VLSI Design of a Network Interface Processor

Jeffrey Rothman

Department of Electrical Engineering and Computer Science
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720

Abstract

An important piece of parallel computer systems is an interface
between the processing node and the communications nerwork. In
many systems, this interface is largely handled by software. This
document describes a general purpose interface processor, which
performs requests from the network. This component can also be used
with the Fluent multiprocessor system. This design was motivated by
the need of a fast interface for Fluent, but can be used in many network

applications.

Acknowledgements

I would like to thank my advisor Abhiram Ranade for his advice and direction in the
research and his comments for this report. I would also like to thank David Cross, Jim
Hunt, and other members of the Fluent group for their help and comments. Thanks also to
Andrea Casotto for his efforts in helping me with the Octtools.

VLSI Design of a Network Interface Processor

Jeffrey Rothman

Department of Electrical Engineering and Computer Science
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720

1. Introduction

In the past, improvements in material processing would lead to increase
pcrfbrmance of computer processing power. Now, the rate of increase of processing
power for sequential processors has been slowing down due to limitations of physics. One
solution to this dilemma is using many processors working on the same problem in
parallel. Along with this solution comes the problem of communications between these
Processors.

Communications between processors can be broken into two basic kinds of
operations: data transfer, and synchronization. In some systems, the processors operate in
lock-step on the same instruction stream, each processor working on its own data. This
model is referred to as single-instruction, multiple-data (SIMD). Since all processors work
on the same instruction at the same time, synchronization is implicit. In other systems,
each processor has its own instruction stream as well its own data. This is referred to as
multiple-instruction, multiple-data (MIMD). The processors in the MIMD model must
explicitly communicate to be able to synchronize.

Data transfers between processors can be accomplished in many ways. Processors
can use shared or distributed memory. The processors can communicate by sending
messages to other processing nodes, or by reading and writing to specific memory
Jocations. Communications can take place through a network, which can have a variety of
forms.

The network consists of processing node with some kind of set pattern of wiring
between them. For the Fluent Multi-processor System, which this report partially
describes, the network is a radix-2 butterfly network. At either end of the network are

processing nodes, which consist of a Central Processing Unit (CPU), a memory, a
memory cache for the CPU, and a communications processor which interfaces with the

network (Figure 1).

Network
CPU t
A
l Network
Memory Interface
MMU Processor

P -

Figure 1. A Fluent Processing Node

We designed a fast network interface processor (NIP) to aid in communications
between processors over a network (Figure 2). It can support shared memory and message
passing models of computation, and does so with little overhead to the CPU and the node
bus. It can also be used with the Fluent multi-processor system (Appendix A), and handles
a few extra primitives necessary to perform that task. This chip has the ability to load node
memory at boot time, eliminating the need for read only memory (ROM) on each node. It
can also detect errors in messages and tries to minimize error impacts on the whole system.

The NIP consists of two major components: the front-end and the back-end
(Figure 2). The front-end of the NIP monitors the node bus for commands to perform in
the network, generates the appropriate message, and inserts it into the network. It also
receives replies from the network and installs them in local memory. The back-end of the
NIP receives requests from the network, performs the operations required, and sends back
a response, if appropriate. This report describes the VLSI implementation of the back-end

-2-

of the NIP chip. The implementation of the front-end of the NIP is described in more detail
in a companion report [HUNT].

Network
3 &
Back-end Request Reply
Out-going
Response | Message
Front-end
P /
buffering queues e

internal registers /

and control logic ~—~—__ L] y

I To System Bus

Figure 2. The Network Interface Processor

In section 2, the operations that the NIP supports are described. Section 3 contains
an overview of the back-end of NIP. Sections 4 provides the details of the implementation
of the back-end of the NIP. Section 5 describe the special message buffers that the NIP
manages. Section 6 covers the error handling capabilities of the NIP and discusses loading
node memories at boot time. Section 7 discusses how the whole back-end was tested, and
section 8 provides the layout size and performance information. Section 9 compares the
NIP with existing parallel computers. Section 10 is a conclusion of the design report, and a
summary of the results. Appendix A is an explanation of the Fluent multi-processor

system, for which the NIP was designed. Appendix B describes the different
programming models the Fluent system is capable of emulating.

2. Detailed Overview of NIP Operation

There are six basic classes of operations that a processor can execute for which the
NIP performs network and shared memory operations. Each processing node has the
entire shared memory mapped into its local memory. A processor can manipulate shared
memory by performing a memory write into a local memory location corresponding to the
shared memory region. The front-end of the NIP monitors the node bus, and upon
recognizing shared memory addresses on th= bus, takes actions to send an appropriate
message through the network. The front-end encodes a message with a destination, an
opcode, and data. The message traverses the network, and is received and processed by
the back-end of the NIP at the destination node. For some instructions, the processing is
finished. For a read operation, data will be put into a reverse network by the back-end,

traverse the network, and be written to memory by the front-end.

2.1 Processor-NIP Interface

These are the six kinds of operations the processor can request of the NIP:

(1) Read remote address, local address, number: The READ operation specifies
a remote address to read from in shared memory, and the number of words to read.
The result of the read is sent back across the network and written to the local
address. The current implementation of the NIP can read one, two, or four words
(32-bits per word) from shared memory. The word in local memory eight bytes
after the local address is used to signal the processor that the data has returned from

remote memory.

(2) Write remote address, local address, number: The WRITE operation reads
one, two, or four words from local memory, and sends them across the network to

a remote location in shared memory.

(3) Multi-prefix remote address, local address: There are two types of multi-
prefix operations: ADD and MAX. In both types of operations, a word is read

from the local address, and sent across the network The data from the remote

location is read and sent back to the network. For the ADD operation, the data from
the local address is added to the data from remote memory, and stored back at the

local address. For the MAX operation, the data from the local address and the data
from shared memory are compared, and the maximum of the two are written back

to the local address. »

(4) Broadcast remote offset, local address, number: The BROADCAST is either
a Write or Notify operation to all the nodes in the network. Associated with the

BROADCAST are one, two, or four words of data. The data is read from the local

address. For a Write operation, the data is written to an offset within the shared

memory located on each node, including the originating node. For the Notify, the

data is put into a special buffer reserved for message passing.

(5) Notify remote node, local address, number: The NOTIFY operation is how
messages are passed between processing nodes The number words of data
associated with the operation, are read from local memory and set to a remote node.
The data is put into a special buffer on the remote node, which is jointly managed
by the remote node's NIP and processor. These messages are a way of specifying
operations that are too complex for the NIP to handle, and the message gets passed
to the processor, which will handle the operation. Some of the possible uses for
the Notify message are communications between processes, thread (light weight
process) creation, or a remote procedure call. This operation is how message
passing operations get performed in the system when an alternative to shared

memory operations is required.

(6) Synchronization Operations: Several kinds of synchronization operations are
supported. The back-end recognizes these operations, but passes them on to the

front-end to be acted upon. These operations are discussed in more detail in the

appendicies.
2.2 Message Formats

The front-end converts the requests from the processor into appropriate message
packets, which are sent across the network. Messages that the back-end of the NIP can
receive from the network consist of two address packets (except for synchronizations), and
up to eight data packets. The operations requested of the NIP are encoded in one or two
17-bit address packets (Figure 3). The upper two bits of the network packet encode the
type of operation, and the 15 lower bits are used for address information. For all other
operations, except synchronization, another packet is necessary to completely specify

which

- 17 bits —>
P| Op ., 15-bit address
parity

. opcode
(1 bit) (2 bits)

Figure 3: Components of a Network Opcode

operation is to be performed (Table 1). The complex message format was used to
minimize the amount of traffic through the network, and to keep the pin count as low as
possible on the chips we needed to design [Cross). This message format allows:

(1) Efficient pipelining of message through the network.

(2) The synchronization message can be sent with only one packet.

The highest two of the four bits arrives with the first address packet. To try and

-6-

minimize the number of packets in the network, it was decided that an EOS should only
take one address packet to specify, since there will be many EOS messages in the network.
Since a synchronization does not need a destination, the address bits are used to specify the
kind of synchronization, which is described in Appendix A.

For the READ and WRITE operations, the high two bits specify the operation, and
the low order bits specify the size of the operation.

The miscellaneous operations are specified by 10 as the high order two bits. Two
of the combinations are used for Multi-prefix operations, and the last combination is used
to specify BROADCAST.

Three of the 13 kinds of messages are GHOST messages. These are used in the
network to aid in sorting, but are ignored by the back-end. These messages all have 11 as

the low order two bits.

Opcode Operation
00 00 Read 1 Word
00 01 Read 2 Words
00 10 Read 4 Words
01 00 Write 1 Word
0101 Write 2 Words
0110 Write 4 Words
10 00 Multi-prefix Add
1001 Muls-prefix Max
10 10 Broadcast
XX 11 Ghost
11 End of Stream

Table 1: Network Operation Codes

Note that in table 1 there are no opcodes to represent the Notify operation. This is
due to the small number of opcodes available to be used for encoding operations. The
Notify is actually a Write (or Broadcast) to the remote address that corresponds to the base
of the Notify buffer. This is discussed in more detail in section 3.

3.0 Overview of the Back-end

The back-end consists of four distinct kinds of state machine functional units which
cooperate in accepting and performing commands from the network (Figure 4). The four
basic units are input finite state machine (infsm), the back-end controller (befsm), the
output finite state machine (outfsm), and a circular queue. The missions of each of the

pieces of the back-end will be described in the order that information is processed through

the network.
17-bit 32-bit quantities
quantities plus control info
output
outfsm |g— quee [
Backend
Controller,
network registers,
functional
units
: input
infsm — guene [
Figure 4: Structure of the Back-end
3.1 Infsm

The input FSM accepts 17-bit data packets (plus parity) from the network, and pairs
the packets together to form 32-bit data packets with associated 5 bits of opcode. It also

does a partial interpretation of the incoming messages to weed out the simpler types, such

-8-

as ghost messages and synchronization messages. The synchronization message is the
only type of message that comes in a single 17 bit quantity. The infsm informs the front-
end of the arrival of a synchronization message, and resets to accept another packet.

Ghost messages can also arrive at the network input to the back-end. Ghosts are
used to keep the network "fluent,” but are not to be processed. The infsm recognizes
ghosts, and kills them by accepting them and throwing them away.

The infsm refuses to accept packets under two conditions:

(1) Parity error: If the incoming parity bit does not match the parity bit the infsm
generates, then it refuses to accept a message. However, the address packets must
be accepted in pairs, to prevent deadlock (unless the message happens to be an
EOS) [Cross].

(2) Full input queue: Incoming packets may be ignored if the queue is full. From
the network side, it doesn't know what is keeping a packet from being accepted, so
it just keeps re-transmitting until the infsm accepts it.

Once data is accepted by the infsm, it is passed into an input queue, from which the
back-end controller eventually reads it.

3.2 The Back-end Controller

The back-end controller is the heart of the back-end. It interprets messages from
the input queue and performs the required actions. The controller consists of two parts:
the back-end finite state machine (befsm) and the datapath. The befsm interprets the four
bit operation code in incoming messages, and performs combinations of memory and
functional unit operations in the datapath. The controller consumed the most design time of
any of the different parts of the NIP.

Data flows from the input queue onto a bus, from which it is routed by the befsm to
different internal registers, depending on the operation to be performed. All operations
require a memory access. If the operation is a read or multi-prefix operation, then data

BUS2

RO

R1

Outgoing |g
Queue A

SAR 'l

. BUS!
ﬁggggg »| BS " T T TO
NR CR Tl
= X
“ NotfyBUS T2 |
NB
inNotifyBUS ¥ T3

Figure 5: Back-end Control Data Path
See Table 2 for the figure legend

-10 -

MBI

Abbreviation Long Form
MBI Memory Bus Interface
ALU Arithmetic Logic Unit
SAR Saved Address Register
CR Condition Register
MP Multi-prefix Register
NR Notify Register
NB Notify Base Register
BS Barrel Shifter
TO-T3 Transmission Registers
RO-R3 Receiving Registers
AD Address Register
= Equivalence Unit

Table 2: Legend for Figure 5

from memory is routed to the output queue, and from there throught the output state

machine to the network. The operation of this unit is described in more detail in section 4.
3.3 Outfsm

The outfsm is the simplest unit in the back-end. Its job is to take a 33-bit word (32
data bits plus a chaining bit) from the output queue and break it into 16-bit packets for
transmission over the network. It also generates a parity bit and a chaining bit, and deals
with re-transmissions.

4.0 The Back-end Controller

The finite state machine of the back-end controller (befsm) has to perform four
basic types of operations, with variations on each kind (Figure 5 and Table 2). To do so, it

-11-

has to manipulate a collection of registers and functional units. The four types of operation
are read, write, multi-prefix, and notify. The opcodes used to internally encode these

operations are in the appendix. The logic for the befsm was entirely written using bdsyn.

4.1 Read

The read operation has three variations: one word, two words, and four words.
The address is loaded over BUS1 into the AD (Address) register through the barrel shifter
(BS), the unshifted version of the address is put into SAR, and the memory bus interface
(MBI) unit is started up. When the read has finished, the results are put into the outbound
queue, followed by the unshifted address packet. The befsm just has to make sure the
outbound queue has room for each word as they are removed from the receiver registers

(RO - R3).

4.2 Write

The write operation writes one, two, or four words to memory. The befsm loads
the data words as they arrive in the transmitter registers (TO - T3). When the proper
number of words have been written into the registers, the MBI is informed of the
operation, and the befsm waits until the MBI is done before proceeding to the next
operation in the queue. The write operation does not require any information to be returned

to the network.
4.3 Broadcast

A broadcast is treated by the back-end in a manner similar to be a write. There were
not enough bits in our four-bit message opcode to encode all the broadcast lengths, so the

befsm depends on the chaining bits to determine the number of words to be written. If the
broadcast is a write to the base of the Notify buffer, then the Notify operation is performed.

-12-

4.4 Multi-prefix

This type of operation requires several accesses to memory in a read-modify-write
(RMW) cycle. The two variations are ADD and MAX. The address packet is followed by
one data packet. A RMW is started using the address packet, and the memory bus is held
until the appropriate operation can be performed by the ALU and written to the TO register,
from which the value is written into memory and the RMW cycle completes. The value that
was read from memory is written into the outbound queue over BUS2, followed by the

unshifted address packet whenever the queue has room.

4.5 Notify

The Notify operation is a fairly complex operation, and takes up most of the code in
the befsm specification. The Notify message is 2 message from another processor that
writes data into a buffer rather than a specific memory location. We view it as a fixed
length remote procedure call, but the hardware puts no constraint on how the messages are
treated; it just delivers them to the buffer. A Notify message is four words long. One

possible message interpretation consists of a header and three parameters (Figure 6).

SN E P param] param2 param3

source node procedure to execute
(12 bits) (20 bis)

Figure 6: Possible Interpretation of a Notify Message

The header consists of a source node, which is the ID of the node that sent the
notify message. The procedure field specifies an index into a table of procedures to

execute. The three parameters are parameters for the procedure to use. If there are up to

-13-

three arguments needed for a procedure, then these parameters are the actual data for the
invocation. If more than three arguments are needed, then paraml is a pointer to an
argument area on another node, and param?2 is a counter of the number of arguments that
need to be read. The procedure would then have to initiate the appropriate number of
READ messages to get the data back for its execution. We expect the procedure to know
whether it takes three or less parameters, or needs to make accesses to remote memory. If
there are less than three arguments, then the unused parameter fields still exist and will be
garbage, so the procedure must ignore them.

A Notify message is recognized as a WRITE or BROADCAST w a special memory
location. The special memory location is whatever the base of the Notify buffer happens to
be. When a message comes in, it is compared to the base of the Notify buffer, and is
determined to be a Notify message if it matches. In that case, it is put into a slot in the
buffer, and not sent to the Notify address. There is also a special Notify, called an
Interrupting Notify, which causes the CPU to be interrupted and informed immediately of
its arrival. The back-end writes a status word to memory, as well as the address of the
Notify, and it may be processed at the CPU's convenience. The Interrupting Notify is
detected as a write to the memory location one byte above the base address of the Notify
buffer. This would cause a bus error if attempted, but the back-end intercepts the address
of the message, and handles the storage to memory correctly.

4.5.1 NIP Notify Processing Specifics

As the address packet is written into the AD register, it is compared to the NB register. If
the values are equal, the AD register is reloaded with the value in the Notify Register (NR)
on the next cycle. Since the Notify messages are expected to be in the minority of
messages received, it is more efficient to load the address into the AD register before
determining if a Notify operation is in the works. Once the AD register is set up, the data
associated with the Notify is written into the transmission registers.

At this point, the befsm must determine what kind of Notify is to be executed. If
the address in the address packet is one higher than the NB value, then the Notify is the
interrupting type. The normal case, which is a non-interrupting Notify, will be discussed

-14 -

first.

4.5.2 Non-interrupting Notify

If this is the type of Notify, then the MBI can be informed that it has a write to
perform. The next step is to increment the NR by four, using a specially designed
increment-by-four register. The NR is then compared to the NM (Notify Middle) if Notify
queue 0 is being used, otherwise it is compared to NE (Notify End) for Notify queue 1. If
the comparison shows equivalence, the end of the Notify queue has been reached. A status
word is written into the Condition Register (CR). The AD register is loaded with the NE
value. TO is loaded with the CR value, and T1 is loaded with the NR value, so the CPU
will know which queue to read. The MBI performs a write of the information, and the
CPU is interrupted, so that it looks at the NE location for the reason it was interrupted. A
bit is set in the NIP that reminds it that it can not perform another Notify operation until the
CPU tumns the other queue over to the NIP for writing. The NIP goes on to the next

operation.

4.5.3 Interrupting Notify

An interrupting Notify is written to the location the NR points to in memory, and
the CPU is immediately interrupted. The AD register has been load with the NR value
before the befsm discovers what kind of Notify is to take place, but that does not cause a
problem. CR is loaded with an condition vector indicating that an interrupting Notify is
taking place. The MBI is activated, and when finished, a few registers are reloaded. The
AD register is loaded with NE. The CR register is transferred to T0, and the NR value is
transferred to T1, so the CPU knows where to look for the Notify. The MBI is activated
again, and then the CPU is interrupted. No further Notify operations can take place until
the CPU has acknowledged reading the interrupting Notify. Since the Notify has been read
from the slot the NR points to, that space is re-used to write the next Notify message.

-15-

a— 4 words wide ——»

Notify Base =———» A
Queue 0 32 Slots

Notify Middle —— x
Queue 1 32 Slots

Notify End \

NIP Status Words —j 7

Condition Word Address Not Used

Figure 7: Structure of the Notify Buffer

5.0 Notify Buffer Management

The Notify buffer is really a pair of queues which are jointly managed by the NIP
and the CPU (Figure 7). Each queue holds 32 slots for Notify messages, for a total buffer
size of 1 kilobyte. At any given time, one queue receives messages from the network
(through the NIP) and the other queue can be read by the CPU. When the back-end
determines that its queue is full, it interrupts the CPU and informs it that the buffer is full.
After the CPU tells the back-end to switch queues, the functions of the queues are swapped
(i.e. the receiving queue is available to be read by the CPU), and the back-end uses the
other queue as the message buffer. The CPU can also request that the queunes be swapped
if it needs more tasks to work on. The back-end can write status information to memory
and interrupt the processor to acknowledge the switch. Part of the status will be the
address of the next slot in the queue that was to be written with the next Notify message.
The processor can figure out how many messages are available to be read based on that

information.

-16-

When either the NIP or the CPU request a switch, a condition word is written to the
word located right past the end of the second queue. The next word in memory contains
the address of the word after the last valid message in the queue. The status word is used
to inform the CPU of certain conditions within the NIP. Along with the address word
written into memory, there is enough information for the NIP to communicate the status of
the Notify buffers. The conditions that the back-end tells the CPU about are NIP errors,
and Notify buffer status. The different conditions are:

(1) Data Error. The NIP back-end controller sees data packets when it doesn't

expect to see data.

(2) Write Error. The number of words specific by the opcode are inconsistent
with the number of words received by the NIP.

(3) Queue Full. The NIP tells the CPU which queue is full, and awaits release of

the other queue to write into.

(4) Interrupt Notify. The address specified in the address area of the status
words points to a high priority message in the queue. After the CPU
acknowledges, this location will be overwritten.

(5) Queue Available. After the CPU requests the NIP to switch queues, the NIP
informs the CPU that it has switched queues, and tells the CPU from which queue
it had switched (redundant information to help detect errors).

Upon detecting an error condition, the CPU executes routines to rectify the
situation, or to signal to the user that some kind of error has occurred. The other
information in the status word is about the Notify queues.

The NIP maintains three pointers to indicate the position of the queues in memory,
as well as a pointer to the next slot to be filled in memory. The base pointer can be set to

point to 1 K boundaries, which determines where the Notify buffer is located in node

-17-

memory. This location can be set by the CPU. The other two pointers are offset from the
base pointer; 512 bytes for the middle pointer, and 1024 bytes for the end pointer. After
each Notify message, the NIP increments the slot pointer, and tests to se¢ if the end of a
queue has been reached by comparing it with the middle or end pointer. If the end of a
queue has been reached, the NIP fills the status words with a condition vector and
interrupts the processor. The next incoming Notify message will be stalled until the CPU
signals that the other queue is ready to be written to.

When an Interrupting Notify is received, it is put into the slot the next Notify would
be put in, but the address of that location is written to the Address area, and the status word
indicates that there is a special Notify. The CPU is interrupted, and any incoming Notifies
have to wait until the CPU acknowledges. The next Notify message will then overwrite the
location of the interrupting Notify. The interrupting Notify has supposedly been executed
or removed before the CPU acknowledges, so it should be removed/overwritten from the
queue.

The two queue method of buffering Notify messages was chosen to minimize the
amount of accesses to the system bus. We considered several different schemes, but the
two queue method seemed the best. One method would be to have one buffer, and the NIP
could set a bit in some memory location to indicate that the word had a message in it. The
CPU could clear a bit when the corresponding message had been processed. The problem
with this method is that each write to a buffer takes three memory operations: a read to find
a location to write the message, a write of the message, and a write to set a bit. Each
successful read by the CPU would take two cycles, one to see if a message were available,
and another read to get the message. For each successful read operation, there could be
many failed reads, each of which would take a memory bus cycle.

A slightly better method would be to use information in the Notify message slot to
tell if the slot were full. If an all zero message were disallowed, then the NIP could read
the words in the message to see if the slot were empty, and the CPU could clear the Notify
slot once it had read the message. However, this method has the disadvantage of requiring
an extra access on each read and each write. The strategy used in the Fluent system
minimizes the overhead number of accesses to the memory for each message by
establishing a handshaking protocol between the CPU and the NIP which is not that much

more sophisticated than the alternative methods, but with many fewer accesses to the

-18 -

memory.

5.1 CPU Requested Queue Switch

Under some circumstances, the CPU may request that the NIP switch queues, so
that the CPU can process the messages. At the end of each operation, the befsm checks if a
bit in the NIP has been set to indicate that a switch should take place. If so, the befsm
immediately jumps into the middle of the code for a Notify operation that switches queues.
The CR register is loaded with a vector indicating which queue it had been using (which the
CPU should know anyway). The AD register is loaded with the NE register value. TO is
loaded with CR, and T1 is loaded with the value in NR. The MBI performs a write, and
the NR is loaded with NB or NM, depending on which queue it is switching to.

6.0 Error Handling and Booting in the NIP Back-end

This section describes special functions of the NIP.

6.1 Error Handling

To help in detecting errors, the back-end has a significant amount of redundancy
built in. When data is put into the input queue, two bits of the associated opcode are used
to direct the data to the appropriate transmission register. The controller also keeps a
counter of the number of data words associated with the instruction being processed. If
there is a mismatch between the counter and the opcode, the NIP enters an error mode.
During the error mode, the rest of the instruction is discarded, and the NIP informs the
CPU of the error by writing the error vector to the status words, and interrupting the CPU.
The CPU should invoke the operating system to deal with the failure.

The highest order bit of the five bit opcode in the queue is the complement of the
chaining bit used in the network to pass data. This provides a third way of making sure
that the opcode in the queue and the counter in the befsm are comrect. In the case of a
broadcast, the highest bit provides the only way that the befsm can know how much data to

expect. The broadcast instruction can be one, two, or four words, but there is no way of

-19-

encoding the information in the opcode, so only the chaining bit in the data packets can be
used to know the amount of data. All the befsm knows is that that there can not be more
than four words of data. If there is no data, or too much data, the befsm enters data mode
and clears the data from the queue until it finds a valid instruction to perform.

Parity is used for the transmissions between the network and the back-end, as well
as throughout the network. If the parity calculated by the data receiver does not match the
transmitted parity, then the receiver does not accept the data. The transmitter will keep
sending the data until accepted by the receiver. The receiver can also refuse data if the input
queue is full. The transmitter does not know the reason the data was refused, so it can just

assume some kind of error occurred, and keep transmitting.

6.2 Booting the System

Because the NIP uses DMA accesses to local node memory, it is possible to load
the node memory with the CPU in the reset mode. When the reset signal is turned off, the
CPU will start executing instructions at some predefined location. By clever use of the
NIP, the boot code for the CPU can be loaded over the network, and it will not be
necessary for a ROM (read only memory) to be part of a processing node. By using the
BROADCAST instructions in the network, four words of code can be loaded into all the
processing nodes simultaneously. There is a slight overhead (one word of address and
opcode for every four words of instructions), but many thousands of processors could be
loaded at the same time. Once enough BROADCASTS have been placed into node
memory, the reset signal could be released, and the CPU can start executing the boot code.

7.0 VLSI Implementation of the Back-end

The most of the work on this project was done using standard cells from the MSU
library for layout, and U.C. Berkeley Oct tools. Oct is a database system which is used at
Berkeley for CAD layout and synthesis tools. Standard cells were used extensively, to
increase the speed of production by allowing rapid creation of logic units, and allowing
quick debugging of circuits. Standard cells in the library were sufficient for most of the
design. The tools Bdsyn, MisII, Bdnet, and Wolfe were used almost exclusively in

-20-

this chip. Bdsyn was used to take behavioral descriptions and turn them into logic, which
misIl attempts to minimize and generate standard cells. Bdnet was used to connect blocks
of circuits together. Wolfe performed the standard cell placement and routing. The Oct
tools automated synthesis tools were very useful in creating the design.

Because there is no standard cell to perform the functions necessary for the queue
array in the design, a queue cell was laid out by hand using Vem, which is a visual editor
for VLSI design. The only part laid out by hand was the queue cell, which is used
extensively in the NIP. The queue cells were tiled together by Boss, which is a C++

interface to Oct.

control
logic
I read*
. D array of
datain quene o dataout
° cells °
. '

Figure 8: Schematic of a Queue Array with Buffers

7.1 Queue Array

The array of queue cells (figure 8) was laid out using Boss, which is a C++ object
oriented interface to the Oct database. Since the queue cells were designed to overlap, Boss
allowed very close control over the degree of overlap. The Oct tools can be used to
automatically route blocks of logic together. However, since the array of cells is a very

regular structure, it was better to specify the exact layout. Using Boss saved chip space by

-21-

allowing routing by cell abutment, as well as saving CPU time wasted routing a structure

which was very regular.

7.1.1 Control Logic for the Queue

advance reset* phi2
\'4
. To next cell
From previous cell —pm Myx | | D flip flop
v
To selected column

Figure 9: Circular Queue Column Selector Cell

The packet buffers in the back-end are maintained as circular queues. The goal of
the control logic is to be able to keep all the queue columns available for use. To implement
the circular queue, there are two pointers to each column (read and write) (Figure 9) and a
full bit for the whole queue. If the read and write pointers are pointing to the same queue
column, the full bit is used to determine whether the queue is empty or full, so all the
elements can be used.

The pointers for read and write are implemented as a D flip flop with an input
multiplexor. On reset, all the flip flops are reset to zero, except for the first column, which
is set to one. If the advance line is low, then the pointer does not move. If the advance
line is high, then the pointer moves to the next column.

There are a few differences about how the pointers are used. Since write is a
destructive operation, the pointer can only be used when a write is actually requested. It
would be bad for a column to be overwritten, so the full bit is gated with the write signal to

-22-

prevent that from happening. After a write occurs (during phil), the advance signal will be
high, and the pointer will advance to the next column on phi2.

The read pointers work in a similar way. After a read occurs, the read pointer is
advanced by the same mechanism as above. When the end of the queue is reached, the
pointer propagates back around to the beginning of the queue automatically. However,
since read is a non-destructive operation, a read can be performed every phil. If the data
consumer wants the data, it will be available, but it does no harm if the data is available
every cycle without being used.

To detect if the queue pointers are pointing to the same column, all the
corresponding read and write pointers are ANDed together, and these results are ORed
together to form an equal bit. If the equal bit is one, and the last operation was a read,
then the queue must be empty. If the last operation on the queue was a write, then the
queue must be full, since the write pointer has advanced to be equal to the read pointer. So
the data producers and data consumers can detect if the quene can be written to or read from
by examining the full and equal bits. The producers and consumers respect the full and
equal bits of the queue, and make sure not to over-write data in the queue, or read non-

existent data from the queue..

7.2 The Queue Cell

I—£E

data out

asain. ——— >0

write

Figure 10: Schematic of a Queue Cell (7 transistors)

Because there is no memory cell in the MSU library that performs the exact
functions that the queue cell requires, the queue cell was laid out by hand (Figure 10). The

-23.

actual design is a static dual-ported cell that requires only seven transistors, and fits mto a
fairly small area (61 x 66 lambdas). It has access to two buses that can be used
simultaneously, but a particular cell will not be read and written at the same time. The input
to the cell is a transmission gate that is opened only during a write. The input signal must
force the cross coupled inverters to have the correct value by the end of the write cycle.
Once the inverters get the correct value, it will remain set with that value until it is changed
again, i.e. it requires no refreshing.

During phi2, the output bus is pre-charged in anticipation of the cell being read. If
the value of the cell to be read is zero, then if it is read, it will discharge the bus to zero
volts during phil. If the value of the cell is Vdd (logic one), then the bus will maintain
Vdd, even though the NMOS pass gate is a poor conductor of Vdd. The inverter that has
to force the cell value onto the bus is fairly large, so that it can overpower the value on the
bus without resulting in the cell value being erroneously changed.

Since the output of the queue cell is the inverse of what the value written into the
cell, either the input to the cell or the output from the cell needs to be inverted. Since very
powerful inverter standard cells are available, we chose the input to be inverted (Figure 7).
It is important that the input signal be exceptionally strong, because this is the one part of
the system where it is necessary for a write to take place on phil of the clock. It is safe to
drive the inputs to the queue all the time, since the data will be ignored by the cells unless a
write is taking place.

The queue cell was tested using SPICE, and was verified to work correctly.

7.3 Testing

The entire back-end of the Fluent chip was verified to be correct by simulation with
Musa. Test vectors were created by hand to test the simpler parts of the system, and the
whole system was tested by vectors created by a computer program.

7.3.1 The Controller

As the controller for the back-end was the hardest to implement, so it was the
hardest to test. Testing pointed out errors in the bdsyn code that could not be perceived run

-2 -

simply analyzing the code. Some of the errors in the code were due to infamiliarity with
certain latches in the MSU standard cell collection, which created race conditions in the
state machine when the latches were used improperly. Once the simple errors were
eliminated, the process of handling complex back-end operations had to be corrected. The
read, write, and multi-prefix operations were easily verified. The Notify operations, which
take up most of the controller code, were the most difficult to debug. Most of the code was
modified to make sure that any sequence of CPU and NIP operations on the Notify queue

would be correct, no matter how byzantine the interleaving of interactions.
7.3.2 The Queue

The queue cell for buffering data to and from the network is made of an array of
queue cells. The cells were verified using SPICE 3. The difficult part about testing the
cells in Musa was the need to artach special properties to the transistors in the cell. Since
Musa does not understand transmission gates, pass gates, or cross-coupled inverters,
special direction properties and strength attributes had to be attached to some of the
transistors. Once all the properties were attached correctly, the queue cell was simulated by
Musa in the manner expected.

7.3.3 Infsm and Outfsm

Both of these state machines are simple, and it only took a few days to create them
and verify the correctness. During the simulation of Infsm, it was noticed that our
communication protocol was incorrect. We had decided that both address information
packets had to be accepted or rejected together. However, Infsm would not know the
difference between an EOS or the first address packet if a parity error occurred, since it
would not be correct to make inferences about garbled data. The new protocol still requires
address packets to be taken in pairs, but a rejection signal may be sent after the first packet.
If the first packet is an address, then the rejection is ignored, and the second packet
follows. An EOS can be rejected by the Infsm, and the network will keep re-transmitting
the EOS until accepted. In the previous protocol, the EOS would be automatically accepted

whether correct or not, and the communications would become confused.

8.0 Layout Information

The use of the automatic layout generation tools had a major impact in the size of
the back-end of the NIP. The parts of the system laid out by hand are the parts that would
be expected to be a large part of the space, but tumn out to be a minor amount of area. The
queue arrays, which can be considered to be a register file, are fairly small. Out of a total
layout area of approximately 50 million square lambdas, the queue arrays each take up
about 2 million square lambdas each, or less than a tenth of the area.

.~

16 bit Shifter Notify Section
— _- A
— = = m— u l _
SRt A {nEr .
5h A =B = I T'—" e 3
‘"%'i (T M T T e L e :
== S : 4436 A
] T
r'L_, Tt > g
AT, I = 3 %
T { u 3
N ry I3 e — e YR '
Multi-prefix ALU Back-end Controller
- 5305 A —>

Figure 11: Layout of the Controller Section

By using hand layout, it would have been possible to reduce major areas on the
chip. Standard cells were used to implement logical, arithmetic, and shifting units, which
take up huge areas. Standard cell registers and signal buffers also took up a good amount
of space (Figure 11).

The whole chip together has no set structure to it. Because standard cells were
used, a large amount of control was lost over the placement of the small pieces. Wolfe, the
Oct interface to the standard cell placer, has very little concept of how buses run through
the macro cells, so buses are longer than they should have to be. There is no way to
intelligently pass a bus though a macro cell that is not needed by the macro cell, so buses
must run around the perimeter of the cells. This results in an increase in size, and loss of
good cell placement. "Tsing Puppy to place the macro cells resulted in a different placement
depending on how the lower levels of the chip hierarchy changed. But the layout stabilized
to the final layout as the sub-pieces of the chip stopped having major modifications made

(Figure 12).

-27-

g, TR " e
T = —:_:4‘”4."—_;{] [b [N]
-8 By’ e ks l : Arits e
s s beiz o)
T
-l 1.1"5{'*& 15 :x:::i,
bt —p Al j
t+ - -f"_*&_u] ; 1
g —‘.‘;l f 1 -
= o T ol Eo=x] G
= e |) | 5
! i
[s
-
IEme=aEa (L
hestionl _ RV B
FUGEGREY - g I YRAY L -
R et LS ITT L gt 2y .
maasss . I BUESReS K ;). — i
S e A P2 |
 taaes :;mfi@.r ""EZL i
b ?i'ﬂﬁl}’ié’ vl IS A
' REdetberiin L
“;‘:—‘:M‘S\E— -.,“ =
Ei LS 1 -l
e o s = id
11
- 8073 A

Figure 12: Final Layout of the Back-end

9.0 Performance and Comparison to Related Work

6265 A

The parallel system we plan to construct is called Fluent. To give an estimate of
performance, we present a comparison of Fluent with two paralle] systems: the J-Machine,
and the Transputer. To compare the three systems, we analyze the cost in terms of the
number of instructions and system overhead of sending network transactions for three
operations: read, write, and remote procedure call. In all cases, we assume that the
message to be sent has already been constructed in local memory (or registers) and the

necessary pointers to the message reside in the register bank.

Before comparing the systems, we provide an overview of the J-Machine and the

Transputer.

9.1 The Jellybean Machine

The J-Machine is a three dimensional mesh of processing nodes [Dally]. Each
processing node has a 36 bit processor, 4 kilowords (36 bit) of memory, and a router.
Messages can be sent from any processor in the system to any other processor through a
deterministic path. Messages are built up, and then sent using the send primitive. On
arrival, the message gets buffer space allocated for it immediately in memory. The
processor reads in each message in order, and performs the required operations that t/hc
messages request. When there are no messages to process, the node works on background
jobs.

The J-Machine was designed to handle very fine grain parallelism, with jobs on the
order of 20 instructions, called a task (which is a code object). Messages in the network
are communications between objects, sent using a SEND primitive. When a message
arrives, it is automatically buffered, and eventually a task is created to evaluate it.
Messages are not explicitly received, they are put into a message queue and evaluated in

turn.
9.2 The INMOS Transputer

The Transputer is a 32-bit microprocessor that has four built-in bi-directional
communications links [Mitchell]. The processor was built to support the occam model of
concurrency. Every statement is a process, which may require input or output. While a
process is waiting for a data transfer, a context switch may take place, and the process state
placed on an internal stack. Data is evaluated on a register stack. The register stack is
small to allow fast context switches (under a microsecond to switch contexts).

The instruction length of the Transputer is one byte, which consists of a four bit
opcode with a four bit operand. A special register is used with special instructions to build
up longer eight bit opcodes, and which can be executed using an OPR (operate) instruction.
All of the eight bit instructions operate on the register stack, and do not have operands
directly specified within them.

-29-

9.3 Comparison of Write Operation

To perform a write operation in the Fluent system requires only one write
transaction (store) on the node bus. The NIP examines the address and data bus, and uses
the information to possibly perform other reads to memory. At the same time, the
processor can be working on an independent task, and let dedicated hardware pack the
messages to be sent into the network. On the receiving end, the node CPU needs to take
no action for the write. The NIP at the destination takes care of all the required memory
transations.

On the Transputer, a write to a neighbor's memory would be cheap in terms of
instructions for the sending processor, but quit~ costly for the receiving processor. To
transmit, a single out instruction is executed. This instruction takes two cycles for each
word transmitted, plus 19 cycles for context switching overhead. The receiving processor
needs to have a server process waiting. The server would execute an in instruction, and
context switch while it waited for a message. The number of cycles to receive the message
would two cycles for each word of the message, and 19 cycles for the context switch.
Once the message was received, the server would have to execute several instructions to
interpret the message and determine where to place the data in memory.

The J-Machine needs to send a message to perform any kind of operation. To send
a message, a SEND2 instruction would be executed for each pair of words to be sent
across the network, and a SENDE instruction terminates the message, and releases it to the
network. So the instructional overhead would be roughly one instruction for each pair of
words 1o be sent. On the receiving end, there are no explicit instruction to receive a
message. Special hardware queues the message, and eventually code to perform the write
operation would put the data into memory.

9.4 Comparison of Read Operations
The read operation for each of the systems takes about roughly twice the number of
cycles of processor overhead, except for the Fluent system. On Fluent, once the store

instruction is executed, that is the end of processor involvement. From that point, the local

NIP and the foreign NIP perform all the network and memory operations. So the overhead

-30-

for a read is the same as the overhead for a write operation

On the Transputer, the overhead would be close to double. The local node first
sends a message (using our), which requires two cycles for each word of the message plus
19 for context switching. The remote node would execute an in, and have the same
overhead as the sending node to receive the message. The remote node server process
would execute some instructions to read memory, and would have to construct a message
buffer and start sending the data back. The local node would have to have a process
waiting for the data, and it would have the same overhead as the receiver process on the
remote node. '

The J-Machine would also require the remote node to receive the requested data ina
message, and the data from the message would have to be extracted and written into local
memory. The remote node overhead would not increase much; it would just have to
execute SEND2 instructions for each pair of words to send back across the network, and a

SENDE instruction to end the message.
9.5 Comparison of Remote Procedure Calls

One feature the three systems share is the ability to pass messages between nodes,
with the message delivered to 2 message buffer in the node rather than a specific memory
address.

On the Transputer, sending a RPC would take the same overhead as a write
operation. The sender would have to execute an in instruction, and the message would be
passed across to the remote processor. On the receiving end, the processor would execute
an out, and there will be overhead to interpret the message.

The J-Machine would also have the same overhead for sending an RPC as a write
operation. Several SEND2 and a SENDE instruction would be executed to send the
message on its way, and the sending processor is finished. On the receiving end, the
message would automatically be put into a buffer, which the processor would interpret
when it needed a task to perform.

-31-

9.5.1 Fluent

The Notify message will fulfill the role of an RPC in our system. The overhead for
a Notify is exactly the same as a Write, with just one store instruction required by the
processor. Once the Notify message traverses the network, it is put into a Notify slot in
the Notify queue.

On the receiving end, the processor must have a server which checks for messages

in the Notify queue, and executes the routine indicated by the message.

Operation Where Fluent J-Machine | Transputer
Read Local 1 Cycle 44 38+ *
Read Remote 0 Cycles * 38 + *
Write Local 1 Cycle 4 Cycles 19 Cycles
Write Remote 0 Cycles * 19+ *
RPC Local 1 Cycle 4 Cycles 19 Cycles
RPC Remote * * 19+ *

* = cycles to execute server process

Table 3: Processor Overhead for 4 Word Network Operations

9.6 Summary of Comparison

The Fluent system compares well with the Transputer and the J-Machine (table 3).
With a modest amount of effort by the CPU, the Fluent system can quickly perform the
same types of message transfers as the J-Machine and the Transputer, but it is much more
flexible. Fluent can send a message (RPC) as easily as the J-Machine (and with fewer
cycles than the Transputer), but it is not limited to strict message sending. It can also
» perform shared memory operations (read and write), which require one cycle of CPU
usage, significantly less than either the Transputer and the J-Machine.

-32.-

10.0 Conclusion

The Fluent multi-processor system is a powerful system for computation. A key
part of the system is a communications co-processor, the NIP, which handles many of the
transactions needed by the network. I discussed the protocols necessary for
communications required between the back-end and the CPU, as well as between the back-
end and the network, and believe that the back-end of the NIP embodies the implementation
of the best of the protocols.

The major cost of the NIP is the necessity of having another chip for each node in
the system. However, this is will actually contain some circuits, such as an MBUS arbiter,
which would have required an extra chip anyhow. The layout area required for the back-
end of the NIP is 50 million square lambda. When the whole chip is finished, it is
estimated to require around 100 million square lambda, or to be 1 centimeter on a side
using a 2 micron process.

The NIP will run at 20 megahertz intemnally, with a section of the MBI that runs at
40 MHz to interface with the MBUS. To interface with the snooping caches used on the
MBUS, the NIP will support cache line operations. By supporting the cache line
operations, the processor will be able to look in its cache for results of a network operation,
instead of having to look into non-cacheable node memory, which would slow down
system performance.

The Fluent system has much lower overhead to perform different kinds of
communications between processors. The dedicated hardware of the NIP makes this
possible, and it takes a significant load of work from the processor. As well as supporting
shared memory and message passing operations, the NIP also assists in system

synchronization operations, and performs multi-prefix operations.

-33-

Bibliography

[Boothe] Robert Boothe. Tolerating Memory Latency through Multithreading. PhD.
thesis, University of California, Berkeley. In preparation.

[Cross] Davis Cross. VLSI implementation of the Fluent routing chip. Master's thesis,
University of California, Berkeley. In preparation.

[Dally] William J. Dally. The J-Machine: System Support for Actors.

[Gottlieb] A. Gottlieb et al. The NYU Ultracomputer - designing a MIMD shared memory
parallel computer. IEEE Transactions on Computers, C-32:175-189, February
1983.

[Hunt] James Hunt. VLSI implementation of the Fluent Front-end. Master's thesis,

University of California, Berkeley. In preparation.

[Mitchell] D. Mitchell et all. Inside the Transputer. Blackwell Scientific Publications,
London, England, 1990.

[Ranade] Abhiram G. Ranade. Fiuent Parallel Computation. PhD thesis, Yale
University, 1988. Department of Computer Science TR-663.

[Sun) Mbus specification. Sun internal document.

Appendix A: The Fluent System

The Fluent Multiprocessor System (FMS) is an extensible network of processing
nodes. It is a scalable system, that can scale to 1000 processors or more without having
to modify hardware. To implement the system, we expect to use commercially available
processors, along with custom integrated circuits to handle communications.

The nodes are connected by a butterfly network that performs combining and mult-
prefix operations [Ranade] (Figure 13). The network has separate forward and reverse
paths, which are both butterfly networks. A message between a pair of processing nodes
(PNs) traces a unique path, and if the message requires a response, the message will follow
the path backwards through the reverse network. Special status bits are kept in the network
nodes (NNs) to help undo the multi-prefix and combining operations when the replies

return [Creoss].

Same nodes on both sides of network

v v
' OO
2 @ @) 2
3@\“1« m/,@s
s @ ~—@) 4

Figure 13: The Fluent System Butterfly Network

A.1 Fluent Processing Nodes

A processing node consists of a Network Interface Processor (NIP), memory, and
a CPU connected to the system bus through a memory management unit (MMU) (Figure
1). The CPU is a SPARC chip, which was picked because it has register windows that can
be used to store different process contexts (threads). The processor can issue requests to
the network by accessing high addresses, which are mapped to special locations that the

-35.

front-end interprets [HUNT]. These messages get queued in the front-end, and sent into
the network. Part of the data sent during the access to the NIP includes information about
where to put the result or the location of more data to send in the network, depending on
the message size and type. The processor also reads tasks from a special queue in system
memory called the Notify queue. The CPU runs several tasks (threads) concurrently, and
switches threads upon needing a response that has not been received back from the
network. When a thread finishes executing, the CPU can get another task from the Notify
queue.

The back-end of the NIP has the ability to perform direct memory access (DMA),
and most network operations can be performed independently from CPU execution. The
only operations that get passed on to the CPU are the Notify operations, so the CPU can
work on its tasks with less interrupts then would be possible otherwise. The back-end can
perform a small number of operations, like accessing memory, and performing additions
and comparisons. All the operations that the back-end must respond to can be decomposed
into those kind of operations.

A.2 Messages in the network

Messages propagate through the forward network in wavefronts, which serve to
keep messages in the network synchronized in terms of a distributed global clock. This
allows for a close simulation of a CRCW (concurrent-read, concurrent-write) PRAM
(paralle] random-access machine) model. The ideal PRAM model specifies that all memory
operations, whether to local or global memory, will complete in one cycle. To closely
simulate the PRAM model, memory accesses to shared memory are constrained within a
wave.

All the messages within a wave are considered to have been issued at the same time,
even if in reality they were put into the network at different times. Through sorting of tags
associated with each message (actually the address bits that have been deterministically
scrambled), the messages within one wave can be combined if appropriate. Messages
leave the front-end of the NIP in sorted order, and through merge sorts, messages going to

the same address on the same node can be detected and combined. In a previous system

-36-

that provided combining, NYU Ultracomputer [Gottlieb], the messages arriving at a
switching node had to be compared with all the other messages currently stored in the
node. By maintaining sorted messages in each wave, only the messages at the head of

internal switching node queues have to be examined to determine if they can be combined.

A.3 End of Stream

To mark the boundaries between waves, a special marker called an end-of-stream
(EOS) is sent. EOS is what the synchronization operations referred to carlier in this
document are called. The only requirement about the messages the front-end injects during
a particular waves is that the messages be in sorted order, but the number of messages
injected during a particular wave is not restricted. In some cases, if the front-end has no
messages, an EOS must be sent with no preceding messages 10 keep the network flowing

(or fluent).

A.4 Network Nodes

Each NN performs sorting of the messages coming in within a particular wave, and
we are guaranteed that messages bound for the same location will be detected. Messages
going into an NN enter a queue. Each NN has two inputs and two outputs in the forward
direction, and two inputs and two outputs in the reverse direction. When a message
reaches the head of the input queue, it is allowed to progress if it is judged to be "less" than
the message at the head of the other queue, as judged by the NN comparator. If the
messages have the same value and are the type that can be combined (read and multi-
prefix), then some status about the messages is kept in the NN, and a combined message is
passed on to the next stage. A "large value” message will remain at the front of the queue
until a larger value message comes along, or an EOS comes to the front of the other queue.
An EOS will block a queue until a matching EOS is seen, and then the EOS's progress
through both outputs. Thus, an EOS has the function of forcing the wave in front of it
through the network, and makes it necessary for every processor to gencrate EOS's at
about the same rate for the network to function correctly. An unmatched EOS could
backup the entire network, but under normal operation, this will not be allowed to happen.

-37-

S~

Figure 14: Message sorting in the Fluent network

In figure 14, the message with value 35 will be allowed to proceed to stage N+1,
because it has a smaller value than the message with value 4§. When the new message
with value 48 arrives, then the messages can combine, and progress to stage N+1.
Eventually all messages get to their intended destination. By the nature of the network, one
whole wave must be delivered before the next wave can have its messages forwarded,
because any processing node that fails to inject an EOS into the network (a stingy node)
will cause the network to stop delivery. Any EOS at the front of a queve will cause the
messages behind it in the queue to be blocked until the EOS gets matched and continues to
the next stage. All links in the network would be blocked except for a set of links that form
a tree leading to the stingy node. The stingy node will get quick delivery of all its
messages, and only after it sends an EOS into the network will the blocked messages of the
next wave get delivered, thus guaranteeing that the wave N messages get delivered to a
particular node before wave N+ messages.

The reply messages in the reverse direction will trickle back without being
constrained to waves, but will be returned in the order the waves were sent in. A
processing node will return responses to messages in the order that the messages were
received, and status bits remembered from the forward trip of a message will take care of
splitting combined operations and performing the correct forwarding for the multi-prefix
operations. The return traffic will tend to be fewer messages than went in the forward

direction, because some operations do not require a response.

-38-

Appendix B: Variable Programming Model

By using different values of EOS's, the Fluent System can support synchronous
and asynchronous program models. A synchronous model would require that the
processor specifically order an EOS to be sent. The order would be in the form of a write
to a special register within the front-end of the NIP, and an EOS would be queued to be
sent out to the network. In asynchronous mode, the front-end and the back-end of the NIP
cooperate to keep track of the number of EOS's circulating in the network, and to keep the
system flowing.

The different values of EOS provide the ability to switch back and forth quickly
between synchronous and asynchronous style of programming. The different values
provide different priorities for the EOS. In theory it is possible to generate 15 bit values,
using the 15 bit field in the EOS opcode, but only four values of EOS are going to be used.
The lowest level EOS is level 0, which is called EOSQ. The other values are EOS1, EOS2,
and EOS3. The higher value EOS's push the lower value EOS's ahead of them when they
get matched up at the head of a queue (Figure 15). This feature is used to change between
modes quickly, and to clear the network when a program stops executing.

EOSO!

Figure 15. Using an EOS1 to push an EOSO wave along

In the asynchronous model, the front-end is "given" a certain number of
EOSO tokens as currency, and a target number of tokens to keep in circulation. Every time
an EOSO comes in the back-end, the front-end is informed, and the EOSO can be
recirculated. The target amount is a way of keeping a certain number of EOSO's in the
network, so that the wave can propagate even if a particular processor is not sending

messages. The front-end also puts an EOSQ between messages if they are not issued in

-39-

sorted order. The EOS circulator in the front-end can go below the target if a bunch of
messages need to be sent in non-sorted order, but has to wait if it runs out of tokens. In
this mode, the NIP is totally responsible for keeping the network flowing, and network
flow management is invisible to the processor. The processor is not really concemed about
delivery order in this mode; it is a very MIMD-like model. The processors operate
independently, from each other and have no sense of time in the global sense, since it is not
explicitly issuing the EOS's.

In the synchronous model, the front-end is explicitly told each time an EOS is to be
issued, and the NIP sends an EOS1 along. The back-end keeps track of how many
EOS1's come back, but for reasons that will be discussed later. The processor must do all
the work of keeping track of the number of waves that have been sent out, so it "knows"
what the global time is for the messages being sent out. We consider this model to be a
SIMD-like model because the processors have an awareness of what waves the messages
go out in, and rely on the network for messages to be delivered in the correct order. The
processors may be executing different instruction streams, but in terms of knowledge of

message delivery, it is more SIMD-like.

B.2 Rapidly switching models

The Fluent system can switch back and forth quickly between synchronous and
asynchronous modes without having to wait for the network to clear (Figure 16). The
circulation system keeps track of how many waves are in the network, and will make sure
the system keeps flowing. We view the asynchronous mode as being little, possibly

incomplete, wavelets between the waves of synchronous EOS1's.

EOS1 EOS1

Front-ends EOSO's Back-ends

AN

|y
77777

Figure 16: EOSO's and EOS1's propagating through the network

It is possible to keep count of EOS1's, but since an EOS1 matching up with an
EOSO will create two EOSO's and leave the EOS1 in place, keeping absolute count of the
EOSO's is very difficult. However, it is reasonable to keep track of the number of EOS0's
issued since the last EOS1 was seen.

In asynchronous mode, each EOSO sent out the front-end will make its way to the
back-end as the wave washes across all the back-ends. So a count is made of outstanding
EOSO0's, so the front-end can keep putting them out, and the back-end can inform the front-
end of the number that it gets back. Upon issuing an EOS1, the EOSO counter goes to
zero, and doesn't decrement the EOSO outstanding counter until the EOS1 comes to the
back-end. At this time, the system knows that all the EOS0's have been pushed out of the
system, so any further EOSO's must come after the EOS1 wave. So after an EOS1 is sent,
the EOSO counter is reset to zero, and is only incremented until the EOS1 comes to the
back-end, and the EOS0 counter can be incremented and decremented after that. In effect,
an EOS1 wipes the slate clean, and the circulation counters start over again. In
synchronous mode, it is not necessary for the NIP to keep track of the waves, because it
knows that any EOSO waves will get pushed through the network without any problem.

In synchronous mode, all the PNs know the global time, and will agree to stop
synchronizing at the same time, so no outstanding EOS1's will be in the network when it is
time to switch to asynchronous mode. The network will be clear for EOS0's to propagate,
so the EOSO counter will be correct until the next EOS1 comes through. The end result of
the counting strategy is that the circulation counters will be correct when the NIP is

-4] -

responsible for wave propagation, and will be cleared correctly upon the CPU taking
responsibility for waves. The counters will remain correct upon the resumption of NIP
responsibility for wave motion in the network.

Since it is possible that the system might switch rapidly between the synchronous
and asynchronous modes, so there may be several EOS1's in the network simultaneously.
The count of EOS0's may not be correct during this time, since any nodes could get away
without sending an EOS0 before the time to send an EOS1 comes. So if any EOS0's are
injected between quickly succeeding waves of EOS1's, the EOSO counter may be incorrect,
since the EOS1's force propagation of the EOS0O waves. The solution is not to decrement
the EOSO counter until the EOS1 outstanding counter has reached zero. Each time an
EOSI is sent out, the EOSO counter is reset, and is only modified downward after all
outstanding EOS1's have been received.

B.3 Higher valued EOS's

The Fluent system also allows higher level EOS's for clearing the network between
programs and for error detection. EOS2 is designated as a special EOS for cleaning the
network between programs. The EOS2 will push EOS0's and EOS1's ahead of it, so it is
an operating system operation that can be invoked between distinct program, just to make
sure the network has been reset to the cormrect state of having no outstanding EOS's in the
network. The EOS0O and EOS1 counters will be reset, and will not decrement until the
EOS2 comes to the back-end. Only one EOS2 can be in the network at a time, but EOS0's
and EOS1's can be sent out immediately after an EOS2 has been sent. The reason for
using the EOS2 is in case a processor has crashed and messed up the global clock.

The EOS3 is an emergency EOS that clears the network of all lower value EOS's.
When an EOS3 is generated, no other EOS's are allowed in the network until the EOS3
propagates to the back-end. This can be helpful for diagnostics, since it can help determine
which processor crashed in the system. If an EOS3 doesn't get propagated, then a tree of
blocked EOS3's will form, and the particular bad processor can be found by seeing which
nodes report that the EOS3 has not be returned. This type of EOS will be used only in the

situation of a serious system failure, but it may turn out to have uses in legitimate system

-42-

operation as well.
B.4 Synchronization

In many multi-processor systems, synchronization consists of processors polling a
shared memory location until some kind of state change occurs, and the processors
continue on from there. This kind of synchronization barrier is rather inefficient, since the
processors have to busy-wait and waste cycles that could be put to productive use.
However, busy-waiting is the only way to guarantee that parts of the program execution are
mutually exclusive from other parts. But, in the Fluent system, the waves in the network
guarantee that each set of messages can't be mixed together, and are thus mutually
exclusive. Instead of blocking at a barrier, the PN could just send an EOS1, and continue
on with its work. The next wave of messages can't be delivered until the previous wave

has been taken care of, and the barrier becomes nothing more that a synchronization point.

Appendix C: The Front-end of the NIP

The front-end of the NIP is responsible for monitoring CPU commands to send a
message, and processing the request. The message is formed, and sent over the network.
When the result of the network comes back (if any), it is responsible for placed the result
into a memory location specified by the CPU.

The front-end watches the bus transactions on the MBUS, and detects attempts of
the CPU to write to high node memory. If the upper two bits of an address are anything
other than 00, then the address and data on the MBUS lines are really a message to the
front-end to send out a message (Figure 17).

-43-

EOS1 EOS1

EOSO's Back-ends

WA
P)
77777

Figure 16: EOSO's and EOS1's propagating through the network

Front-ends

There are three possibilities for the upper two bits:

(01) Multi-word Operation. The Op field contains the operation that the front-end
of the NIP should execute. The data word associated with the address on the
MBUS contains further information about which node to write to, and a local

address to read more data from for the network operation.

(10) Single word read. The Op field contains the node number of the foreign
node to access, and the Address field points to the address on that node to read.
The data word contains the local address where the result should go.

(11) Single word write. The Op field contains the node number of the foreign
node to access, and the Address field points to the address to which the write will
take place. The data word is the value to be written across the network.

Our motivation for this format was a desire to minimize the number of memory
accesses the CPU must make to send a message across the network. For a single word
read or write, only one MBUS transaction is required to provide all the information
required by the NIP. We wanted to make the single word accesses fast, because we
believe that these operations will be among the more common network instructions issued.

The Multi-word operations require more information from the CPU than can be

packed into 64 bits, so the NIP uses the data word associated with the MBUS operation as
a local address to read in the extra information. Some of the operations that require this
format are multiple word writes, multiple word reads, broadcast, notify, and multi-prefix
operations.

The values of the Op field are transformed by the front-end to a new format that the
back-end of the NIP recognizes, which were specified in a previous section. The front-end
also remembers where to write returning values by putting the addresses specified by the
CPU onto an intemal queve. Since the messages retumn from the network in the order they
were sent, it is not difficult to match the returning result with the location it is to be written
to.

Associated with data returning from the network is a probe location. This location
is eight bytes after the local address specified by the operation issued by the processor.
Since all return locations must be at the beginning of a cache line, and the largest read is
eight bytes, the probe location will be in the same cache line as the returmed data. The
processor checks for the probe location to change value, so it knows when the data has
returned from the network. The cache line corresponding to the local destination of the data
will be cached by the CPU cache, and it picks up the data when the NIP writes it to local
memory. Eventually, the CPU will find the probe location modified, and act on that
information. By putting the probe location on the same cache line as the data, and
supporting MBUS cache operations, the system will save memory access by finding the
commonly checked probe locations in the cache.

For further information on the front-end of the NIP, please refer to the companion
report [HUNT].

-45-

