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EECS Dept., University of California, Berkeley
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Abstract

In this report we apply results from the theory of large deviations to Markov
modulated fluid models. The purpose is to find asymptotic expressions for the
overflow probabilities. With these expressions it will be possible to derive scaling
properties for these probabilities.

The Markov modulated fluid model may be viewed as describing the time be
haviour of the buffer in a switch of a high speed communication network, where
typically the overflow probabilities haveto be very small (~ 10 ~9). In order to es
timate such small probabilities from simulations, we need to do variance reduction
to speed up the simulations (quick simulations). This will be discussed only briefly
in this report. In [Courcoubetis] the scaling properties are used to get variance
reduction.

1 Model

We shall consider Markov modulated fluid models: Let {Xt} be a (continuous-time)

Markov chain on a finite state space E = {1,2,... ,d} with matrix of transition rates

Q = [qtj : i,j £ E} and steady-state distribution w (i.e. nQ = 0). Consider a fluid

system with input rate r(Xt) and output rate c. The system has a finite buffer size B
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whose contents at time t is indicated by Jt. The input rate function r and the output

rate c are deterministic. We assume £i€E Tr%r(i) < c.

Following the process {Jt} in time we recognize cycles being parts that start in 0 and

end in 0 (in between Jt is positive). Especially we shall concentrate on cycles that reach

the buffersize B. We like to find an asymptotic behaviour for the expected time and/or

probability of the occurences of that event. Also we would like to know how the buffersize

B is reached, i.e. what is the (empirical) distribution of the chain during the time the

buffer contents goes up from 0 to B.

The model described until now is a so called 1-source model, since generation of fluid is

triggered by the behaviour of one source (one Markov chain) only. So an iV-source model

will have inputs from N (independent) Markov chains. These N Markov chains may

be modeled by one macroscopic Markov chain, but we prefer to follow the microscopic

approach, i.e. how do the chains individually behave in order that the buffer reaches B.

Markov modulated fluid models are studied e.g. in [Mitra] (analytical derivation of

expressions for the overflow probability) and [Weiss] (large deviations by letting the

number of sources become large). Here we shallconcentrate on the use of largedeviations

by letting the buffer size B large. The results follow by applying methods which were

developed earlier in e.g. [Cottrel], [Parekh].

In section 2 we follow the i.i.d. approach to get results for the sample mean. In section 3

we follow the empirical distribution approach which leads to expressions for the overflow

probability in section 4. Section 5 describes multiple identical input sources, section 6

two different sources. Section 7 contains numerical and simulation results.



2 Large deviations: level 1

Let Zn be the ra-th return time to state 1 of the chain {Xt}. The interval Z„+i —Zn is

partitioned in Mn sojourn times rni,..., rnji/n: on [Zn+fnH \-Tn,k-i, Zn+Tni-\ \-rnk)

the chain is in state Xnk (k = 1,2,..., Mn; X„i = 1). During that time intervalthe input

generates an amount of fluid equal to r(X„k) per second while the output pulls out c per

second. Finally, define

tnk = Tnk(r(Xnk) - c)
Mn

fc=l

£n represents the virtual net amount of fluid between two consecutive returns to state 1

(virtual because no boundaries are represented). The cumulative process

*=1

is also called a free process.

The following observations are clear ($ = Y^j^i Qij):

fnJk ~ Exp( ,.ft_c) if Xnk =i and r(i) >c.

-£nk ~Exp(c _?j.(i)) if Xnk =2and r^ <C'
{Zn+i —Zn} are i.i.d. with mean \lz-

{£„} are i.i.d. with mean //$ = EY*=\ Tnkr(Xnk) - cfiz-

£| =£.•€**••»•(*) ~c<0.

Mi(s):=E(esU\Xnk =i)=qi_(r%)_c)i
(s < -r^— if Hi) > c, or s > -p$— if r(i) < c).v r(i) —c w ' r(i)—c w '

-gJn+l = ^«^n +"Jjfn+1-



Now apply large deviations to the "slow Markov chain" {-vJn} (see [Ventsel], [Cottrel],

[Parekh]): define the process {Jf*} by

J? =5 J«
for t = § and by linear interpolation in between. Let T > 0 and ^ : [0, T] —> [0,1]

absolute continuous with ^(0) = 0 and <j>\T\ = 1. Also let

M€(s) := Ee*

h^(u) := sup(su —log M^(s))
a

Then for large B

p(jtB*m,t€[o,T])

= K(B)e~B $ WnW*

Here if(i?) is the error which satisfies

\ogK(B) = o(B), B->oo (1)

Hence, making the approximation of the original proces {Jt} by the free process {Jn}

and applying the large deviations to all possible T and <j> as above, we get (see the same

references)

P{{Jt} hits B before returning to 0)

= K(B)e-B'miT'mUff h^<t>'(t))dt
= K{B)e~BmiT^ h^T)dt
= K(B)e-B'miTTh*& (2)

The second equality above is a consequence of the convexity of h^:

Lemma:

inf j[T h((<t,'(t))dt =T£h((±)dt



Proof: According to Jensen's inequality:

h( (jfV(*)£*) ^£ WW)lfdt
The lemma follows by noting that

f #(t)dt =<t>(T) - tfO) =
Jo

So it all falls down to determine in (2)

Note (see e.g. [Ellis])

• ht(u) > 0.

• h^(fi^) = 0 (and /*£ < 0).

• hz(u) is convex.

We may conclude that T0 := arginfrfT/i^)} satisfies

Let 50 = argsup5{s^- —logM^(s)}. Then

Mt(so) = 1

To - X

Q.E.D.

*i(^-) = «o (3)

M^(s0)

Remark: We find that the process {J?} hits the boundary 1 for the first time at

*= T0. This process is a continued time-scaled version of the discrete process {jjJn}' So
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the process {Jn} will hit the boundary B for the first time at n « BT0. According to

the renewal theorem we have

lim — = lim •=?•
*—oo f n-*oo Zn

= lim^lim^
n-*oo ft n->oo £n

,. 4. 1
= urn

n-*oo n fiz

That means that the free process {Jt} will hit the boundary B at time t = .BTo/az-

So this will also be the overflow time in an overflow cycle of the actual process {Jt}

(approximately).

Examples:

(a) E = {1,2}: a two state Markov chain.

Mt(s) = M1(5)M2(3) = 1

yields

s0 = ~7TT 1-

Then

r(l) - c r(2) - c

»r// x c-r(l) c-r(2)
Mi(50) = ^ + ^

Note: n* = ^^ + lSl=£.

(b) E = {1,2,3}: a three state Markov chain with jumps 1 <-• 2 and 2 <-• 3. Set

<?21

p = T~
r(i) —c

Qi = -^

" } 1- (1 - p)M23(s)(s)
MI(q x _ pMkfcp) + (1 - P)^23(g0)

5 pM12(s0)
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where so solves

OL\Cl2<XZ&2 —(ai<*2 + OL\OLZ + G^Ofe)^ + <X2 + <*3 + <*lP ~ C*3P = 0

(c) E = {1,2,..., d}\ a d-state cyclic Markov chain, i.e. jumps i —> i + 1 and c? —• 1.

Afe(«) = M1(3)M2(3)...Md(3)

30 = ?

From these examples we may conclude that this approach is not practable for larger state

spaces. See large deviations level 2 for another approach.

3 Large deviations: level 2

Let M(E) be the set of probability measures on E and Lt the empirical distribution of

{Xt}, defined by

Lt(i) =\fl{Xa=i}ds,
t Jo

t > 0, i £ E. Note that Lt =*• n. The level 2 large deviations result says that

lim -logP(Lt « /i) = -H(fx),
t—»oo t

fi £ M(E). In this section we shall find the rate function H(fi).

We shall use a result of [Varadhan] (see also [Ellis]). It gives the level 2 large deviation

rate function for a discrete time Markov chain {Yn} on E with matrix of transition

probabilities P = {py : i,j € E}:

where u = (t«i, «2> •••,u<*) and w > 0 is taken coordinatewise.

7



We shall follow the line of reasoning as exposed in [Donsker] to get results for the

continuous-time chain from discrete-time versions by time discretisation. Given the con

tinuous time chain {Xt}, we define for c > 0 its e-discretised version {Xn} by

{X'n) = xm.

This chain has transition probabilities

pfe = P(XHt = j\Xt = t),

that satisfy

qij = Km^,i#i
«« = Hm^i—-.

elO €

Let Ln be the empirical distribution of the e-discretised chain, then

ttnilogP(Li«/i)--IT(m),

with H€(y) given in (4) (p# replaced by pj-). Because

lim -logP(I£ «|i)
i—••oo J

= t!™-iogP(Zf(A)«/i)

= -^00,
we find

=-1{?7i5fo§'"los^r!i

8



after checking that lim and inf may be interchanged.

Examples: (a) E = {1,2}.

F(M,«):=/iiftg-l)+/i2ft(2-l)
Set v = ***•. Then minimum of H(n,u) is attained for

V /*2?2

and we get

H(n) = fiiqi + \i2q2 - 2y/fiiqifJL2q2 (6)

(b) E = {1,2,3} and jumps 1 <-»• 2 and 2 <-> 3. Now we find

H(fi) = /iift + \i2q2 + n3q3 - 2y/'fiiqifi2q2i - 2y/y,3qzy.2q2z

4 Overflow probability and action intergral

Consider a cycle in which the fluid model overflows the buifer. Write

St= f'riXJds
Jo

for the total input up to time t. Then jSt = ]£i€£ Lt(i)r(i) and hence

P(jSt » a) » J] P(L< wM)
ji€M(E):<ji,r>=*

= #(*>"'^"^M (7)

where the infimum is over probability measures on £ s.t.

</*!»•>= ]£ 0,T(i) =s.

What is the most likely way that the buffer content overflows? The approach to obtain

a large deviation expression is similar to the one described in section 2. Set

sf =±stB



and define paths <j> by

<f>: [0, T] —• [0,1] is absolute continuous
<j>(0) = 0
m = i
0 < </>(t) < 1 else

Notice that these paths generate overflow cycles by the relation

SB = <t>{t) + ct,0 < t < T <*» J« = B</>(t/B),0 <t<BT

which means that there is a buffer overflow at time BT.

We shall calculate

P{S? &<t>(t) + ct,Q<t<T)

Let A > 0, n € {0,1,..., [T/A]} and define processes {S?A'B}0<t<B& by

$t ' = SnBA+t —SnBA

{S^' • } on [0, BA] has the same properties as {St}, e.g. according to (7)

P(^SnB±B «s)
= P(^JoB*r(Xt)dtKs/A)
= K(B)e-BAini<»>r>=*/*H(ri (8)

for large B. Let <j> a path and set sn(A) = <^((n + 1)A) — <j>(nA) + cA for n =

0,1,..., [T/A]. Then for large B

P(SnA « <£(nA) + cnA, n = 0,1,...)

= P(5fn+1)A-5fA«5n(A),n =0,l,...)

= P(^StB«5n(A),n =0,l,...)
[T/A] DA' t XJ( \= JJ K(B)e-B^mi<t*>r>=a»(*)/*H(fi)
n=0

= tf(£)c-5AEnurf<*i,r>=.„(A.)/A#(/0 (9)
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The third equality above needs some justification, since we are dealing with Markov

chains and not with independent increments.

P(^Sb£B **»(A),n =0,l)
/1 rB* 1 r2B* \= P[^J0 rW**«o(A),-jf^ r(Xt)dt «s1(A)\

/oo / 1 rBA 1 r2BA \

ooPl^Jo ^Xt)dt ^S°{A)^ JbA rW^«51(A),XBA =̂ J
=jT P(l JqBAr(Xt)dt «5o(A)) P(±jj^A r(Ai)<& «ai(A)|Aj,A =x\

P(xBa =dx\± J^ r{Xt)dt «s0(A)j
Now we note that the large deviations result stated in (8) is independent of initial state

distribution, i.e. for large B

1 r2BA

P(^ I r{Xt)dt » s1(A)\XBa = x)
JO JBA

= P(^SBfB^s1(A)\Xo =x)
= K(B)e~BA inf<w>=* (*•)/* H(p)

Because

1 rB*/oo 1 ffia

P(XB£k =€lx|— / r(Xt)dt » 5o(A)) =1
-oo i? «/0

we can show that the product in (9) results by extending these arguments for n =

0,1,... [T/A].

Now let A I 0 in (9):

P(Sf w^(t) + ct,0<t<T)
»B

•T.

= limP(SBA «<£(nA) + cnA,n = 0,l,...)

= K{B)e~Bh inf<M,r>=^(0+c^(^)^

with ^T(/x) given in (5). Finally

P({ Jt} hits B before returning to 0)

11



« E£p(5?«*W + c*.o<t<r)

= K(B)e~B"rfr inf* •'o7 inf<^,r>=^(o+c #(/*)*
= i^(B)e~5inf:rTinf<M.r>=i/r+c '̂(^)^ (10)

where we have used the convexity of #(ji) to get the last equality:

Lemma:
rp

inf / inf H(fi)dt =T inf HU)
<f> J0 <fi,r>=<i>>(t)+c ' <»,r>=l/T+c

Proof: Consider the piecewise linear path <j> defined by

for some e G (0,1) and r G (0,T). Furthermore let

/x(1) = axgmi<fitr>=€/T+cH(fi)

pM = arginf<Mir>=r(1_e)/(r_T)+ciT(/z)

Then <^°>,r >=^ + c, so

inf fT(ji) < #(/x<°»

<J^(1))+^^(2))
= / inf £T(/i)<ft

7o </i,r>=^(*)+c

Approximating any path 4> by a piecewise linear one we get the desired result.

Remark: Let T\ = arginfrfTif(y) :< p, r >= 1/T+c}. Then Jt will hit the boundary

B at Ts = BTj.

12



Examples:

(a) E = {1,2}. H(fi) is given in (6) in section 3. Define the constraint function

G(r,/i)=</x,r>-~-c

and the Lagrangian function

F(T,?,f) = TH(»)-fG(T,n), feR

Since \i2 = 1 —y.\, the dependence on /i in these functions in through \i\ only. We find

optimal T and /z by solving the set of fixed point equations

( OF _()

{ G(T,/i) = 0

That is
T =

< h,t> —c
f = T*H(n)

1

l-2/ii _ T(ft - ft) -/(r(l) - r(2))
^,(1-^) aVftft

Denoting a for the right band side of the last equation, we can rewrite to

5 Multi-input

_ 1 a / 1

^~ 2~ 2V4 +a2

(11)

Let {Xt" : i/ = 1,2,...,7V} be iV identical independent Markov chains, each on the

state space E = {1,2, ...,d}, with transition rates {qij : i,j G E} and with stationary

distribution t. Each chain generates an input rate r(Xt) into the fluid model described

before. When there were no buffer boundaries, the contents at time t would be given by

the free process

Jt =£/ r(xt)dt-<*

13



The actual process Jt is bounded below by 0 and above by B. A cycle of the process

starts at 0 and ends either at 0 or at J? (whichever comes first). During a cycle the two

processes behave statistically the same. We will concentrate on cycles that overflow (i.e.

end at B). Of course we assume the stability criterion < w,r X -fa.

Let L\ be the empirical distribution of chain v and \iv G M(E) (probability measures

on E). Then according to large deviations

P(L"t « n") =K(t)e-tHi<^)

(for large t) with K and H described in section 3. Because of independence we get

N

P(Lvt « p», v=1,2,..., N) =K(t) f[ e~iH^

Write /z = (p1,..., fiN) and

The total input upto time t is

So

H„Qi) = £ HO*")

St =£ /' r(Xndt

= t£<L;>>

i/=i

P( j£ « 3)
2 p(ir«^^ = i,2,...,iv)

/ii,...,^:<^=1/i",r>«*

= A'(r>~*inf/"£M'i)

where the infimum is over all probability measures \i —(/z1,..., pN) s.t.

N

<5>",r>«a

14



Following the same reasoning as is section 4 we come to the conclusion

P({Jt} hits B before returning to 0)

= K(B)e~BmiT'miiiTHN^ (12)

where the first infimum is over T > 0 and the second over all probability measures

H= (li1,...,HN) s.t.
N x

<I>V>t+C
»/=l 1

The following lemma is needed to derive a scaling property for the overflow probability.

Lemma

inf{£; *0O :M1,-..,/' 6M(E),< J>',r >= ^+c}
i/=l v=l

= £inf{ff(iO:^€A<(£),<|iV>=JL +£}. (13)
I/=l

Proof (i) LHS < RHS is clear.

(ii) By the lemma of Fatou we have that

RHS

< mi{^H(^):^eM(E),<^,r>=^f +̂ ,v =l,...,N}. (14)
i/=i

Let p = (pV..,pw) = arginf LHS(13). Then there are numbers au > 0 for v -

1,2,..., N with ££Li a" = 1 such that

<PV >= o-'fl+c).

Define /z = (/z1,..., fiN) by

iV i/=l

for all v. Because

K^r^jL +j;
for all v, \i is feasible for the RHS(14). Furthermore, because H is convex,

1E#(„") =ff(^) =h(£ iff) zE t^W)-
iV i/=i i/=iJV i/=i iV

This inequality gives RHS(14) < LHS(13).

15



We notice that the

RHS(IS) =NudlHfr): n6M(E),<n,r >=^N +£}•
Substituting into (12) we get

Pr({Jt} hits B before returning to 0)

= k(b)*-BMtTNM<»»-*+*hW>
-BMTT-wt<lv>m^HkH0i)

Q.E.D.

(15)

by a change of variable.

6 Two different inputs

In this section we have 2 Markov independently generating inputs but we suppose that the

two Markov chains ({X}} and {X?}) may have different statistical characteristics. We do

assume that they have both the same state space E as before and the same deterministic

input rate function r. Write Qv for the matrix of transition rates of chain v and Ttv for

the associated stationary distribution. Assume the stability criterion < ir1 + 7r2,r >< c.

Let Hw be the level 2 large deviation rate function as derived in section 3 and expressed

in (5), associated with the chain X\ and set H2{\ix,\?) —Hl(iil) + H2(n2) for probability

measures nl,n2 on E. Similar to the result in section 5 we can derive that

P({Jt} hits B before returning to 0)

= K(B)e-Bin£T'mi»l>STH2(tJ'1>ti2) (16)

where the first infimum is over T > 0 and the second over all probability measures p1,!*2

s.t.

<V+^V>=- + c
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The scaling property as was derived in the case of similar inputs, is not present here.

Examples:

Consider the two-state Markov chains again: E = {1,2}. Just as in section 4 we can

define the constraint function

G(r,/z1,/i2)=</z1 +/x2,r>-i-c

and the Lagrangian function

where dependence on \iv is through y!{ only. Setting the deravitives to zero we get the

fixed point equations

< fj,r-\- (i2,r > -c
f = T2H(fi)
„i _ 1 ^ / 1 (17)

„2 _ 1 ' a2 / 1

where

u r(«T-«J)-/(r(l)-r(2))
a =

Ty/fftf

7 Numerical & simulation results

A) For one 2-state Markov generating source we have found that the probability of

overflow in a cycle equals $ = K(B)e~Bs°, that the time to reach the buffer limit B in

an overflow cycle is TB while the chain behaves according to the empirical distribution

fi. The relation is
1

</x,r>=—+ c
J-i

17



Set

?1 = 10

?2 = 30

ri = 400

r2 = 4000

c — 1500

State 2 is the bursty state. On the average there are 7.5 bursts per second. State 1 is

a quiet state although some generation of fluid occurs. The average input per second

< 7r,r >= 1300 (note that 7Ti = 0.75,ir2 = 0.25), hence the load is 0.866667. When 1

unit of fluid stands for 1 message cell, the peak arrival rate (i.e. during bursts) is 4000 *

53 * 8 = 1.696 Mbits per second.

Applying section 2 we get

But section 4 leads to

50 = 2.909091 10"3

Tx = 5.0 10"3

fix = 0.638889

30 = 2.909091 10"3

2\ = 4.490909 10"3

Hi = 0.632591

Fromsimulations (95 % confidenceintervals, runs for B = 2000, 2500 and 3000) we obtain

so = 3.236068 10"
•3

Ti = 3.529654 io-
-3

A*i = 0.612579

18



Here the value of so is not obtained directly but calculated from simulated values for $

by setting K(B) = K and then solving for K and So.

Since these simulations requirelong computing time, because they involve a rare event, it

would be interesting to find a quicksimulation. [Cottrel] and [Parekh] describe how to do

that, viz. using an exponential changeof measure. Let F$ be the probability distribution

function of the i.i.d. £n's introduced in section 2. Construct i.i.d. |n's with distribution

F;{x) = f e»'dFt(t)
J—oo

i.e. the mean fix equals the optimal slope ^- ($o and To as given in (3) in section 2). The

Laplace transform satisfies

Mx(s) = Mt{s 4- s0)

An implementation of these |n's is realized by a Markov fluid model where the 2-state

Markov chain {Xt} has transition rates

c-r(l)
qi = 92

fa = qi

r(2) - c
r(2) - c
c-r(l)

The chain has stationary distribution ft for which < ft,r » c. The rate functions r

and c are the same. When this chain would follow its stationary distribution, the buffer

would reach level 1 at time

< 7r,r > —c

It is not difficult to show that ft and t\ satisfy the fixed point equations (11) in section

4, i.e. they solve the optimization of (10).

When we actually perform these quick simulations applied to the example given we find

again a time 2\ to reach level 1 while the chain follows an empirical distribution ft:

Tj = 3.336556 10"3

//i = 0.607485
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B) For 2 sources we have the following results. First 2 identical sources as the one given

above, and with r as before, c = 3000 so that the load is again 0.866667. Then according

to section 6

s0 = 2.909091 10"3

Ta = 2.245455 10"3

fi\ = 0.632591

fi\ = 0.632591

as expected from the results of section 5. Simulations yield

Ti = 1.800341 10"3

fi\ = 0.614026

fi\ = 0.617043

Secondly, two different sources. Suppose {X}} is a Markov chain as above and {X2} a

chain (on {1,2} with ft = l,<fr = 3. The rate functions r and c are the same as above.

This second chain has on the average only 0.75 bursts per second. From the equations

(17) we find

s0 = 4.989825 10"4

7i = 2.188005 10"3

fi\ = 0.732589

fi\ = 0.529346

whereas simulations yield

Ti = 1.496032 10"3

fi\ = 0.727979

fx\ = 0.472639
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