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Abstract

As disk arrays become widely used, tools for understanding and analyzing their performance

become increasingly important. In particular, performance models can be invaluable in both

con�guring and designing disk arrays. Accurate analytic performance models are desirable over

other types of models because they can be quickly evaluated, are applicable under a wide range

of system and workload parameters, and can be manipulated by a range of mathematical tech-

niques. Unfortunately, analytic performance models of disk arrays are di�cult to formulate due

to the presence of queuing and fork-join synchronization; a disk array request is broken up into

independent disk requests which must all complete to satisfy the original request. In this paper,

we develop, validate and apply an analytic performance model for disk arrays. We derive simple

equations for approximating their utilization, response time and throughput. We then validate

the analytic model via simulation and investigate the accuracy of each approximation used in

deriving the analytic model. Finally, we apply the analytic model to derive an equation for the

optimal unit of data striping in disk arrays.

1 Introduction

In recent years, improvements in microprocessor performance has greatly outpaced improvements
in I/O performance. If the trend continues, future improvements in microprocessor performance
will be wasted as computer systems become increasingly I/O bound. To overcome the impending
I/O crisis, several researchers [1{6] have proposed the use of disk arrays that stripe data across
multiple disks and provide improved I/O performance by using parallelism to increase data transfer
rates and by servicing multiple I/O requests concurrently.

Given the important role disk arrays will play in the I/O systems of tomorrow, tools for un-
derstanding their performance become increasingly important. In particular, performance models,
combined with a thorough understanding of an installation's workload, will be invaluable in both
con�guring and designing disk arrays. In general, accurate analytic performance models are de-
sirable over other types of models, such as empirical and simulation, because they can be quickly
evaluated, are applicable under a wide range of system and workload parameters, and can be ma-
nipulated by a range of mathematical techniques. Even when analytic models are not directly
applicable to a particular system or workload, they are frequently useful for quickly analyzing
general properties of the system, stimulating intuition and furthering understanding.

Unfortunately, analytic performance models of disk arrays are di�cult to formulate due to the
presence of queuing and fork-join synchronization; a disk array request is broken up into inde-
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pendent disk requests which must all complete to satisfy the disk array request. Exact analytic
solutions for the two server fork-join queue given Poisson arrivals and independent service times
currently exist [7, 8] but the k-server fork-join queue remains unsolved. Other related work in the
�eld falls into four primary categories: (1) simulation studies, (2) analytic models that ignore queue-
ing e�ects, (3) analytic models that ignore fork-join synchronization and (4) restricted queueing
models that deal with fork-join synchronization using specialized techniques not easily extended to
modeling disk arrays. Most analytic queueing studies deal with general queueing systems rather
than disk arrays in particular. The following lists previous work that is representative of the �eld.

� Kim [2] investigates the performance of n independent disks without data striping versus n
synchronized disks with data striping; the n disks are essentially equivalent to a single disk
with n times higher data transfer rate. She derives equations for response time assuming each
disk is an M/G/1 system. Because the disks are completely synchronized, she avoids fork-join
synchronization altogether.

� Livny [3] investigates the performance of declustering, where data is striped in 26KB units,
versus clustering, where data is not striped, over a range of transaction workloads via simula-
tion.

� Reddy [9] investigates the performance tradeo� between synchronized �ne-grained data strip-
ing versus asynchronous coarse-grained data striping via simulation. He also proposes and
investigates hybrid schemes that combine aspects of synchronized �ne-grained data striping
and asynchronous coarse-grained data striping.

� Chen [10] derives empirical rules for optimally selecting the unit of data striping in disk arrays
over a range of workloads via simulation.

� Salem and Garcia-Molina [6]; Kim and Tantawi [11]; Bitton and Gray [12] derive minimum
response time formulas (no queueing) for asynchronous disk arrays.

� Patterson, Gibson and Katz [5] derive analytic formulas for maximum throughput in RAID's
(Redundant Array of Inexpensive Disks) which are subsequently veri�ed by Chen [13] via
measurement.

� Heidelberger and Trivedi [14] formulates an analytic model for systems with forks but no joins.

In this paper, we develop, validate and apply an analytic performance model for disk arrays. Our
model is di�erent from previous analytic models of disk arrays mentioned above for the following
reasons. First, we use a closed queueing model with a �xed number of processes whereas previous
analytic models of disk arrays have used open queueing models with Poisson arrivals. A closed model
more accurately models the synchronous I/O behavior of scienti�c, time-sharing and distributed
systems. In such systems, processes tends to wait for previous I/O requests to complete before
issuing new I/O requests, whereas in transaction based systems, I/O requests are issued at random
points in time regardless of whether the previous I/O requests have completed. Second, to the best
of our knowledge, this is the �rst analytic model for disk arrays that handles both the queueing at
individual disks and the fork-join synchronization introduced by data striping. Previous analytic
models that handle both queueing and fork-join synchronization cannot easily be applied to disk
arrays because they assume service times across servers (disks) are independent whereas in disk
arrays, they are very much dependent.
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Figure 1: Data Striping.

In the following sections, we �rst derive an exact expression for the utilization of the model
system. Because the exact expression contains parameters that are di�cult or impossible to com-
pute, we either analytically approximate or empirically calibrate the di�cult parameters to make
the expression more tractable. From the resulting approximate equation for utilization, we derive
equations for response time and throughput. We then validate the analytic model via simulation
and investigate the accuracy and sensitivity of each approximation used in deriving the analytic
model. Finally, we apply the analytic model to derive an equation for determining the optimal unit
of data striping in disk arrays.

2 De�nitions

Disk arrays provide high I/O performance by striping data over multiple disks. High performance
is achieved by servicing multiple I/O requests concurrently and by using more than one disk to
service a single request in a parallel manner.

Figure 1 illustrates the basic disk array of interest and illustrates the terms stripe unit and data

stripe which we formally de�ne as follows:

Stripe unit is the unit of data interleaving, that is, the amount of data that is placed on a disk
before data is placed on the next disk. Stripe units typically range from a sector to a track in
size (512 bytes to 64 kilobytes). Figure 1 illustrates a disk array with �ve disks with the �rst
ten stripe units labeled.

Data stripe is a sequence of logically consecutive stripe units. A logical I/O request to a disk
array corresponds to a data stripe. Figure 1 illustrates a data stripe consisting of four stripe
units spanning stripe units three through six.

3 The Analytic Model

In this section, we derive equations to approximate the performance of disk arrays. Our approach
is to derive the expected utilization of a given disk in the disk array. Because we are modeling
a closed system where each disk plays a symmetric role with respect to each other, knowing the
expected utilization of a given disk in the system will allow us to compute the system's throughput
and response time.

3.1 The Model System

Consider the closed queueing system illustrated by Figure 2. The system consists of L processes,
each of which issues, one at a time, an array request of size n stripe units. Each array request
is broken up into n disk requests and the disk requests are queued round-robin starting from a
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Figure 2: Closed Queuing Model for Disk Arrays.

randomly chosen disk. Each disk services a single disk request at a time in a FIFO manner. When
all of the disk requests corresponding to an array request are serviced, the process that issued the
array request issues another array request, repeating the cycle. Note that two array requests may
partially overlap on some of the disks, resulting in complex interactions. We sometimes refer to
array requests simply as requests. The parameters of the above system are as follows:

L � Number of processes issuing requests.
N � Number of disks.
n � Request size (number of disks/stripe-units accessed per request);

n � N:

S � Service time of a given disk request.

In the derivation of the analytic model, we will assume that L and n are �xed. We will also assume
that the processes do nothing but issue I/O requests.

3.2 The Expected Utilization

In derivating the expected utilization of the model system, the following de�nitions will prove
useful:

U � Expected utilization of a given disk.
R � Response time of a given array request.
W � Disk idle (wait) time between disk request servicings.
Q � Queue length at a given disk.
p0 � Probability that the queue at a given disk is empty

when the disk �nishes servicing a disk request.
p � Probability that a request will access a given disk;

n=N:
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ri = time intervals

M=2, W=r0+r1+r2

next disk request arrivesdisk request finishes

X = array request issued

r0 r1 r2 r3r-1r-2

time -> t0 t1 t2 t3 t4 t5 t6

Figure 3: Time-line of Events at a Given Disk. After the disk request �nishes service at time t2,
M = 2 array request that do not access the given disk are issued at times t3 and t4 before an array

request that accesses the given disk is issued at time t5. The disk remains idle for a time period of

W = r0 + r1 + r2.

If we visualize the activity at a given disk as an alternating sequence of busy periods of length
S and idle periods of length W , the expected utilization of a given disk is,

U =
E(S)

E(S) +E(W )
: (1)

Idle periods of length zero can occur and imply that another disk request is already waiting for
service, Q > 0, when the current disk request �nishes service.

Let r0 denote the time between the end of service of a given disk request and the issuing of
a new array request into the system. Let ri; i 2 f1; 2; . . .g denote the successive time intervals
between successive issues of array requests numbered relative to r0. Let M denote the number of
array requests that are issued after a given disk �nishes a disk request until, but excluding, the
array request that accesses the given disk. Since each array request has probability p of accessing
a given disk, M is geometrically distributed and E(M) = 1=p� 1. Figure 3 illustrates the above
terms.

By conditioning on the queue length at the time a disk request �nishes service, we can write,

E(W ) = P (Q > 0)E(W jQ > 0) + P (Q = 0)E(W jQ= 0);

E(W ) = (1� p0)0 + p0E(
PM

i=0 ri);

E(W ) = p0(E(r0) +E(
PM

i=1 ri)):

Substituting into Equation 1 we have,

U =
E(S)

E(S) + p0(E(r0) + E(
PM

i=1 ri))
(2)

Equation 2 is an exact equation for the expected utilization of the model system.

3.3 Approximating the Expected Utilization

In the previous section, we formulated an exact equation, Equation 2, for the expected utilization
of the model system. Unfortunately, the exact equation consists of terms which are very di�cult if
not impossible to compute. In this section, we approximate components of Equation 2 to make it
analytically tractable.
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To simplify Equation 2, we make the following assumption: E(
PM

i=1 ri) ' E(M)E(r) =
(1=p � 1)E(R)=L. From Little's Law, we know that the average time between successive issues
of array requests is E(R)=L; thus, the above approximation would be exact if ri; i 2 f1; 2; . . .g were
independently distributed with a common mean of E(R)=L. For the moment, we will take the
above approximation as given, but later show via simulation that the above is an extremely good
approximation. Thus, we can write,

U '
E(S)

E(S) + p0(E(r0) + (1=p� 1)E(R)=L)
: (3)

Given the above approximation, it is natural to assume the following restriction on E(r0) solely
for the purpose of providing an intuitive feel for the range of r0:

0 � E(r0) � E(r): (4)

The �rst inequality must hold since r0 � 0 whereas the second is just an intuitive, almost arbitrary,
restriction. The following observations concerning E(r0) are evident:

� E(r0) = 0 implies that disk requests associated with the same array request �nish at the same
time and thus an array request is issued immediately whenever any disk request �nishes.

� E(r0) = 0 when n = 1, that is, when each array request consists of a single disk request. In this
case, the completion of each disk request corresponds to the completion of the corresponding
array request and, thus, the process that issued the disk request will immediately issue another
array request.

� E(r0) ' 0 when n = N , that is, when an array request always uses all the disks. In this
case, disk requests associated with the same array request will tend to �nish at close to the
same time because all of the disks will be in very similar states and operate in a lock step
fashion since disk service times are deterministic and disk requests across disks will be almost
identical.

We will �nd it convenient to express E(r0) as a multiple of E(R)=L; thus, we introduce the pa-
rameter  as E(r0) = E(R)=L, where Restriction 4 implies 0 �  � 1. Later, we will empirical
calibrate . For now, we know that  = 0 when n = 1 and  ' 0 when n = N . Rewriting
Equation 3 in terms of  we have,

U '
E(S)

E(S) + p0E(R)
L ((1=p� 1) + )

: (5)

The following is the key approximation:

p0E(R)=E(S) = 1: (6)

The above equation is true for M=M=1 systems but is unlikely to be completely accurate for the
model system. We will later examine, via simulation, the accuracy, sensitivity and error introduced
by this approximation. We can now rewrite Equation 5 as,

U '
1

1 + 1
L(1=p� 1 + )

: (7)

Note that under the approximations we have made, the expected utilization is insensitive to the disk

service time distribution, S.
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Since this is a closed system, the expected response time can be directly calculated from the
expected utilization:

E(R) =
E(S)Ln

UN
: (8)

The expected throughput in megabytes per second can be written as,

MBS =
UNSU

E(S)
; (9)

where SU is the size of the stripe unit. Future references to a speci�c analytic model will refer to
the above equations and to Equation 7 in particular.

3.4 Summary

In this section we have derived a simple analytic model for disk arrays, U ' 1
1+ 1

L
(1=p�1+)

, based

upon two approximations:

� E(
PM

i=1 ri) = (1=p� 1)E(R)=L,

� p0E(R)=E(S) = 1.

With regard to the �rst approximation, we will show that it is very accurate and introduces very
small errors. The second approximation is more di�cult to justify. While it is not an accurate
approximation for certain workloads, the error introduced into the analytic model is insensitive
to the accuracy of the approximation under those same workloads. The approximation introduces
errors on the order of �10%.

The model also contains an unde�ned parameter , a complex function of the model system's
parameters. We will empirically calibrate the value of  to a constant and show that this introduces
only small errors to the analytic model.

4 Validation of the Analytic Model

In this section, we calibrate and validate the analytic model developed in the previous section
via simulation. We show that the parameter  can be calibrated to a constant. The resulting
analytic model closely approximates the simulation results over the range of system and workload
parameters investigated.

4.1 The Disk Model

The disk model is based upon the IBM 0661 3.5 inch 320 MB SCSI disk drive. Figure 4 tabulates
the parameters and plots the seek pro�le of the simulated disk.

4.2 Simulation Parameters

The simulation parameters of interest are as follows:

� Input Variables.

N Number of disks in array.

SU Size of the stripe unit.
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cylinders per disk 949

tracks per cylinder 14

sectors per track 48

bytes per sector 512

track skew in sectors 4

revolution time 13.9 ms

single cylinder seek time 2.0 ms

average seek time 12.5 ms

max stroke seek time 25.0 ms

max sustained transfer rate 1.7 MB/s
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(

m

s

)
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Figure 4: Disk Characteristics. The graph plots the seek time in milliseconds versus the seek

distance in cylinders. The curve is derived from the following formula:

seekTime =

(
0; if x = 0
a(x� 1)0:5 + b(x� 1) + c; if x > 0

where x is the seek distance in cylinders and a; b and c are constants chosen to satisfy the single

cylinder, max stroke and average seek times. For the simulated disk, a = 0:4623; b = 0:0092 and

c = 2.

8



L Load, that is, the number of processes generating array requests.

SZ Array request size.

S Disk service time distribution (implicit in the disk model).

� Output Variable.

U Utilization. (Note that for the model system of interest, throughput is proportional to U
and response time is inversely proportional to U .)

Recall that,

n � Request size (number of disks/stripe-units accessed per request);
SZ=SU:

p � Probability that a request will access a given disk;
n=N:

4.3 Simulation Results

Figure 5 plots the utilization from a representative simulation run versus the utilization predicted
by Equation 7 for a disk array consisting of 17 disks and a stripe unit size of 32KB for four values
of  2 f0; 1; p(1� p); 0:15g. As previously mentioned,  ' 0 when n 2 f1; Ng, that is, when
SZ 2 fSU;NSUg; thus, we �rst try  = 0. As expected, Equation 7 with  = 0 models the
utilization of the system fairly well when n 2 f1; Ng; however, the analytic model with  = 0
overestimates the utilization at other values of n. This is because  = 0 underestimates E(r0)
when n is between 1 and N . To get an idea for the sensitivity of the analytic model to , Figure 5
also plots the utilization of the simulation run versus the utilization predicted by Equation 7 over
the same range of input parameters with  = 1. The resulting analytic model is highly inaccurate.

The best result is achieved when  = p(1 � p). This will make  ' 0 at the boundaries when
n 2 f1; Ng and somewhat positive elsewhere. In this case, 0.25 is the maximum value for  reached
at p = 0:5. The resulting correspondence between the analytic and simulated utilization is very
good. Unfortunately, using  = p(1�p) introduces higher order dependencies with respect to p into
Equation 7. Consequently, we will try  = 0:15 to see if we can improve over our original choice of
 = 0 without introducing higher order dependencies. The resulting correspondence between the
analytic and simulated utilization, while not as good as  = p(1 � p), is still good. Henceforth,
we will assume that  can be accurately modeled as a constant and where a speci�c value for  is
needed, we will assume that  = 0:15.

5 Error Analysis

In the derivation of the analytic model, we have made the following approximations:

� p0E(R)=E(S)' 1,

� E(
PM
i=1 ri) ' (1=p� 1)E(R)=L,

�  ' 0:15.

A previous section has already shown that the above approximations result in an accurate analytic
model over a range of system and workload parameters. In this section, we examine the accuracy,
sensitivity and the error introduced by each approximation. Our methodology is to rewrite the
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Figure 5: Analytic vs. Empirical Models. c � ; N = 17; SU = 32KB; L 2 f1; 2; 4; 8; 16; 32g;
SZ 2 f32KB; 64KB; . . . ; 544KB = N � SUg. Each pair of lines is labeled with its corresponding

value of L. Each graph illustrates the accuracy of the analytic model for the given value of  which

is denoted by c in the title of each graph.

10



exact equation for utilization, Equation 2, in terms of variables �; � and . If we could calculate
the values of these variables exactly, we would have an exact analytic model. We show that the
approximate analytic model, Equation 7, can be derived by substituting speci�c estimates for the
true values of the variables �; � and . Thus, we can study how the approximations a�ect the
error in the analytic model by determining how inaccuracies in the estimated values for �; � and 
contribute to the error in the analytic model.

5.1 Exact and Approximate Models

Let

� � p0E(R)=E(S);

� � E(
MX
i=1

ri)L=E(R);

 � E(r0)L=E(R):

Note that � ' E(M), the average number of array requests that are issued until an array request
that accesses a given disk is issued. Rewritting Equation 2 in terms of �; � and  we have,

U =
1

1 + �
L(� + )

: (10)

Note that Equation 10 is an exact equation for the expected utilization of the model system and
does not utilize any of the approximations used in deriving the analytic model.

Let

�̂ � 1;

�̂ � 1=p� 1;

̂ � 0:15:

The above de�nitions for �̂; �̂ and ̂, estimating the true values �; � and  respectively, directly
correspond to the three approximations we have made in deriving the analytic model. Substituting
�̂; �̂ and ̂ for �; � and  into Equation 10 results in the approximate analytic model given by
Equation 7 and denoted below as Û :

Û �
1

1 + �̂
L(�̂ + ̂)

: (11)

The primary question of interest in the following section is how errors in the estimators �̂; �̂ and ̂
a�ect the error of the analytic model, Û .

5.2 Propagation of Error

The previous section has shown that the approximate equation for utilization, Equation 7, can be
viewed as derived from the exact equation for utilization, Equation 2, by estimating the variables
�; � and . This section looks at how inaccuracies in the estimates of �; � and  a�ect the error of
the analytic model.

We know that,

dU =
@U

@�
d�+

@U

@�
d� +

@U

@
d: (12)
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Estimator Error Sensitivity Accuracy Rel Err Rel Acc

�̂ Û� � U @U
@� �̂� � Û��U

U
�̂��
U

�̂ Û� � U @U
@� �̂ � �

Û��U
U

�̂��
U

̂ Û � U @U
@ ̂ �  Û�U

U
̂�
U

Table 1: De�nition of Error, Sensitivity and Accuracy. The above de�nitions use the true values

U; �; � and  which are unknown. We will use the simulated values for U; �; � and  whenever the

true values are required for computations. Although the simulated values will never equal the true

values, the simulated values can be made to approximate the true values arbitrarily closely. For

comparison purposes, we will �nd it convenient to use relative error and relative accuracy rather

than error and accuracy directly. Note that just as the error is approximately equal to the accuracy

times the sensitivity, the relative error is approximately equal to the relative accuracy times the

sensitivity.

The above equation shows how small changes in �; � and  a�ects U . Analogously,

�Û '
@Û

@�̂
��̂+

@Û

@�̂
��̂ +

@Û

@̂
�̂: (13)

The above equation shows how small inaccuracies in �̂; �̂ and ̂ a�ect the error in Û . For example,
the �rst term of Equation 13 shows how small inaccuracies in �̂ a�ects the accuracy of Û ; unfor-
tunately, the �rst term of Equation 13 also depends on Û which depends on �̂ and ̂. This means
that we may incorrectly calculate the error contributed by �̂ due to inaccuracies in the other two
variables.

Because of the above drawback to using Equation 13 directly, we will instead use the following
equations as the basis of error analysis.

Û� �
1

1 + �̂
L(� + )

; (14)

Û� �
1

1 + �
L(�̂ + )

; (15)

Û �
1

1 + �
L(� + ̂)

: (16)

The main advantage to using the these equations rather than Equation 11 is that errors in Û�, Û�
and Û can be directly attributed to the inaccuracy in �̂, �̂ and ̂ respectively. Table 1 formally
de�nes the terms error, sensitivity, accuracy, relative error and relative accuracy.

5.3 Simulation Results

Figure 6 plots the simulated and estimated U , relative error, relative accuracy and sensitivity
corresponding to each of the estimated parameters �̂; �̂ and ̂. The �rst row of graphs in Figure 6
illustrates the overall relative error in the analytic model. This is roughly equal to the sum of the
relative errors due to �̂; �̂ and ̂ illustrated in the succeeding rows. Note that the overall relative
error of the analytic model is generally smaller than �5%. Before discussing the relative error,
relative accuracy and sensitivity of �̂; �̂ and ̂ individually, we make several general comments
concerning all three variables. First, the relative errors due to �̂; �̂ and ̂ rarely exceeds �10%.
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Figure 6: Error, Accuracy and Sensitivity.
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Second, the relative inaccuracy rarely exceeds �1. Third, for the simulated parameters, the absolute
value of the sensitivity of all three variables is always less than one and is small in general. This
implies that the model is fairly robust and is insensitive to inaccuracies in the approximations used
to derive the model. Fourth, when the relative inaccuracy is high, the sensitivity tends to be low,
resulting in a small relative error. Fifth, the sensitivity of all three variables tends to decrease as
L increases.

The second row of Figure 6 illustrates the relative error, relative accuracy and sensitivity of
�̂ and corresponds to the approximation p0E(R)=E(S) ' 1. Simulation shows that this is a
good approximation for small request sizes but is inaccurate for large request sizes; as request
sizes become large, p0E(R)=E(S) approaches zero. Fortunately, the sensitivity also decreases with
increasing request size resulting in small errors. Note from Figure 6 that at the smallest request
size, the approximation becomes less accurate with increasing load. The absolute value of the
sensitivity also increases with increasing load but reaches a maximum of approximately 0.35 then
decreases. This leads us to believe that the analytic model will continue to display relatively small
errors at higher loads.

The third row illustrates �̂ and corresponds to the approximationE(
PM
i=1 ri) ' (1=p�1)E(R)=L.

As previously stated, we believe this to be a very good approximation which evidence now con�rms.
In the graph plotting U versus Û�, the two sets of lines are almost indistinguishable. The relative
error is generally less than �1%.

Finally, the fourth row corresponds to the approximation  ' 0:15. In addition to the general
comments already made, we note that the error introduce by ̂ tends to cancel out the error
introduced by �̂. This is not surprising given that ̂ was empirically calibrated to reduce the
overall error in the analytic model.

5.4 Summary

In this section we examined the error introduced by the approximations made in deriving the
analytic model. We examined the accuracy and sensitivity of each approximation. While some
of the approximations are grossly inaccurate for certain workloads, this does not introduce large
errors because the model is insensitive to the approximations at such workloads. Finally, because
the model is generally insensitive to inaccuracies in the approximations, it is reasonably robust.

6 The Optimal Stripe Unit Size

In this section, we will use the analytic model to derive an equation for the optimal stripe unit

size, the stripe unit size that maximizes throughput in megabytes per second. The equation for
the optimal stripe unit size is useful as a rule of thumb in con�guring disk arrays and also provides
valuable insights into the factors that inuence the optimal stripe unit size. Given today's disk
technology, the optimal stripe unit equation is most useful for workloads consisting of I/O requests
that are a couple of hundred or more kilobytes in size. Miller [15] has shown that such workloads
are typical of scienti�c applications. For such workloads, we have found that there is typically a
10-20% degradation in performance when the stripe unit is a factor of two smaller or larger than
the optimal size.

In addition to deriving the equation for the optimal stripe unit size, we will show that the stripe
unit size that maximizes throughput also minimizes response time. Note, however, that maximizing
throughput is not the same as maximizing utilization; just because a disk is busy does not mean that
it is doing useful work. The fundamental tradeo� in selecting a stripe unit size is one of parallelism
versus concurrency. Small stripe unit sizes increase the parallelism available for servicing a single
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request by mapping a request over a larger number of disks but reduce concurrency because each
request uses a greater number of disks [10].

6.1 Derivation

We will derive the equation for the optimal stripe unit size from Equation 9. But �rst, because the
disk service time, S, is dependent on the stripe unit size, SU , we must formulate a simple model
that makes this dependency explicit. Recall the de�nition for the following disk parameters:

� P is the average positioning time (seek + rotational latency).

� X is the sustained data transfer rate (this is the rate that the disk head reads data o� of the
disk platter).

Then,
E(S) = P + SU=X: (17)

Note that n, the number of stripe units per request can be calculated as follows:

n = SZ=SU: (18)

Substituting equations 7, 17 and 18 into Equation 9 and simplifying we can write the throughput
in megabytes second as,

MBS =
LNXSUSZ

(PX + SU)(NSU + SZ(L� 1 + ))
: (19)

Solving for the local maxima in the above equation as a function of SU ( is assumed to be a
constant) we get the following equation for the optimal stripe unit size:

optSU =

s
PX(L� 1 + )SZ

N
: (20)

Repeating the above procedure to minimize response time starting from Equation 8 results in the
same equation for the optimal stripe size; thus, the stripe unit size that maximizes throughput also
minimizes response time and is given by Equation 20.

The following remarks can be made about Equation 20:

� Changes to the system that increase the e�ective load, that is, an increase in L, an increase
in SZ, or a decrease in N , favor larger optimal stripe units. The opposite is true for changes
that decrease the e�ective load.

� In our model system, the optimal stripe unit size is dependent only on the product PX , the
relative rate at which a disk can position and transfer data, and not on P or X independently.
If you replace the disks with those that position and transfer data twice as quickly, the optimal
stripe unit size remains unchanged [10]. In this respect, the selection of an optimal stripe unit
size is a trade-o� between the disk positioning time and the data transfer time.
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6.2 Validation

As a further validation of the analytic model and of Equation 20 in particular, we compare the
analytic values for the optimal stripe unit size with empirically determined values. Figure 7 plots
the analytically determined optimal stripe unit sizes versus the empirically determined optimal
stripe unit sizes on a log-log scale. The shaded regions on the �gure represent optimal stripe unit
sizes that can be ruled out for the following reasons. First, throughput when SU < SZ=N for �xed
SZ is less than or equal to the throughput when SU = SZ=N . At this stripe unit size, requests
are being distributed uniformly across all disks and it is not possible to increase parallelism or
concurrency by reducing the stripe unit size. Second, throughput when SU > SZ for �xed SZ is
identical to when SU = SZ. In this case, the request already �ts completely within a single disk
and there is no advantage or disadvantage to increasing the stripe unit size. We have empirically
veri�ed the above two facts. Thus, SZ=N � SU � SZ. For comparison purposes, Figure 8 adds
the optimal stripe unit sizes predicted by Chen [10]. Note that Chen's model assumes that the
optimal stripe unit size is independent of the request size.

To get a feel for the sensitivity of performance to the choice of stripe unit size, Figure 9
individually plots each group of lines from Figure 8 with vertical bars to indicate the range of
stripe unit sizes providing 95% of the throughput of the optimal stripe unit size. Note that there
is fairly good correlation between the analytically and empirically determined values for optSU . In
all cases except when L = 1 and request sizes are small, the optimal stripe unit sizes determined
by both Chen's model and our model lie within the 95% performance intervals. This is remarkable
given the di�erent simulation methodologies and criteria used in selecting the optimal stripe unit
size and indicates that the optimal stripe unit size is a robust property.

6.3 Summary

In this section, we derived an equation for the optimal stripe unit size and validated it via simulation.
The stripe unit size that maximizes throughput also minimizes response time and is given by

optSU =
q

PX(L�1+)SZ
N . We showed that the optimal stripe unit size is dependent only on the

relative rates at which a disk can position and transfer data, PX , and not on P orX independently.
Our equation for the optimal stripe unit size generally corresponds with Chen's [10] equation.

7 Summary and Future Work

We have derived, validated and applied an analytic performance model for disk arrays. We modeled
disk arrays as a closed queueing system consisting of a �xed number, L, of processes continuously
issuing requests of a �xed size, n, to a disk array consisting of N disks. The expected utilization
of the model system, U , is approximately 1

1+ 1

L
(1=p�1+0:15)

where p = n=N is the size of the request

as a fraction of the number of disks in the disk array. We directly derived the expected response
time and throughput in megabytes per second as E(S)Ln

UN and UNSU
E(S) respectively where E(S) is the

expected service time of a disk request. We showed via simulation that the utilization predicted
by the analytic model is generally within �5% of the simulated values. We examined the error,
accuracy and sensitivity of each approximation made in the derivation of the analytic model to
better understand the validity and limits of the model. Finally, we applied the analytic model to
show that the optimal unit of data striping simultaneously maximizes throughput and minimizes

response time and is equal to
q

PX(L�1+0:15)SZ
N where P is the average disk positioning time, X is

the average disk transfer rate and SZ is the request size.
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performance of the optimal stripe unit size indicated by the oblique thin solid line.

19



There are several major areas for future work with respect to the analytic model presented here.
First, one can extend the workload model to handle non-constant distributions of request sizes and
something similar to CPU think time, where the processes, instead of simply issuing I/O requests,
would alternate between computation and I/O. Second, one can extend the types of disk arrays
to which the analytic model can be applied. In particular, it would be highly desirable to model
RAID, Redundant Arrays of Inexpensive Disks [5], systems. Finally, the analytic model can be
applied to other problems in the design and con�guration of disk arrays.
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