REAL-TIME DISK STORAGE AND RETRIEVAL
OF DIGITAL AUDIO/VIDEO DATA

David P. Anderson
Yoshitomo Osawa'
Ramesh Govindan

CS Division, EECS Department
University of California at Berkeley
Berkeley, CA 94720

August 8, 1991

ABSTRACT

The Continuous Media File System, CMFS, supports real-time storage
and retrieval of continuous media data (digital audio and video) on disk.
CMFS clients read or write files in “sessions”, each with a guaranteed
minimum data rate. Several sessions can exist concurrently, sharing a
single disk drive. Clients can concurrently access non-real-time files on
the same disk. CMFS addresses several interrelated design issues: 1)
real-time semantics of sessions; 2) disk layout; 3) acceptance test for
new sessions, and 4) disk scheduling policy. We use simulation to com-
pare different design choices and to estimate the performance of CMFS
under various load conditions and hardware assumptions.

T On leave as a Visiting Industrial Fellow from MO Business Development Division, Storage Systems Group, Sony
Corporation, 2255 Okata, Atsugi, Kanagawa 243 Japan.

This work was supported by NSF Infrastructure Grant CDA-8722788, NSF PY! grant CCR-86-57529, the California
MICRO program, and Sun Microsystems.

1. INTRODUCTION

Current magnetic, optical, and magneto-optical disks can provide sustained data
rates of 5 to 10 million bits per second (Mbps) or more. This is enough for the storage
and retrieval of many forms of digital audio and video (continuous media, or CM) data.
For example, 44.1 KHz 16-bit stereo audio has a data rate of about 1.4 Mbps, and
compressed video has data rates ranging from 64 Kbps up to several Mbps. However,
because current general-purpose file systems cannot guarantee data rates, their utility
for CM is limited.

We have developed a Continuous Media File System (CMFS) that allows clients to
read and write files in “sessions”, each with a guaranteed minimum data rate. Multiple
sessions, perhaps with different data rates, can exist concurrently. CMFS can handle
non-real-time traffic concurrently with these real-time sessions.

Our prototype version of CMFS runs as a user-level process on the SunOS 4.1 ver-
sion of UNIX. The CMFS server accesses a SCSI disk via the UNIX raw disk interface
and communicates with clients via TCP connections. Designed as a research testbed,
the prototype lacks teatures such as dynamic file size, symbolic naming, and real-time
writing. On a workstation with digital audio /O hardware and local disk, a more com-
plete version of CMFS might serve as a UNIX-type file system that also can store and
playback phone messages or voice mail. Running on a network data server with many
disks, CMFS might support a remotely-accessible database of video programs or CD-
format music (in effect, providing a shared VCR and CD piayer).

To provide data rate guarantees, CMFES addresses the following interrelated
issues:

« Real-time semantics: The CMFS client interface, described in Section 2, has flexi-
ble but well-defined real-time semantics.

e Disk layout: Section 3 gives the CMFS assumptions about disk layout.

e Acceptance test: Sections 4 describes how CMFS determines if a new session
can be accommodated.

o Disk head scheduling: Several alternative policies for ordering disk read and write
operations are discussed in Section 5.

Section 6 presents simulation-based analyses of various policy choices, and Sec-
tion 7 discusses related work.

2. CLIENT INTERFACE

When a CMFS file is created it is designated as either real-time or non-real-time.
Clients access real-time files in sessions, initiated using

request_session |
int direction, /* READ or WRITE */
FILE_ID name, :
int offset,
FIFO* buffer,
TIME max_workahead,
int rate):

If direction iS READ, request_session() requests a session in which the given file
is read sequentially starting from the given offset (henceforth assumed to be zero). The
max_workahead and rate parameters are explained below. If the session cannot be
accepted, an error code is returned. Otherwise, a session is established. Data is
transferred to the client via a FIFO. Once a session has been accepted, CMFS will write

bytes sequentially into the FIFO, and the client will remove these bytes sequentially. We
do not specify exactly how this FIFO is implemented, or how the client removes data
from it. The client might be a user-level program that uses system calls to fetch data, or
a kernel-level activity transmitting data on a network connection.

Similarly, if directioniS WRITE, request_session() requests a session to write
the given file. The client transfers data into the FIFO buffer, and CMFS moves data
from the buffer to the disk.

A real-time file is created using

create realtime file(

BOOLEAN expgndable,

int size,

int max_rate);
expandable indicates whether the file can be dynamically expanded. If not, size gives
its (fixed) size. max_rate is the maximum data rate (bytes per second) at which the file
is to be read or written. CMFS rejects the creation request if it lacks space or if
max_rate is t00 large.

Non-real-time operations (which may be performed on either type of file) are UNIX-
like: open, seek, read, write and close. CMFS provides two service classes for non-
real-time access, interactive and background, the class is specified on open. Interactive
access is optimized for fast response, background for high throughput. There are no
performance guarantees for non-real-time operations.

2 1. The Semantics of Real-Time Sessions

A session is a “contract” between CMFS and its client; each guarantees that its
behavior will obey certain rules. Essentially, CMFS promises to stay well ahead of a
“logical clock” (which stops running if it catches up to the client), and the client promises
not to get ahead of CMFS. This approach allows CMFS to handle variable-rate files and
other non-uniform access in a simple way; CMFS is guided by client behavior, and need
not know about data timestamps or file internals.

We use the following notation to describe the semantics of read sessions (see Fig-
ure 1).
R: the rate argument {0 request_session ().

Y: the max_workahead argument to request_session () (must be > 0).

taar: the time when the call to request_session () returns.

P(t): the index of the next byte to be put into the FIFO by CMFS at time t.

G(t): the index of the next byte to be removed from the FIFO by the client at time ¢.
c(t): the value of the logical clock at time .

B: the size of the FIFO buffer, in bytes.

The logical clock C(t) is defined for t = tyan @s follows:
C(tsrart) =0 (1)

d—fftﬂ - Rif C(t) < G(t)

9%51 =0if C(t) = G(t)

In other words, the logical clock advances at rate R whenever it trails G(t), and pauses

a) read session (client read) (CMFS write)
c(t) G(t) P(t)
[‘I' X —
(T PR — offset in file
: stop clock |
if zero ‘ <B "
>Y 5
b) write session (CMFS read) (client write)
G(t) C(t) P(t)
A — —— offset in file
— » stop clock
. <B-Y | ifzero |
'f <B |

Figure 1: The semantics of read and write sessions are described in terms of a “put
pointer” P(t), a “get pointer’ G(t), and a logical clock C(t). The shaded rectangles
represent data in the FIFO.

otherwise.

For a read session, the following “Read Session Axioms” must hold for all t > tgan:
P(t)y-G(t)<B (2)
P(ty-C(t)2Y 3)
G(t) < P(t) (4)

These conditions say that CMFS does not overflow the FIFO, CMFS allows the client to
read ahead of the logical ciock by up to Y bytes (Y > 0), and the client does not read
beyond the write point. CMFS therefore provides a guaranteed minimum data rate, but
only as long as the client keeps up with its reading. There is no upper bound on the
actual data rate; the client and CMFS can in principle work arbitrarily far ahead of the
logical clock.

We describe the semantics of a write session using the same notation as above.
in this case, P(t) is the index of the next byte to be inserted in the FIFO by the client,
and G(t) is the index of the next byte to be removed by CMFS. The logical clock C(t) is
defined by

Clstan) = 0 (5)

E%Q =R C(t) < P(1)

2%511 =0if C(t) = P(t)

The following “Write Session Axioms” must hold for all t 2 tgan:
P(t)- G(t)< B (6)

cih-G({t)sB-Y (7)

G(t) < P(t) (8)

These conditions say that the client does not overflow the FIFO, that CMFS removes
data from the FIFO fast enough so that the client can always write ahead of the logical
clock by at least ¥, and that CMFS reads only valid data.

2.2. The Symmetry of Reading and Writing

In describing session acceptance and scheduling algorithms, the redundancy of
treating read and write sessions separately can be avoided by observing the following
symmetry between reading and writing. Suppose a write session Sy has fixed parame-
ters tgas, B, Y, and A and time-varying parameters Cw(t), Pw(t), Gw(t). Consider an
(imaginary) read session Sz having the same fsan, B, Y and R parameters, and for
which

Gg(t) = Pw(t) 9

Pr(t)=Gw(t)+ B (10)

(see Figure 2). Each disk block written by CMFS in Sy advances Py, and thus
corresponds to a disk block read by CMFS in S5. '

Claim 1. Suppose Sw is a write session, and Sg is defined as above. Then
Cr(t) = Cwl(t) for all t 2 tya,, and Sp satisfies the Read Session Axioms (Egs. 2, 3, and 4)
if and only if Sy satisfies the Write Session Axioms (Egs. 6, 7, and 8).

Proof. Cy(t) = Cg(t) is clear from substituting G(t) for P(t) in Eq. 5. The logical
clock advances in Sp exactly when it advances in Sy, and at the same rate; therefore it
always has the same value in both sessions. The equivalence of the Read and Write

axioms then follows from substituting Egs. 9 and 10 in Eqs. 2 and 3. O

Hence, from the point of view of scheduling in CMFS, reading and writing are
essentially equivalent. The main difference is the initial condition: an empty buffer for a
write session corresponds to a full buffer for a read session. In describing CMFS's algo-
rithms for scheduling and session acceptance, we will refer only to read sessions.

2.3. Using the CMFS Intertace

In applications such as playback of 8-bit digital audio, I/O begins on session accep-
tance and proceeds at a uniform rate. In other cases the restriction to a constant 1/0
rate is not desirable: 1) data may be grouped into large chunks (e.g., video frames) that
“occur” at a single moment; 2) data may have long-term rate variation (e.g., because of
variable-rate compression); 3) clients may delay initiat I/O to synchronize multiple ses-
sions; 4) clients may pause and resume I/O during sessions; 5) clients may “work

(CMFS read) (client write)
Gw(t) Cwl(t) Pw(t)
. . L ,I, . byte offset
a) wrlte SeSSlon F e : i L L iﬂ ﬁle
: (client read) (CMFS write)
Ca(t) Ggl(t) Pg(t)

b) equivalent |- ! ¥

read session 0) R

b a— B -

Figure 2: By interchanging empty/full and read/write, a write session (a) is transformed
into a read session (b) that is equivalent with respect to scheduling.

ahead”, filling up intermediate buffers to improve overall performance. The CMFS inter-
face can accommodate all these requirements. To show this, we start by defining a
general notion of temporal data.

Definition. A bounded-rate file F has parameters A and E, and the ith byte of F
has a timestamp T(i) 2 0 such that T(i/) < T(j) fori < j, and

i-j<R(TU)-TUN+E . (11)

for all i > j (see Figure 3). In other words, the amount of data in a time interval of length
T is at most AT + E. (R and E can be thought of as “maximum rate” and “block size”
respectively.) The timestamps may be explicit (embedded in the data) or implicit.

Definition. Suppose a client reads a bounded-rate file F. We say that the file is
read in real time starting at t, with buffer size N if 1) byte i is read (i.e., removed from
the FIFO) before to+ T(i) and 2) at any time t, no more than N bytes i such that
T(i) > t - t, have been read.

intuitively, this means that the client reads the file fast enough to get the data on
time, but slow enough so that only N bytes of buffer space are needed.

The CMFS interface allows a client to read a bounded-rate file in real-time using
limited bufter space:

Claim 2. Suppose a client creates a session reading a bounded-rate file F with
parameters R and E, and the session begins (i.e., the request_session() call returns)

at time 0. Then it is possible for the client to read F in real time starting at E/R with
buffer size E.

Proof. We will show the existence of a client behavior that is consistent with the
Read Session Axioms and that satisfies the above definition of reading a bounded-rate
file in real time. Let the client behave as follows. At time i/R (for each i 2 0) the client
removes the next byte n from the FIFO if T(n) < (i+1)/R. It then waits until time (i+1)/R.

byte offset i
A
S50KB _|
40KB _| at most %
[N 7 S —
30KB ofdaa | %
20KB
10KB

. timestamp T (i)
T > (milliseconds)

0 |
100 1333

Figure 3: A bounded-rate file contains timestamped data. This example represents a
file of 30 frames/second video data with a varying number of bytes per frame; each
frame is a vertical segment of the stairstep. The file has parameters A and E; the
number of bytes with timestamps in an interval of length T cannot exceed 7R + E, as
shown.

Hence in each “time slot” of length 1/R the client either reads a byte or skips to the next
time slot. The clock C(t) advances during a read slot and pauses during a skip slot.
The client “works ahead” by at most one byte, so (since the workahead parameter Y of
the session is at least one) the Read Session Axioms are obeyed.

To verify the claim, we must first show that each byte n is read no later than
T(n) + E/R. Suppose otherwise. Then some byte n is read at time j/R with

j/R>T(n)+ER (12)

If no skips occurred in slots 0--- j then let i =0; otherwise let i be such that i-1 is the
last skip slot before j. Let m be the index of the byte read in slot /. Then

T(m)>i/R (13)

since otherwise m would have been read in slot i-1. Now combining Egs. 12 and 13 we
have

T(n)-T(m)<(j—i-EYR (14)
Since the client reads in every slot from i to j we have j-i=n-m. Therefore
n-m>(T(n)-T(mM)R +E (15)

which contradicts the assumption that F is a bounded-rate file.

Finally we must show that at any time t, no more than E bytes i such that
T(i)>t - E/R have been read. Let i be such that T(i)>t- E/R. Then, given our
specification of client behavior, byte / must have been read at time t — E/R or later. The
client reads at most E bytes in time E/R, so the claim holds. O

Claim 2 and its proof make the unrealistic assumption that client CPU processing is
instantaneous and can be scheduled at precise instants. To guarantee real-time perfor-
mance in practice, the client must: 1) compute bounds on the client CPU processing
time; 2) make a “reservation” with the CPU scheduler for the needed CPU time; 3)
based on the processing time bounds and the scheduling delay bounds provided by the
CPU scheduler, compute an appropriate value for Y and use this in the
request_session () call. The details depend on the form of the CPU scheduler’s
guarantees. Similar reservations must be made for other resources (e.g., network
bandwidth) used to handle the CM data stream.

The CMFS interface provides implicit flow control between client and CMFS. This
flow control is well-suited to bounded-rate files, and can accomplish other goals as well:

° If a client wants to pause and resume a session (e.g., because of user interaction),
it can do so simply by stopping the removal of data from the FIFO; the logical clock
will stop soon thereafter. Data rate and buffer-requirement guarantees will remain
valid after the client resumes reading. (The pause/resume is equivalent to shifting
the timestamps of the remaining data.)

° Suppose a client does synchronized playback or recording to/from multiple files,
perhaps on different CMFS servers. The various request_session() calls may
return at different times. To limit buffer space usage, the client should postpone
doing /O on any of the sessions until all of the request_session() calls have
returned. The clocks of all sessions remain at zero during this period. When all the
calls have returned, the client begins reading from the sessions on each server,; the
butfer space needed for synchronization then depends only on the skew of the start
messages.

e The client can, if the hardware is fast enough, read arbitrarily far ahead of the logi-
cal clock. This “workahead” data can then be buffered (in distributed applications,
the buffers may be spread across many nodes), protecting against playback
glitches and allowing improved system response to transient workload.

3. DISK LAYOUT ASSUMPTIONS

We assume that the CMFS uses a single-spindle disk drive, so that all operations
are done sequentially, and that the disk is read and written in fixed-sized blocks. The
CMFS reservation and scheduling algorithms do not mandate a particular disk layout.
Instead, we assume that the layout allows the following “bounding functions” Ur and Vg
to be obtained:

(1) For a given file F and n, Ur(n) is an upper bound on the time to read n logically
contiguous blocks of F (including all seek and rotation time), independent of the
initial position of the disk head and the starting block number to be read.

(2) Ve(i, n)is an upper bound on the time needed to read the n blocks of file F start-
ing at block i.

The bounds need not be tight; slackness in the bounds may, however, cause sessions
to be rejected unnecessarily.

The functions U and V should take into account interrupt-handling latency, CPU
overhead, and features (such as track buffering) of the disk controller. They can also
reflect bad blocks detected when the disk is initialized. For example, they can be based
on the assumption that each track has at most one bad block; tracks with more than one
can then be left unused or devoted to non-real-time files.

On disk operations that fail (e.g., because of checksum errors) most controllers
notify the CPU of the failure, allowing the CPU to retry the operation. In general, of
course, unbounded retries can interfere with performance guarantees. CMFS attempts
to maintain “slack time” (Section 5.1), allowing it to retry failed operations without violat-
ing performance guarantees. If it runs out of slack time, it skips the operation, resuiting
in a block of undefined data in the file (write) or output stream (read). Such errors may
be tolerable if their only effect is a “glitch” in the media stream, as is the case for many
forms of CM data.

3.1. Examples of Disk Layouts

The CMFS prototype supports only fixed-size files, and file allocation is physically
contiguous. Each file begins at some point within a cylinder, filling the remainder of that
cylinder, zero or more adjacent cylinders, and part of a final cylinder.

To demonstrate possible bounds functions for this layout, we assume Lgeex_ min @nd
Lseok_max @re bounds on the 1-track seek time and the worst-case seek time respectively,
Luox is the time to read one block, Leamin 1S the rotation time, and N is the number of
blocks per cylinder. Furthermore, we assume that the controller does track-buffering; it
reads a track into a local buffer immediately after seeking to it. Hence, if an entire track
is read, rotational latency is negligible regardiess of the order in which the sectors are
read. Possible bounds functions are

Ur(N) = Lsoek_max + NLpiock + N

ﬂ] Lseok_min + 2Lroton (16)

and
V(i 1) = Lasok max *+ Nlsiook + (K=1)Lsooicmin + 47 Lroason

where k is the number of cylinders storing the n blocks of F starting at offset i, and j is
the number of blocks not in F in the first and last of these cylinders.

This contiguous layout policy is feasible for read-only file systems or if disk space is
abundant. For more flexibility, a variant of the of the 4.2BSD UNIX file system layout [5]
could be used. A real-time file might consist of clusters of n contiguous blocks, with
every sequence of k clusters constrained to a single cylinder group. n and k are per-file
parameters; they determine the max_rate parameter of the file. Bounds functions U
and Vv can be computed from n, k, the size of a cylinder group, and the disk parameters.
Allocation and compaction strategies would pose a complex set of issues; we do not dis-
cuss them here.

4. ACCEPTANCE TEST

CMFS can accept a new session S only if its data rate requirements, together with
those of existing sessions, can be guaranteed. We now describe a procedure for mak-
ing this decision.

We begin by introducing terminology. Suppose that sessions S, --- S, read files
F,---F, atrates R,--- R,. An operation set ¢ assigns to each S; a positive integer M;.
CMFS performs an operation set by seeking to the next block of file F;, reading M;
blocks of the file, and doing this for every session S; (the order of operations is not
specified).

Let L (¢) denote the worst-case elapsed time needed to perform ¢ based on the lay-
out (Section 3):

L(6) = S Ur(M) (17)
=1

M;A , o
Let D;(¢) denote - where A is the block size in bytes. Let D(¢) denote 1T-isnnD"(¢)'
i !

Intuitively, D(¢) is the period for which the data read in ¢ “sustains” the sessions.

A workahead-augmenting set (WAS) is an operation set ¢ such that L(¢) < D(¢), or
equivalently

MA > RiL(0) (18)
for all i. In other words, the data read in a WAS "lasts longer” than the worst-case time
it takes to perform the operations.

An operation set ¢ is called feasible if, for all i,

MA+Y <B (19)
where B; is the size of the FIFO butfer used by S; and Y, is the workahead limit of S
(Section 2.1). Intuitively, this means that the amount of data read in ¢ for each session
fits in the corresponding FIFO, even in the extreme case where the client has used none
of its “workahead allowance” Y.

An operation sequence ® is a pair (r, ¢), where r is a permutation of 1---n and ¢ is
an operation set. CMFS performs an operation sequence by doing the operations in ¢ in
the order =(1) --- n(n). @ is called workahead-augmenting if ¢ is workahead-
augmenting; likewise @ is feasible if ¢ is feasible.

Let W;(t) denote (P(t)— C(t) - Y)/R, where P, C, Y and R are the parameters for
S;. w; is the “workahead"” for session i, i.e., the duration of data currently buffered for
the session, above and beyond the client's workahead aliowance Y. We say that the
session starves if W; becomes negative.

The file system state W(t) at time t is the vector <W,(t) - - - W,(t)>. Let ® be an
operation sequence. A state W is safe relative to @ if :

WD) 2 3 L((0)
i=1

for all j (recall that L(j) is the worst-case time needed for S;'s operation). Intuitively, this
means that enough data is currently buffered so that, if @ is performed immediately, no
session starves before its operation is completed.

Claim 3. If & is workahead-augmenting and feasible, then there is a system state
that is safe relative to ®.

Proof. Consider the state in which all buffers are full. Then for session 5; we have
Wity = (P(t) = C(t) - Y)/A

=(B;- YVR
> (M;A)/R

> L(®D)

2 Z", L (n(i))

=1

The final three steps use Egs. 19, 18, and 17 respectively. a

10

Claim 4. Suppose that there is a feasible workahead-augmenting operation
sequence ®, and assume that at time t, the state W is safe relative to ®. Then the
CMFS can satisfy the Read Session Axioms (Egs. 2and 3) foralli andt 2 to.

Proof. We prove this by defining disk scheduling policy, called the Static policy,
that satisfies the axioms. The policy is as foliows. Repeatedly apply the schedule given
by @, with the following exception: if P(t)+A - G(t)> B; at the point of starting a block
read for S;, then immediately skip to the next session (since reading the block could
cause a buffer overflow). It is clear that this policy preserves Eq. 2.

Consider a particular session S, during one “cycle” of @, starting at tirpe t=0 (see
Figure 4). Let tp denote the time at which S,’s operation ends. Then fp < 3 L(xn(/)). Eq.

i=1
3 holds during [0, tp) since C(t) advances by at most ‘A bytes/second, and Wi (0) 2 bp.
The operation for S, either reads the full amount or is truncated; in either case
Wi (tp) > L(®), since @ is workahead-augmenting. Let tz denote the time at which the
n

cycle ends. Then tg-tp < 3 Li and the clock C(t) advances at a rate of at most A, s0

X i=k+1
Wi(te) 2 T L(xn(i)). Hence Wi remains positive during [tp, te]-

i=1

Therefore no starvation occurs during the cycle, and at the end of one cycle the

system state is again safe relative to ®. Hence the Static scheduling policy will maintain
the Read Session Axioms for all sessions. O

Wi (t)

_t, timet
te

Figure 4: Diagram for the proof of Claim 4, showing the workahead W of a session Sk
during one cycle of the Static scheduling policy. At the start of the cycle, S¢ has enough
workahead to last until time tp, when its operation is finished. The amount of data read
suffices for at least L(¢), which exceeds the length g of the cycle. Therefore W, is al-
ways positive; i.e., S never “starves”.

11

4.1. The Minimal Feasible WAS

Claim 4 shows that CMFS can satisfy the data rates of a set of sessions if there is
a feasible WAS. We now describe an algorithm to compute the minimal feasible WAS ¢
(the feasible WAS for which L(¢) is least). Clearly, a minimal feasible WAS exists if and
only if a feasible WAS exists.

Suppose that sessions S, - - - S, are given. Let D; be the “duration” of one block of
data for S;, given by A/R;. Let {t,, t;, - - -} be the set of numbers of the form kD; for k 20
and i >0 (see Figure 5). Let /; denote the interval (f;, tii]. Let ¢; denote the operation
set < R,tf’ fR,,t,,] >. Note that ¢;,, differs from ¢; by the addition of 1 block to all

sessions whose data periods divide t..; hence the sequence of ¢; is easy to compute.
Note also that L (¢;) < L (¢;s4) for all i.

Claim 5. If ¢ is an operation set such that D(¢) € I;, then L (¢) = L(¢;).

t.
Proof. Any sequence ¢ for which D(¢) > t; must read at least [R—I] blocks for each
i

session j, and hence L(¢) 2 L{¢;). O
Claim 6. If there is a feasible WAS ¢ such that D(¢) € I;, then o; is feasible.

Proof. ¢ must read at least as many blocks for each session as does ¢,. Therefore,
since ¢ is feasible, so is ¢;. O

Claim 7. The following algorithm computes the minimal WAS:

to ty to

A\ 4

time

Figure 5: A block of data for session S; has a “duration” D; that depends on the data
rate of S;. The set of all multiples of these periods defines a set of intervals /. Within
each interval there is a unique minimal-length operation set ¢;.

12

(1) Letgp=<1, ---, 1> (this is the minimum length operation set for which
D(¢) € lo)-

(2) If ¢; is infeasible (i.e., there is no allocation < B, - - - B,> of buffer space
to client FIFOs such that M;A + Y; < B; for all i) stop; there is no feasible
WAS.

(3) If L(e;) < D(¢;) stop; ¢; is the minimal feasible WAS.
(4) Compute ¢;,, and go to (2).

Proof. Suppose the algorithm stops in step 3, returning a WAS in /;. Let ¢ be the
minimal-length WAS, and let i be such that D(¢) € ;. It is not possible that i</, since
then ¢; is feasible (Claim &) and workahead-augmenting, so the algorithm would have
terminated at iteration i. It is also not possibie that i>j, since then L(¢) 2 L{(¢;) > L(¢)),
contradicting the minimality of L(¢). Therefore i=j and (from Claim 5) we must have
L(¢;) = L(¢), SO ¢; is the minimal WAS.

Finally, suppose that the algorithm terminates in step 2 for some i. Suppose that a
feasible WAS ¢ exists, with D(¢) € /;. By the above arguments i < j. Butthen ¢ reads at
least as many blocks for each session as does ¢;, so the buffer allocation feasible for ¢
is feasible for ¢;, which is a contradiction. O

4.2. Buffer Space Allotment

Suppose that a fixed amount B of buffer space is available for CMFS client FIFOs.
How should this space be divided among the various clients? CMFS performs best
when all sessions can “work ahead” by about the same time (see Section 6). In other
words, the buffer space allocated to a session, beyond that needed for the client's wor-
kahead allowance Y, should be roughly proportional to the data rate R.

n _ n
CMFS therefore uses following policy. Let Y denote Y Y;, and let R denote 3 A;.

i=1 i=1
Session S; is allocated
_ (B-Y)R;
Vit ——
bytes. This allocation may need adjustment in two cases. First, the above expression is
real-valued; the actual allocation must be an integer, and possibly a multipie of some
ugllocation block” size. Second, each session must be given enough space to accom-
modate the minimal WAS (Section 4.1).

(20)

5. DISK SCHEDULING POLICY

On completion of each disk biock /O, CMFS decides which disk block to read or
write next, and issues the appropriate command (seek, read, or write) to the disk con-
troller. The algorithm for this decision constitutes a disk scheduling policy. Such a pol-
icy must

e satisfy the requirements of current sessions (see Section 2.1);

e delay the return of the request_session() call for a newly accepted session until
it is safe to do so (we call this the session startup policy);

o efficiently service non-real-time workload.

Policies for real-time CPU scheduling, such as earliest-deadline-first {4], are not
immediately relevant because of seeks. In this section we describe several possibie
disk scheduling policies. Some of these policies are defined in terms of slack time,

13

which we will now define.

5.1. Slack Time

Suppose that the minimal WAS o takes worst-case time Li+---+Ls, where
L; = Ug(M;) (i.e., the time for an inter-file seek and the read of M; blocks of file F;). Letn
be a permutation of 1 --- n, and let ® be the operation sequence (=, ¢). Fora given ses-
n
sion j, let Hj = W; - iL,q,-), andletH= mip(Hi)-
i=1 =
The quantities H; and H, which are time-varying since they depend on the worka-
heads W;, have the following intuitive meaning. If CMFS performed & starting now, the
workahead for S; would not fall below H;; in fact no sessions would starve if & were post-
poned for H seconds. In this sense, H is the “slack time” during which the CMFS is free
to do non-real-time operations or workahead for real-time sessions.

Claim 8. Let ;:_be the ordering of sessions by increasing value of W. Then, among
all permutations =, n gives the maximal value of H.

Proof. Consider a permutation = in which W is not increasing; in particular suppose
W(Sxii) > W(Sxiken))- Let B and C denote the slack times of the two sessions. If we
reverse the order of the two sessions in =, then for the new slack times D and E we
have C <D and C <E (see Figure 6). The slack times of other sessions remain
unchanged. Hence the minimum of the slack times is not decreased by reversing the
order. O

time

V"Liﬂ Li

[_.
1..’ L i+1

Si Sis1 Sias Si

Figure 6: Global slack time is maximized by ordering sessions by increasing workahead.
Suppose a sequence has two sessions S; and S;,, that are not in this order. The bold
lines represent their workaheads W, and their slack times are 8 and C as shown (A
denotes the maximum time needed for operations preceding /; L; is the time bound for
the operation of session S;). By reversing the order of the two sessions, the slack times
are D and E. Simple algebra shows that C <D and C < E. Global slack time is the
minimum of the session slack times, so the result follows.

14

We therefore consider only the increasing-workahead ordering = of sessions. Let @
denote (x, 9), and let H; and H denote the corresponding slack times at a particular
moment.

It is important to note that H< 0 does not imply that starvation has occurred or will
occur. H is based on the pessimistic assumption that an inter-file seek is needed prior
to every operation in the WAS. For example, if H < 0 during of a multi-block file opera-
tion, CMFS is simply compelled to finish the current operation; starting a new WAS
would incur an inter-file seek.

5.2. Real-Time Scheduling Policies

Having defined slack time, we can now describe several possible disk scheduling
policies. These policies all avoid starvation; their relative performance is discussed in
Section 6.

(1) The Static/Minimal policy (a special case of the Static policy described in Sec-
tion 4) simply repeats the minimal WAS. This policy avoids starvation, as shown
in the proof of Claim 4. However, its use of short operations causes high seek
overhead, so the performance of non-real-time traffic suffers.

(2) The Greedy policy does the longest possible read for each session. At each
iteration, it computes the slack time H, finds the session S with smallest worka-
head, and reads the greatest number n of blocks for S such that 1) Ve(i,n)<H
and 2) the blocks fit in currently available buffer space.

(3) The Cyclical Plan policy differs from Greedy in that, instead of devoting all the
slack time to readahead for one session, it tries to distribute it among the ses-
sions in a way that maximizes slack time. It computes H and augments the
minimal WAS & with H seconds of additional reads (these reads are done, for
each session S;, immediately after the read for S; in ®). The policy distributes
workahead by identifying the “bottieneck session” (that for which H; is smallest)
and schedules an extra block for it, updating H; and H; this is repeated until H is
exhausted. The resulting schedule determines the number for blocks read for
the least-workahead session; when this read completes, the procedure is
repeated.

In both the Greedy and Cyclical Plan policies, the least-workahead session is ser-
viced immediately. Therefore the value of H used by these policies can be computed as
the minimum of the slack times of all sessions except the least-workahead session,
yielding what we call Aggressive versions of each policy.

All policies skip to the next session when a buffer size limit is reached. If at some
point all buffers are full, then no operation is started. When a client subsequently
removes sufficient data from a FIFO, the policy is restarted.

5.3. Non-Real-Time Operations

A non-real-time operation N can arrive at any time. N is queued if other non-real-
time operations are queued or in progress. Otherwise, CMFS must decide whether to
start N immediately (“preempting” the current real-time cycle) or defer it. To decide this,
CMFS computes the current value of H. If N has worst-case latency L (including seek
time) then it can safely be started if L < H. While N is being handled, H decreases at
rate one. Further non-real-time operations, arriving during N, may be handled immedi-
ately if H will remain nonnegative. When non-real-time operations are suspended
(because they are finished or H is 100 low) the real-time scheduling policy is resumed.

15

The policy of servicing a non-real-time operation whenever it is safe to do so may
tend to keep H low. This forces the scheduler to do short real-time operations (close to
the minimal WAS), causing the system to run inefficiently. To avoid this, it may be
preferable to do non-real-time operations only when slack time exceeds some nonzero
threshoid.

To avoid the seek overhead of rapidly alternating between real-time and non-real-
time operations, CMFS uses the following slack time hysteresis policy for non-real-time
workload. An interactive operation is started only if H € [Hy, Hi2l- Once H falls below
H,,, no further interactive operations are started until H exceeds Hj,.

Similarly, background operations are done within a hysteresis interval [Hg., Hg2]-
No background operation-is-started if an interactive operation is eligible to start. In Sec-
tion 6 we examine the effects of hysteresis, and of the hysteresis parameters, on system
performance.

5.4. Session Startup

A newly-accepted session is said to start when its request_session() call
returns. This must occur only when the system state is safe with respect to the new
WAS. A special mechanism is needed for handling this “startup” phase.

Suppose sessions S,---S, are currently active, and session Sp, has been
accepted but not yet started. Let ¢, and ¢,,, denote the feasible WASs for the sets
S, -+ S, and Sy - - - Spss respectively. Sn. is started as follows.

CMFS adjusts FIFO buffer sizes according to the procedure described in Section
4.2. It can shrink a buffer by discarding data from the end of the FIFO if needed (it must
later reread the data from disk). The scheduler then goes into “startup mode” during
which its policies are changed as follows:

(1) Non-real-time operations are queued for later execution.

(2) For scheduling purposes, slack time H is computed relative to ¢,. However, in
the Cyclical Plan policy the allocation of slack time for workahead is done rela-
tive t0 6,,, USING @ session ordering in which the new session appears first
(however, no I/O for S, is done during this phase).

(3) When the system state is safe with respect 10 ¢,,;, then a read of ¢,..(n+1)
blocks for S,., is started. When this read is completed, the system state is
wsafe” for all n+1 sessions. The request_session() call for S,., is allowed to
return, ¢,., becomes the system’s WAS, and the system leaves startup mode.

The above policy is sequential: if several sessions are accepted at about the same
time, they are started in sequence. It would also be possible to paralielize startup of
multiple sessions; we omit this for simplicity. Step (3) can be omitted for write sessions
because the equivalent read session starts with a tull buffer (Section 2.2).

6. PERFORMANCE

In this section we study the performance of CMFS as a function of disk scheduling
policies and hardware parameters. We give performance measurements obtained by
simulation, using the source code of the CMFS prototype with the disk I/O calls replaced
by calls to an event-based simulator. All actions other than disk /O are modeled as
instantaneous: i.e., we do not model the CPU time needed to copy data between buffers
or to execute policy algorithms. We assume that an interrupt is generated for every
block I/O completion (this is not realistic for some disk interfaces). Unless otherwise
stated, the simulations use the Cyclical Plan policy, and assume a disk with 11.8 Mbps

16

transfer rate and 39 ms worst case seek time.

6.1. Number of Concurrent Sessions

Figure 7 shows the maximum number of concurrent sessions accepted by CMFS
as a function of system buffer size. This is shown for two different session data rates:
64 Kbps and 1.4 Mbps. In each graph, curves are given for three different disk types: 1)
39 ms maximum seek time and 11.8 Mbps transfer rate (CDC Wren V), 2) 35 ms max-
imum seek time and 8.4 Mbps transfer rate (CDC Wren i) and, 3) 180 ms maximum
seek time and 5.6 Mbps transfer rate (Sony 5.25" optical disk).

The disk transfer rate imposes an upper bound on the number of concurrent ses-
sions that can be accepted. Unbounded butfer space is needed as this limit is
approached. To reach 90% of the fimit with a type-1 disk requires 4 MB for 1.4 Mbps
sessions and 85 MB for 64 Kbps sessions. The efficiency depends on the length of
operations in the minimal WAS; 64 Kbps sessions require a proportionally longer WAS
and therefore more buffer space. When the number of accepted sessions is fixed, a
disk with higher seek time needs a longer minimal WAS and therefore more buffer
space.

6.2. Performance of Disk Scheduling Policles

Since non-real-time operations can be done only if there is enough slack time, the
main criterion for disk scheduling policies is how quickly they increase slack time. To
study this, we simulated CMFS with three concurrent 1.4 Mbps sessions, no non-real-
time traffic, and 4 MB system buffer size. At time zero, system slack is zero and all

number of sessions number of sessions
(64 Kbps each) (1.4 Mbps)
10
2001 11.8 Mbps, 39 ms 1
o 11.8 Mbps, 39 ms
150 -7
8.6 Mbps, 35 ms i
61 .7 86Mbps,35ms
1004 5.2 Mbps, 180 ms SO T T T
41 ,,/// 5.2 Mbps, 180 ms
77"
504 #
2& ,-,,’
0 - - -y Np—— 0] g o ’ J
100B 10KB 1IMB 100MB 10GB 10KB 1MB 100MB
Buffer Size Buffer Size

Figure 7: The number of sessions that can be accepted by CMFS depends on the avail-
able buffer space. The disk transfer rate imposes an upper limit on the number of ses-
sions: to reach 90% of the limit with a type 1 disk requires 4 MB for 1.4 Mbps sessions
and 85 MB for 64 Kbps sessions.

17

sessions have equal workahead. The results are shown in Figure 8.

At low values of system slack (up to 3 seconds) Cyclical Plan increases system
slack somewhat faster than Greedy because it allocates workahead more evenly
between sessions. CMFS is likely to be in this state during session startup. During
steady-state operation, system slack will usually be higher. In this range, all the policies
perform about the same, except Static/Minimal, which performs worse.

6.3. Response Time of Interactive Traffic

To study the effect of real-time traffic on interactive traffic, we simulated a fixed
number of real-time sessions together with interactive requests that read randomiy posi-
tioned blocks from disk. The interactive request arrival is Poisson with mean arrival rate
1. We define the response time of an interactive request as the time from its arrival to
the start of the disk operation; the delay of the operation itself, including the seek, is not
included.

The effect of hysteresis parameters is most noticeable under heavy load (otherwise
slack remains high and hysteresis is not exercised). Figure 9 plots mean interactive
response time against Hj,, for different values of H;;, under a heavy load. We observe
that:

slack time H
(seconds)
8.09

7.0 7
6.0 4
5.0 Mi
4.0 ,

3079 / " Static/Minimal
Cyclical Plan

el

Af
2.0 h /“J. -
.7+ JAggressive Cyclical Plan
1.04 A \: - Aggressive Greedy

Greedy

-

0.0 +Enler , . ,
00 10 20 30 40 50

L2

time (seconds)

Figure 8: Disk scheduling policies build up slack at different rates. Above a certain
point, all the policies except Static/Minimal perform about the same.

18

interactive response time
(milliseconds)

600.0
W lower limit = 0.1

500.01

lower limit = 0.5

400.01

lower limit = 0.9

300.01

200.01

Jower limit = 1.3

100.0 v v v]
0.0 09 1.7 2.5 34

upper hysteresis limit (seconds)

Figure 9: Interactive response times fall steeply and then rise gradually with increasing
H,,. Also, interactive response is poor for very small values of H;;. This experiment was
conducted with 2 MB total buffer (Hpuer iS 3.4 seconds), 20 interactive arrivals per
second and three 1.4 Mbps sessions.

° For fixed H,, and increasing Hiz, interactive response time drops steeply and then
rises gradually. When H,; nearly equals Hy,, interactive response is poor because
the system enters a mode in which it switches rapidly between real-time and non-
real-time operations, causing high seek overhead. As H,, increases, this oscillation
becomes less frequent and response improves. Since interactive requests are
queued while slack builds up from H,, to Hj,, interactive response degrades if H; is
increased past a certain point.

e When H,, is very small (e.g., 0.1 sec in Figure 9), system slack builds up slowly
from H,, to Hj, so interactive response is poor. A similar effect is observed if Hz is
close to the buffer limit of slack, Hyume (the maximum slack that the system can
accumulate for fixed buffer size).! For all H,,, the interactive response is best when
H,;» — H,, is about one second.

1 A first approximation to Hpuprer is W — NL /C . where W is the maximum workahead a session can accumulate,
N is the number of sessions, L is the worst case seek/rotation time, and C is the fraction of disk bandwidth not used by

real-time sessions.

19

For the disk parameters and session rates we have considered, a “rule of thumb” for
hysteresis limits is as follows: set H; t0 Hpuer3, and set Hpz— Hjy 10 the smaller of
Hpuer/3 and one second.

Figure 10 plots mean interactive response time as a function of arrival rate, for dif-
ferent values of system buffer size. If interactive arrival rate is low, system slack stays
near Hpumer (Figure 11) and most interactive requests are service without waiting for
real-time traffic. At higher arrival rates (in Figure 10, about 5 per second for the 500 KB
case and 10 per second for 1 MB), interactive response degrades because system slack
sometimes reaches the lower hysteresis limit H,,, and interactive requests then are
blocked until slack reaches Hy,.

6.4. Throughput of Background Trattic

To estimate the effect of real-time traffic on background traffic throughput, we simu-
lated three 1.4 Mbps sessions and a single background task that sequentially reads a
long, contiguously-allocated file. We define the background throughput fraction T as the

interactive response time
(milliseconds) buffer = 1 MB

460.0 buffer = 500 KB

368.01 buffer = +oo

(analytical approximation)

276.01

92.01

0.0+ v v 3
0 6 12 18
interactive arrival rate (per second)

Figure 10: Interactive response time as a function of arrival rate, for different values of
system buffer size. In this experiment there were four concurrent 1.4 Mbps sessions.
The hysteresis limits (0.04, 0.08) and (0.35, 0.65) were used for the 500 KB and 1 MB
cases respectively. The “infinite buffer” curve was obtained analytically, modeling the
filesystem as an M/G/1 queue.

20

slack time (seconds)

> a0 Wt L@.M A} 10 arrivals/second
E A vl U
3.0 LY AL o
gt
2.5 §
! A

g TP 1
IR

1.5 \l w E | .

0.5

0.0 . ' v T T 1
0 5 10 15 20 25 30
time (seconds)

Figure 11: This graph shows how slack time varies in the presence of interactive non-
real-time traffic. Three 1.4 Mbps sessions start at time zero, the system has 2MB of
buffer space (Hyuer iS 3.4 seconds), and hysteresis limits are (1 second, 2 second). If
the interactive arrival rate is low (10 per second in this case), system slack stays near
Hyuner- For high arrival rates (20 per second), slack oscillates between the hysteresis
limits.

fraction of residual disk bandwidth (i.e., disk bandwidth not taken up by real-time ses-
sions) used by the background task. We describe below the effects of hysteresis and
system buffer size on T.

Figure 12 plots T against lower and higher hysteresis limits. For the same reasons
as discussed in Section 6.3, T is low if Hg, is very small, Hg, is close to Hpufer, OF
Hg, — Hg, is small. In this case (since throughput, rather than response time, is the goal)
there is no penalty if Hgp - Hg: is large.

For the disk parameters and session rates we have considered, a “rule of thumb”
for background hysteresis parameters is: set Hgy t0 Hpuer 4, and set Hg, to 95% of
Hbuﬂer-

Figure 13 plots optimal T (defined as the maximum in Figure 12) against buffer
space. Throughput increases with system buffer space. With larger buffer space, there
is less seek overhead in building system slack from Hg, t0 Hg, so more effective disk
bandwidth is available.

21

)

7

7

HB1 (sec)

Figure 12: Background throughput fraction 7 as a function of the hysteresis limits Hg,
and Hg,. Hg, is plotted on the X-axis and Hg, on the Y-axis. Buffer size is 4 MB, and

the real-time workload is three 1.4 Mbps sessions.

background throughput
fraction T

1.00

0.95 /
0.90 /
0.85 /

0.80 /
0.75 T T]
100KB IMB 10MB 100MB

Buffer Size

Figure 13: Throughput increases with increasing system buffer size. The graph plots
the maximum background throughput at different buffer sizes. Real-time workioad con-
sists of three 1.4 Mbps sessions.

6.5. Session Startup Time

To study startup time for new sessions, we ran a simulation in which requests for
six read sessions? arrive at time zero. Figure 14 shows the start times of the sessions.
It can be seen that the difference between successive start times progressively
increases: this is because the workaheads of all previously started sessions’ have to be
augmented to the new minimal WAS. When several requests arrive simultaneously,
startup times are on the order of one second. This is similar to the startup time of a con-
sumer VCR. However, it is too large for applications that require instantaneous
response, such as interactive musical performance using sounds stored on disk (how-
ever, this problem can be solved by storing an initial segment of each sound file in
memory).

7. RELATED WORK

Structural issues for multi-media files (sharing, parallel composition, annotations,
etc.) have been addressed in the Xerox Etherphone system [11], the Sun Multimedia
File System [10], and the Northwestern Network Sound System [9]. These projects do
not concentrate on performance or scheduling issues, and the systems cannot make

2 \Write sessions can usually be started immediately; see Section 2.2.

23

start time
(seconds)

3.00 1

2.251

1.501

0.751

0.00 Y ' ' ' .
1 2 3 4 5 6

session number

Figure 14: When six 1.4 Mpbs session requests arrive simultaneously at time zero, their
actual start times are staggered as shown.

performance guarantees.

Other projects have addressed performance but without hard guarantees. Abbott
gives a qualitative discussion of disk scheduling for playback of multiple audio tracks (1]
He compares a "balanced” policy in which read-ahead is divided among sessions, to a
shortest-seek-first policy. His analysis does not, however, provide an acceptance test or
performance guarantees. Rangan et al. [8] describe a prototype file system for storing
and retrieving CM streams. Their file system supports the storage and retrieval of a sin-
gle data stream only, concurrent non-real-time access to the disk is not permitted, and
no performance guarantees are made.

Park and English [6] describe a system supporting single channel audio playback.
Non-real-time traffic may concurrently access the disk, causing available disk bandwidth
to change. As an alternative to disk bandwidth reservation for the audio channel, they
propose changing the data rate of the channel dynamically, to accommodate non-real-
time workload. The high data rate is chosen if the workahead on the stream is above a
fixed threshold. This strategy does not guarantee a minimum data rate.

Yu et al. [12] discuss the layout of interleaved data streams with different data rates
on a compact disk for guaranteed-performance playback. Their assumptions (single
session, fixed rates, small buffers, no non-real-time traffic) are more restrictive than
ours.

24

Gemmell and Christodoulakis [3] describe a file system supporting multiple audio
channel playback. Non-real-time traffic may concurrently access the disk. Like CMFS,
this work provides a basis for hard performance guarantees. However, it differs from
CMFS in several respects. The channels must have the same (constant) data rate and
must start at the same time. The scheduling policy is static: the system repeatedly
applies a single feasible WAS for the audio channels, and reserves “free” time during
each operation sequence to service non-real-time traffic. For non-reai-time traffic, this
static policy may perform worse than CMFS because: CMFS can “interrupt” a WAS,
allowing non-real-time traffic to start immediately; CMFS can use accumulated system
slack to handle long bursts of non-real-time traffic.

8. CONCLUSION

The Continuous Media File System (CMFS) provides guaranteed-performance read
and write “sessions”. Several such sessions can coexist with each other and with non-
real-time traffic on the same disk. We have described the design of CMFS, and have

" discussed its performance. The central ideas of CMFS include the following:

e Semantics: The temporal semantics of a CMFS session are defined rigorously
(Section 2.1), but they include a factor Y that allows “slack” in the client CPU
scheduling. The semantics support a range of client requirements, including
variable-rate data, starting and stopping, synchronization of multiple streams, and
client workahead.

e Layout: CMFS does not mandate a particular disk layout, but simply requires that
bounds functions U and V can be obtained (Section 3). Depending on the usage,
a static contiguous policy or dynamic UNIX-type policy might be used.

e Session acceptance: The acceptance test checks for the existence of a feasible
WAS (Section 4.1) to decide if a new session can be accepted based on layout
parameters and available buffer space. It adjusts the allocation of butfer space
among existing sessions to optimize system performance.

3 Disk scheduling: Several disk scheduling policies for real-time traffic are possible.
We examined the Greedy and Cyclical Plan policies and their Aggressive variants.
These policies are all significantly better than the Static/Minimal policy, and there
was little difference among them. The performance of all traffic types improves, up
to a point, with increasing buffer space.

e Concurrent non-real-time access: CMFS handles non-real-time as well as real-time
file access. Disk space can be dynamically used for various purposes; there is no
need for separate disks or partitions for real-time files. CMFS uses the notion of
slack time to decide when non-real-time traffic can be handled. The slack time hys-
teresis policy maintains high slack time and allows long non-real-time operations to
complete without interruption.

8.1. Refinements and Future Work

The following observations suggest possible improvements to CMFS. First, for a
session S;, the graph of workahead W, as a function of time is roughly a “sawtooth”
function. If we consider two sessions S; and S; that have opposite phases in the
scheduling cycle, then max(W, + Wy) is generally less than max(W,) + max(W,). S, and
S, can therefore share buffer space, possibly improving non-real-time performance or
increasing the number of sessions that can be accepted. Second, the scheduling policy
could take disk head position into account in various ways. For example, it could yield a
session ordering that is more efficient than smallest-workahead-first (Section 5.1).

25

Similarly, the use of a policy such as SCAN [2] for ordering non-real-time operations
could improve their performance.

File layout policies that allow variable-size (extendabie) real-time files should be
investigated. The goal of such a policy is to provide bounds functions U and V that are
close to those of the contiguous policy, while allowing high utilization of disk space. The
overhead of allocation map and index block I/O must be considered. Dynamic compac-

tion of the disk, to make contiguous space available, might be desirable for such a pol-
icy.

Although we have presented the CMFS algorithms in the context of a single-spindle
disk drive, they are equally applicable to a disk array in which files are “striped” across
multiple disks [7]. A client-level session could be composed of sessions on multiple
disks, with each disk reserved and scheduled as described here. This could be used to
provide sessions with data rates higher than those of the underlying disk drives. It could
have benefits such as load-balancing and increased availability even for sessions with
data rates lower than individual disks.

ACKNOWLEDGEMENTS

Discussions with Vassilios Polimenis, George Homsy, and Mark Moran contributed
to the CMFS design.

REFERENCES

1. C. Abbott, “Efficient Editing of Digital Sound on Disk”, J. Audio Eng. Soc. 32, 6 (June
1984), 394.

2. P.J. Denning, “Effects of Scheduling on File Memory Operations”, Proceedings of
the AFIPS National Computer Conf. Proc. Spring Joint Computer Conference, 1967, 9-
21.

3. J. Gemmell and S. Christodoulakis, “Principles of Delay Sensitive Multi-media
Data Storage and Retrieval”, ACM TOIS (to appear), 1991.

4. C.L Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment”, J. ACM 20, 1 (1973), 47-61.

5. M. K. McKusick, W. N. Joy, S. J. Leffler and R. S. Fabry, “A Fast File System for
UNIX”, ACM Transactions on Computer Systems 2, 3 (Aug. 1984), 181-197.

6. A. Park and P. English, “A Variable Rate Strategy for Retrieving Audio Data From
Secondary Storage”, Proceedings of the International Conference on Multimedia
Information Systems, Singapore, Jan. 1991, 135-146.

7. D. Patterson, G. Gibson and R. Katz, “A Case for Redundant Arrays of
Inexpensive Disks (RAID)", ACM SIGMOD 88, Chicago, June 1988, 109-116.

8. P. V. Rangan, W. A. Burkhard, R. W. Bowdidge, H. M. Vin, J. W. Lindwall, K.
Chan, I. A. Aaberg, L. M. Yamamoto and |. G. Harris, “A Testbed For Managing
Digital Video and Audio Storage”, Proceedings of the 1991 Summer USENIX
Conference, Nashville, TN, June 10-14, 1991, 199-208.

9.

10.

11.

12.

26

J. M. Roth, G. S. Kendall and S. L. Decker, “A Network Sound System for UNIX",
Proceedings of the 1985 International Computer Music Conference, Burnaby, B.C.,
Canada, Aug. 19-22, 1985, 61-67.

D. Steinberg and T. Learmont, “The Multimedia File System”, Proc. 1989
International Computer Music Conference, Columbus, Ohio, Nov. 2-3, 1989, 307-311.

D. .B. Terry and D. C. Swinehan, “Managing Stored Voice in the Etherphone
System”, Trans. Computer Systems 0, 1 (Feb. 1988), 3-27.

C. Yu, W. Sun, D. Bitton, R. Bruno and J. Tullis, “Efficient Placement of Audio
Data on Optical Disks for Real-Time Applications”, Comm. of the ACM 32, 7 (1989),
862-871.

