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Compiling Dataow into Threads

E�cient Compiler-Controlled Multithreading for Lenient Parallel Languages

Klaus Erik Schauser

Abstract

Powerful non-strict parallel languages require fast dynamic scheduling. This
thesis explores how the need for multithreaded execution can be addressed as
a compilation problem, to achieve switching rates approaching what hardware
mechanisms might provide. Compiler-controlled multithreading is examined
through compilation of a lenient parallel language, ID90, for a threaded ab-
stract machine, TAM. A key feature of TAM is that synchronization is explicit
and occurs only at the start of a thread, so that a simple cost model can be ap-
plied. A scheduling hierarchy allows the compiler to schedule logically related
threads closely together in time and to use registers across threads. Remote
communication is via message sends and split-phase memory accesses. Mes-
sages and memory replies are received by compiler-generated message handlers
which rapidly integrate these events with thread scheduling.
To compile ID90 for TAM, we employ a new parallel intermediate form, dual-
graphs, with distinct control and data arcs. This provides a clean framework
for partitioning the program into threads, scheduling threads, and managing
registers under asynchronous execution. The compilation process is described
and preliminary measurements of the e�ectiveness of the approach are dis-
cussed.
Previous to this work, execution of Id90 programs was limited to specialized
architectures or dataow graph interpreters. By compiling via TAM, we have
achieved more than two orders of magnitude performance improvement over
graph interpreters on conventional machines, making this Id90 implementa-
tion competitive with machines supporting dynamic instruction scheduling in
hardware. Timing measurements show that our Id90 implementation on a
standard RISC can achieve a performance close to Id90 on one processor of
the recent dataow machine Monsoon. It can be seen that the TAM par-
titioning presented in this thesis reduces the control overhead substantially
and that more aggressive partitioning would yield modest additional bene-
�t. There is, however, considerable room for improvement in scheduling and
register management.
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Chapter 1

Compilation Challenge

Multithreaded execution appears to be a key ingredient in general purpose parallel comput-
ing systems. Many researchers suggest that processors should support multiple instruction
streams and switch very rapidly between them in response to remote memory reference la-
tencies or synchronization[AI87, Smi90, HF88, ALKK90, ACC+90]. However, the proposed
architectural solutions make thread scheduling invisible to the compiler, preventing it from
applying optimizations that might reduce the cost of thread switching or improve scheduling
based on analysis of the program. Inherently parallel languages, such as Id90[Nik90] and
Multilisp[Hal85], require that small execution threads be scheduled dynamically, even if exe-
cuted on a single processor[Tra88]. Traub's theoretical work demonstrates how to minimize
thread switching for these languages on sequential machines. However, in compiling this
class of languages for parallel machines, the goal is not simply to minimize the number of
thread switches, but to minimize the total cost of synchronization while tolerating latency
on remote references and making e�ective use of critical processor resources, such as regis-
ters and cache bandwidth. This thesis addresses this three-fold goal in compiling Id90 for
execution on a threaded abstract machine, TAM, that exposes these costs to the compiler
through explicit scheduling and storage hierarchies. TAM can be e�ciently implemented
on standard sequential and parallel machines,

Both the compilation of sequential languages for standard architectures[AU77] as well as
the compilation of non-strict parallel languages for dataow machines[Tra86] is well under-
stood. The storage model of conventional machines is directly reected in most sequential
languages. The control structures provided by those languages can be easily mapped to
standard processors which follow only one path of execution.

Non-strict parallel languages, such as Id90, allow functions to execute and possibly re-
turn results before all arguments have been provided. This requires dynamic scheduling.
Non-strict languages can be implemented e�ciently on dataow and multithreaded archi-
tectures, because those machine provide hardware support for fast dynamic synchronization
and scheduling of threads of computation. Execution of these languages on standard ma-
chines was long viewed as ine�cient, and special architectural support was thought to be
essential.

Our approach shows how multithreaded execution can be addressed as a compilation
problem, rather than one that needs special architectural solutions. We have designed an
abstract threaded machine, which we use as an intermediate form in the compilation of Id90
to standard machines (see Figure 1.1). TAM provides simple primitives to the compiler for
scheduling, synchronization and fast message transmission. Although it would be possible
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Figure 1.1: Compilation Paths.

to build TAM directly in hardware, it can be translated e�ciently to standard parallel and
sequential machines. The advantage of TAM over other multithreaded approaches is that it
allows the compiler to exploit locality among threads and integrate thread scheduling, pro-
cessor register assignment and message handling in code generation. Using TAM, compiling
Id90 to standard machines, although still challenging, is doable and results in e�cient code
as our implementation demonstrates.

1.1 Overview

This thesis aims to demonstrate how to compile non-strict parallel languages for a multi-
threaded execution model. In this chapter we �rst analyze why non-strict parallel languages
o�er so much parallelism and discuss why they are di�cult to implement on standard ma-
chines. We present the extended functional language Id90, which is taken as a starting
point. We then discuss the main features of TAM, the threaded abstract machine into
which we compile. In Chapter 2, we introduce a new intermediate form, called dual graphs,
which provides a vehicle for integrated treatment of thread scheduling and register usage.
In dual graphs, control and data dependences are separate, but stand on an equal footing.
We show how dual graphs are produced for the basic constructs of the language. Chapter 3
then presents partitioning, the fundamental step in compiling a lenient language for a ma-
chine that executes instruction sequences. The task of the various partitioning algorithms is
to identify portions of the graph that can safely be mapped into threads. The actual thread
generation, which includes frame slot and register assignment, instruction scheduling and

7



thread scheduling, is discussed in Chapter 4. Finally, preliminary results are presented in
Chapter 5.

1.2 Language Issues

We are using the parallel functional language Id90[Nik90] as a starting point. Id90 is a non-
strict but eager language. Traub uses the term lenient for this class of languages[Tra88]. A
language is called non-strict, if it may be necessary to start computation of a function body
before all (or even any) arguments have been provided. Conversely, it is called strict if all
arguments can be evaluated before calling a function. Non-strictness gives the programmer
much more expressive power, but at the expense of implementation and execution cost: non-
strict languages require dynamic scheduling of computations, they cannot be completely
scheduled statically, as examples given below will show. A language is called lazy if it starts
computations only when it needs their result, e.g. a function would start evaluation of its
arguments only by demand. The language is eager if all evaluations are started as soon as
possible. It is the responsibility of the programmer to avoid divergent computations.

Functional languages are a good basis for a parallel computing, since they o�er ample
opportunities for implicit parallelism. In pure (side-e�ect free) functional languages, ar-
guments to a function call can be evaluated in parallel. Non-strictness can substantially
enhance the parallelism by allowing functions and arbitrary expressions (even conditionals)
to execute and possibly return results before all arguments have been provided. This re-
sults in an overlap of computation between the function body and the argument evaluation.
Non-strict, but eager, parallel functional languages, such as Id90, exhibit a large amount of
parallelism on all levels[ACM88, Cul90, AE88]. Id90 would would exhibit less parallelism if
the language were lazy, because then evaluation of arguments could only be started when
functions need the corresponding value. This tends to lengthen substantially the critical
path, i.e., the time from the start of the computation to when the result is produced.

We begin with several examples in Id90 to indicate the subtlety of compiling such a
language and the need for multithreading. These are not intended to be indicative of
important applications, but serve to demonstrate the compilation principles. The function
lookup_array, as shown in Figure 1.2, takes as arguments an array A of values and an
ordered table T and returns an array of the table indexes corresponding to the values in
A. There is very little parallelism in the lookup function, however, all the lookups can be
performed in parallel. Each access to T[m] in the lookup may require a remote access or may
even suspend, if the table T is still being produced by some other part of the program. Thus,
we want to execute several lookups on each processor and be able to suspend and resume
them cheaply upon remote or deferred access. Flat produces a list of the leaves of a binary
tree using accumulation lists which are constructed with the build-in function cons. If cons
and flat were strict, this code would exhibit no parallelism. Under lenient execution, the
entire list is constructed in parallel[Nik91]. Simulations showed that with non-strictness
the critical path on an example of a full binary tree of depth 10 constists of 250 time
steps; with a maximum parallelism of 1776 and an average parallelism of 266 instructions
(assuming the resources were available). If executed strictly, the critical path would grow
to 26,650 time steps, with a maximum parallelism of 4 instructions. The contrived function
two_things returns a pair containing the square of its �rst argument and the product of its
two arguments. It can compute and return x*x before y has been evaluated, which enhances
parallelism. In fact, it must be able to do so, since the �rst result could be used as the second

8



def lookup_array A T = {(al,ah) = bounds A;

(tl,th) = bounds T;

in {array (al,ah) of

[i] = (lookup tl th T A[i]) || i <- al to ah}};

def lookup l h T v = {while l < h do

m = div (l + h) 2;

next l, next h = if (v <= T[m]) then (l,m)

else (m+1,h)

finally l};

def flat tree acc = if (leaf tree) then (cons tree acc)

else flat (left tree) (flat (right tree) acc);

def two_things x y = (x*x, x*y);

def cube x = {a,b = two_things x,a;

in b};

def strange x p = {a,b,c = if p then bb, x, aa else x, aa, bb;

aa = 3*a;

bb = 4*b;

in c};

Figure 1.2: Small Id90 programs

argument, as in the unusual function cube. The �nal example, due to Traub[Tra88], shows
a cyclic dependence through a conditional that must be resolved dynamically. Because of
the three mutually recursive bindings, no top to bottom static ordering of the statements
yields a correct execution.

None of these examples present problems for a machine with dynamic instruction schedul-
ing, such as Monsoon[PC90]. At the same time, none require dynamic scheduling through-
out. Thus, it makes sense to investigate hybrid execution modes[Ian88a], where statically
ordered threads are scheduled dynamically. Our TAM model takes this idea one step further
by exposing the scheduling of threads to the compiler as well, so even the dynamic schedul-
ing is done without hardware support. This allows register management to be closely tied to
thread scheduling in order to minimize the overhead where dynamic scheduling is required.
In the following, we use the lookup function to illustrate the compilation techniques.

1.3 TAM

To investigate compiler-controlled multithreading, a simple threaded abstract machine (TAM)
has been developed. Synchronization, thread scheduling and storage management are ex-
plicit in the machine language and, thus, exposed to the compiler. TAM is presented
elsewhere[CSS+91, vESC91]; in this section we describe the salient features of TAM as a
compilation target. The primary design goal in TAM is to provide a means of exploiting
locality, even under asynchronous execution, to minimize the overhead of multithreading.
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TAM also provides a separation of concerns, since to execute programs compiled to TAM
we expand the TAM instructions into machine code for a particular target architecture in
a separate compilation step.

A TAM program is a collection of code-blocks, typically representing functions in the pro-
gram text. Each code-block comprises several threads and inlets described below. Invoking
a code-block involves allocating an activation frame to hold its local variables, depositing
argument values into the (possibly remote) frame and enabling threads within the code-
block for execution in the context of the frame. Since an activation does not suspend when
it invokes a subordinate, the dynamic call structure is represented by a tree of activation
frames, rather than a stack. Instructions in a thread may refer to slots in the current frame
or processor registers. A frame is said to be resident when a processor is executing threads
relative to the frame. Once a frame is made resident, it remains resident as long as it has
enabled threads. A quantum is the set of threads executed during a single residency.

A thread is simply a sequence of instructions; it contains no jumps or suspension points;
synchronization occurs only at the top of a thread. TAM control primitives initiate or
terminate threads. Fork attempts to enable a thread in the current activation. The stop

instruction terminates its thread and causes some other enabled thread to begin execution.
Conditional execution is supported by a cfork operation, which forks one of two threads,
based on a boolean operand. Merging of conditionally executed threads is implicit, since
the arms of a conditional can both contain a fork to a common thread.

In essence, each thread begins with a multiway join. A thread may have associated with
it a frame slot containing its entry count. The entry count is initialized prior to any fork
of the thread with the number of control paths joining. Each time the thread is forked,
its entry count is decremented. The thread is enabled when the entry count reaches zero.
Threads with a single entry need no associated entry count slot.

This Fork-based control paradigm is somewhat unusual and merits discussion. Fork
generalizes branch, since a branch can be simulated by a fork followed by a stop. When
fork and stop are separated by a sequence of instructions, it serves as a generalized delayed
branch. On a machine that executes multiple threads concurrently, fork generates parallel
activity; otherwise, it builds up a queue of threads that can be run while waiting for
long latency requests and synchronization events to complete. Architecturally, providing
fork, rather than branch, is interesting because it allows instruction fetch and execution to
be decoupled without branch prediction. From a compiling viewpoint, mixing forks and
branches presents very tricky code-generation issues[Tra88], especially in handling \non-
strict" conditionals where computations must started even if not all inputs to the conditional
are available. It should be noted, however, that when mapping TAM to native code for
existing machines fork and stop are removed whenever possible to produce a branch or
fall-through.

TAM assumes that an activation will execute on a single processor; so work is distributed
over processors at the activation level. Thus, passing arguments and results between frames
represents (possible) interprocessor communication. The send operation delivers a sequence
of data values to an inlet relative to the target frame. An inlet is a restricted thread
that primarily serves to extract data from a message, deposit it into speci�c slots in the
designated frame, and fork threads for the corresponding activation. Inlets are compiler
generated message handlers that avoid message parsing. An inlet may interrupt a thread,
but it does not disturb the current quantum. Threads enabled by executing the inlet will
run when its frame becomes resident.

TAM provides a specialized form of send to support split-phase access to data structures.
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The heap is assumed to be distributed over processors, so access to a data element may
require interprocessor communication. In addition, accesses may be synchronizing, as with
I-structures[ANP87] where a read of an empty element is deferred until the corresponding
store takes place. The I-Read, I-Fetch, and I-Take operations generate a request for a
particular heap location and the response is received by an inlet. Meanwhile, the processor
may continue with other enabled threads or, if none remain, will start working on another
activation frame.

Scheduling in TAM is primarily under compiler control and is tied closely to the storage
hierarchy. The �rst level of scheduling is reected by the static partitioning of instructions
into threads and ordering within threads. Values de�ned and used within a thread can
be retained in processor registers. The next level of scheduling is dynamic | a quantum.
Threads enabled by fork or cfork operations execute within the same quantum as the fork.
However, the order of execution of the threads is not determined. Values can be transmitted
in registers between threads in a quantum. When no enabled threads remain, another
activation with enabled threads must be made resident. This is also under compiler control.
The scheduling queue is contained within the frames, and the last thread executed in a
quantum, called the leave thread, includes code to locate the next activation and fork to
a designated enter thread within that activation. Registers can be used to carry values
between threads within a quantum. Empirical studies show that quanta are often large,
crossing many points of possible suspension[CSS+91]. Thus, it is advantageous for the
compiler to be able to keep values in registers between threads that it cannot prove will
execute in a single quantum. The leave and enter threads can save and restore speci�c
registers if the guess proves incorrect.

The task of compiling for TAM has two aspects. First, a program must be partitioned
into valid threads. This aspect is constrained partly by the language and partly by the
execution model. The language dictates which portions of the program can be scheduled
statically and which require dynamic synchronization. An elegant theoretical framework for
addressing the language requirements is provided by Traub's work[Tra88]. The execution
model places further constraints on partitioning, since synchronization only occurs at the
entry to a thread and conditional execution occurs only between threads.

The second aspect is management of processor and storage resources in the context
of dynamic scheduling to gain maximum performance. This involves analysis of expected
quantum boundaries, frame and register assignment under asynchronous thread scheduling,
and generation of inlets.

1.4 Id90-to-TAM Compilation Stages

Figure 1.3 gives an overview of the structure of the Id90 to TAM compiler. Id90 programs
are �rst translated into program graphs by an Id90 front-end from MIT[Tra86]. Program
graphs are a hierarchical graphical intermediate form with only one kind of arc. Program
graphs allow a representation of the various basic operations as well as conditionals, function
de�nition and application. This facilitates powerful high-level optimizations, such as motion
of arbitrarily large program constructs across loops or conditionals. The meaning of program
graphs is given in terms of a dataow �ring rule, so control ow is implicitly prescribed
by the dynamic propagation of values. In our threaded execution model, control is explicit
and the ow of data is implicit in the use of registers and frame slots. In order to bridge
this gap, we introduce a new graphical intermediate form, dual graphs, in which control and

11



data ow are both explicit.

ID

Program
graphs

Dual
graphs

TAM

C

Sequent,
Sparc, 
MIPS

Ncube,
MIPS

FORTRAN

Dataflow
graphs

GITA

Monsoon
code

Monsoon

Labeled
dataflow
graphs

PRISC
TTDA,

Figure 1.3: Overview of Id90 to TAM compiler. Shown in gray are other compilation
approaches.

Dual graphs are generated by expanding dataow program graph nodes into equivalent
dual graphs. This is a local transformation and can be achieved by following expansion
rules for the individual program graph nodes. Compilation to TAM then involves a series
of transformations on the dual graph, including partitioning, lifetime analysis, scheduling
and linearization, register and frame-slot allocation and fork insertion. Finally TAM code
is produced. All these steps, together with dual graphs, will be described in more detail in
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the next chapters.
TAM is left intentionally abstract, so that it could be implemented on sequential ma-

chines, shared-memory machines as well as on message passing machines. TAM is concrete
enough though that it can be translated with ease in a second translation step to actual
machines. One translation path has chosen C as a portable \intermediate form" and is pro-
ducing code for parallel machines like the Sequent Symetry[Sah91] and Motorola Delta, as
well as for various standard sequential machines. Other backends translate TAM directly
into machine code. Currently there exists backends for the MIPS processor and for the
parallel Ncube/2.

The �gure also shows in gray other compilation approaches that chose program graphs
as their intermediate form. The original MIT compiler translated program graphs into
dataow graphs which then could be executed on the Tagged Token Dataow Architec-
ture (TTDA)[ACI+83] or be interpreted by a graph interpreter (GITA). Other backends
translate program graphs for the Monsoon dataow machine [PC90] and for the P-RISC
machine[NA89]. Some other very interesting approaches compile FORTRAN programs into
representations similar to program graphs[BP89, FOW87].
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Chapter 2

Dual Graphs

Compilation of Id90 to TAM begins after generation of dataow program graphs. The
meaning of program graphs is given in terms of a dataow �ring rule, so control ow is
implicitly prescribed by the dynamic propagation of values. In our threaded execution
model, control is explicit and the ow of data is implicit in the use of registers and frame
slots. In order to bridge this gap, we introduce a new graphical intermediate form, dual
graphs, in which control and data ow are both explicit. The dual graph thus tries to capture
both the contents of a conventional control ow graph as well as those of a pure dataow
graph. Dual graphs are similar in form to the data structures used in most optimizing
compilers; the key di�erences are that they describe parallel control ow and are in static
single assignment form[CFR+89].

Compilation to TAM involves a series of transformations on the dual graph, including
partitioning, fork and join insertion, lifetime analysis, register and frame-slot allocation,
scheduling and linearization.

In this chapter, we will �rst present dual graphs and then explain how program graphs
can be expanded into dual graphs. The expansion is described by presenting expansion rules
for the individual program graph nodes. This description is quite long and is intended only
for the interested reader. Other readers can skip that section and continue directly with
the �nal section which presents the dual graph expansion for our little lookup example.

2.1 Dual Graph De�nition

A dual graph is a graphical intermediate form in which both control ow and dataow are
explicit. It is a directed graph with three types of arcs: data, control and dependence.
Dependence arcs capture indirect control and data. Each node has some number of ordered
inputs and outputs, that are also divided into the three classes: data, control and depen-
dence. An arc must always be of the same kind as the input and the output it connects.
There is no restriction on the number of arcs emanating from an output, but each input
can have at most one arc feeding it.

The dual graph arcs, shown in Figure 2.1, have the following meanings.

� Data Arcs: A data arc (u; o)��! (v; i) speci�es that the value produced by output
o of node u is used as operand i by node v. A node may have several data output
ports; each port represents a name (i.e. a memory location) to which a value can be
bound and read. There can be multiple consumers, but at most one producer
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Figure 2.1: Dual Graph Arcs.

� Control Arcs: A control arc u ! v speci�es that instruction u will execute before
instruction v, and instruction u has direct responsibility for scheduling v. A node may
have one or more control output ports, each with a bundle of control arcs.

� Dependence Arcs (split-phase long-latency arcs): A dependence arc u; v speci�es
that instruction u will execute before instruction v but that v will be scheduled as an
indirect consequence of executing u. Being long latency arcs, they also indicate that
the two nodes cannot be in the same thread.

Dual-graphs have well-de�ned operational semantics and can be executed directly. Con-
trol can be represented by tokens traveling along the control arcs. A node �res when control
tokens are present on all its control inputs.1 Upon �ring, a node computes a result based
on data values bound to its data inputs, binds the result to its data outputs, and propa-
gates control tokens to its control outputs. In correct dual graphs, control will only appear
on control inputs if corresponding data inputs have been produced. It is the task of the
compiler to ensure this. As shown in Figure 2.2, there are eight types of node: simple, join,
switch, label, merge, outlet, inlet and constant nodes.

JOIN

NODES

L

LABELSWITCH

SWITCH
INLET 

INLET

1.0

CONSTOUTLET

IFETCH

MERGESIMPLE

ADD

Figure 2.2: Dual Graph Nodes. (Arcs: dash = data, solid = control, curly = dependence)

� Simple nodes: All the arithmetic and logic operations are described by simple nodes.
A simple node has a single control input and a data input for each operand. It has
a single control output port (the successors) and typically a single data output port

1The merge nodes are the only exception to this rule
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(the result). When control passes to a simple node, it reads the value bound to its
data inputs, performs its operation, binds the result to the data outputs and produces
a new token on the control output arcs.

� Joins: A join synchronizes control paths; it has multiple control inputs and a single
control output port. This node will pass a control token to its control output once
every control input has received a token.

� Switches: A switch has a control input and a data input called the predicate. A
switch will pass control on to one of its control outputs depending on the value of the
predicate.

� Merges: The merge has multiple matching input sets, each with a control input
and zero or more data inputs. The output ports have the same topology. Merge
complements the switch by steering control from any one of the control inputs to a
single control output. Thus it has a special �ring rule and is the only node which is
not strict in all of its control inputs. Additionally, the merge uni�es the corresponding
data inputs to its data outputs, i.e. data is bound to the output name. In the �nal
code generation this may require moves.

� Labels: A label has one control input port and one control output port. It is used
to indicate that the adjacent nodes must be in distinct threads i.e., it represents a
separation constraint. (In generating dual graphs, a label is placed on each output of
a switch, reecting the fork-based control primitives in TAM.)

� Outlet nodes: Operations that send messages or initiate requests are described by
outlet nodes. These have an e�ect external to their code block. An outlet has a single
control input, a data input for each operand, and a dependence output connecting it
to inlet nodes.

� Inlets: Inlet nodes receive messages, including arguments, values returned from a call,
and responses to split-phase I-structure operations. An inlet may have a dependence
input; it has a control output and zero or more data outputs. An inlet has no control
inputs. It generates control and data as a result of some external message. An inlet
represents a compiler generated message handler. It receives values corresponding to
the data outputs and passes control to the operations connected to its control outputs.
Usually its dependency input is connected to the dependency output of a node that
sends the request (e.g. an IFETCH). The inlet then represents the answer coming
back.

� Constants: Constant nodes represent constants. They have only a data output and
neither a control input nor a control output, since their value is known at compile
time.

Each node can have associated properties. Besides the opcode, the most important is
whether a node is `side-e�ecting' or not. Sends and I-Stores are examples of side-e�ecting
nodes; the e�ects are not represented directly in the graph.

We now discuss in more detail what dependence arcs represent. They are used to
associate a requester (e.g. an I-Fetch) with all of its local receivers (Inlets). This relationship
between requester and receiver is shown in Figure 2.3, using the example of an I-fetch
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connected to an Inlet. When issuing the request, the I-fetch speci�es what I-structure
element to fetch, where the result should be placed and what subsequent computation
should be started. This is achieved by naming the receiving inlet which is the message
handler that knows where to store the data and what computation to start. The I-structure
handler will send the data value back to the inlet. Therefore, dependence arcs represent
both a special form of control and data arc. It represents the data send over the network and
also speci�es indirect control: the receiver will execute (but not necessarily immediately) as
a consequence of sending of request. The partitioning stage of the compiler makes use of the
control information in dependence arcs to eliminate redundant control arcs. Code generation
needs the data information, the name of the receiving inlet is one of the requester's operands.

INLET 

IFETCH

I-STRUCTURE

HANDLER

Figure 2.3: Dependence arcs connect requesters to receivers.

2.2 Generation of dual graphs

Dual graphs are generated by expanding dataow program graph instructions into equiva-
lent dual graphs. This is a local transformation and can be described by giving the expansion
rules for the individual program graph nodes. Program graphs are a hierarchical graphical
intermediate form and described in [Tra86]. The lowest level is represented by basic op-
erations. Larger programs can be built up using program graph encapsulators, including
conditionals, loops, function de�nition, and application. The meaning of program graphs
is given in terms of a dataow �ring rule, so control ow is implicitly prescribed by the
dynamic propagation of values.

Program graph arcs carry tokens which always represent both a data value and control.
Sometimes, as in the case of signals and triggers, we are only interested in the control
component. Often, the control information carried by a token is redundant, as the example
in Figure 2.4 shows.

Here the control information between b and d is redundant since we know that b is also
needed to compute c. With the expansion of program graphs into dual graphs, program
graph arcs will be represented by two separate arcs: a data arc and a control arc. This
allows us to to eliminate them separately if one of them is not necessary. In the previous
example, we could have identi�ed and eliminated the redundant control arc from b and only
retained the corresponding data arc, without having changed the semantics of the original
program. Note that, program graph arcs are never transformed into dependence arcs, since
those only appear inside a program graph node.
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c = a + b;

d = c * b;

Figure 2.4: Example with redundant control arc.

After presenting the expansion of the basic program graph nodes, we will show the
expansion of more complicated encapsulators: conditional and loop encapsulators, function
de�nitions and applications. Finally, we will show how the program graph node expansions
are combined to get a single dual graph.

The description of the expansion rules is quite long and can be skipped. The casual
reader can continue with the �nal section which presents the dual graph expansion for our
little lookup example.

2.2.1 Basic Operators

The expansion of basic unary and binary operators is straightforward as shown in Figures
2.5 and 2.6. The program graph instructions are represented by the grey area; the nodes
and arcs inside are the dual graph equivalent. The inputs and outputs of the program graph
nodes are shown with their names. Basic program graph nodes are strict in all their inputs.
They �re when a token arrives on all inputs.

As can be seen in the case of the unary operation, an arc at the program graph level
will usually be represented by two arcs at the dual graph level. In the case of the binary
instruction, a control arc will be connected from each of the program graph inputs to a join
node which will be connected to the control input port of the dual graph operator. This
instruction will be executed once control has arrived on both control inputs, thus ensuring
that the operands bound to the two data arcs are valid. Then the result is computed, bound
to the data output port and control is passed to the control output port.
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UN_OP
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Figure 2.5: Dual graph expansion for unary instructions.

BIN_OP

Input.0 Input.1

Output

BIN_OP

Figure 2.6: Dual graph expansion for binary instructions.
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2.2.2 Literals

A literal program graph node, as can be seen in Figure 2.7 has only a single trigger input and
an output for the value. When token arrives at the trigger input, the program graph node
will produce a token containing the constant at its output. In the dual graph representation
the input will be directly connected to the output by a control arc. The literal will be
represented by a constant node which has only a data arc going to the program graph
output.

CONST

Trigger

Output

CONST

Figure 2.7: Dual graph expansion for literals.

2.2.3 Conditional

The translation for the conditional encapsulator is shown in Figure 2.8. Depending on
the value of the token received at the predicate, the program graph conditional steers the
tokens received at the data inputs either to the \then" side or to the \else" side. It also
merges the results from the two sides into the output. The program graph conditional is
only strict in the predicate, so it must be possible for one input to propagate through the
conditional before other inputs have arrived. Therefore a switch node is needed for each
input and a merge for each output. A join is placed in front of each switch to synchronize
the corresponding input with the predicate. Since data and control ow are separated, the
data will not be steered by the switch, as it is the case in the similar dataow operation.
The data arcs will go directly around the switch to the corresponding uses. Separating
the control ow from the data ow, shows for all uses of values where they were produced.
The task of the merge nodes is to pass control on from one of its inputs to the output of
the conditional. It will also bind the values of the corresponding data inputs to the data
outputs.

2.2.4 Loop

Figure 2.9 shows the expansion of a loop program graph encapsulator into a 1-bounded
loop. The loop is a program graph schema for the while loop and encapsulates a predicate
and a body. The predicate determines when the loop terminates, while the body will be
executed for every iteration that the predicate evaluates to true. The loop has n circulating
loop tokens. They enter at the beginning the loop inputs and go to the loop predicate.
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Figure 2.8: Dual graph expansion for conditionals.
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Figure 2.9: Dual graph expansion for the loop encapsulator.
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Depending on the value of the predicate they will either be routed to the loop outputs (if
the predicate evaluates to false), or to the loop body. Here the token for the next iteration
will be computed. External variables used inside the predicate or the loop body, but which
are not changed, are called loop constants. They enter through the loop constant inputs
and go to the corresponding predicate and body inputs.

A loop is strict in all its inputs, i.e. an implementation is allowed to wait until all the
loop inputs as well as all loop constants have arrived before starting it. A join synchronizes
all these inputs. Control is then passed on to a merge, that will start the evaluation of the
predicate. Data arcs connect the loop inputs to one side of the arcs, while the loop constant
inputs are directly connected by data arcs to the predicate and body. The result of the
predicate is connected to a switch, which decides whether to pass control on to the the
loop body or whether to end the loop. All outputs of the loop body will be synchronized
by another join which feeds the other control input of the merge. The merge also serves to
unify the names of the inputs to the loop with the corresponding outputs of the loop body.
This is being represented by the data arcs connected to each side.

2.2.5 I-Structure Operations

Figures 2.10 and 2.11 show the expansion for I-structure operations. I-fetch is used to fetch
an element from a I-structure, while the I-store stores a value into an I-structure element.
It might take a long time before the result from an I-fetch is available. The element might
be fetched from some distant processor, or the fetch may be deferred waiting for the value
to be stored. An I-fetch �rst needs to synchronize on both the structure pointer and the
o�set before initiating the request. The result of an ifetch returns into an inlet. Since
the ifetch is a long latency operation, the inlet must be in a di�erent thread. This is
indicated by the dependence arc connecting these instructions.

IFETCH

Structure Subscript

Output

IFETCH

INLET 

Figure 2.10: Dual graph expansion for I-structure fetch.
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Figure 2.11: Dual graph expansion for I-structure store.

For the I-store operation, the join �rst synchronizes on the structure pointer, the o�set,
and the value to be stored. In our execution model, we do not expect the receiver to signal
the store, therefore the control output of the istore is directly connected to the the signal
output of the program graph node. For machines that allow messages to get out of order,
it might be necessary to acknowledge the store. In this case the expansion of the I-store
would look similar to the I-fetch; the istore would be connected by a dependence arc to
an inlet which would receive the acknowledgement signal.

2.2.6 Signal tree

Our expansion to dual graphs starts with program graphs that have already been enhanced
with triggers and signals. Triggers are necessary to start pieces of computation that do
not receive some input. That is, for example, why program graph constants have a data
input. Signals are used to detect when all computation in a region of code has terminated.
Usually many individual signals will be connected to a signal tree. A signal tree serves
to synchronize all inputs and produce a signal on the output. Since the program graph
arcs feeding this instruction carry only control and no data information, our expansion will
connect all inputs to a join using only control arcs (see Figure 2.12). The control output
of the join is connected to the output of the signal tree.

SIGNAL
TREE

Signal.0 Signal.n

Output

.  .  .

Figure 2.12: Dual graph expansion for signal trees.
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2.2.7 Function De�nition

Id90 allows functions to be non-strict in their arguments. Therefore it must be possible to
receive each argument independently and start the computation dependent on the argument.
A function may also need to be started without receiving any argument, therefore the
program graph node has a special trigger output. Id90 provides higher order functions and
allows the programmer to build closures by applying a function to some, but not all, of its
arguments. A closure representation consists of the name of the procedure to be invoked, an
integer indicating how many arguments must still be provided before the arity is satis�ed,
and a �eld containing all the arguments collected so far. The last �eld is also called the
chain. In Id90 a function can return only a single result.

DEF

Trigger Argument.n Argument.1.   .   . 

Signal Result

RETURN

RELEASE

1

0

INLET 0

Trigger

chain
detupling

INLET 2 INLET n+1

Chain Argument n Argument 1

INLET 1

Figure 2.13: Dual graph expansion for function de�nitions.

The dual graph expansion for function de�nition program graph encapsulators is shown
in Figure 2.13. For a function with n arguments, n+2 inlet nodes are needed for the dual
graph representation; n are used for the arguments, the other two for the trigger and for the
chain. A separate trigger inlet is needed because the function might have to be started
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Figure 2.14: Dual graph expansion for chain detupling.
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2    prev chain
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Figure 2.15: Closure Structure.

before any argument is provided. The chain that collects all arguments except the last will
be sent to a special chain inlet, while the last argument will be directly sent to its inlet.
There the chain will be \detupled" to get all the other arguments. Detupling the chain,
which is shown in Figure 2.14, involves fetching both the argument and the next chain
pointer until all arguments are available. Figure 2.15 shows our convention for building
closures.

In our calling and argument passing convention the trigger for a function will be received
by inlet 0, the chain by inlet 1, and the last argument by inlet 2. All the other arguments
from n�1 down to the �rst will be received by inlet 3 through inlet n+2. So the argument i
is received by inlet n + 2� i. Each of the argument inlets de�nes a data value; it also has
to start the computation dependent upon this value. Therefore both a data and a control
arc will be connected to the corresponding argument port of the program graph.

The return instruction will send the result back to the caller. After synchronizing on
the return value as well as on the signal, the function can release its frame and send a
completion signal back to its caller.

2.2.8 Function Application

Figure 2.16 shows how a caller invokes a function. The inputs to the program graph node
apply are the function (which could be any closure) as well as an argument. The outputs
are the result and the signal. The apply �rst needs to test whether the arity of the function
is already satis�ed. Depending on the test it would either need to build up a new closure
or, when the arity is satis�ed, allocate a frame for the function. The if is a program graph
conditional and will be expanded by the rule presented earlier. Allocating a frame, possibly
on a di�erent processor, is a split phase operation. The frame pointer will be received by
an inlet and then the caller will send both the chain as well as the last argument to the
corresponding inlets. The called function will return its result and the signal into the two
inlets. Allocating the frame will automatically cause a trigger to be sent to the function
trigger inlet. Since the return of the values are only known to be a result of the frame
allocation, a dependence arc connects the frame allocation node to the result and signal
inlet.

In the case where the compiler knows what function is to be invoked and the producers
of its arguments a special program graph encapsulator called direct apply will be produced.
As can be seen in Figure 2.17 the caller �rst needs to allocate a frame and then send all
the arguments directly into the corresponding inlet of the function. The function may still
be non-strict in these arguments, therefore it is necessary to separately synchronize each
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Figure 2.16: Dual graph expansion for function application.
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argument with the reception of the frame pointer. As in the previous case, result and signal
will be received by an inlet and a dependence arc connects the frame allocation node to
these inlets.

FALLOC

INLET 

INLET INLET 

2

SEND .  .  .  . 

n +1

SEND

DIRECT
APPLY

CBname Argument.1 Argument.n.  .  .  .

Signal Result

Figure 2.17: Dual graph expansion for direct apply.

With strictness analysis it might be possible to prove that some arguments are strict
with respect to each other | they could be grouped together, making sending as well as
receiving them cheaper. In general, this might require that we generate specialized function
code blocks; we did not implement this optimization in our compiler.

2.3 Combining Dual Graph Expansions

Combining dual graph expansions, as in Figure 2.18, produces the complete dual graph
equivalent to the original program graph. First, all program graph nodes are individually
expanded into the dual graph equivalent, following the rules presented in the previous
section. After this step, each program graph output port can have at most one control
arc and one data arc feeding it. Now dual graph arcs emanating from program graph
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Figure 2.18: Combining dual graph expansions.

inputs are re-connected so that they directly emanate from the corresponding dual graph
node (following backwards the corresponding program graph and dual graph arcs). All
dual graph arcs still feeding program graph outputs are then eliminated, the previous re-
connection step has made them unnecessary.

2.4 Example

The program graph for the lookup example from Figure 1.2 (page 9) includes a function
DEF node, enclosing a LOOP node, enclosing an IF node, as shown in Figure 2.19.
Figure 2.20 shows the corresponding dual graph representation, using a 1-bounded loop
form, i.e. where only one iteration is active at once[Cul90]. The compiler actually produces
a slightly more complicated dual graph; we have omitted the trigger inlet and its arcs. The
four arguments enter at the inlet nodes at the top of the graph. The control outputs are
joined before arriving at the merge. The function is strict in all its arguments. The data
arcs for l and h connect to the merge nodes at the top of the loop. The other inlets are
connected directly to their uses within the loop and the enclosed conditional, as are the data
outputs of the loop merge. By separating the control and data arcs, the ow of information
is not obscured by control constructs. In each iteration, control is directed to the loop body
or exit based on the loop predicate. Within the body of the loop, the value of m is calculated
and used in an I-fetch operation. The result of the I-fetch will eventually arrive at the inlet
indicated by the dependence arc. This inlet feeds the conditional predicate, which controls
three separate switches, one for each data value used in the conditional. The three switches
cause the correct values to be routed to the merges to produce the next iteration values of l
and h. The third merge has only control inputs and serves to indicate that all the switches
have executed. Control is joined once again at the bottom of the loop and directed to the
loop merge.

The dual-graph for an Id90 program could be executed directly, but the number of
dynamic synchronizations per useful operation is very high. The compilation goal is to
minimize this cost by employing the cheapest form of synchronization available in the syn-
chronization hierarchy provided by TAM. The cheapest form of synchronization is the se-
quencing of instructions in a thread; here synchronization is implicit in the static ordering.
Identifying portions of the dual graph that can be executed as a thread is called partitioning.
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Figure 2.19: Program graph for lookup example.
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Chapter 3

Partitioning

The fundamental step in compiling a lenient language for a machine that executes instruc-
tion sequences is partitioning the program into statically schedulable entities[Tra88]. Limits
on partitioning are imposed by dependence cycles that can only be resolved dynamically.
In Id90 these arise due to conditionals, function calls, and accesses to I-structures. Parti-
tioning for TAM involves identifying portions of the dual graph that can be executed as a
TAM thread, i.e., a partition must be linearizable with synchronization and control entry
occurring only at the top. The number of entries to a thread must be statically determined.
In the context of the dual graph representation, partitioning can be accomplished using
only the control and dependence arcs, ignoring data arcs and the constant nodes which
carry only data information. Assignment of storage to output ports is deferred until after
partitioning, the critical information is retained in the data arcs.

De�nition 1 (TAM Partition) A TAM partition is a subset of dual graph nodes and
their incident control and dependence edges. In a valid partitioning, partitions are node-
disjoint and cover the graph. A partition consists of an input region containing only inlet,
merge, and label nodes and a body containing simple nodes, outlets, switches and joins. The
outputs of a partition are its outlet nodes and all leaving control arcs. Control edges that
connect two partitions belong to both partitions.

Figure 3.1 shows a partition with four nodes in the input region and six nodes in the
body.

De�nition 2 (Safe Partition) We call a TAM partition safe if

1. no output of the partition need be produced before all inputs to the body are available,

2. when the inputs to the body are available, all nodes in the body are executed, and

3. no arc connects a body node to an input node of the same partition.

The �rst property says that body of the partition can be treated as strict, i.e. it is
safe to wait for all inputs to arrive before executing any instruction of the partition. The
second says that there is no conditional execution within a partition; conditional execution
occurs only between partitions. The third implies that a partition is acyclic and can be
linearized in a manner consistent with the control arcs, since all cycles include a switch and
a merge. Also, all dependence arcs must cross partitions. Finally, the entry count for any
valid execution of the partition is constant. This implies the following.
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Figure 3.1: Partition example.

Lemma 1 A safe partition can be mapped into a TAM thread.

Figure 3.2 gives three examples with unsafe partitions. In the �rst example an I-fetch
and the receiving inlet were placed in the same partition; this violates the third property of a
safe partition. The second example has conditional execution within a single partition, thus
violating the second property. The last example has a cyclic dependence and violates the
�rst property of a safe partition. While the �rst two examples could have been partitioned
correctly, it is impossible to do so for the third example. This last example would correspond
to the code a = a + b; which would deadlock in Id90. Throughout the rest of this chapter,
we will assume that we only need to �nd safe partitions if the programs can be partitioned
safely in the �rst place.

Our partitioning algorithm starts by �nding small safe partitions. We have four dif-
ferent ways of creating these basic partitions: simple partitioning, dataow partitioning,
dependence sets partitioning and dominance sets partitioning. These basic partitions are
then iteratively merged into larger partitions by applying simple merge rules. The merge
rules will ensure that the newly formed partitions are also safe. We �rst present a small
example to illustrate the partitionings schemes, before introducing them in a formal way.

3.1 Partitioning a small example

The small program

c = a + b; d = a * b;

is used to illustrate the di�erent partitioning schemes. Figure 3.3 shows the dual graph
(only the control arcs are shown) for this piece of code together with the various partitioning
possibilities.
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Figure 3.2: Unsafe partitions.

Simple partitioning is the most trivial form of partitioning, here each node is placed
into its own partition, resulting in a total of six partitions. This directly yields a safe TAM
partitioning, but its dynamic synchronization overhead is large.

Dataow partitioning recognizes the fact that unary operations never need dynamic
synchronization. In this scheme the inlet and sync nodes start a new partition. The add
and the multiply nodes are placed into the partition of their control predecessor, we thus
get four basic partitions.

Far more powerful is dependence sets partitioning, which �nds safe partitions by grouping
together nodes that depend on the same set of input nodes (inlets, merges and labels). A
node u depends on an input node v if there exist a direct control path from v to u. For our
example, dependence sets partitioning produces three basic partitions. We have annotated
each partition with its dependence set. The four bottom nodes depend on exactly the same
inputs, they are therefore placed into the same partition. By only placing nodes with the
same dependence sets into the same partition, no node can produce a side-e�ect on another
(because it would then also produce a side-e�ect on itself).

Dominance sets partitioning �nds safe partitions by grouping together nodes which
dominate the same set of output nodes. A node u dominates an output node v if there
exist a direct control path from u to v. This partitioning scheme also ensures that there
are no cyclic dependencies within a partition. Since all nodes of a basic partition dominate
the same outputs, under no circumstances can one node have a side-e�ect on another. We
have indicated the dominance sets in our example. With dominance sets partitioning, the
top two nodes can go into the same partition since they dominate the same set of outputs:
c and d.

After basic partitioning we can apply merge rules which ensure that the merged partition
is also safe. A partition with a single control predecessor can be merged up if no separation
constraints are violated. A partition can be merged down, if it feeds strictly a single successor
partition. We will present the merge rules in more detail later.

In our example, starting with simple partitioning, we can merge up the add and multiply
node into the partition of the corresponding control predecessor. This results in the same
safe partitioning as with dataow partitioning. At this stage no further merge rule can
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Figure 3.3: Partitioning c = a + b; d = a * b;
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be applied. Starting with dependence sets partitioning, we can apply the \merge down"
rule and �nally obtain a single safe partition containing the six nodes. Similarly, starting
with dominance sets partitioning, we can apply the \merge up" rule. This will also pro-
duce a single partition. As this example shows, the quality of partitioning after merging
depends strongly on basic partitioning. The power of dependence sets and dominance sets
partitioning lies in the fact that they can work across di�erent fan-out or fan-in trees.

3.2 Basic Partitioning

We now present the basic partitioning schemes and partition merging formally.

3.2.1 Simple Partitioning

Simple partitioning is the most trivial form of partitioning, here each node is placed into its
own partition. This directly yields a safe TAM partitioning, but dynamic synchronization
overhead is large.

3.2.2 Dataow Partitioning

Dataow partitioning recognizes the fact that unary operations never need dynamic syn-
chronization. In this scheme joins, inlets, merges and labels start a new partition. Simple,
switch and outlet nodes are placed into the partition of their control predecessor. Dataow
partitioning also yields safe TAM partitions.

3.2.3 Dependence Sets Partitioning

Far more powerful is dependence sets partitioning, which is based on a variant of Iannucci's
method of dependence sets [Ian88a].

De�nition 3 (Dependence Set) The dependence set for a dual graph node u is the set
of input nodes i (inlets, merges and labels) on which it depends, i.e. there exists a control
path of length zero or greater from i to u that does not go through any other input node.

The algorithm for computing the dependence sets �rst assigns each input node the
dependence set containing only itself; for all other nodes the dependence set is the union of
the dependence sets of the control predecessors. Our de�nition will not allow dependence to
cross switches, since every control output of a switch is connected to a label, thus indicating
that they must be in a di�erent partition. Stronger notions of dependence could be employed
that would capture dependence across conditionals.

Having computed the dependence sets for all nodes, we can then �nd safe partitions by
grouping together nodes that depend on the same set of input nodes. This guarantees that
there are no cyclic dependences within a partition. For example, all nodes that depend only
on a particular inlet will be grouped with the inlet, and similarly for merges and labels.

Algorithm 1 (Basic Partitioning using Dependence Sets)

� Compute the dependence sets for all nodes

� Put all nodes with the same dependence set into the same basic partition.
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Lemma 2 All basic partitions produced by dependence sets partitioning are safe TAM par-

titions.

Proof: We have to show that each basic partition satis�es the three properties of a safe
partition. Assume that an output of the partition needs to be produced before all inputs are
available. All nodes in the the partition depend on all of the inputs (since they all have the
same dependence set). This implies that the node that produces this output also depends
on the input. Thus the node depends on itself and no safe partition can be found. We
disallowed this case, the basic partition thus satis�es the �rst property of safe partitions. It
also satis�es the second property since all arms of conditional execution are marked with a
label. Dependence cannot propagate across inlets, labels, and merges. Also, since we have
only structured dual graphs where a circular dependence must go through a merge and a
switch we satisfy the third property. 2

3.2.4 Dominance Sets Partitioning

Analogous to dependence sets partitioning, we can �nd safe partitions by grouping together
nodes which dominate the same set of output nodes.

De�nition 4 (Dominance Set) The dominance set for a dual graph node u is the set of
output nodes o (outlet nodes and nodes directly feeding a merge or label) it dominates, i.e.
there exists a control path of length zero or greater from u to o that does not go through
any input node except itself.

The algorithm for computing the dominance sets �rst assigns each node that is a direct
control predecessor to a merge or label node the dominance set containing only itself. For all
other nodes the dominance set is the union of the dominance sets of the control successors
plus itself if it is an outlet node.

Grouping all nodes that dominate the same set of output nodes into the same partition
also ensures that there are no cyclic dependencies within a partition. Since all nodes of a
basic partition dominate the same outputs, under no circumstances can one node have a
side-e�ect on another.

Algorithm 2 (Basic Partitioning using Dominance Sets)

� Compute the dominance sets for all nodes

� Put all nodes with the same dominance set into the same basic partition.

Lemma 3 All basic partitions produced by dominance sets partitioning are safe TAM par-

titions.

Proof: Assume again that an output of the partition needs to be produced before all inputs
are available. All nodes in the partition dominate the same set of outputs. This implies that
the node that need this input also dominates it, which was disallowed. The basic partition
thus satis�es the �rst property of safe partitions. It also satis�es the second property since
all arms of conditional execution are marked with a label. All partitions satisfy the third
property due to the fact that dominance sets cannot propagate across merge and labels and
we only have structured dual graphs. 2
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Other possible basic partitioning schemes could identify regions of the graph that depend
solely on a single node (or dominate a single node.) These tree like regions will also create
safe partitions. Dependence sets partitioning (or dominance sets partitioning) will create
much large basic partitions, since they allow nodes that depend on (dominate) several nodes
to be grouped. Downward and upward trees will always be found by partition merging
discussed next.

3.3 Merging partitions

After basic partitioning, partitions will be merged into larger, but still safe, partitions by
iteratively applying one of the following two merge rules.

3.3.1 Merging up

\Merge up" rule: Two partitions � and � can be merged into a larger partition  if

� all input arcs to � come from �,

� � contains no inlet instructions, and

� no output arc from the body of � goes to an input node of �.

Figure 3.4 shows this case graphically. The arcs connecting � to � indicate that it is
necessary for � to execute before �. The �rst two points of the merge up rule imply that
this is also su�cient. The two partitions cannot be merged if � has an arc coming from
some other partition besides � or if it contains an inlet. In both cases it could be that �

or some output from � will cause a side-e�ect on this input or inlet. The last point of this
merge rule ensures that no separation constraint is violated.

alpha

beta

(no inlet)

gamma

Figure 3.4: Merge Up: A partition with a single control predecessor can be merged up if no
\separation constraints" are violated.

The astute reader will notice that this rule cannot be applied after basic partitioning,
since then all nodes in � would have the same dependence set as the nodes in � and the
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two partitions would already have been merged. Opportunities for this rule arise as a result
of merging down, discussed below.

Lemma 4 (\Merge Up") If � and � are safe partitions then the \merge up" rule will

produce a safe partition.

Proof: Assume that both � and � are safe partitions and that the merge rule conditions
apply. All inputs from � come from �, it is therefore valid for the merged partition to
produce no output until all inputs to � are available. � will always be executed if � is.
Otherwise � must be one side of a conditional, but then � would have contained a switch
with an output to a label in � and the \merge up" would not be applicable. 2

3.3.2 Merging down

\Merge down" rule: Two partitions � and � can be merged into a bigger partition  if

� all output arcs from � go to �,

� � contains no outlet instructions, and

� no output arc from the body of � goes to an input node of �.

This situation is shown in �gure 3.5. The �rst two points ensure that � has no side-e�ect
on an input of �. The last point ensures that no separation constraint is violated.

alpha

beta

(no outlet)

gamma

Figure 3.5: Merge Down: The results of a partition feed strictly into a successor, so it can
be merged into the successor.

Lemma 5 (\Merge Down") If � and � are safe partitions then the \merge down" rule

will also produce a safe partition.

Proof: Assume � and � are safe partitions and that the merge down rule can be applied.
Since � contains no outlets and no output of the partition � must be produced before all
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inputs to the body of � are available, � cannot produce an output that inuences any of
the inputs to � other than those from �. The last condition ensures that no separation
constraint will be violated in the merged partition 2

As stated, the two merge rules allow two partitions to be merged even if an output arc
from an input node in partition � goes to an input node in partition �. The three possible
con�gurations where this could occur are shown in Figure 3.6. The �rst con�guration arises
with an I-fetch in a conditional, the second case when one side of a conditional does not have
to perform any computation, and the last case with nested conditionals. In all three cases
the merge must be at the beginning of a thread. But because the inlet, label and merge
also indicate the start of a new thread, and because they denote no real computations, we
can merge the two partitions.

INLET 

L

Figure 3.6: Con�gurations where merging could occur.

L

MOVE

INLET 

MOVE MOVE

Figure 3.7: Inserting a move forces to split the partition.
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Care is needed at a later stage, in frame slot assignment, when mapping partitions into
TAM threads. The merge does not only serve to combine control, but also as a name
uni�er. If the frame slot assignment is unable to statically assign a data input of the merge
the same name as the corresponding data output, a move instruction needs to be inserted
as shown in Figure 3.7. The move should only be executed on the side of the conditional
where it was inserted, thus it can not be placed into a partition together with the merge.
The consequence is that if the frame slot assignment has to insert a move it also needs to
separate the partition into two. This does not a�ect the correctness of partitioning; the
�nal partitioning will still be safe.

We can now summarize our partitioning algorithm:

Algorithm 3 (Partitioning based on dependence sets)

� Compute the dependence sets for all nodes

� Put all nodes with the same dependence set into the same basic partition.

� Iteratively merge partitions into larger partitions by applying one of the two merge

rules.

The results of the previous lemmas directly imply the following correctness theorem of
our partitioning algorithm:

Theorem 1 (Partitioning Algorithm) The partitioning algorithm will produce only safe

partitions.

Traub showed that optimal partitioning is NP-complete. Our algorithm is merely a
heuristic, since starting with the basic partition, it will iteratively merge two partitions
as long as a merge rule can be applied. If mutually exclusive merge rules are applicable
at some point, one is picked arbitrarily. Partitioning decisions imply trade-o�s between
parallelism, synchronization cost, and sequential e�ciency. However, given the limits on
thread size imposed by the language model, the use of split-phase accesses, and the control
paradigm, we simply attempt to make partitions as large as possible and try to minimize
the synchronization cost. The number of control tokens required to enable a partition is the
entry count for the corresponding thread. Each entry will incur the cost of decrementing
the entry count, but only the last will enable the thread.

Lemma 6 Applying one of the partitioning merge rules will never increase the \synchro-

nization cost".

Proof: The synchronization cost for the merged partition is proportional to the number of
control arcs that enter the body from other partitions plus the number of nodes from the
input region that have control arcs going to the body. This number can never be higher
than the sum of the synchronization costs of the two unmerged partitions 2

3.4 Small examples

The small examples given in Figures 3.8 and 3.9 show that dependence sets and dominance
sets partitioning may �nd di�erent basic partitions, and thus the merging will also produce
di�erent results. In the �rst example dependence sets partitioning and merging will produce
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Figure 3.8: Example where dependence sets partitioning works better than dominance sets
partitioning.
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After Merging
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{x,y}
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Figure 3.9: Example where dominance sets partitioning works better than dependence sets
partitioning.

only two �nal partitions, while dominance sets partitioning with merging ends with four
partitions. In the second example, the outcome is reversed.

It is possible to combine both forms of basic partitioning. Care must be taken though,
as the example Figure 3.10 shows. Here both forms of partitioning will produce the optimal
result, two partitions. Both approaches have correctly identi�ed that the I-store may have
a side-e�ect on the inlet c. Therefore it is not permissible to put these two nodes together
into a partition. It is only possible to combine both forms of basic partitioning where they
do not contradict one another, i.e. if one partition completely overlaps partitions from the
other basic partitioning, then the larger partition can be taken. The combined result will
still produce a safe partitioning. In this example it is possible to start with dependence sets
partitioning, and then take from dominance sets partitioning the information that inlet a
and b can be placed together in a single partition.
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Figure 3.10: Dependence sets and dominance sets partitioning.
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3.5 Redundant Arc Elimination

The goal of redundant arc elimination is to reduce synchronization cost. In this step we
eliminate redundant control arcs that go between partitions, and thereby decrease the entry
count of the target partition. Perhaps more importantly, redundant arc elimination may
enable additional partition merges. Thus, after each partition merge the incident arcs to
the new partition are checked for redundancy.

One of the bene�ts of dual graphs is that they allow the separate elimination of unnec-
essary control and data arcs. Partitions, which at this point are still in a partial order, are
linearized at a later stage to create sequential threads. With linearization, many control arcs
become redundant. We do not care about redundant control arcs within a partition. Only
the elimination of redundant arcs crossing partitions can improve the quality of partitioning.

De�nition 5 (Redundant Arc) A control arc from partition u to v is redundant if there
exists another unconditional control path from u to v.

A trivial case of this is where multiple arcs cross from one partition to the body of an-
other. Redundant control arcs can be eliminated, since they carry no new synchronization
information. This transformation is shown in Figure 3.11.

Figure 3.11: Redundant Arc Elimination Rule.

3.6 Switch and merge combining

Two switches that are in the same partition and are steered by the same predicate can be
merged into a single switch. This optimization attempts to minimize the control transfer
overhead where the full power of lenient conditionals is not required. In essence, it is a more
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complex form of redundant arc elimination. As shown in the top part of Figure 3.12, the
control inputs to the switch are joined and the switches and labels are merged into a single
switch with a label for each of the combined control outputs. Observe that the data arcs
are unchanged by the transformation.

SWITCH

L L L L

SWITCH SWITCH

LL

Figure 3.12: Switch and Merge Combining.

Merges that are in the same partition and are derived from the same conditional, i.e.,
are determined by the same predicate, can be combined into a single merge that steers the
union of the data arcs, as shown in the bottom part of Figure 3.12. This optimization serves
primarily to reduce synchronization costs by enabling further merging of partitions within
the arms of the conditional.

3.7 Partitioning the lookup example

To illustrate the partitioning process, we consider the lookup example from Figure 2.20.
Grouping nodes with the same dependence set, we get twenty basic partitions. By iteratively
merging partitions using the two rules, we end with twelve partitions as can be seen in
Figure 3.13. The lookup example contains three redundant arcs, connecting to the joins

above the three switches. One comes from the control output of the div, the two other
from the loop body label. These are redundant since the dependence arc between the
ifetch and the corresponding inlet guarantees that the partition with the ifetch will
always be executed before the partition with the three switches. The three switches can
be combined into a single switch, replacing the three labels on each side with a new label.
Similarly, the three merges can be combined, yielding the dual graph shown in Figure 3.14.
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Figure 3.13: Control Graph for lookup after merging.
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Figure 3.14: Final Dual Graph for lookup after merging, redundant arc elimination and
combining.
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Chapter 4

Thread Generation

To produce TAM code, the dual graph partitions must be ordered, each must be linearized
to form a thread, and data outputs must be replaced by speci�c registers and frame slots,
so that subsequent operations can use them. This is done by the following steps:

1. Lifetime and quantum analysis,

2. Data type determination,

3. Instruction scheduling,

4. Frame slot and register assignment and coloring,

5. Move insertion (name unifying at merges),

6. Entry counts determination,

7. Fork insertion, and

8. Thread ordering

There can be substantial interaction between instruction scheduling, frame slot and
register assignment as well as the move insertion step. We will describe these steps in more
detail in the subsequent sections.

4.1 Lifetime analysis

The compiler �rst determines whether a value can be stored in a register or whether it needs
to be placed into a frame slot. This is done by analyzing the lifetime of a value. The lifetime
of a result is de�ned as the time from when it is produced until the last consumer uses it.
The lifetimes of individual TAM variables can easily be determined from the data arcs of
the dual graph. If all targets are in the same partition as the source node, the lifetime is
limited to a single thread and the value can safely be placed in a register.

However, the TAM scheduling paradigm requires that when a frame is made resident,
threads are executed until no enabled threads remain. A result can safely be stored in
a register if no code-block context swap can occur in its lifetime: Values can be carried
in registers across threads as long as the threads execute in the same quantum. We use
quantum analysis to determine statically what threads will be executed together. The
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register assignment rule, using the quantum information, can be restated as follows: A data

value can safely be placed in a register if none of its corresponding data arcs cross a quantum

boundary.
Dynamically, quantum sizes may actually be much larger than that predicted by static

analysis. This might be the case, for example, because a potentially very long latency
IFETCH operation has been served rapidly, so that the threads that use this value can also
be executed before leaving the code-block activation. A speculative register assignment
would try to guess these larger scheduling quanta and then assign registers accordingly.
In the case that the \guess" turns out to be wrong, the registers need to be saved before
leaving the current activation and restored on re-entry. TAM provides support for this by
allowing the compiler to specify threads that will be executed at the end and the beginning
of a code-block activation. In this way, a compromise can be struck between fast context
switching and utilization of processor resources on a case-by-case basis. This is supported
in the machine language for TAM, but is not currently exploited by the compiler. This area
of speculative register assignment is a subject for future research.

4.2 Determining Types

TL0, the language implementing TAM de�nes many di�erent types, including integers,
oating point numbers, characters, booleans, frame pointers, I-structure pointers, synchro-
nization variables, threads, and inlets. The types were deliberately kept abstract to make
this intermediate form as portable and machine independent as possible. The name-spaces
for registers and frame slots are thus kept separated for each data type. The task of the
compiler is to try to determine for each value in the dual graph the most specialized data
type possible, since this will usually correspond to the smallest size usable.

To achieve this, each data input and output port has an associated type slot which is
set when the dual graph is generated. For most operations, the type of their inputs and
outputs is known statically. For example, we know that for binary integer operations both
inputs, as well as the output must be an integer. The type general will be used whenever
the compiler has no knowledge about the object. This type speci�es that the container size
must be at least as large as the largest of any size of the other types. If the output type is a
general, the compiler will be able to deduce a more specialized type in these two following
cases:

� If the output is used as a type other than general by another instruction, and this
instruction is always executed if the instruction belonging to the data output is exe-
cuted, then the output can be assigned the same type.

� If all inputs that use the output have the same type, then the output can be assigned
the same type.

The algorithm tries to narrow down the type of all outputs by following these rules.
Special care needs to be taken at merge nodes. After the type specialization step just
described, the types will be propagated up merge nodes in the following manner: If a data
output of a merge is of a type di�erent from general then all corresponding inputs must be
of the same type and this type can be propagated up. Then the �rst type specialization
step is performed again. Now types can be propagated down through merges. If all data
inputs to a merge are of the same specialized type, then this type can also be assigned to the
corresponding output. Finally we use the following rule to check whether the dual graph
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(and thus the corresponding program) is correctly typed, i.e. to �nd out if all outputs are
being used in a consistent way: For any data arc in the dual graph both the data output and

the data input must be either of the same type or one of them must be of type general.

4.3 Instruction Scheduling

At this point, the partitions within the dual graph are still a partial order and must be
linearized. Linearization inuences the lifetime of values and thus has a strong inuence on
the total register and frame slot requirements. Instruction scheduling might be done di�er-
ently for di�erent machines, depending on pipeline structure and register availability. For a
superscalar machine, for example, it might desirable to put many independent instructions
close to each other so that they can be scheduled together. We currently use a heuristic that
attempts to minimize the overlap of the lifetimes of values. Combined with graph coloring
for register assignment, this tends to minimize the storage used.

4.4 Frame slot and register assignment

In order to reduce the frame size and the number of registers required, we need to reuse
frame slots and registers for distinct data outputs that are guaranteed to have disjoint
lifetimes. This is done by constructing and coloring an appropriate interference graph. A
graph is constructed that contains a node for each value, and an edge between two nodes if
their lifetimes overlap. We construct one interference graph for each combination of storage
class (register or frame slot) and data type, since their name-spaces are kept separated in
TL0. Coloring these graphs so that all vertices connected by an edge have di�erent colors
gives a valid register and frame slot assignment. We use a simple graph coloring heuristic,
since �nding the minimum number is NP-complete.

Whereas in sequential languages the uncertainty in interference arises because of multiple
assignments under unpredictable control paths, in compiling Id90 to TAM the uncertainty
arises because of dynamic scheduling. The language is single assignment. TAM does not
specify the order in which concurrently enabled threads of a quantum will be scheduled.
For standard machines, it is convenient to implement fork by pushing a thread address
onto the stack. Hardware supporting TAM directly is likely to use a FIFO thread queue
to improve the performance of instruction prefetch. The compiler thus has to make worst
case assumptions when computing the lifetime of variables. If threads are interleaved in the
datapath, lifetime disjointness is even more reduced.

4.5 Move insertion: Name unifying at merges

A merge node has various control input ports, but only a single control output port. As-
sociated with each of these control ports is some number of data ports. The merge will
receive control on one of its control inputs. The task of the merge is then to read the values
bound the associated data inputs, bind them to the data outputs, and pass control on to
the control output.

We want to insure by this compilation step that the merges will have nothing to do
at execution time; they will just be pseudo-operations. We achieve this by assigning all
data inputs the same name (color) as their corresponding data outputs. The compiler has
to insure that for each control input, data port i will be assigned the same frame slot or
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register as the data port i for the control output. The reason is that with conditionals, both
sides should place the data values into the right location where it will later be used by the
output of the conditional. The same problem also occurs with loops. Here the compiler has
to place the loop variables at the bottom of the loop into the same location as they came
into the loop, which should also be the same place they are being used at the outputs of
the loop. Basically, this is a constraint imposed on the register coloring to use the same
color for each of the data ports. Whenever this cannot be achieved, move instructions are
inserted. When it is necessary to insert a move, the move will be placed into the same
partition as the corresponding control predecessor of the merge. If this predecessor is in
the same partition as the merge (i.e. the merge is directly fed by a label or merge), a new
partition must be created as was discussed in the partitioning chapter. Currently we try
to minimize the number of move instructions that need to be inserted. Therefore unifying
names at merges will be done before the actual coloring of register and frame slots discussed
in the previous section.

Identifying whether a move instruction needs to be inserted can be very tricky as the
following small examples show.

def max x y = if (x > y) then x else y;

The dual graph for the function max is shown in Figure 4.1. (It has been slightly simpli�ed;
the trigger inlet, for example, has been left out.) For this function, partitioning with merging
will produce exactly two partitions. Name uni�cation cannot assign the data inputs of the
merge to the same locations as the data output, since both x and y have an overlapping
lifetime. In this case, a move instruction was inserted on y's side. This allows us to assign
the data inputs to the merge the same color as its data output (they will all use the same
location as variable x). Inserting the move instruction has the consequence that the partition
containing the merge must be split into two. The move will only be executed on the \else"
side of the conditional, while nothing needs to be done on the \then" side.

The following loop example shows some additional di�culties that move insertion en-
counters:

def loop_ex x y =

{while (x < y) do

(next x, next y) = (x*y,x+y)

finally y};

The corresponding dual graph is given in Figure 4.2. In general, if a move needs to be
inserted at a loop, the algorithm tries �rst to insert it at the entry of the loop instead of
in the loop body, because usually the loop body will be executed more than once. In this
example, however, a move needs to be placed in the loop body. The problem is that the add
and multiply instruction need both the old values of x and y of the previous iteration, while
de�ning them for the next iteration. There is no way to avoid inserting a move instruction
if the add and the multiply are executed sequentially.

Name uni�cation at merges in this form is a problem unknown to compilers for con-
ventional imperative languages because they do not allow the formulation of parallel as-
signments (an exception being parallel let and do statements in Lisp). In conventional
languages it is up to the programmer to introduce the temporaries needed. It is this tem-
porary variable that the Id90 compiler has to create by inserting a move. First it needs
to place the add and multiply instructions into a total order since then it only needs to
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Figure 4.1: Partitioned dual graph before and after move insertion for function max.

insert one move for the instruction that executes �rst. This move will transport the value
from the temporary location where the �rst instruction placed it to the location the next
iteration needs it. This example shows the interplay between instruction scheduling and
move insertion. Also note, that in this case we did not have to split the partition, since the
control successor for the merge (the join) lies in a di�erent partition. The move is placed
into the partition of the join. Unifying the names for data inputs and outputs at merges
will be done before frame slot and register assignments for all the other instructions.

4.6 Entry counts

Synchronizing threads in TAM have an associated frame slot where the entry counter is
maintained. This must be explicitly established by the compiler. The input region of a
partition consists only of inlets, merges and labels. Control arcs entering the input region
can thus only go to labels or merges, since inlets can only be fed by dependence arcs. Control
to a merge can only arrive on one side. Joins contribute to the entry count of containing
partitions. Some of the control inputs to a join, however, will originate from within the
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Figure 4.2: Partitioned dual graph before and after move insertion for function loop ex.

body of the partition and, thus, do not require explicit synchronization. For each partition,
the entry count of the corresponding thread is equal to the number of control arcs that
enter the body from other partitions plus the number of nodes from the input region that
have control arcs going to the body.

The initial entry counts are established by a designated initialization inlet. For threads
appearing within a loop, the entry count is re-established by the thread. One way to
determine all threads that appear in a loop is to �nd all strongly connected components
of the dual graph. This approach has the disadvantage, though, that it will also identify
strongly connected components created by circular dependencies from conditionals, as in
the example strange from Figure 1.2. Since we are starting with a hierarchical program
graph structure, where the loops are explicit, the easiest way is to mark at this stage all
nodes that are inside the loop. For threads appearing within a loop, a move instruction is
inserted that re-initializes its entry count.

4.7 Fork insertion

A partitioned dual graph contains switches where conditional forks are required, but does
not contain forks. These are only determined after partitioning is complete. Where a control
arc crosses from one partition to another, other than from a switch, a fork to the target
partition is inserted.

55



4.8 Thread ordering

TAM provides a control transfer mechanism which forks threads for later execution. This
could be exploited to fetch the next thread while completing the current one. Even so,
by placing threads contiguously, a fork and a stop can often be replaced by a simple fall-
through. Since existing processors cannot exploit fork-based control, the translator from
TAM to target machine code moves the last fork or switch in a thread to the very bottom
and replaces it by a branch. If the target is the next thread, this becomes a fall-through.
Thread ordering is determined by a depth-�rst search starting from root partitions triggered
only by inlets. An unnumbered adjacent partition is selected to be the successor using the
following priorities: fork to unsynchronizing thread, switch to unsynchronizing thread, fork
to synchronizing thread, switch to synchronizing thread, fork or switch to thread which is
also forked by an inlet. This scheme tries to ensure that the fall-through will be executed
immediately after the completion of the thread. Figure 4.3 shows how thread numbers are
assigned for the lookup example. Also given in Figure 4.4 is the TL0 code produced after
all the steps discussed in this chapter. Note that threads 1 to 4 are placed contiguously. At
machine code level the switch from thread 1 to threads 2 and 5, as well as the switch from
thread 3 to 4 and 6 will be replaced by a single conditional branch, while the fork from
thread 2 to 3 will turn into a fall-through.

The primary goal of this chapter was to describe the details of thread generation. Much
of the actual implementation is still in preliminary form.
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INLET 0 % Inlet for trigger

MOVE slot_sync0.s = 4.s % initialize synchronization variables

FORK THR0

STOP

INLET 1 % Inlet for first argument

RECEIVE slot_T.ps % receive pointer to I-structure T

FORK THR0

STOP

INLET 2 % Inlet for second argument

RECEIVE slot_l.i % receive lower bound l

FORK THR0

STOP

INLET 3 % Inlet for second argument

RECEIVE slot_h.i % receive upper bound h

FORK THR0

STOP

INLET 4 % Inlet for second argument

RECEIVE slot_v.f % receive value v

FORK THR0

STOP

INLET 5 % Inlet for I-fetch

RECEIVE slot_T[m].f % receive I-structure element T[m]

FORK THR1

STOP

THREAD 0

SYNC slot_sync0.s % Synchronize on arrival of all arguments

FORK THR3

STOP

THREAD 1 % Check if T[m] < v

LE reg_B.b = slot_T[m].f slot_v.f

SWITCH reg_B.b THR2 THR5

STOP

THREAD 2

MOVE slot_h.i = slot_m.i % change higher bound h = m

FORK THR3

STOP

THREAD 3 % Check if l < h

LE reg_B.b = slot_l.i slot_h.i

SWITCH reg_b.b THR4 THR6

STOP

THREAD 4 % compute middle index m and fetch element

ADD reg_tmp.i = slot_l.i slot_h.i

DIV slot_m.i = reg_tmp.i 2.i

IFETCH INLET5 <- slot_T.ps slot_m.i

STOP

THREAD 5 % change lower bound l = m + 1

ADD slot_l.i = slot_m.i + 1.i

FORK THR3

STOP

THREAD 6 % return result, release frame

RETURN slot_l.i

RELEASE

STOP

Figure 4.4: TL0 code for lookup example
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Chapter 5

Code Quality

This chapter presents preliminary data on the quality of TAM code produced under our
compilation paradigm. Previous to this work, execution of Id90 programs was limited
to specialized architectures or dataow graph interpreters. By compiling via TAM, we
have achieved more than two orders of magnitude performance improvement over graph
interpreters on conventional machines, making this Id90 implementation competitive with
machines supporting dynamic instruction scheduling in hardware[PC90, SYH+89, GH90,
Ian88b]. Timing measurements show that our Id90 implementation on a standard RISC can
achieve a performance close to Id90 on the recent dataowmachine Monsoon. Measurements
of execution speed of small programs written in Id90 as well as the languages C and Lisp
indicate that e�ciency of Id90 falls between C and Lisp.

By constraining how dual-graphs are partitioned, we can generate TAM code that closely
models other target architectures. It can be seen that the TAM partitioning described in
the previous chapter reduces the control overhead substantially and that more aggressive
partitioning would yield modest additional bene�t. There is, however, considerable room
for improvement in scheduling and register management.

5.1 Benchmarks

We use ten benchmark programs, as shown in Table 5.1, ranging up to 1,100 source code
lines. Lookup is the small example program discussed above. The input is an array and a
table of 10,000 elements. AS is an array selection sort, where the key is a function passed
to the sort routine. The input is an array of 500 numbers. QS is a simple quick-sort using
accumulation lists. The input is a list of 1,000 random numbers. MMT is a simple matrix
operation test; two double precision identity matrices are created, multiplied, and subtracted
from a third. The matrix size is 100 � 100. Wavefront computes a sequence of matrices,
using a variant of successive over-relaxation. Each element of the new matrix is computed by
combining the three new values to the north and west with value of corresponding element
of the old matrix. Thirty iterations are run on matrices of size 100�100. DTW implements
a dynamic time warp algorithm used in discrete word speech recognition[Sah91]. The size
of the test template and number of cepstral coe�cients is 100. Speech is used to determine
cepstral coe�cients for speech processing. We take 10240 speech samples and compute 30
cepstral coe�cients. Para�ns [AHN88] enumerates the distinct isomers of para�ns of size
up to 14. Gamteb is a Monte Carlo neutron transport code[BCS+89]. It is highly recursive
with many conditionals. Simple is a hydrodynamics and heat conduction code widely used
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as an application benchmark, rewritten in Id90[CHR78, AE88]. One iteration is run on
50� 50 matrices.

Program Code Size (Lines) Short Description Input Size

lookup 18 Lookup example 10,000
as 70 Array sort 500
qs 55 Quick sort on lists 1,000
mmt 59 Matrix multiply test 100
wavefront 111 SOR on matrices 30 100 100
dtw 103 Dynamic time warp 100 100 100
speech 172 Speech processing 10240 30
para�ns 185 Enumerate isomers of para�ns 14
gamteb 649 Monte Carlo neutron transport 64
simple 1105 Hydrodynamics and heat conduction 1 2 50 2 50

Table 5.1: Benchmark programs

Our current compiler performs only a limited form of redundant arc elimination and
does no switch or merge combining. Registers are used only for thread local values. TAM
code can be expanded to run on MIPS, nCUBE, or (via C) several other platforms. The
expansion can insert code to gather TAM-level statistics at run time. In this chapter we
present only dynamic statistics.

5.2 Timings

To get a feeling of how e�cient the language Id90 is, we re-wrote three small Id90 programs
in C and Lisp and compared their execution speed. Table 5.2 shows the running time in
seconds for the programs AS , QS and MMT under C, Id90/TAM and LISP. The programs
were all run a MIPS R3000. The table gives two columns for C, using MIPS C compiler
version 2.11 with di�erent levels of optimizations. Id90 programs were �rst compiled to
TAM and then expanded to native MIPS code. Lisp programs were compiled using Allegro
CL 3.1.0 (speed 3, safety 0).

Program Input C (-O3) C (-O2) Id90 (TAM) LISP

as 1500 2.1 4.4 7.8 55
qs 5000 0.6 0.6 0.7 2.4
mmt 200 15.2 20.7 31.0 441

Table 5.2: Run-time in seconds

For these programs execution speed using TAM is within a factor of 1 to 4 of C. Lisp
always results in a slower execution speed than going via TAM. There are several reasons
we expect execution of Id90 programs using TAM to be slower than equivalent C programs.
TAM has to support dynamic scheduling, while the C code can be statically scheduled.
TAM speci�es a parallel execution model, the resulting activation tree is more expensive
to manage than the activation stack provided by C. I-structure accesses in Id90 are syn-
chronizing, a TAM implementation must associate tag-bits with each I-structure element
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and test their state. This is more costly than heap accesses in C which are just memory
load/stores.

One approach to understanding the code quality is to compare it against alternative
implementations of the same language. Di�culties in this approach arise because some
of the machines supporting dynamic scheduling in hardware have not yet been built and
others have not implemented Id90. Additionally, we have to take into account constantly
changing hardware parameters, such as cycle time. We compared execution speed of Id90
programs on the recent dataow machine Monsoon with that of TAM on the MIPS R3000,
the run-times are shown in Table 5.3. The second column shows the inputs: MM multiplies
two 500 � 500 matrices, Wavefront runs 144 iterations on 500 � 500 matrices, Para�ns

enumerates the all the distinct isomers of para�ns up to size 19, Gamteb simulates 40,000
particles, and Simple runs 1 iteration on a problem size of 100� 100. Column three gives
the run-time for Monsoon, as reported in [Hic91]. The fourth columns uses the backend
that directly translates TAM into native MIPS code, while the last column gives run-times
for the backend that �rst expands TAM into C code and then compiles it for the MIPS. On
Monsoon as well as in the native code TAM backend for MIPS, oating point numbers are
represented as double precision numbers. The TAM backend translating to C represents
them in single precision.

Program Input Monsoon TAM (Mips R3000) TAM (C MIPS)

mm 500 250 644 684
wavefront 500 144 300 239 227
para�ns 19 31 19 11
simple 1 1 100 1 100 19 40 28

Table 5.3: Run-time in seconds on Monsoon and TAM (on Mips R3000)

Monsoon performs well on the matrix multiply program. It runs 2.6 times faster. The
code for Monsoon was highly optimized, with the innermost loop unfolded 10 times by the
compiler. This optimization was not performed for TAM. Monsoon also performs well on
Simple, it is twice as fast as executing the TAM program directly on the MIPS. Simple on
Monsoon is only 1.5 times faster than the TAM/C implementation. TAM runs substantially
better though, onWavefront and para�ns. Here it is about 2.8 times faster. For some of the
programs, the C version is faster than native code since it only uses single instead of double
precision oating point numbers. This improves cache and memory performance. These
measurements show that using stock hardware can result in an execution speeds comparable
to machines that directly support dynamic synchronization in hardware. One has to take
into account that the two machines are vastly di�erent. The Monsoon is an experimental
prototype, while the MIPS is a mature product. They were developed with completely
di�erent goals in mind. Monsoon not only provides support for dynamic scheduling in
hardware, but also integrates the network interface into the processor design. We did not
see the bene�ts resulting out of fast inter-processor message handling, since we studied only
a uniprocessor implementation. The dataow machine is a board-level design, consisting of
one 10 MHZ 64-bit Monsoon processor with 256 K word store and one I-structure board with
4 M word store. The processor and memory were connected by a packet communication
network. The Monsoon processor uses a 10 MFLOPS ECL oating point co-processor. The
MIPS is an M2000 with 128MB of memory running RISC/os 4.50. It consists of a 25 MHZ
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R3000 processor chip, a MIPS R3010 oating point chip (peak rate of 3 MFLOPS) and a
MIPS R3200 cpu board with 64KB data cache and 64KB instruction cache.

5.3 TAM vs Dataow

To better understand the quality of TAM partitioning, we can constrain the compiler to
produce code in the spirit of recent dataow or hybrid architectures. These machines
all provide a notion of execution thread and a speci�c synchronization mechanism. An
instruction on these machines maps into multiple TAM instructions, providing a consistent
cost metric for control, scheduling and message passing. We compare and produce code for
the following forms of partitioning.

� DF: Threads produced by dataow partitioning without merging reects the limited
thread capability of most dataow machines. Hardware provides two-way synchro-
nization as token matching on binary operations; unary operations do not require
matching, so they can be scheduled into the pipeline following the instruction on
which they depend.

� DE: Threads produced using dependence sets partitioning without merging corre-
spond closely to Scheduling Quanta in Iannucci's hybrid architecture[Ian88b]. Ian-
nucci integrates thread generation and register assignment to a limited extent; reg-
isters are assumed to vanish at every possible suspension point or control transfer.
This style of register usage is incorporated in recent dataow machines, including
Monsoon[PT91], Epsilon[GH90] and EM-4[SYH+89], allowing partitioning similar to
the hybrid model.

� DE ME: For TAM we use our best partitioning: dependence sets partitioning with
merging.

The dynamic measurements presented in this and subsequent sections were all collected
on one node of a multiprocessor nCUBE/2. The distribution of instructions for the the
ten benchmark programs is shown in Figure 5.1.a. For each program three columns are
shown: dependence sets partitioning with merging (DE ME), dependence sets partitioning
without merging (DE), and dataow partitioning without merging (DF). The �nal three
columns give the arithmetic mean over all programs. The bar graphs show the distribution
of instructions into classes: ALU, data moves, split-phase operations, instructions in inlets,
control overhead, and moves needed to initialize or reset entry counts. For each program,
the distributions are normalized with respect to DE ME to better illustrate the relative
costs. (Where possible numbers indicate size of containing box).

The number of ALU, data move, split-phase, and inlet instructions is independent of the
type of partitioning. Under DE ME, we have on average 20% ALU, 6% data moves, 10%
split-phase, and 24% inlet instructions. An inlet will usually execute three instructions: one
that receives the corresponding data value and stores it into the appropriate frame, a FORK
which puts the corresponding thread into the remote continuation vector and enables the
frame, and �nally a STOP. The fraction of time spent in inlets may di�er from instruction
frequency, depending on how quickly the implementation can start the message handler,
receive the message, and enable the corresponding thread.

The number of control instructions and entry count moves vary substantially under the
di�erent partitioning schemes. On average, 31% of the instructions are used for control
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Figure 5.1: (a) Instruction distributions, (b) Relative execution times.

under DE ME, less than twice the typical fraction of control operations in sequential lan-
guages. Without merging nearly twice as many control instructions are needed, and three
times as many with only dataow partitioning. Entry count moves follow the same trend.

Without merging, 1.33 times as many instructions are executed as with DE ME. Dataow
partitioning yields about 1.85 times as many instructions executed. Comparing these par-
titioning styles highlights the e�ects of improved compilation. It is not meant to be a
performance comparison between the three classes of machine, as merging could be em-
ployed to improve code quality for hybrid or dataow machines to some extent, and actual
performance depends on cycle time, speci�cs of operand fetch, instruction issue, etc. The
qualitative di�erence is that the control portion is reduced with better partitioning. This
gain derives from two sources. By increasing the thread size, a greater fraction of explicit
control and synchronization operations are made implicit through instruction ordering. Sec-
ondly, separating control and data ow allows redundant synchronization between partitions
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to be identi�ed and eliminated.
It is also possible for a restricted model to avoid the need to re-initialize synchronization

variables, which could slightly improve the the total number of instruction executed with
dataow partitioning. For example, Monsoon and P-RISC[NA89] provide hardware sup-
port for two-way synchronization. They associate individual bits with each synchronizing
operation or thread, and toggle the bit on each synchronization access. The �rst operand
will set this bit, the second reset it. This scheme has the advantage that the value of the
synchronization variable is automatically reset after synchronization has succeeded. Thus,
any moves to re-initialize the synchronization variables could be omited. The moves could
also be avoided by TAM, if we provide a more complicated synchronization primitive. The
current synchronization operation decrements a counter and tests against zero. A more so-
phisticated synchronization operation would increment the counter, take the modulo with
the entry count and test against zero.

The strong relationship between Figures 5.1.a and 5.1.b con�rms that the reduction
in control overhead translates into execution e�ciency and that the TAM instruction as
a cost unit is reasonable. With a more thorough analysis it might be possible to develop
a performance model that predicts execution time given detailed TAM-level instruction
counts.

5.4 Thread Characteristics

Average thread lengths are shown in Figure 5.2.a. Using DE ME the average thread length
is slightly over 5 instructions. While this is not large, it should be noted that control
primitives in TAM fork threads, so thread length is expected to be close to typical branch
distances. Also, global accesses are split-phase, so they initiate threads. Another reason for
small thread sizes is that TAM is not a LOAD/STORE machine as it allows operations to
directly specify operands in frame memory as well as in registers. Finally, we have not yet
implemented the switch and merge combining discussed in the partitioning section. As a
result, conditionals limit partition merging on some of the examples. This has not a�ected
the two programs wavefront and speech, where partition merging had a big e�ect on thread
size. Here the average thread size is 7.8 and 8.0 instructions. These large sizes arise because
many requests were issued in one thread and all the responses received by another. Using
only dependence sets partitioning without merging reduces the overall thread length to 3.5
instructions. This drops to 2.9 instructions using dataow partitioning. For this kind of
partitioning, the thread size does not vary very much among the di�erent programs; it is
always very low.

Improved partitioning not only changes the size of threads, it changes their structure.
The stacked bars in Figure 5.2.b show the breakdown of threads into synchronizing and non-
synchronizing (i.e., entry count is one) relative to DE ME. Without merging, roughly twice
as many threads are executed and four times using only dataow partitioning. The number
of threads executed does not grow inversely to thread size, since the overall instruction
count is reduced by better partitioning. With the exception of Gamteb, two-thirds of the
threads are non-synchronizing, regardless of partitioning. Better partitioning reduces the
number of both kinds of threads, although the average entry count for synchronizing threads
increases. For DE ME the average entry count varies between 3 and 8. Forks from a thread
to a non-synchronizing thread are essentially jumps, however, non-synchronizing threads
can also be forked by inlets in handling an incoming message or response.
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Figure 5.2: (a) Thread sizes, (b) Relative thread counts, (c) Control instruction distribu-
tions.
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The e�ects of more sophisticated partitioning are more apparent in examining the fork
operations. Figure 5.2.c shows the number of forks to synchronizing and non-synchronizing
threads occurring in threads and inlets. The number of forks occurring in inlets is indepen-
dent of partitioning, whereas the number of forks occurring in threads is reduced. However,
as partitions are merged, inlet forks shift dramatically from non-synchronizing to synchro-
nizing. Synchronizing messages in inlets means that frames are not activated until several
operands have accumulated.

The data presented above was obtained without switch and merge combining. Imple-
menting these will reduce the control portion further under TAM. Combining inlets, i.e.,
sending multiple arguments as a single larger message, can be applied when the arguments
feed the same partition; this will reduce the number of inlet instructions. Global strictness
analysis could be applied to attempt to reduce these two components further, but the lower
bound on control is the branch frequency and on inlets it is the frequency of split-phase
operations. Keeping in mind that the target is parallel execution, not complete sequential-
ization, it appears that DE ME partitioning is approaching the \knee of the curve."

5.5 Dynamic Scheduling

The second aspect of TAM compilation is management of processor and storage resources
in the context of dynamic scheduling. Dual graphs were developed speci�cally to attack
this problem, although our current compiler uses only registers in threads. Table 5.4 shows
the dynamic scheduling behavior of programs under TAM using DE ME.

Program Activations Quanta Threads Instructions QPA TPQ IPQ IPT

lookup 10002 20003 1105342 4683207 2.0 55.3 234.1 4.2
as 503 1005 2386788 9046137 2.0 2374.9 9001.1 3.8
qs 6004 14007 408945 1393260 2.3 29.2 99.5 3.4
mmt 10506 21013 3285714 18161654 2.0 156.4 864.3 5.5
wavefront 3196 6485 966555 7512370 2.0 149.0 1158.4 7.8
dtw 30402 61400 3593989 18131827 2.0 58.5 295.3 5.0
speech 4362 11156 1342402 10802677 2.6 120.3 968.3 8.0
para�ns 2841 5750 203068 758808 2.0 35.3 132.0 3.7
gamteb 13081 34837 661931 2792257 2.7 19.0 80.2 4.2
simple 58674 182097 1560974 7529351 3.1 8.6 41.3 4.8

Table 5.4: Dynamic Scheduling Behaviour

We assume zero latency, so I-Fetches return immediately, unless deferred. The table
shows the number of code-block activations, quanta, threads and TAM instructions exe-
cuted. Also shown are ratios of these. The number of quanta per activation (QPA) is
small, usually between 2 and 3. Thus, the cost of swapping to another code-block activa-
tion (roughly 10 instructions) is paid infrequently. Although thread sizes (IPT) are small,
quanta generally contain many threads (TPQ), so quantum based register allocation stands
to make much better use of registers. Where the compiler fails to discover that two compu-
tations can be put into the same thread, often the two computations will occur in the same
quantum. The cost of synchronizing them is not large | it requires that the entry count
be decremented and tested. This dynamic scheduling behavior | although collected on a
sequential machine | indicates the value of TAM's scheduling hierarchy.
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In practice the full power of non-strict languages which requires dynamic scheduling of
small threads is seldom used. The compiler has to be conservative, but TAM scheduling
paradigm exploits the typical case by executing as many threads as possible for a frame in
a single quantum. If a code-block is called in a strict manner and all the arguments arrive
close together in time, all of the threads for the activation may execute within a single
quantum. Only if it runs out of useful work after making split-phase requests or calls to
other code-blocks will it execute in multiple quanta.

Our results show that better partitioning schemes would achieve only modest additional
bene�t. Our current compiler does not exploit the scheduling hierarchy provided by TAM.
The data presented in this section indicates, however, that there is considerable room for
improvement in scheduling and register management.
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Chapter 6

Conclusion and future work

In this thesis we have shown that it is practical to implement Id90, a functional non-
strict language, on conventional sequential machines without hardware support for fast
dynamic scheduling. Functional languages provide a good basis for a parallel computing,
since they can o�er ample implicit parallelism. Non-strictness can substantially enhance
the parallelism by allowing functions and arbitrary expressions to execute and possibly
return results before all arguments have been provided. Unfortunately, non-strict languages
require dynamic scheduling. This makes e�cient implementation on conventional machines
di�cult. We demonstrate how such a language, the parallel language Id90, can be compiled
into threads for the threaded abstract machine TAM. TAM allows the compiler to exploit
locality at several levels, and can e�ciently be implemented on conventional machines.

Id90 programs are �rst translated into program graphs, a hierarchical graphical inter-
mediate form that facilitates powerful high level optimizations. The meaning of program
graphs is given in terms of a dataow �ring rule, so control ow is implicitly prescribed
by the dynamic propagation of values. In our threaded execution model, control is explicit
and the ow of data is implicit in the use of registers and frame slots. In order to bridge
this gap, we introduce a new graphical intermediate form, dual graphs, in which control
and data ow are both explicit. Dual graphs are generated by expanding dataow pro-
gram graph nodes into equivalent dual graphs. Compilation to TAM then involves a series
of transformations on the dual graph, including partitioning, lifetime analysis, scheduling
and linearization, register and frame-slot allocation, and fork insertion. Our approach has
produced the �rst e�cient implementation of Id90 on conventional machines.

By compiling harder, we achieve execution times that are comparable to those of the re-
cent dataow machine Monsoon. This indicates that hardware support for dynamic schedul-
ing is less valuable than previously thought. Our results show that there is no reason to
build a uniprocessor dataow machine to support non-strict languages, since its perfor-
mance is within a factor of 2 of a standard processor. Also, run-time measurements of small
programs re-written in C and Lisp show that the C programs execute a factor 1 to 4 faster
than the equivalent Id90 programs; the Lisp programs always execute slower. Reasonably
sophisticated partitioning is required for Id90; we describe a partitioning algorithm that is
practical to employ on real programs and results in control overhead within a small factor of
the typical cost of control ow in sequential languages. Measurements under several parti-
tioning strategies show that arithmetic, data movement, heap access, and message handling
costs are invariant with respect to the partitioning strategy. However, partitioning has sub-
stantial impact on control overhead; not using merging with dependence sets partitioning
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doubles control overhead. The overhead triples when only dataow partitioning is used.
This results in 1.8 times more instruction being executed. Studying the e�ects on threads,
we �nd that the better the partitioning the fewer threads (but also the fewer total instruc-
tions) are executed. The dynamic scheduling behavior shows the value of TAM's scheduling
hierarchy. On the average each activation can be executed in a little more than two quanta.
Although the number of instructions per thread is relatively small, the number of threads
per quanta is quite high. Our implementation on conventional state-of-the-art processors
provides a baseline against which novel multithreaded machines can be judged.

While these results are encouraging, there is considerable room for improvement. Par-
titioning of conditionals will improve signi�cantly when switch and merge combining are
implemented. Redundant arc elimination is currently quite primitive. On a larger scale,
more extensive analysis, such as strictness analysis and propagation of dependence through
conditionals and function calls, can be used in partitioning. Furthermore, much of the
power of TAM has not yet been exercised, including the management of processor registers
across threads. Using these techniques, we expect to roughly double the performance.

Our study indicates the great potential in TAM's ability to carry registers across threads,
even if the compiler cannot statically prove that they will be executed in the same quantum.
This form of speculative register assignment will be implemented in the near future, together
with an execution vehicle for TAM on a large parallel distributed memory machine. This
will allow us to study the execution behavior of parallel programs on machines consisting
of thousands of processors.
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