�er length beyond 32 bytes results in only
slight improvement. This is because the bu�er must be
ushed on taken branches, limiting the e�ectiveness of
larger bu�ers. Our �ndings are consistent with those
for the ECL SPARC [3]. Small instruction bu�ers can
give the same performance improvement as a 1 Kbyte
instruction cache.

We were interested in determining the perfor-
mance/cost of larger block sizes for direct mapped
caches with single word sub-block placement. Larger
blocks have the advantage of reducing tag storage re-
quirements but will increase the miss rate, as on a miss
a whole block may be invalidated. Since we are using
single word sub-block placement the miss penalty is still
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Figure 6: Geometric Average of Speedup vs. Gross Cost for SPEC benchmarks. The cache alternatives
are direct mapped with 4 byte blocks. The gross cost includes data and tag storage.

only one cycle, but we require an additional valid bit
per word. Increasing block size a�ected our alternatives
in di�erent ways. Figure 7 plots speedup against gross
cache cost, including tag and valid bits.
For the stall cache we see that increasing block size

is not bene�cial to performance/cost. This is explained
by noting that on average we expect only every third
instruction to be cached, so larger blocks cause a serious
drop in performance that is not compensated by the re-
duction in tag storage. For the instruction cache we see
that using larger blocks improves its performance/cost
ratio substantially. Performance/cost increases as we
change the block size from 4 to 8, and from 8 to 16
bytes, but drops o� again as we move from 16 to 32
byte blocks. Here, the drop in performance due to
larger block size is small compared to the cost savings
from reducing tag storage. However, even the best in-
struction cache con�guration is worse than the worst
stall cache con�guration. For the data cache, we see
that larger block sizes lower performance. This is ex-
plained by the poor spatial locality of the data reference
streams.

Increasing associativity can improve cache perfor-
mance, but adds to cost by increasing tag area and com-
plicating control logic. In [12] Hill shows how the added
logic may slow cache cycle time and negate the bene-

�ts of increasing associativity, here we did not attempt
to account for these e�ects. In Figure 8 we present the
speedup for direct-mapped, 2-way, 4-way, and 8-way as-
sociative caches with a block size of one word for each
of the cache architectures. The replacement policy was
LRU.
Increasing associativity improves performance/cost

for stall caches larger than 512 bytes, with negligible
e�ect on smaller caches. The performance/cost of the
instruction cache decreases with increasing associativ-
ity for small caches. We believe this is due to the same
reasons as cited in [22]. A high degree of associativity
combined with an LRU replacement policy can cause
a higher miss rate in instruction loops that exceed the
cache capacity. The data cache shows the greatest im-
provement with increased associativity, but is still much
worse than the other alternatives.

5.5 Individual Results

We examined the results for the benchmarks individ-
ually, as shown in Figures 9{32, and found that the
stall cache was consistently better than the instruction
cache.
The three benchmarks espresso, spice2g6, and li

exhibit overall behavior similar to the geometric aver-
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age. For espresso, the percentage of data references
is small and the instruction bu�er performs well. For
spice2g6, there is a more gradual increase in perfor-
mance with increasing instruction and data cache sizes
indicating larger working sets.
Eqntott spends much of its time performing quick-

sort. Consequently, even small instruction bu�ers and
caches perform well. For very small cache sizes, the
stall cache has a pronounced advantage over the full
instruction cache.
Doduc is the only benchmark where the data cache

outperforms both stall and instruction caches. This
only occurs for caches smaller than 4Kbytes. In two
other benchmarks, li and espresso, a small data cache
also outperforms small instruction caches, but the e�ect
is strongest in doduc.
Three of the FORTRAN programs, nasa7,

matrix300, and tomcatv, exhibit very similar behav-
ior. These are all scienti�c codes, with small loops
operating on large data arrays. As can be expected,
small data caches perform very poorly. However, small
instruction or stall caches catch most of the dynamic
instruction references. The instruction bu�er performs
signi�cantly worse than the instruction caches. The
bu�er attempts to exploit unused external memory ac-
cess cycles to maintain a full instruction queue, but
these three benchmarks have the highest data mem-
ory tra�c of those in this study. The small kernels in
these codes also require frequent ushes of the bu�er
contents.

6 Conclusion and Future Work

For CPUs with a single port to an external single cy-
cle cache system, a stall cache is more cost e�ective
than an on-chip instruction cache or an on-chip data
cache. For the same speedup, an on-chip instruction
cache needs approximately 1.5{2 times the capacity of
the stall cache. A 512 byte stall cache can eliminate
over 75% of the memory access stalls caused by fetch-
ing both instructions and data over a single external
memory port. Stall caches larger than 4 Kbytes can
eliminate over 90% of these stalls, and hence achieve a
speedup close to that of a Harvard architecture.
An on-chip data cache always performs much worse

than the other alternatives. The instruction bu�er
performs well in architectures where instruction fetch
bandwidth is less than memory port bandwidth. A 32
byte bu�er eliminates up to 75% of the memory access
stalls, larger bu�ers show little additional improvement.
This study has shown that with intelligent cache de-

sign nearly the same performance as a full Harvard ar-
chitecture can be achieved without the extra pins and
pads. This is important for current high-speed, low-
integration designs. It is also very important for future
systems, since moving to 64-bit processors could make

a Harvard architecture much more expensive.
Further work would be to evaluate the possible

speedup on architectures that have register windows
such as SPARC. Register windows can reduce the total
number of loads and stores, at least for integer pro-
grams. This reduction would further increase the e�-
ciency of the stall cache.
The stall cache can be further restricted by taking

advantage of other sources of stalls. For example, on
architectures such as MIPS II and SPARC that have
hardware interlocks, there is no need to cache instruc-
tions whose instruction fetch phase coincides with the
memory access phase of a load that causes a load delay
stall. The resulting delay cycle frees the external cache
port for an instruction access. Similarly, it is possible
to exploit oating point stalls.
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Figure 9: Speedup vs. Gross Cost for espresso.
All cache alternatives are direct mapped with 4 byte
blocks.
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Figure 10: Inuence of Block Size on Speedup
vs. Gross Cost for espresso. All caches are di-
rect mapped with single word sub-block placement. For
each we present curves with 4, 8, 16, and 32 byte blocks.
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Figure 11: Inuence of Associativity on Speedup
vs. Gross Cost for espresso. We present curves
for direct mapped, 2-way, 4-way, and 8-way associative
caches each with single word blocks.
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Figure 12: Speedup vs. Gross Cost for spice2g6.
All cache alternatives are direct mapped with 4 byte
blocks.
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Figure 13: Inuence of Block Size on Speedup
vs. Gross Cost for spice2g6. All caches are di-
rect mapped with single word sub-block placement. For
each we present curves with 4, 8, 16, and 32 byte blocks.
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Figure 14: Inuence of Associativity on Speedup
vs. Gross Cost for spice2g6. We present curves
for direct mapped, 2-way, 4-way, and 8-way associative
caches each with single word blocks.
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Figure 15: Speedup vs. Gross Cost for doduc. All
cache alternatives are direct mapped with 4 byte blocks.
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Figure 16: Inuence of Block Size on Speedup vs.
Gross Cost for doduc. All caches are direct mapped
with single word sub-block placement. For each we
present curves with 4, 8, 16, and 32 byte blocks.

Legend
dcache

icache

ibuffer

harvard

stall

1 2 4 8 16 64 256 1024 4096 16384 65536

1.0

1.1

1.2

1.3

1.4

1.5

Cost (Bytes)

S
p
e
e
d
u
p

Figure 17: Inuence of Associativity on Speedup
vs. Gross Cost for doduc. We present curves for
direct mapped, 2-way, 4-way, and 8-way associative
caches each with single word blocks.
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Figure 18: Speedup vs. Gross Cost for nasa7. All
cache alternatives are direct mapped with 4 byte blocks.
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Figure 19: Inuence of Block Size on Speedup vs.
Gross Cost for nasa7. All caches are direct mapped
with single word sub-block placement. For each we
present curves with 4, 8, 16, and 32 byte blocks.
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Figure 20: Inuence of Associativity on Speedup
vs. Gross Cost for nasa7. We present curves for
direct mapped, 2-way, 4-way, and 8-way associative
caches each with single word blocks.
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Figure 21: Speedup vs. Gross Cost for li. All
cache alternatives are direct mapped with 4 byte blocks.
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Figure 22: Inuence of Block Size on Speedup vs.
Gross Cost for li. All caches are direct mapped with
single word sub-block placement. For each we present
curves with 4, 8, 16, and 32 byte blocks.
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Figure 23: Inuence of Associativity on Speedup
vs. Gross Cost for li. We present curves for direct
mapped, 2-way, 4-way, and 8-way associative caches
each with single word blocks.
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Figure 24: Speedup vs. Gross Cost for eqntott.
All cache alternatives are direct mapped with 4 byte
blocks.
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Figure 25: Inuence of Block Size on Speedup
vs. Gross Cost for eqntott. All caches are di-
rect mapped with single word sub-block placement. For
each we present curves with 4, 8, 16, and 32 byte blocks.
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Figure 26: Inuence of Associativity on Speedup
vs. Gross Cost for eqntott. We present curves
for direct mapped, 2-way, 4-way, and 8-way associative
caches each with single word blocks.
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Figure 27: Speedup vs. Gross Cost for matrix300.
All cache alternatives are direct mapped with 4 byte
blocks.
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Figure 28: Inuence of Block Size on Speedup
vs. Gross Cost for matrix300. All caches are di-
rect mapped with single word sub-block placement. For
each we present curves with 4, 8, 16, and 32 byte blocks.
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Figure 29: Inuence of Associativity on Speedup
vs. Gross Cost for matrix300. We present curves
for direct mapped, 2-way, 4-way, and 8-way associative
caches each with single word blocks.
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Figure 30: Speedup vs. Gross Cost for tomcatv.
All cache alternatives are direct mapped with 4 byte
blocks.
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Figure 31: Inuence of Block Size on Speedup
vs. Gross Cost for tomcatv. All caches are di-
rect mapped with single word sub-block placement. For
each we present curves with 4, 8, 16, and 32 byte blocks.
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Figure 32: Inuence of Associativity on Speedup
vs. Gross Cost for tomcatv. We present curves
for direct mapped, 2-way, 4-way, and 8-way associative
caches each with single word blocks.
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