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Abstract

Three primary parameters that are optimized at all levels of synthesis and design of very

large scale integrated circuits are area, performance, and testability. While techniques for

individually optimizing each of these parameters are well formulated, not much is known

of the interactions between the parameters. There are two important reasons why this

interaction is interesting. First, it is unknown whether circuits may be fully optimized

simultaneously for area, performance and testability, or whether a tradeoff between the cri

teria necessarily exists, i.e. is the optimality of one parametersacrificed when the others are

optimized? Second, the impact of the tradeoff between the area, performance or testability
on the resulting qualityof the optimizedintegrated circuit is not wellunderstood. This the

sis studies the interaction between the performance, testability, and area of combinational

logic circuits. The results apply to sequential circuits as well. There are three contributions;
these are motivated by the example of a well-known circuit design, where testability and
reliability are apparently sacrificed for performance. The first result proves that there ex

ists a fully testable implementation for every high-performance and untestablecircuit. An

algorithm that transforms an untestable circuit toafully testable circuit with no loss inper
formance is provided. A consequence ofthis result is the question ofwhether the testability
ofacircuit can be retained during performance optimization. The second part ofthis thesis
explores several synthesis situations and provides a comprehensive summary of the testa
bility effects ofperformance optimization techniques. The synthesis techniques discussed in
the first two parts require the analysis oftwo critical problems that have emerged recently,
timing analysis and delay-fault test generation. The final contribution of this thesis is the

development ofanovel and efficient general framework to solve the class ofproblems, that
includes both timing analysis and delay-fault test generation, involving functional analysis
on paths in a circuit.

Prof. Robert K. Brayton
Thesis Committee Chairman
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Chapter 1

Introduction

This thesis explores the interaction between the three primary optimization criteria

of logic synthesis during the design of very large scale integration (vlsi) digital circuits,

namely performance, testability, and area. The interactions between these criteria are

studied primarily in combinational logic circuits, yet also apply to sequential logic. This

chapter is organized as follows. In Section 1.1 the role and goals of logic synthesis in

the design of vlsi circuits are described. The problems that arise in combinational logic

synthesis are briefly reviewed in Section 1.2, with an overview of previous work on these

problems. A brief introduction to the interactions between the various optimization criteria

is provided in Section 1.3. Section 1.4 describes the scope and organization of this thesis.

1.1 CAD of IC's

Computer-aided design (cad) of digital integrated circuits (ic's) has proven to be

extremely successful for a number of reasons. The most significant of these are the ability

to automatically design highly complex ic's, low turnaround times, automatic verification,

and better chip quality. While significant improvements have been made individually in

each of these aspects of cad of ic's over the past few years, most of the focus presently

is on the quality of a chip design. The principal goals of a high quality ic are the area

of the layout, the speed of the circuit and the reliability of the manufactured chip. Good

chip quality almost always results in the ability to create a more complex design, with

better verification capabilities and lower turnaround times. Chip quality depends to a large

extent on the level of sophistication and optimization that is provided by the algorithms
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in the different stages of synthesis. In this thesis, the quality of a circuit is focused upon

by studying the interactions between the three optimality criteria of area, performance and

testability. The design flow in the complete synthesis process of an ic is briefly described

below, focusing on the how each of these optimization criteria are addressed at each level.

High-level Synthesis: The initial step in the synthesis of a digital system in

volves the translation of an abstract specification of the system (referred to as a behavioral

specification) to a structural description. The resulting structural description is typically

specified as an interconnection of combinational logic blocks and memory elements, termed

a register transfer-level description. The function of each combinational block may be spec

ified as a set of logic equations or as well-known functional blocks, e.g. a 32-bit adder. [73]

provides a tutorial of the most significant behavioral synthesis algorithms and results. The

first step of translating a specification to an intermediate register transfer-level description

involves optimizations akin to compiler optimizations. The target optimization criterion

may be either the area or performance of the resulting description. The two core trans

formations used in high-level synthesis are classified as resource scheduling and allocation.

Scheduling is performed to assign operations to control steps so as to minimize the delay,

subject to some constraints on the amount of available hardware resources. Allocation is

the problem of minimizing the amount of hardware needed. While most early synthesis

systems performed these two optimization steps independently, all current systems address

the area-performance tradeoff that arises at the behavioral synthesis level by relating the

optimizations across the two steps. The impact on testability of design choices at this level

of synthesis is still emerging as an issue.

Sequential Synthesis: The input description at this level of synthesis is typi

cally a register transfer (or symbolic) description. Often this description is expressed as a

finite state machine. Sequential synthesis techniques are used to create a logic level imple

mentation by performing a binary assignment (or encoding) of the states of the symbolic

description. There are several techniques that target the optimization of the area of the

resulting implementation. These include the minimization of the number of symbolic states

in the register transfer description (state minimization) [52], the encodingof symbolicstates

(state assignment) [34], and the decomposition and factorization of a large state machine

into smaller interacting state machines (state decomposition) [52]. A techniquefor improv

ing the testability of the resulting sequential circuit has also been proposed [39]. While

each of the techniques listed above have some impact on the performance of the resulting
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circuit, sequential synthesis for performance optimization is not well understood as yet.

Logic Synthesis: Logic synthesis is the process of converting a logical descrip

tion of a circuit to a technology specific interconnection of gates that realize an equivalent

function. In this step of ic synthesis, the optimization goals of minimum area, minimum

delay, and complete testability are most directly targeted. The design optimization per

formed at this level profoundly affects the quality of the final chip with respect to the three

optimization goals. The interaction played out between these three axes of optimization at

this level is the focus of this thesis.

Layout Synthesis: The final step of synthesis of an integrated circuit prior

to manufacture is the process of arranging the network of gates onto actual silicon. This

physical synthesis consists in mapping the gates into actual transistors and interconnections

among them. The steps in this process include module and gate placement, and global and

local routing. [62] provides a complete review of this area. A lot of the problems in

this stage of synthesis have mature and widely used solutions. However, an important

problem that is emerging at this level is the ability to provide the logic and behavioral level

synthesis tools fast and accurate estimates of the area and delay corresponding to various

choices of structures during optimization. Recent work includes algorithms for timing driven

placement [54], and proposals for fast and accurate estimates of area and performance at

the layout level to direct performance oriented logic synthesis operations [86]. This stage

of synthesis has an impact on the testability of the ic related to defects arising due to the

physical proximity of transistors and wires (e.g. bridging faults); however, results relating

the effects of layout synthesis on testability are lacking.

A more complete description of performance-directed synthesis at all levels of the

design of VLSI systems is provided in [2].

1.2 Combinational logic synthesis

Given afunctional description of a system that includes memory constructs, combi

national logic synthesis extracts only the combinational portion of the logic for optimization.

The memory elements are connected back into the final optimized circuit at the end of the

process. [16] is a complete description of the algorithms and approaches used in this levelof

synthesis. In this section, the three most common goals of any logic optimization problem

are considered; the focus is on techniques and results relevant to the subject of this thesis.
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1.2.1 Area optimization

By far the best understood aspect of combinational logic synthesis is the ma

nipulation of logic equations to yield an implementation of minimalarea. When the target

technologyis a two-level implementation both exact and heuristic algorithms are wellestab

lished [30,15]. In two-level implementations, the area of an implementationis proportional

to the number of terms. A secondary function is the number of occurrences of the variables

(referred to as the number of literals). In multilevel logic, exact minimization algorithms

are much harder to achieve than for two-level logic, since the solution space is considerably

larger due to increased degrees offreedom compared to two-level logic [16]. However, several

techniques exist that yield sufficiently high-quality area-minimal solutions. In a multilevel

implementation, area is most often estimated by the number of literals in the implementa

tion. For multilevel implementations there are two basic approaches that are adopted. The

first is a rule-based approach consisting of the application of selected transformations from

a given collectionof rules developed by experienced circuit designers [32, 7]. The second is

algorithmic based [18, 5]. Synthesis systems based on this approach have proved substan

tially superior to those based on the former [16]. Many industrial synthesis systems employ

the second technique followed by the first.

A successful strategy employed in the latter approach is to decompose the process

into two steps: technology independent optimization and technology dependent optimiza

tion. This often simplifies the design and optimization problem to be solved, while still

yielding an efficient solution. Technology independent operations, which apply to generic

gates independent of technology specific information, may be further classified as algebraic

and Boolean. While algebraic operations restrict the set of operations that are used to

optimize circuit structure, they are popular due to the time-efficiency of the process. They

can be performed in polynomial time in the number of variables of a function [ill]. Boolean

operations are more time-consuming, yet are essential in obtaining minimal circuits [97].

The technology dependent optimizations consist of mapping the generic gates to a specific

library of cells, corresponding to a target technology [35].

1.2.2 Performance optimization

Performance optimization is almost always the primary optimization criteria in

logic designs [2,16] (subject to some area constraints). A typical problem is to improve the
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delay of an existing circuit structure. At the technology independent level this is done by

incremental modifications to the structure of the network to yield a faster circuit. Three

transformations [105, 78, 11], that have recently matured into efficient and feasible algo

rithms to reduce the delay of circuits are studied in detail in this thesis. At the technology

dependent level, delay may be minimized instead of area during the mapping phase [108].

An alternate technique, that is often used in conjunction with mapping, is the insertion of

buffer cells with high capacitative-drive properties to further improve delays through gates

propagating signals to several different parts of the circuit [10].

While a reasonable first-order approximation of the delay of a circuit is the number

of levels of gates that a signal passes through, it is known that capacitative loading effects,

functional considerations, and other operating factors (e.g. transistor gate sizes) must also

be taken into account [76]. In this thesis, performance estimates are made after the incor

poration of all these factors. In fact, the core problems addressed in subsequent chapters

result from the interactions of these factors during delay estimation of high-performance

circuits. In particular, the interaction between the logical and timing behavior is related to

the impact on the testability and area of a circuit.

1.2.3 Testability optimization

Testability refers to the ability to determine whether an IC is behaving in accor

dance with the given specifications. Most approaches to digital ic testing before the middle

of the last decade attempted to improve the testability of the design by ad-hoc post-synthesis

modifications. However, with persistently increasing VLSI densities, the increasing need for

reliability in manufactured circuits has led to the evolution of testability as an important

logic optimization criterion.

In order to refer to the ability to test a chip a fault model is required. Several fault

models are in use today. The most common is the stuck-fault model that detects static (or

DC) defects [19]. However, since the delay of a chip is often as critical as its logicalbehavior,

circuits alsohave to be tested for dynamic (or AC) defects [106]. This has led to the definition

of two delay fault models. Even more comprehensive detection of manufacturing defects

may be achieved by checking for faults that model open and shorted connections within

transistors. One goal when optimizing combinational circuits for testability is to ensure

that 100% of all faults being modeled can be tested by applying a suitable test vector
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sequence at the primary inputs of the circuits. A defect is detected as a logical difference

at some primary output. Other important considerations are the number of test vectors

required to detect all the faults, the computation effort required in generating the tests,

and the time required to apply them.

There are well developed synthesis techniques for all of the fault models listed

above. Mostare best understoodfor two-level circuits[6,51,36]. However, severalmultilevel

optimization operations are known that may be used to retain testability in circuits [51, 36,

94, 20].

1.3 Relations between optimization criteria

The goal of logic optimization is to obtain a design that is fully optimized with

respect to all three criteria; yet, all the optimization techniques mentioned in the previous

section target only one of the three criteria. However, when optimizing for one of the goals,

sometimes the effects on the remaining criteria are known or may be predicted. A brief

description of some of these known results is presented below.

1.3.1 Area and testability

The area of a circuit is directly related to its testability. Here testability means

the percentage of faults for which there exists a test vector which tests for the fault. The

reason for this is as follows. Consider a connection which can be set to a constant value

without affecting the functionality. In such a case, this connection may as well be replaced

by the constant value, thus resulting in a smaller circuit. If the connection is retained in the

circuit then a manufacturing defect that appears on the connection cannot be tested; this

leads to an untestable circuit. Untestable circuits are undesirable for several reasons which

are explored in detail in the next chapter. Besides a non area-minimal implementation,

untestability impedes the test generation process and degrades the reliability of a chip. The

circuit resulting from the replacement of the connection by a constant is more testable than

the original circuit. There are several optimality criteria that can be used to relate area to

testability. The first order optimality criterion for area is related to 100% single stuck-fault

testability [6]. In such a circuit, no single connection can be removed without changing the

function of the circuit. A second order form of optimality is related to the more stringent

testability criterion of 100% multiple stuck-fault testability [51]. In such a circuit no set of
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connections can be simultaneously removed from a circuit without changing the function of

the circuit.

1.3.2 Area and delay

Any of the approaches described in Section 1.2.2 can be used to achieve an im

provement in the delay characteristic of a circuit, albeit with some penalty in area of the

resulting implementation [105]. An example of this phenomenon is the several different im

plementations of an adder circuit. A ripple-carry adder has the least area among all adders,

but it is also the slowest. A carry-skip adder [66] is faster and is derived using an additional

and gate and mux. A carry-select adder [112], is similarly derived from a ripple-carry adder

with some duplication of logic to achieve a reduction in speed. A circuit with even better

delay uses a carry-lookahead structure, [112], but at substantially higher cost in area.

Synthesis techniques also show the same phenomenon. An example of the area-

delay tradeoff is shown in Figure 1.1, where a 32-bit ripple carry adder is optimized for delay

using path reduction techniques [105]. The experiment is performed using a parameter to

control the strength of the optimizations used in restructuring the logic. Details of this

procedure are discussed in the sequel. It is instructive to note that during the course of the

area-delay tradeoff, each of the manual adder designs mentioned above is achieved by the

automatic synthesis procedure.

1.3.3 Other relationships

Little is known of the remaining relationships that exist between the three criteria.

The purpose of this thesis is to explore the interactions between area, testability and delay

more completely. In particular, the focus is on the relationship between the delay and

testability in area minimal circuits. This relationship is shown to be critical in the design of

reliable high-performance circuits. An interesting aspect of this exploration is that it leads

to similar approaches to efficiently solving problems that involve timing analysis and test

generation for all types of fault models.

1.4 Thesis contributions and overview

A general question that captures the focus of this thesis is:
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Figure 1.1: Area versus delay tradeoff on a 32-bit adder
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• What is the relationship between the performance, testability, and area of an optimized

logic circuit?

While the principal focus will be on the interaction between the performance and testability

of circuits, the area of the synthesized design is always an important consideration in the

results stated in this thesis.

Chapter 2 explores the impact of redundancy in high-performance circuits. Most

high-speed circuits have redundancy introduced when delay optimization is performed on a

circuit. At first, it appears that this redundancy is necessary to reduce the delay of the cir

cuit since a straightforward technique for removing redundancy slows down the circuit. The

redundancy also has a profound effect on the reliability of the manufactured circuits. The

illustration of a high-performance and redundant circuit that exhibits unreliable behavior

motivates three problems that are addressed in the remaining chapters of this thesis.

Chapter 3 addresses the question of whether redundancy is necessary to reduce

delay. An algorithm is provided that converts any high-speed redundant circuit into an

irredundant one guaranteed to be no slower. A proof of the invariance of the delay estimate

in the original and final circuits using the most accurate functional timing analysis technique

is provided.

Even though redundancy is unnecessary to reduce delay, performance optimiza

tion transformations may reduce testability, and this is studied in Chapter 4. Different fault

models are considered to examine their invariance under common delay optimization trans

formations. In particular, delay-fault testing of ic's , which has found increased interest in

recent years, is considered.

In the area of performance optimization, delay estimation of a circuit has lacked

efficient algorithms. In the area of testability, efficient algorithms for delay-fault testing

have not existed until recently. Both timing analysis and delay-fault testing are the focus in

Chapter 5, where a uniform and novel approach to solving general path analysis problems

is presented [80].

Chapter 6 provides a synopsis of the theoretical and practical results obtained in

this research.

The solutions to several problems in this thesis are obtained by formulating them

as Boolean satisfiability problems. An overview of the heuristics used in solving a general

Boolean satisfiability problem is provided in Appendix A.
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Chapter 2

Redundancy and Delay

This chapter serves two purposes. The first part provides definitions of the two

circuit properties that are of most concern in this thesis, namely redundancy and delay.

Following a few basic definitions relating to combinational circuits in Section 2.1, the terms

and techniques used in the testability and delay analysis of Boolean networks are discussed

in Sections 2.2 and 2.3, respectively. The second part of this chapter explores the interaction

between redundancy and delay. Besides the well known disadvantages of redundancy, briefly

reviewed in Section 2.4, a significant reliability problem due to redundancy is discussed in

Section 2.5 using the example of a well known adder circuit. This example motivates three

problems, enumerated in Section 2.7, and addressed in the remainder of this thesis. Related

work is reviewed in Section 2.6 to place the contributions of this thesis in context.

2.1 Boolean networks

During the process of logic synthesis, combinational logic is represented by an

abstraction known as Boolean network. A few definitions related to Boolean networks

required in subsequent discussions are provided below. Further details may be found in [16].

Definition 2.1.1 A combinational circuit (or Boolean network,) is a directed acyclic

graph composed of gates (or nodes) and connections (or edges) between gates.

Definition 2.1.2 A path in a combinationalcircuit is an alternating sequence of connec

tions and gates, {co,/o»ci,...,cm,/m,cm+i}, where connection c,-, 1 < i < n, connects the

output of gate fi-\ to an input of gate fa. The /; 's are referred to as gates along the path.

11
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Defining a path as a sequence of connections and gates, rather than simply as a sequence

of gates, gives greater flexibility in modeling delay and allows the unambiguous description

of circuits with more than one connection from one gate to another.

Definition 2.1.3 A path that includes a primary input anda primary output is termed an
IO-path.

Definition 2.1.4 The depth of a circuit is the maximum number of gates along any path
in the circuit.

Definition 2.1.5 If the output of a gate /lf is connected to an input of gate /2, f\ is a

fanin of f2. Gate f2 is a fanout of gate f\. If there is a path from /,- to fj, then /,- is a
transitive fanin of fj, and fj is a transitive fanout of fa

Definition 2.1.6 A literal refers to a Boolean variable that appears either in its comple

mented or uncomplemented form, e.g. x' or x.

Definition 2.1.7 A cube is a product of literals: e.g. xy'z. A minterm is a cube in

which every variable appears.

Minterms may be used to represent the values of a set of input variables: e.g. xy'z is

shorthand for x = 1, y = 0, and z = 1. In this way there is a natural correspondence

between an input vector or input stimulus and a minterm. This correspondence may be

extended to cubes where unspecified values in the function are assumed to be arbitrary or

unknown values. Thus if a circuit C has inputs v,tt>,a:,y, and z, then applying the cube

xy'z to C is shorthand for applying « = X,v = A',a; = l,y = 0, and z = 1. Here X denotes

an unknown value.

In this thesis, the terms logicalbehavior and temporal behavior of a combinational

circuit are used to make an important distinction. Logical behavior refers to the final value

on each primary output of the circuit when a stable value is asserted on the primary inputs.

Two circuits are logically equivalentunder an input cube if they have the same stable values

on the primary outputs. Temporal behavior refers to the dynamic behavior of the circuit,

which considers the logical values on the primary outputs at a particular instant of time.

Thus, two circuits may exhibit the same logical behavior under an input cube, yet the final

values on the primary outputs of one circuit may be available at different times than the

other circuit. In this case, the circuits exhibit different temporal behavior.
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2.2 Redundancy in a network

Most manufactured ic's must be tested. The goal of testing is to determine whether

a manufactured circuit behaves correctly. This is done by applying test vectors (at the

primary inputs) that distinguish between the functional behavior of the correct and faulty

circuits. Defects that may occur are abstracted using fault models which define their impact

on circuit behavior. For example, a fault may change only the logical value on some gate in

a circuit. Another modeled fault may impact only the timing behavior of a gate, but not

its logical behavior. Although several fault models have been proposed [19], in this thesis

only the two major classes of fault models are considered. The first, and most common,

are static faults that model only the impact of defects on the logical behavior of gates or

connections in circuits. This class is briefly reviewed later in this section. The second,

introduced and discussed in detail in Chapter 4, are delay-faults, which represent changes

only in the temporal behavior of gates or connections.

Having chosen a fault model, the term testability of a circuit refers to the ability

to generate a test for each fault that may exist in the network. The term testability has

many connotations in testing and synthesis [4, 27]. It often includes the time required for

test pattern generation and the time required for actual application of the tests to each

manufactured circuit. These two criteria are particularly significant in some methods of

testing sequential circuits [47]. Since the focus here is on combinational circuits, our only

concern with respect to testability is the existence of a test for each fault.

Definition 2.2.1 A gate has a stuck-1 (stuck-0j fault on an input (output) if the logical

value asserted on the input (output) is always 1 (0) independent of the value presentedon

the input (output).

Definition 2.2.2 A circuit has a single stuck-fault (or single-faultj if there is only one

stuck-1 or stuck-0 fault in the circuit. A circuit has a multiple stuck-fault (or multi-

faultJ if there is one or more stuck-faults in the circuit.

Testing for single or multiple stuck-faults attempts to ensure with high probability that

manufactured circuits with defects leading to incorrect logical behavior are detected. Since

the timing behavior of the circuit is of no concern, the testing of stuck-faults is referred to

as static testing.
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Definition 2.2.3 A stuck-fault is testable (or irredundantj if it causes a change in

the logical behavior of the circuit for at least one input cube. Otherwise, the stuck-fault is

untestable (or redundant/

In general, a circuit where each modeled fault is testable is said to be 100% (fully) testable

under the chosen fault model. In particular, a circuit that is fully single stuck-fault testable

is called an irredundant network. Otherwise it is called a redundant network. Like the

term testability, the term redundancy has come to have different meanings. While most

often associated with the logical behavior of circuits and with single stuck-faults, .it is

also widely (and incorrectly) associated with other fault models that may not even impact

logical behavior, such as delay-faults1. Computational redundancies, such as duplication

of functional units, are also used to speed up circuits, but these do not necessarily imply

stuck-fault redundancies.

2.3 Delay of a network

The primary concern with respect to the temporal behavior is to determine at

what speed we may clock the circuit and be certain that the logical values on the outputs

at the end of the clock period are correct. Most often the clock speed is an imposed

system requirement. There are a number of ways of determining whether a design operates

correctly at a certain clock speed. The most accurate is to build the circuit and test it at

the required speed in its target environment. Because of the time and expense involved,

this option is rarely viable. Therefore we would like to determine as accurately as possible

before fabrication, whether a circuit meets its timing requirement. Even more difficult is

the common problem of designing a circuit such that the fabricated circuit achieves its

timing requirement. This usually involves repeated analog simulations of the circuit using

a simulator such as spice [3]. Unfortunately, simulation has two significant problems:

accurate simulation is computationally expensive and its utility is limited by the vector

set applied. The first problem could possibly be addressed by using less accurate but more

computationally efficient algorithms [22]. Even then, simulation of all possibleinput stimuli

is never an option. Thus, if there is one unsimulated input stimulus that could cause the

xIt is interesting to note that by the year 1962, the term redundancy had already become hopelessly
overloaded [43].
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circuit to go slower, then the simulation results may lead to the manufacture of a circuit

that will fail occasionally at the required speed2.

An approach that avoids the problem of test vector dependency is to use static

timing verifiers [57, 84]. In this approach the delay ofa circuit is assumed to be the longest

path in the circuit. One problem with this is that there may not be any input stimulus

that activates the longest path. Such paths are called false paths [8]. Thus, static timing

verifiersmay be too pessimistic in estimating the delay. A potential solution is to eliminate

the "statically unsensitizable" paths from consideration3. In this case the longest statically

sensitizable path is taken as the delay of the circuit. However, it has been shown that paths

whichare not statically sensitizable may still contribute to the delay of the circuit [14, 76].

Thus, this approach may result in a too optimistic estimate of the delay. In this thesis, the

functional timing method for logiccircuits proposed in [76], is employed. While this method

cannot be considered to be as accurate as simulating a complete vector set with a tool such

as spice, it makes the most accurate assumptions of all known timing verifiers [74].

Another property of a timing method is robustness [76]. Any network under tim

ing analysis actually represents a network family, each member of which is structurally and

functionally identical, but with varying timing properties. Typically, a timing analyzer con

servatively chooses the member with the maximum gate delays. The condition of robustness

requires that the timing estimate made by a timing analyzer be correct for all members of

a network family [76]. The method employed in this thesis meets this criterion.

Definition 2.3.1 Each gate f has a delay d(f) and each connection c has a delay d(c)

associated with it.

Although a straightforward timing model is used in this thesis, the results described do not

depend on this particular model. It can be shown that they hold for models with separate

rise and fall delays, different delays on each pin, and slope delay models [76].

Definition 2.3.2 The length of a path P = {c0, /o, ci,..., cm, /m, cro+i} is defined as d(P)

= E£o dUi) + EEo1 d(ci)- \p\ denotes the length of path P. d(c{) is also represented as
d(fafai).

2This same problem can occur even if the circuit is built and run in its functional environment, since
highly improbable input sequences may not have been tested.

3Briefly stated, the static sensitization condition for a path P requires the existence of a vector under
which an event propagates along P independent of delays in the circuit.
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Definition 2.3.3 An event is the transition from 0 (1) to 1 (0). Let {e0,ei,...,em} be

a sequence of events occurring at gates {fo,fi,...,fm} along a path P, such that e,- occurs

as a result of event e,_i. The time of event e,- is denoted r/\ The event eo is said to
propagate along the path. If an event can propagate along a path, then the path is said to

be sensitizable.

The discussion of the conditions under which a path is sensitizable is deferred until Sec

tion 2.3.1.

Definition 2.3.4 A critical path is a longest sensitizable path in the circuit.

The delay of a circuit is the length of a critical path.

Definition 2.3.5 A controlling (or annihilatorj value for a gate f is the value at its

input that determines the value at the output independent of the other inputs, and is denoted

as A(f). For example, 0 is a controlling value for an and gate. A non-controlling (or

identity,) value for a gate f is the value at its input which in not a controlling value for

the gate, and is denotedas 1(f). For example, lis a non-controlling valuefor an and gate.

Definition 2.3.6 A simple gate is any one o/and, or, NAND, nor, and not.

A controlling value is only defined for simple gates. For a complex gate such as / = ab+ cd,

neither a = 0 nor o = 1 by themselves determine the value of /. For a simple gate /,

AU) = /(/)€ {0,1}.

Definition 2.3.7 Let P —{/o,/i>—>/m} be a path. The inputs of /,• other than fa\ are

called side-inputs of fi along P and denoted as S(faP). A path that starts at a primary

input and ends at a side-input of P is a side-path of P.

Notice that the connections along the path are not explicitly enumerated in this definition.

This is done for ease of exposition when a single connection exists between a pair a gates.

Henceforth, except in circuits with multiple connections between pairs of gates, all paths

avoid explicit reference to the connections.

Definition 2.3.8 A path is statically sensitizable to 0 (1) if there exists an input cube

which sets all the side-inputs to the path to non-controlling values and causes a value of

0 (l) on the output of the path.
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Figure 2.1: Example of definitions

Definition 2.3.9 A path is statically sensitizable if there exists an input cube which

sets all the side-inputs to the path to non-controlling values. The condition for static

sensitization ofapath P = {/0, fa ».,/m} composed ofsimple gates isYHiLo Ug€S{fi,P)(9 =

Note that a path is statically sensitizable if it is statically sensitizable to 0 or statically

sensitizable to 1 .

An illustration of these terms is provided in Figure 2.1. The path shown as a

dotted line from input b to output d is statically sensitized to 0 by the cube a'b, and is

statically sensitized to 1 by the cube a'b'c. The path from b to d through gates 2, 3 and 4

is not statically sensitizable since no input cube exists which causes each of the side-inputs

to have non-controlling values.

2.3.1 Delay computation using viability analysis

In order to refer to the "delay" of a circuit, one must first determine how it is

computed.

Given a circuit in a particular internal state, i.e. with some values on the wires in

the circuit (0, i, or anything in between), a changein someof the inputs (an input event)

can possibly result in a change in some of the outputs (an output event). The delay of this

input event is the time between it and the time all the outputs of the circuit have settled
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to their final values. The delay of the circuit is the maximum delay over all possible input

events, starting with all possible internal states.

Unfortunately, in order to measure delay as defined above,all possible input tran

sitions must be considered, under some assumptions about the electrical behavior of the

circuit components. This is a formidable but important problem for critical circuits whose

delay determines the speed at which the circuit can be clocked. For correct functionality it

is permissible to approximate the delay by an upper bound on the true delay. Pessimistic

assumptions may be made to simplify the delay analysis since they ensure that the com

puted quantity is an upper bound. Any upper bound on the true delay obtained by some

approximation technique is referred to as the computed delay to distinguish it from the true

delay.

Since the computed delay can determine the clock cycle, it is important that this

bound be as tight as possible. Research in computed delay methods (e.g. [14, 41, 76, 87])

has led to increasingly tighter bounds. To date, all accepted methods use only a single

vector condition. In such an analysis, the values on the wires before the application of this

vector are considered unknown.

In [76], delay is measured using the notion of viability. It is proved there that the

upper bound obtained is valid, robust, and tighter than that obtained in [14]. Viability

analysis provides the tightest upper bound on the delay among all approaches known so

far4. Viability analysis is used in all the proofs and delay analyses throughout this thesis.

The approach presented in [76] is briefly overviewed. In Chapter 5, an efficient

technique to determine the viability of paths is discussed.

The computed delay of network n for the primary input cube c is denoted as

delay(n,c). delay(n,—) is the maximum value of delay(n,c) over all input cubes. Note

that if delay(n>c) = /, then there should be some path of length / from a primary input

to a primary output which is sensitizable, i.e. an event propagates down this path and

reaches the output after time /5. Viability attempts to answer the question: when is a path

sensitizable? Consider a network comprised entirely of simple gates. For a path P to be

sensitizable, each side-input to each gate /, along P must have a non-controlling value on

4The method of Chen and Du [24] gives the same computed delay as viability analysis, but may report
fewer true paths. This may be important in applications where delay analysis is used in conjunction with
speed-up techniques which restructure only true critical paths. However, the method of [24] is restricted to
simple gates; viability analysis applies to complex gates and is more general.

*Since the computed delay is only an upper bound (but a fairly tight one), it may be that no event can
propagate with delay /.
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it at the time the event reaches fa To see this, suppose some side-input has a controlling

value on it when the event reaches fa The controlling value would have already set the

output value of the gate thus blocking further propagation of this event.

Let rf be the timeof event e,- on the connection between fa\ and fa For a given

input cube c, the side-inputs at /, may be classified into two sets.

1. The set S of early arrivingside-inputs. These inputs settle to their final value before

2. The set C of late arriving side-inputs. These inputs have not settled to their final

value before r/\

It is clear that at t?, the values for the side-inputs in S are determined exactly by the

input cube, c, and not the previous internal state of the circuit. However, the values for the

side-inputs in C are determined not only by c, but also the previous input cube that was

applied, aswell as the electrical characteristics of the connections. A detailed analysis for all

possible cases of previous and current input cubes andelectrical characteristics is, in general,

considered to be too difficult. To get around this, all timing analyzers make pessimistic

assumptions, assuming the worst possible internal state and electrical characteristics.

In [76], the notion of viability is introduced for this purpose. It is defined re

cursively. A path is viable under input cube c if at each gate /,- along the path, all the

side-inputs in £, as determined by c, have non-controlling values. The side-inputs in £ are

assumed (pessimistically) to be at non-controlling values, if a viable path under c of length

>rf exists up to the side-input; otherwise, the side-input must evaluate (statically) under
c to a non-controlling value. A path is viable if there exists some input cube under which

it is viable. The formal definition for the viability function given in [76, 75] is stated in

abstract functional terms, and requires somemachineryof an operatorcalculus. The simple

version of viability analysis, valid only for simple gates is provided here, with the remark

that this formulation can be easily extended to general gates.

Definition 2.3.10 The set ofpaths of length > t which terminate at gate f is denoted Vftt.

Thus for a gate /; along a path P, the set of paths terminating at a side-input gj of fa of

length > r^j, and hence arriving noearlier than event e,_i, is denoted Va. tp .
Recall that 1(f) denotes the non-controlling value of gate /.
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Definition 2.3.11 A path P = {/o,/i,...*/m} is viable under an input cube c if, at each

node fi for each gj € S(fa P), either:

*. 9i(c) = /(/,-) / or

2. 30, eVnrP such that Qj is viable under c.

The first conditionin Definition 2.3.11 appliesto all the side-inputsin the set € and

some of £; the second condition applies to the remaining side-inputs in the set C. Viability

is a weaker condition than static sensitization since it makes no demands on the static values

of some side-inputs in C. Observe that if a path is statically sensitizable then it is viable

since allside-inputs have non-controlling values. The computed delay ofthe network is thus

the length ofthe longest viable path. This is more pessimistic than considering the longest

sensitizable path; viability analysis makes the assumption that the late viable side-inputs

have non-controlling values on them at r/\ [76] uses the smoothing operator to effectively

set non-controlling values on late-arriving viable signals.

Definition 2.3.12 The cofactor of a Boolean function f with respect to a literal x is

denoted fx and is equal to the value off assuming the literal x is set to value 1 (and x' is

thus set to 0 ).

For example, given / = xy + x'z + w, fa = y + w, and fa = z + w.

Definition 2.3.13 The smoothing operator applied to a function f with respect to a

variable x is Sxf = fx + fa. Sxf yields the smallest Boolean function containing f which
is independent ofx. IfX is a set ofvariables {x0,xi,...,xm}, Sxf = SXoSXl...SXmf. This
notation is meaningful since the operator is commutative, i.e. SXlSX2 = SX2SXl.

For a simple gate / with input x, Sxf is equivalent to asserting a non-controlling value on

x.

The definition of viability is for the application of a selected cube c. In general,

the concern in delay estimation is to determine the existence or absence ofsuch a sensitiz

ing cube. Thus, a Boolean function ofprimary input variables is used to capture all the
conditions (i.e. input vectors) under which a path is viable. This function is the viability
function, and is derived ina fairly straightforward fashion from the above definition in three

equations.
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Definition 2.3.14 The viability function 0p of a path P = {/0,/i, ...,/„,} w defined as
follows

m

where

and

i=0

*£' = E ill ***' II (* ='(/.))}
tfCS(/,-,P) g€U g£S(fitP)-U

*** = £ ^<?'
Q€P9,t

Briefly explained, the condition under which a path P is viable, denoted ij)p, is the condition

^>p, under which each gate /,- satisfies the viability conditions onits side-inputs, ipp is true

if there is some set U of viable late arriving (with respect to event e,_i) side-inputs to /,-

(the term Ylg^u i}9,r%~1), and alltheother side-inputs areat non-controlling values (the term

Tlg€S(fi,P)-u(9 = A/i)))- V,ff,r*'"1 is equivalent to the existence of at least one viable path
to g oflength greater than or equal to r£j. A detailed explanation and proof ofcorrectness

is in [74].

The formulation of viability given above appears computationally formidable. Be

sides the recursive nature of the formula for the viability function at a gate, a power-set

computation (with sizeexponentialin the numberoffanin at the gate) is required. However,

Chapter 5 describes a new and efficient approach to solving this difficult problem. Further

discussion of the algorithms for timing analysis are deferred until then.

2.4 Disadvantages of redundancy

There are two well-known reasons (discussed briefly here) why redundancy is un

desirable during the synthesis of logic circuits. For high speed circuits, a significant but

little known problem is created by redundancy. This is illustrated in the next section.

The best known impact of redundancy in circuits is that it is difficult to detect.

Redundancy often hampers the efficiency of the test pattern generation process; some test

pattern generators either choke on redundant faults or abort too early on some testable

faults. A simplistic explanation is that the entire Boolean space corresponding to all pos

sible primary input values must be exhaustively enumerated, albeit implicitly, in proving a

fault redundant. However, with the advent of powerful logical implication mechanisms and
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algorithms [100, 64], redundancy identification is no longer considered particularly difficult

for combinational circuits. On the other hand, proving redundancy via deterministic test

generation in sequential circuits is still difficult [47].

Another well known disadvantage of redundancy is the impact on the area of

the circuit [16]. For every circuit with stuck-fault redundancy there exists an irredundant

smaller circuit. Ignoring the impacton delay, this redundancy can be removed in a straight

forward fashion by employing a deterministic test pattern generator, see [100] for example.

Setting a redundant connection to 0 or i only causes the disappearance of one or more

connections or gates. Experiments using test pattern generation techniques in optimization

of Boolean networks are summarized in [16].

Still another reason is that someindustries (e.g. IBM) use an internal cost method

which charges a project based, in part, on a testability measure. Thus, redundancies add

to the cost.

The reasons listed above for redundancy being undesirable in optimized circuits

appear outdated in state-of-the-art logic design. For example, current redundancy removal

algorithms can efficiently detect and remove redundant faults on most combinational cir

cuits. One such approach is reported in Appendix A. However, two important issues

remain:

• Redundancy may have been introduced to reduce the delay of the circuit; then a

straightforward redundancy removal may slow down the circuit. Even worse, if the

redundancy is left in the circuit (because of this), a manufacturing defect on the

redundant connection would be statically untestable. Thus, the circuit contains a

(statically) undetectable fault whichcould cause the circuit to fail by slowing it down.

• No irredundant circuit may exist with exactly the same delay and same area as the

redundant circuit. The issue here is whether redundancy is really necessary to speed

up the circuit.

Since performance is often the most important criterion oflogic optimization, these problems

must be addressed before dismissing redundancy in circuits as a solved problem. This point

is emphasized with an example of a well-known high-speed circuit with a severe reliability

problem. It strengthens the case for requiring irredundancy in optimized combinational

logic circuits.
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2.5 Redundancy in high-speed circuits

2.5.1 The carry-skip adder

Consider a 2-bit block of a carry-skip adder, shown in Figure 2.2. In terms of area

and performance, the carry-skip adder is between that of a ripple-carry adder and a carry-

lookahead adder. Apparently the carry-skip adder design was first proposed by Babbage in

the nineteenth century [66]. See [66, 50, 83] for other studies on this type of adder.

The carry-skip adder uses a conventional ripple-carry adder (the output of gate

11 is the ripple-carry output) with an extra and gate (gate 10), and a mux added to each

block. If all the propagate bits through a block are high (the outputs of gates 1 and 3) then

the carry-out of the block (c2), is equal to the carry-in to the block (cO). Otherwise, it is

equal to the output of the ripple-carry adder. The multiplexer thus allows the carry to skip

the ripple-carry chain when all the propagate bits are high. A carry-skip adder of n bits can

be constructed by cascading a set of individual carry-skip adder blocks, such as Figure 2.2,

such that the sum of the block sizes is n. In general, the delay and area of a carry-skip

adder depends on the size of the blocks and the number of bits in the adder. See [83] for a

discussion of sizing blocks in a carry-skip adder to minimize delay.

2.5.2 Redundancy problems

In almost all cases the straightforward removal of redundancy does not affect the

speed of a circuit. However, in the case of the carry-skip adder, in which an extra carry-

chain is added to improve the speed, removing the attendant redundancy in the design (the

select input of the MUX is redundant when stuck at 0) slows the circuit down.

The extra and gate and mux of the carry-skip adder have a profound effect on

its performance and testability. First consider the impact on the performance and refer to

Figure 2.2. Assume the primary input cO arrives at time t = 5 and all the other primary

inputs arrive at time t = 0. Assign a gate delay of 1 for the and and OR gates and gate

delays of 2 for the XOR and MUX. By accurate timing analysis (such as spice [3]) it can be

shown that the worst-case delay of the circuit is along the path from a0 to c2 through gates

1, 6, 7, 9,11 and the MUX in Figure 2.2. This is the critical path and its output is available

after 8 gate delays 6.

8We are concerned with the critical path through the carry-out of the circuit, even though there is a path
whose output is available after 9 gate delays for the final sum bit in the block. This is because in an adder
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Figure 2.2: 2-bit carry-skip adder
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The (statically or topologically) longest path in the circuit is the path from cO to

c2 through gates 6, 7, 9, 11 and the mux (available after 11 gate delays). However, it is

a false path in the carry-skip adder. In contrast, in a ripple-carry adder the topologically

longest path determines the delay of the circuit. Thus by adding the additional circuitry,

the delay of the circuit has been reduced. As regards testability, while a ripple-carry adder

is fully testable, the carry-skip adder has a single redundancy in the circuit. In Figure 2.2,

the single stuck- 0 fault on the output of gate 10 is not testable. This is due to the fact

that the carry-skip adder becomes a logically-equivalent ripple-carry adder in the presence

of the fault. Thus, in attempting to gain speed, the testability of the circuit has been

compromised.

There is a further problem with the carry-skip adder. Consider the case where the

output of gate 10 is stuck at 0, effectively reducing the circuit to a ripple-carry adder. The

critical path is now the longest path in the circuit and its output is available after 11 gate

delays. If the clock had been set based on the length of the original critical path (in the

absence of faults), then the circuit willbehave incorrectly when the single stuck fault exists.

This is a serious problem since the stuck-0 fault on the output of gate 10 is not testable

using standard static testing techniques.

The reason the stuck-0 fault causes the circuit to slow down is that a non-sensitizable

(false) pathbecomes sensitizable in the presence of the fault. In Figure 2.2 the longest path

is a false path; however, in the presence of the stuck-0 fault on the output of gate 10, it

becomes a true path. Thus, the output of the circuit is now correctly available only after

11 gate delays rather than 8 gate delays.

2.6 Related work

This section provides a brief review of related work that addresses the impact of

stuck-faults on timing behavior. In [77], the observation is made that the stuck- 0 fault on

the and gate, 10, in the example of Figure 2.2, though classified as redundant in the testing

sense, changes the temporal behavior of the circuit. Hence, in a functional sense it is an

irredundant fault. In [77], a stuck-fault that does not cause the outputs of the good and

faulty circuit to be different at all times t > r is defined as a r-redundant fault. Otherwise a

composed of blocks similar to Figure 2.2, the critical path for the entire adder will be the path through the
carry-out of each block.
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fault is termed r-irredundant, i.e. with respect to both timing and logical behavior, a fault is

T-irredundant if it changes the timing behavior in the good and faulty circuit, even though

it may be logically redundant. The stuck-fault in question may be a single or multiple

stuck-fault. The following definition is taken almost verbatim from [77].

Notation: Each multiple stuck-fault (or multi-fault) F on a network family M

denotes a family of faulty networks, denoted Afp. To each network n € Af there exists a

corresponding faulty network rjp € Afc. If a node in n is denoted /, its counterpart in ijp

is denoted /p.

Definition 2.6.1 A singleor multiple stuck-fault F on a network family M, inducing faulty

family A/p, is said to be r-redundant if, for each output f of n, fa ©/ = 0 at allt > r

in every network neAf. If a fault is not r-redundant, then it is r-irredundant. If a circuit

is r-irredundant, then there exists a vectorv, and a time t>r at which fa © / = 1 for at

least one output f of some network n £Af and we say that the fault is tested by v.

This new concept implies that to ensure correct functionality of the circuit, the

design must undergo a speed-test in addition to the conventional stuck-fault testing and

delay-fault testing. The speed-test for a r-irredundant fault in the circuit involves finding

a vector that distinguishes between the temporal behavior in the true and faulty circuits.

Definition 2.6.2 A vectorv is a validspeed-test for a multiple stuck-fault m ina circuit

nifv detects the T-irredundant fault corresponding to m.

Two principal observations canbe made regarding the proposal in [77]. First, test

generation for r-irredundant faults requires all redundant multiple faults to be considered.

This enumeration is a formidable problem. In fact, the sheer number of faults to be consid

ered is the primary reason multiple-fault test generation is a hard problem [19]. Second, the

derivation of a vector that tests each r-irredundant fault is an open problem, so a new test

generation methodology must be invented. Note that the test generation process may be

restricted to only redundant faults which cannot be detected by conventional static testing.

This is because a r-irredundant fault which is logically irredundant is detected by static

testing. Even so, the number of faults to be considered in this restricted case may be very

high, since multiple faults are being considered.

An additional complication is the actual testing process. Unlike static testing,

where the circuit under test may be clockedat any convenientrate, speed-testing requires the
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circuit be clocked at speed. [77] enumerates a multitude of possible problems in employing

such a technique, among them hazards and the accuracy of the tests themselves. Thus far,

no feasible technique is known that enables testing of r-irredundant faults.

2.7 Redundancy and delay questions

An immediate conclusion from the discussion in the previous section, but not made

in [77], is:

Theorem 2.7.1 Speed-testing for r-irredundant faults is not required in 100% multiple

stuck-fault testable circuits.

Proof By definition, a r-irredundant fault is a multiple stuck-fault that causes a circuit

to slow down. However, since every multiple fault is testable, conventional static testing

can be used to detect the presence of the multiple fault (corresponding to a r-irredundant

fault) in each manufactured circuit. Hence, no speed-test is required. •

Thus speed-testing can be avoided in fully multiple stuck-fault testable circuits.

Even if the transformation to a fully multiple-fault testable circuit is possible via exhaustive

fault enumeration and redundancy removal, there is a caveat. In order to meet performance

specifications, the delay of the 100% multiple-fault testable circuit must not be any greater

than the delay of the original circuit. This condition is difficult to realize by simple re

dundancy removal; for the example shown in Figure 2.2, a straightforward removal of the

stuck-0 redundant connection slows down the circuit.

In an irredundant circuit, the existence of each stuck-fault can be tested using

conventional static testing alone. Even though a stuck-fault may cause the timing behavior

of the circuit to change, it necessarily causes the logical behavior to change too. Thus, the

existence of the defect can be detected by resorting to static testing alone, thus obviating

the need for a speed-test.

Motivated by this observation an immediate question arises:

• Is redundancy necessary to reduce delay?

In other words, for every redundant circuit, does there exist an irredundant circuit that has

exactly the same delay. Note that the delay measure (computed delay) must be at least as

accurate as those used in other synthesis operations. For this reason, the computed delay

technique used in resolving this question is viability analysis, described in Section 2.3.1.
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To definitively answer this question there are two (obvious) cases:

1. Redundancy is necessary to reduce delay. In this case an example circuit is required

where no irredundant version can be guaranteed to have the same or less computed

delay.

2. Redundancy is not necessary to reduce the delay. One approach then would be to

provide a transformation of the given circuit that yields an irredundant circuit with

no greater computed delay.

The resolution of this question is the subject of Chapter 3.

Another approach is motivated by the fact that we are primarily interested in

performance optimized circuits in this context. Since such circuits may exhibit unreliable

behavior due to the presence of redundancy, rather than attempting to rectify the reliability

problem after performance optimization, another option would be to maintain reliability

(testability) during performance optimization. This question is posed as:

• What, if any, testability properties are maintained invariant during performance op

timization transformations?

This answer to this question has several parts and is considered in detail in Chapter 4. The

focus is on the resynthesis schemes described in [105], [78] and [11]. Most timing optimiza

tions can be considered variations of these. The two classes of fault models mentioned in

Section 2.2, namely stuck-faults and delay-faults, are considered, and the impact of perfor

mance optimization operations on the circuit testability, using each model, is considered.
Chapters 3 and 4 address the interaction between performance and testability,

when optimality is of concern. A significant practical component of the discussions assume

theexistence of algorithms for the analysis of thetiming and testability behavior ofcircuits.

However, efficient algorithms for both timing analysis and delay-fault test generation are

lacking. Both problems belong tothe class ofproblems that require functional path analysis.
Their formulations are very similar. Thus another open question is:

• Do there exist efficient and similar techniques to perform timing analysis and delay-

fault test generation?

In particular, can the techniques used inaccelerating one problem beused inimproving the
algorithms of the other. Chapter 5 further illustrates the interaction between performance
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and testability by providing auniform framework for solving both problems efficiently. The

techniques described are instrumental in obtaining more efficient algorithms and analysis

tools for the problems that are solved in Chapters 3 and 4.

An important component of the efficiency of the computations discussed in Chap

ter 5 is the posing of the problems as ones of Boolean satisfiability [46]:

Satisfiability

Instance: A set U of variables and a collection C of clauses over U.

Each clause is a sum term of some variables from U.

Question: Is there a satisfying truth assignment for C?

As a general problem solving technique, satisfiability is related to important cad problems

such as stuck-fault testing, path sensitization analysis, and circuit equivalence checking.

However, in place of adapting search strategies to each specific problem, which is the usual

method, one can translate the problem into a general satisfiability question and use a

generic algorithm. This allows general powerful search techniques and heuristics to be

easily applied to any of these problems. Two techniques have emerged recently which have

proven to be successful in solving the general satisfiability problems that arise in a class of

problems [12, 64]. Appendix A discusses the most recent approach. Although this is based

on the ideas proposed in [64], its superior overall quality and results, compared to those

reported in the literature [65, 23] warrant a discussion of the general heuristics employed.
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Chapter 3

Is Redundancy Necessary to

Reduce Delay?

Experience has shown that performance optimizations can, and do in practice,

introduce stuck-fault redundancies into designs. In Section 2.5, the negative impact of

redundancy on reliability in a high-performance circuit is demonstrated. Are these redun

dancies necessary to increase performance or are they only an unnecessary byproduct of

the particular performance optimizations? In this chapter a constructive resolution of this

question is given in the form of an algorithm that takes as input a combinational circuit

and returns an irredundant circuit that is as fast. The utility of this algorithm on the

carry-skip adder is illustrated by presenting a novel irredundant design of that adder. As

the algorithm may either increase or decrease circuit area, the remaining question if every

circuit has an irredundant circuit that is at least as fast and is of equal or lesser area is

left unresolved. However, some bounds on the area increase will be provided in terms of

the initial circuit function and structure. Even for those users for whom area is of equal

(or greater) importance than testability, it is worth applying the algorithm because, while

it may increase area, it may decrease it as well.

In Section 3.1 an irredundant implementation of the carry-skip adder that is faster

than the original redundant adder is illustrated. The algorithm is presented in detail in

Section 3.2. A proof that the algorithm is guaranteed not to increase delay under the timing

model is developed in Section 3.3. Section 3.4 is a description of the issues addressed in

efficiently implementing the algorithm. Since the algorithm requiresefficient (and accurate)

31
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Figure 3.1: Irredundant 2-bit carry-skip adder

timing analysis, the details of this portion of the implementation are presented in a later

section (c.f. Section 5.4). Results of applying the algorithm to benchmark examples are

discussed in Sections 3.5. Due to the enormous time required on some examples, a single-

pass approach is developed and proved in Section 3.6. Section 3.7 is a summary of the other

applications of the algorithm. Section 3.8 concludes the chapter.

3.1 Irredundant carry-skip adder

Consider the circuit shown in Figure 3.1, derived from the original carry-skip

circuit of Figure 2.2 by replacing the connection from the output of gate 7 to the input of

gate 9 (shown with a dotted line) with the primary input connection 60. The two circuits

have the same functional behavior and, as will be shown later, the new circuit is no slower

than the original. However, the new circuit is fully testable for all single stuck-faults and
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consequently does not require a speed-test to ensure correct temporal behavior. Note that in

this transformation there has been no area overhead incurred in obtaining the fully testable

version of the carry-skip circuit.

The results that will be developed in the remainder of this chapter rest on the

following sufficient condition that obviates the need for speed-testing.

Theorem 3.1.1 Speed-testing is not required in a circuit with a longest path that is sensi

tizable.

Proof Recall that speed-testing is only required in the presence of a r-irredundant fault

(c.f. Section 2.6). The occurrence of any fault cannot increase the delay of the circuit since

the worst case delay is already equal to the length of the longest path. Hence there are no

r-irredundant faults that increase the delay of the circuit. •

In the sequel it is shown that for every high performance circuit with redundancies,

there always exists an equivalent irredundant circuit that is at least as fast as the original.

An algorithm that realizes such an irredundant circuit is presented and proven correct.

Each final single-fault irredundant circuit thus derived always ha? a longest path which is

sensitizable. Consequently, by Theorem 3.1.1, no speed-test is required for the irredundant

circuit. In a later section, this result is extended to multiple stuck-fault testability as well.

3.2 Irredundant circuits without performance penalty

In this section an algorithm is described that derives an equivalent irredundant

circuit that is at least as fast as a given redundant circuit.

3.2.1 Algorithm for redundancy removal with no delay increase

Consider a circuit that has some redundancy. What can be said about the change

in delay of the circuit when a constant value (0 or i) is asserted on a redundant connection?

While an answer to this question cannot be provided for an arbitrary circuit, there is a

particular circuit structure for which the effect of the change in delay by a redundancy

removal can be predicted. Three such cases are considered now. In the discussion to follow,

the first edge of a path refers to the connection between a primary input and the first gate

along the path.
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Figure 3.2: Example: Fanout-free unsensitizable longest path

Longest path statically sensitizable - Simple case: If a given circuit has

a longest path that is statically sensitizable (hence sensitizable), then redundancy can be

removed without any increase in delay. This is obvious since setting any connection to a

constant value (0 or 1) cannot increase the length of any path in the circuit. Thus, the

delay before and after the redundancy removal is the length of the longest path. This is the

case considered in Theorem 3.1.1. The next two cases explain how this property is realized

on a functionally equivalent implementation of an arbitrary circuit.

Longest path not statically sensitizable - Fanout-free case: Assume that

the longest path P of a circuit is not statically sensitizable. Additionally, assume that

every gate along P has a fanout of exactly one. This implies that a stuck-0 fault and a

stuck-1 fault on the first edge of P are both redundant. Thus, if the first edge of P is set to

a constant value, the logicalbehavior of the circuit remains unchanged. More importantly,

by Theorem 3.3.2, the delay of the resulting circuit also does not increase. This case is

illustrated in Figure 3.2.

Longest path not statically sensitizable - General case: Now consider the

case where the longest path P is not statically sensitizable and some gates along P have

fanout greater than one. As before, the fault effects of either of the two faults on the first

edge do not propagate all the way along P. However, these faults may still be detected

through some other path, and thus may be irredundant. With the given circuit structure,

a constant value cannot be asserted on the first edge of P since this changes the logical
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functionality of the circuit. But a duplication of some gates can be performed to ensure

that all the gates along the longest path have a fanout of exactly one. This is achieved by

duplicating all the gates along P up to the last gate that has multiple fanout.

An example is shown in Figure 3.3. In the network shown at the top, path P is

not sensitizable. Thus, both the stuck-0 or stuck-1 faults on the first edge of P, which is the

connection from a to gate 1, cannot be tested through gate 6 to the output of P. However,

each fault may be tested along paths through gates 7 or 8, thus causing the first edge of P

to be irredundant. The network shown at the bottom is obtained by duplicating gates 1, 2,

and 3, which includes all the gates between the first edge and the last gate with multiple

fanout along P. As shown in the figure, allgates that are connected to gates alongP in the

original circuit, are now connected to the duplicate of the gate. In the example, gate 7 is

fed from gate 12, which is the duplicate of gate 1 from the original circuit. Similarly, gate

8 has the fanin from gate 3 in the original circuit replaced by a fanin from gate 32 after the

transformation.

This duplication retains the functionality of the circuit. As shown in Theo

rem 3.3.1, this duplication does not change the viability of any of the paths in the circuit

and hence the delayof the circuitremains unchanged. On this new circuit, the longest path

again cannot be responsible for determining the delay of the circuit. In fact, both viability

and static sensitization of paths remainunchanged by duplication. Hence, the first edge on

this new fanout-free path is not testable for either stuck-fault value. It can be set to either

constant value without changing the logical functionality of the circuit. It is also shown

that this does not increase the delay of the circuit (c.f. Theorems 3.3.1 and 3.3.2). This

procedure is then repeated on the resulting circuit.

In summary, the procedure obtains an irredundant implementation of a given

redundant circuit by an iterative loop of duplications and redundancy removals which are

proven not to increase the delay of the circuit.

The algorithm, which is called the KMS algorithm1, is presented in pseudo-code

in Figure 3.4. The circuit on which the algorithm is performed must be composed of only

simple gates. This avoids the problem of internal fanout within complex gates that has to

be considered while determining the paths in the circuit. In converting a complex gate to an

equivalent connection of simple gates (called a macro-expansion), the last gate is assigned a

1KMS is named after Keutzer, Malik, and Saldanha, who reported some of these ideas in [59]. Recent
work is reported in [92].



36

a

b

CHAPTER 3. IS REDUNDANCY NECESSARY TO REDUCE DELAY?

P'

Figure 3.3: Example: Duplication to avoid fanout on longest path
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delay equal to the delay of the complex gate. The other gates are assigned delays of zero2.

When a gate n is duplicated, the duplicate n' is assigned the same delay as n

and has the same fanin. The duplicate gate n' is said to correspond to the original gate

n. The paths that include n' are said to correspond to the original paths through n in the

original circuit before duplication. If none of the longest paths in the circuit is statically

sensitizable/viable, one of the longest paths, say P, is picked for redundancy removal. If

none of the gates in P has fanout greater than one, then the first edge of P is set to either

0 or 1. In the case of multiple fanout, the gate n in P with multiple fanout closest to the

output is determined. Let e be the fanout connection of n in P. All the gates between the

first gate along P and n, together with their fanin connections are duplicated.

Let n' be the duplicated gate corresponding to n. Remove edge e from the output

of n and reconnect it as the only fanout of n'. Now the longest path P', corresponding to P,

consists only of gates with single fanout. Since path P' is not statically sensitizable/viable,

setting the first edge of P' to either 0 or i and propagating this value as far as possible

results in a logically equivalent circuit.

If at least one of the longest paths in the circuit is statically sensitizable/viable

then the remaining redundancies are removed by using any redundancy removal scheme

such as [100]. The redundancies are removed one at a time, and the remaining circuit

redundancies must be recomputed after each removal.

Duplicating until the last node along P that has multiple fanout is only a sufficient

condition. Let x be a node along P such that x is the last node along P for which there is

a path P' through x such that the first edge of P is testable along P' and P' and P have

the same set of gates and connections from the primary input up to x. Duplication of gates

along P needs to be done only up to the gate x which may be less than duplicating all the

gates up to the last multiple fanout point. However, in order to determine z, the testability

of the first edge of P must be checked along all the paths that it lies on. This is a formidable

task and hence the duplication done here is up to the last multiple fanout point. Although

this may be more than necessary, it does not involve an expensive computation.

An implementation of the algorithm in Figure 3.4 may use either the condition

of static sensitization of the longest path or the condition of viability. Note that if a path

is not viable then it is not statically sensitizable, but the converse is not true [76]. Both

2This assumes a single delay for the gate. In the caseof different pin-to-pin delays for a gate, a different
assignment of delays must be made. Such an assignment is always possible, but is not considered here.
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tans (77) {

/* Circuit 77 has only simple gates. */

While (no longest path in 77 is statically sensitizable / viable) {

Choose a longest path P.

Find n, the gate in P closest to the output that has fanout > 1

If n exists {

Let e be the fanout edge of n that is in P.

Let r?n be the set of gates in P and their fanin connections

which lie between the primary input of P and e.

Duplicate nn to obtain n'n.

Let gate n' in n'n correspond to n in 77.

Change edge e to be the single fanout of n'.

Call the path in n' corresponding to P in 77, P'.

}

Else {

P' is the same as P.

}

Set first edge of P' to either constant 0 ox 1.

Propagate constant as far as possible, removing useless gates.

>

Remove remaining redundancies in any order.

}

Figure 3.4: KMS algorithm for redundancy removal with no increase in delay
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these conditions involve testing the satisfiability of Boolean expressions derived from the

circuit and hence their theoretical complexity is the same. In practice, as is shown later in

Chapter 5, the computation of the static sensitization condition is typically faster than the

viability condition. The delay analysis employed in the proofs uses viability analysis, but

the proofs hold even while using the static sensitization condition in the implementation

of the algorithm. In particular, the only penalty for this trade-off occurs if an unnecessary

duplication is performed because a path is not statically sensitizable, but is viable.

3.2.2 Algorithm on the carry-skip circuit

The working of the KMS algorithm is demonstrated on the 2-bit carry-skip circuit.

The algorithm in Figure 3.4 applies for multiple output circuits, but for ease of exposition

it is shown performing here only on a single output circuit. This circuit corresponds to the

sub-circuit that implements the carry bit, c2, of the 2-bit carry-skip adder in Figure 2.2.

The initial redundant circuit with only simple gates is shown in Figure 3.5. It has a single

redundancy and the output of the critical path is available after 8 gate delays through the

carry-out bit, c2. The longest path P in the circuit in Figure 3.5 is from the input cO

along the unique path marked with an X to the output c2. If P is statically sensitizable,

all the side-inputs to P must be at non-controlling values. This requires pQ and pi to be

at value 1 at the two and gates along P, but at least one of pO and pi must be 0 for the

MUX to sensitize P. Thus, P is not statically sensitizable. None of the edges in P have

fanout greater than 1, hence, no duplication is required. On setting the first edge of P to

0 the circuit shown in Figure 3.6 is obtained. The longest path in this circuit is statically

sensitizable and the remaining redundancies can be removed in any order. Thus, setting

one of the two redundant connections marked with an x in Figure 3.6 to 1 (both untestable

for stuck-1 faults) results in the irredundant circuit in Figure 3.7. It is mentioned that if

the algorithm is performed on the entire multiple output 2-bit adder circuit then a different

version of an irredundant circuit is obtained that has the same number of gates and is also

no slower than the original circuit.

3.3 Correctness of the algorithm

In this section, it is formally demonstrated that the procedure outlined in Sec

tion 3.2 is correct. First, it is shown that the duplication of gates, done so as to ensure that
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Figure 3.5: First intermediate 2-bit carry-skip circuit
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Figure 3.6: Second intermediate 2-bit carry-skip circuit
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Figure 3.7: Final 2-bit carry-skip circuit
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each gate along the longest path has a single fanout, does not increase the length of the

longest viable path. The impact of the duplication step on the fanout, and the resulting

impact on delays through the circuit, are not considered here. An explanation is provided

in Section 3.6.2 that limits the fanout increase on each gate to a small amount. A variety

of techniques are also described there that can easily handle this increase in fanin.

Theorem 3.3.1 Let e be one of the fanout edges of a gate n, withfanout > 1 in circuitn,

composed of simple gates. Make a duplicate n' ofn and move edge e ton'. Then for every

path P' in the new circuit n'f there is a unique corresponding path P in n, of equal length.

Moreover, delay(n,c) = delay(n',c) for all cubes c.

Proof The only paths changed in 77' are the ones going through the edge e, but these are

only changed by the fact that they go through n' instead of n. Since n' is a duplicate of n,

it has the same delay as n. Hence, two corresponding paths P in 77 and P' in 77' have equal

length. Also, the logic function computed (in terms of the primary inputs of the circuit) at

the output of each gate in 77' is the same as that for the corresponding gate in 77. Thus, the

same delay and logical functionality exists along the corresponding paths (and side-paths)

in 77 and rf. Viability analysis uses only path lengths and function values computed along

paths and these remain unchanged by the duplication process. Hence the delay of 77 and 77'

remain equal. •

The theorem above can be applied repeatedly for each gate that is duplicated. It

assures that each duplication step does not slow down the circuit.

Next, the effect of setting the first edge of the longest path in a network to a

constant value is examined. Assume that each gate along the longest path has single fanout.

For the purpose of the proofs below, if a multiple-input gate becomes a single-input gate by

deletion of some inputs, then this gate is not replaced by a wire. Instead, the delay on the

gate and its input edge is reduced to zero to reflect the fact that it is equivalent to a wire.

Theorem 3.3.2 Let P be a longest path in network rj such that all gates along P have

fanout 1. Let n' be the network obtained after setting the first edge of P to a constant

value (either 0 or 1) and propagating this value as far as possible. Let v be the last value

propagated, and let g be the gate where the propagation stopped. Then:

1. g has more than one input and v is a non-controlling value for g; and

2. if it is an IO-path in rj', ic is an IO-path in 77; and
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3. if it is viable under primary input cube c in rf, it is viable under c in n. (Thus,

delay(n,c) > delay(n',c).)

Proof

1. g has more than one input or else the constant value propagates beyond g. Also, v is

the non-controlling value for g or else a constant value propagates beyond g.

2. 77' is obtained from 77 by deleting the sub-network 77" consisting of the path Q from

the first edge e/ of P up to g (and all the gates along Q). If 7r is an IO-path in 77' then

it is at least a path in 77 since 77' C 77. it is an IO-path in 77 because it is an IO-path in

n', so its first element is an input terminal. Its last element is either g or some other

element in 77. Since the outputs in 77 and 77' are identical, it is therefore an IO-path.

3. delay(n'ic) is determined by the length of the longest viable path tt in 77' under c. If

?r is also viable under c in 77, then since it is an IO-path in 77, delay(rj,c) must be at

least the length of this path. We just need to show that it viable under c in 77' implies

it is viable under c in 77.

Let e\ denote the input along Q to gate g (e/ is the output of the sub-network 77".). If

e\ is neither a side-input nor in the transitive fanin of a side-input of it (this happens

only in networks with multiple primary outputs), then the gates and edges along tt

and its side-paths are the same in both 77 and 77'. Thus, if tt is viable under c in 77'

then it is viable under c in 77. If e\ is a side-input or a transitive fanin of a side-input

to 7r then the logical functionality of the side inputs of tt are not the same in 77 and

77'. This case is proved by induction on the depth of 77'.

Induction Basis: If depth = 1 then rf contains a single gate, g. Figure 3.8

illustrates this case, tt consists of an input edge to and the output edge from this

gate. 77 includes 77" connected to g by edge e\. e\ is a side-input to tt. For input cube

c there are two possibilities:

Case 1: Q is viable under c.

Since e/ is the first edge of a longest path in 77, e\ is a late side-input for it in

77. Therefore, it is smoothed out in the viability analysis of it in 77 (c.f. Defini

tion 2.3.13). If 7r was viable under c in 77', it is viable under c in 77 as no other side
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Figure 3.8: Base case for proof of KMS algorithm

inputs besides e/ have changed, and e\ is smoothed out in the viability analysis

of tt in 77.

Case 2: Q is not viable under c.

Recall that if a path is not viable under a cube then it cannot be statically

sensitized by that cube. Therefore, as far as this cube is concerned, the output

of Q, e/, is independent of the value of e/ and cannot change if e/ is changed.

Thus set e/ to be the same value that was used to obtain 77' from 77. From (1)

above, this results in a non-controlling value at input e\ of g. Thus, this cannot

change the viability of tt. If tt is viable under c in 77' it is viable under c in 77.

Induction Hypothesis: Assume the theorem statement is true for all networks

77' with depth < k.

Induction Step: Let 77' be a network of depth k.

Case 1: e/ is a fanin of a gate along it in 77.

Figure 3.9 illustrates this case. The proof for this case is similar to that for the

basis case explained above. Either:
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Figure 3.9: Induction case 1 for proof of KMS algorithm
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• Q is viable under c in which case e/ is smoothedout in the viability analysis

for 7r since it is a late side-input to 7r

or

• Q is not sensitized by c, in which case e/ has the non-controlling value for

its fanout gate, and thus cannot change the viability of it.

Case 2: ej does not fan out to a gate along it in 77. Figure 3.10 illustrates this case.

There is some side-input x, to a gate h along 7r, such that e\ is in the transitive

fanin of x. Let 77* be the network rooted at x in 77 and let n'x be the network

rooted at x in 77'. Let Px be the part of path P from e/ up to and including the

output edge of x in 77. For input cube c, one of the following must happen:

• Px is viable under c. Since, P is a longest path in 77, Px is longer than any

path that ends in h. Hence, x is smoothed out in the viability analysis of r.

• Px is not viable under c. In this case Px is not sensitized by c. Therefore,

as far as this input cube is concerned, the first edge in Px (i.e. c/) may be

set to any value without changing the output of 77*. (Recall that each gate

in Px has fanout of exactly one.) In particular, set the value of e/ to the

value it was set in order to obtain 77'. This does not change the output of 77*.

This implies that 77x(c) = n'x(c). Alsonote that since 77' has depth Jfe, rfx has

depth < k. From the induction hypothesis delay(nx,c) > delay(n'xic). tt x

was smoothed out in the viability analysis of it in 77', then in the viability

analysis of it in 77, it will be smoothed out too, since rjx is at least as slow as

tj'x in responding to c. If x was not smoothed out in the viability analysis of

tt in rf, then, since ?7x(c) = nx(c), the static value of x is the same for c in 77

and 77'. Thus, the viability of it is unchanged. •

The two theorems presented in this section guarantee that each iteration of the

while loop in Figure 3.4 maintains the invariant that the delay of the initial circuit is not

increased. This is sufficient to guarantee that at the termination of the algorithm the final

circuit is no slower than the initial circuit.
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Figure 3.10: Induction case 2 for proofof KMS algorithm
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3.4 Algorithm implementation

Four practical issues that must be addressed before obtaining an efficient imple

mentation of the KMS algorithm of Section 3.2 are now discussed.

3.4.1 Timing analysis

By far the most important aspect of the KMS algorithm with regard to its efficiency

is timing analysis. The condition checked in each loop of the algorithm is the existence of

a sensitizable (using viability analysis or static sensitization) longest path. There are two

issues of concern. First, the sensitization condition must be computed using an efficient

algorithm. Second, since there may exist several paths of longest length, it would seem that

the sensitization condition must be determined on each path individually to determine if any

longest path is true. However, this is not the case and the existence of a sensitizable longest

path can be checked in a single step. The formulation that solves both these problems is

detailed in Chapter 5.

3.4.2 Path duplication

If timing analysis proves the absence of any sensitizable longest path, a longest

path must be selected for duplication and subsequent redundancy removal on its first edge.

Since the area increase is to be minimized, a candidate path that requires the minimum

amount of duplication is selected.

The pseudo-code in Figure 3.11 shows how this is done. The algorithm has the

effect of scanning each path to determine the last gate along the path that has fanout

greater than one. A longest path is selected such that this gate is closest to the primary

inputs.

3.4.3 Redundancy removal

Once a fanout-free unsensitizable longest path is obtained, its first edge may be

set to either 0 or 1. It is set to the controlling value of the gate it feeds, since this deletes

the gate from the circuit. Since an unsensitizable (using the viability or static sensitization

condition) fanout-free path implies that the first edge is redundant, the removal can be done

without resorting to test pattern generation. Thus, only one application of conventional
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choosejnin_duplication(77) {

/* Circuit 77 has no sensitizable longest path */

Perform a delay trace on 77.

nodeJist = list of nodes in 77 in topological order.

For each node n in nodeJist {

If n is on some critical path {

If fanout(n) > 1 {

/* all critical paths through n must be

duplicated at least up to n */

dupln] = level(n).

}

Else {

/* use duplication information from its fanin */

min-dup.fanin = fanin of n with minimum dup.

duplnl ° duplrninjdupjanin].

}

}

}
min.dup.po = primary output with minimum dup.

Return longest path to minJiupjpo that corresponds to minimum dup.

}

Figure 3.11: Algorithm for selecting a longest path for duplication
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redundancy removal, such as [100], is required after the longest path becomes statically

sensitizable.

3.4.4 Area recovery

Consider the circuit shown in Figure 3.12, where the longest paths are shown in

bold. Assume that both paths are unsensitizable. The KMS algorithm performs redundancy

removalonly on a fanout-free longest path (c.f. Section3.2). On applying the KMS algorithm

to the initial circuit (1) in the figure, the circuit structure evolves to circuit (2), so that

a longest (and non-sensitizable) path is fanout-free. Following redundancy removal on the

two fanout-free longest paths of circuit (2), assume circuit (3) is irredundant and has a

longest sensitizable path. Some area may be reclaimed by merging identical gates as shown

in circuit structure (4) of the figure. In fact, for this example even though duplication

increases the numberofgates, this increase in area is offset by the merging step. In general,

no tight bound is known for the increase in area. Nonetheless, the merging step can always

be attempted in a practical implementation to reclaim area. However, it must be ensured

that the delay of the circuit does not increase by this step.

Theorem 3.4.1 Let n\ and n2 be gates with identical fanin in a network n. Merge n\ and

n2 to obtain gate n in a new circuit rf. Then for every path P' in rf, there is a unique

corresponding pathP in n, of equal length. Moreover, delay(n,c) = delay(n',c) for all cubes

c.

Proof Similar to Theorem 3.3.1. •

While Theorem 3.4.1 proves that both the static sensitization or viability remain

unchanged by merging, testability may be changed on merging of gates. Even though

merging may introduce redundancy (this phenomenon is illustrated and explained in Sec

tion 4.4.4), the new redundancy can be removed without recourse to the KMS algorithm
since redundancy removal on a circuit with the longest path sensitizable cannot slowdown

the circuit (c.f. Theorem 3.1.1).

The effectiveness of the area recovery step will be illustrated on a number of

examples in Section 3.5. The effects due to the small fanout increase are ignored in the

analysis, and are addressed in Section 3.6.2.
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(3)

c d f h j

(4)

Figure 3.12: Example: Merging of gates following KMS algorithm
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3.5 Results using the KMS algorithm

The algorithm described in Section 3.2 has been implemented in the SIS logic

synthesis system at U.C. Berkeley [18, 102]. The results were obtained by running the

algorithm on two classes of circuits: several carry-skip adders with varying block sizes,

and some optimized mcnc and iscas benchmark examples [69]. Circuit size is measured by

counting the number of simple gates. Though a unit gate delay model is used here, any delay

model, including a library gate delay model, may be used. The first column in each table

is the name of the circuit; the second indicates the number of redundancies in the initial

circuit; the third gives the longest path (or topological) delay and the fourth the computed

delay of the initial circuit. The computed delay is measured using the techniques for viability

analysis described in Chapter 5. The fifth column lists the computed delay of an irredundant

circuit obtained by standard redundancy removalwithout consideration of the circuit delay.

The sixth column gives the computed delay of the irredundant circuit obtained using the

KMS algorithm. In this case, the computed delay is alwaysequal to the longest topological

delay. The last three columns compare the size of the initial redundant circuit against the

irredundant circuit obtained by applying redundancy removaland the KMS algorithm. The

area estimate in the last column gives the final area of the irredundant circuit following the

area recovery step (c.f. Section 3.4.4) on completion of the KMS algorithm.

3.5.1 Adders

First, the effect of the algorithm on carry-skip adders of various block sizes is

described. Recall from Section 3.1 that a carry-skip adder of n bits can be constructed by

cascading a set of individual carry-skip adder blocks such that the sum of the block sizes

is n. Here blocks of equal size only are considered. In the csa examples shown in Table

3.1 the first digit refers to the number of bits in the adder and the second digit indicates

the size of each block. For example, csa 8.4 indicates a 8-bit carry-skip adder composed of

two 4-bit blocks. Each block of the adder initially contains two redundancies: one on the

and gate that feeds the mux and one within the mux itself. Two implementations each of

the ripple-carry and carry-lookahead adders are also reported in the table to compare the

relative area, delay and testability of each of the adder designs. As mentioned earlier, the

carry-skip adder lies between the ripple-carry and carry-lookahed adder in terms of both

area and performance. However, using even fixed block sizes in the carry-skip adder along
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Name #Red. Initial delay Final delay # Gates

Long. True RR KMS Init. RR KMS

ripple.16 0 31.0 31.0 31.0 31.0 139 139 139

lookahead.16 0 16.0 16.0 16.0 16.0 172 172 172

ripple.32 0 63.0 63.0 63.0 63.0 283 283 283

lookahead.32 0 28.0 28.0 28.0 28.0 361 361 361

csa 2.2 2 8.0 8.0 6.0 6.0 22 18 18

csa 2.2f 2 11.0 9.0 9.0 6.0 22 18 21

csa 4.2 4 14.0 12.0 10.0 10.0 44 36 43

csa 4.4 2 12.0 12.0 10.0 10.0 40 36 36

csa 8.4 4 22.0 20.0 18.0 18.0 80 72 87

csa 16.8 4 38.0 36.0 34.0 36.0 152 144 175

csa 8.2 8 26.0 16.0 18.0 14.0 88 72 91

csa 16.2 16 50.0 24.0 34.0 * 176 144 *

csa 16.4 8 42.0 24.0 34.0 22.0 160 144 179

csa 32.4 16 82.0 32.0 66.0 * 320 288 *

csa 32.8 8 74.0 40.0 66.0 38.0 304 288 355

csa 64.8 16 146.0 48.0 130.0 * 608 576 *

RR: redundancy removal

kms : KMS algorithm

All primary input arrival time set at 0.0 delay units

* : Did not finish in 10 hours

f: Carry-input arrival time set at 5.0 delay units

Final circuit verified against initial circuit

Table 3.1: KMS algorithm versus redundancy removal on adders
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with the crude delay model of assigning each gate a unit delay, the carry-skip adder appears

comparable to the carry-lookahead adder in performance with considerably lower area. The

comparison using variable block sizes and more realistic delay models is not done here and

is reported in [66, 50, 83].

Consider the carry-skip adders composed of 2-bit blocks in the table. For the first

example, csa.2.2, all primary inputs arrive at the same time while for the circuit csa.2.2],

the arrival time of the carry-input is set to 5.0 delay units after the other primary inputs.

In both cases, naive redundancy removal does not slow down the circuit. This may appear

contradictory to the discussion in Section 2.5, where it was stated that redundancy removal

slows down the 2-bit carry-skip adders. However,the earlier discussion considered the carry

circuit independent from the circuit for the sum outputs. All the examples considered here

are multiple output circuits including the carry and all the sum bits. Thus, in the case of the

2-bit adder csa2.2, where all inputs arrive simultaneously, there exists at least one longest

path through the sum outputs. While the longest path through the carry-output is false, a

longest path through the sum outputs is true. Hence the delay is the length of the longest

path. Both redundancy removal and KMS reduce the delay of the circuit to 6.0 units from

8.0 units. In cos 2.2\, the unique longest path is from the carry-input to the carry-output.

One would expect redundancy removal to result in a slow-down of the circuit. This does

not, even though the longest false path becomes true on redundancy removal. The reason is

that the length of the longest path after redundancy removal happens to be reduced to 9.0

units instead of the original length of 11.0 units, using the simple delay model. The same

phenomenon is observed in csa.4.2.

Both csa.8.2 and csa.16.2 slow down substantially on redundancy removal. The

KMS algorithm yields faster circuits in both cases with some increase in the area. For

csa.8.2, the irredundant circuit after KMS but no merging, has 126 gates compared to the

original88. However, as explained in Section 3.4 many of the gates are identical and can be

merged. This merging does not change the delay of the circuit (c.f. Theorem 3.4.1). The

final irredundant circuit after applying this step is 91 gates, with a total increase of only 3

gates from the original circuit. Notice that the delay even improves from 16.0 to 14.0 units.

The algorithm does not terminate within 10 hours on the examples csa 16.2, csa

32.4 and csa 64.8. This is because the algorithm removes one false path at a time. All three

examples have a huge number of false paths; for example, csa 16.2 has 44,848 false paths

equal or longer than the true delay of the circuit. This requires an inordinate number of
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iterationsof the KMS algorithm. Thisproblem isovercome in Section 3.6where a single-pass

approach is developed that avoids explicit enumeration of each false path.

3.5.2 Optimized circuits

The examples 5xpl, rot and des in Table 3.2 are circuits from the mcnc benchmark

set that havebeen optimized for area using an olderversion of sis [18]. Eachof these initial

optimized circuit has two properties: first, there is at least one redundant single stuck-fault;

second, the longest path delay is not the computed delay of the circuit.

The second set of examples, clip and duke2, are representative of examples with

redundancy but with the computed delay equal to the longest path delay. Thus, for these

circuits, at least one longest path is already sensitizable. Here the algorithm removes the

redundancy in any order since the delay of the circuit cannot increase. Thus RR and kms axe

identical.

The third set of examples, f51m, misex2, rd7S, sao2 and z4ml are circuits that are

optimized for delay using the timing optimization commands in sis on circuits that had

been initially optimized for area [105]. Each is irredundant before delay optimization, but

each resulting timing optimized circuit either has at least one redundant single stuck-fault,

or its longest path delay is not the computed delay (e.g. f51m).

The final examples, misexl, bwand z4ml are irredundant but the computed delay

is less than the topologically longest delay. Hence the KMS algorithm need not be used.

However, despite being fully testable, tests for the faults on the first edge of each longest

path are tested by propagating the fault effect along paths different from the longest paths.

Thus, on applying the KMS algorithm, the resulting topologically longest path is reduced

at little cost in area (e.g. misexl and bw). It is interesting to note that even though

the algorithm need not be applied to these irredundant circuits, it may yield an even faster

circuit (e.g. bw) than that supplied by the sis timing optimization procedure [105], although

at a further area penalty. Additionally, there are no long false paths in the resulting circuits.

The algorithm does not complete on rot and des. It also fails to complete on any

of the iscas circuits that have redundant faults and false longest paths. The reason for this

is the same as for the large adder examples; there are an enormous number of false long

paths. These examples motivate the need for a single pass KMS procedure.
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Name #Red. Initial delay Final delay # Gates
Long. True RR KMS Init. RR KMS

5xpl

rot

des

1

37

17

11.0

19.0

15.0

9.0

17.0

13.0

9.0

19.0

13.0

9.0

*

58

437

2007

58

424

2000

57
*

*

clip
duke2

4

2

8.0

9.0

8.0

9.0

7.0

9.0

7.0

9.0

64

190

61

190

61

190

f51m

misex2

rd73

sao2

z4ml

39

6

10

9

3

18.0

7.0

11.0

12.0

10.0

17.0

7.0

11.0

12.0

10.0

16.0

7.0

11.0

12.0

10.0

16.0

7.0

11.0

12.0

10.0

173

94

94

126

47

139

90

83

119

42

139

90

83

119

42

misexl

bw

z4ml

0

0

0

9.0

20.0

7.0

7.0

14.0

7.0

7.0

14.0

7.0

7.0

10.0

7.0

28

85

30

28

85

30

31

111

30

RR: redundancy removal

KMS : KMS algorithm

All primary input arrival time set at 0.0 delay units

* : Did not finish in 10 hours

Final circuit verified against initial circuit

Table 3.2: KMS algorithm versus redundancy removal on mcnc circuits

57
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3.6 A single-pass algorithm

Due to the huge number of false long paths in many circuits, it is imperative that

any efficient algorithm must not explicitly enumerate each false path while performing the

KMS transformation. This section develops such an algorithm and proves its correctness.

Definition 3.6.1 The set of all the paths beginning at connection c and terminating at a

primary output is called the path-set of c, and is denoted VSC.

Note that the paths in the path-set of a connection are IO-paths only if the connection is

from a primary input.

Consider a connection c from a primary input in a circuit n. Additionally, assume

the computed delay of n is < L and let every path in VSC be of length > L. Note that every

path in VSC is an IO-path. On completion of the KMS algorithm of Figure 3.4, all the paths

in the resulting circuit, t?;, are of length < L. The KMS algorithm removes connections

between primary inputs and some gates, i.e. only the first edge of any path is removed.

Thus, c cannot exist in 77', since every IO-path through c is of length > L. This notion is

captured formally by the next definition and theorems.

Definition 3.6.2 A X-path-disjoint circuit is one where the paths in VSC, for any pri

mary input connection c, are either all of length > X or all of length < L.

In other words, the path-set of the first edge of any path in the circuit either contains only

paths of length > X or only paths of length < X.

Theorem 3.6.1 Let n be a circuitwhose longest viable path is of length < L. Let C = {c}

be the set of allprimary input connections such that each path in VSc is of length > X (and

hence non-viable). Then any multiple stuck-fault composed of any combination of single

stuck-0 or stuck-! faults on each c 6 C is redundant.

Proof Assume that some multiple stuck-fault Fc on C is not redundant. Let a vector v

be a test for the fault. Consider the set of IO-paths Ppc that propagate the fault effect to

a primary output under vector v. The length of each Q 6 Pfc is > X by assumption. Pick

a path Q= {/o,/i>—>/*} € Pfc witih the property that for each /, € Q, /,_i under v is
the earliest arriving input of /,- that propagates the fault effect. Such a path Q exists since

the fault effect is propagated under v along some path in Pfc • Consider each gate /; along
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Q in circuit rj when vector v is applied. All the side-inputs to /,- that do not propagate

the fault effect are at non-controlling values. The remaining side-inputs each propagate the

fault effect but each of them is available only after the time input /,_i arrives at /,-. Hence

these side-input are smoothed out when considering the viability of the sub-path Q from /o

up to /,-. Hence the sub-path of Q up to /, is viable. Since this is true at /*, Q is viable.

This contradicts that no path through c is viable. •

Theorem 3.6.1 proves that the logical behavior of a circuit that meets the condi

tions of the theorem remains unchanged by a multi-fault removal. The next theorem proves

that the delay, measured using viability analysis, remains unchanged under the redundancy

removal.

Theorem 3.6.2 Let n be a circuit whose longest viable path is of length < L. LetC = {c}

be the set of all connections from a primary input such that each path in VSC is of length

> X (and hence non-viable). Letrf be the circuit resulting after asserting a multiple stuck-

fault composed of any combination of the single stuck-0 or stuck-1 faults on each c € C.

For any viable path ir' in rf, the corresponding path n is viable in n.

Proof Similar to the proof of Theorem 3.3.2. The difference is that each gate may

have several late-arriving side-inputs that are set to constant non-controlling values by

the redundancy removal. However, these side-inputs always get smoothed out and do not

change the viability conditions of any path ir' in rf from the viability of the corresponding

path 7r in 77. •

With Theorems 3.6.1 and 3.6.2 it is apparent that a multi-fault redundancy re

movalof the type specified can be removedwithout increasing the computed delay or chang

ing the logical behavior of the circuit. Moreover, no duplication is performed. Of course,

not all circuits may have such connections. A procedure is now described that transforms

every circuit to a functionally equivalent X-path-disjoint circuit. In this case, all paths of

length > X will be removed by the application of the above theorems. The only operation

used is the duplication of gates and the transfer of connections from a gate to its duplicate.

Definition 3.6.3 The distinct paths lengths fromprimary inputs to a gate f is denoted by

atimes(f). The distinctpath lengths from each gate f to the primary outputs is denoted

by etimes(f).

If / is a primary input, atimes(f) is the single arrival time specified for /. If / is a primary

output, etimes(f) is 0. However, the algorithm could be generalized to take account of
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required times at the output; just take the maximum required time, Pmax, and think of

a buffer on each output / with delay Rmax - Rf. The algorithm to derive an X-path-

disjoint network for a given network nis described in Figures 3.13 through 3.16. The main
procedure, shownin Figure 3.13, consists of three phases.

The first phase consists of computing the distinct paths lengths from primary

inputs to each gate /, and the distinct path lengths from each gate / to the primary

outputs. This is done by simply performing a topological traversal from the inputs to the

outputs for computing atimes, and a reverse topological traversal for computing etimes

(Figure 3.14).

The second phase consists of gate duplication and transfer of connections from a

gate / to one or more duplicates of /, and is shown in Figure 3.15. The essential operation

performed on a gate with multiple fanout is the transfer of a set of fanout connections of the

gate to a duplicate gate. The gates are traversed in reverse topological order from primary

outputs to primary inputs. Let / be a gate that is to be processed by the algorithm. Let P/

be any path from a primary input up to /. A duplication is only performed if there are at

least two paths, Qlf and Qlf from / to the primary outputs suchthat3 |P/|+|<?1/| < X and

l-P/l + IQ2/| > X. Following the duplication one or more fanout connections are transferred

from / to its duplicate fduv, according to the following rule. Let Q / represent any path

from / to the primary outputs after some fanout connections are transferred to fdup- Then

l-P/l + \Qf\ ^ -^ *°r an3r fy an<l Qf- Lemma 3.6.1 below ensures that this condition can

always be satisfied. It is important to note that etimes(f) is updated whenever a fanout

connection is moved to fdup- Similarly, etimes(fdup) is also updated to reflect the paths

through the fanout connections transferred from /. Duplication is not done on any node

with only one path to any output. Hence primary outputs are not duplicated.

This transformation is repeated on fdup (the assignment g = g' in Figure 3.15) until

no further duplication and transfer of fanout connections is required. It is now shown that

the resulting network after all the gates are processed by the algorithm is a X-path-disjoint

network.

Definition 3.6.4 The level of a node is the maximum number of nodes along any path

from the node to the primary outputs. The level of a primary output node with no fanout

isO .

'Recall that |P| denotes the length of path P.



3.6. A SINGLE-PASS ALGORITHM 61

/* Derive an irredundant network no slower than 77.

77 has no sensitizable paths of length > X. */

single_passJnus(7?, X) {

/* Circuit 77 has only simple gates.

atimes(f) are the different path lengths from primary inputs to /.

etimes(f) are the different path lengths from / to primary outputs. */

/* Compute atimes(f) and etimes(f) for each node /. */

kms-setup.times(77, atimes, etimes ) .

/* Duplicate gates */

nodeJist = list of gates in n in reverse topological order.

Foreach node / in nodeJist {

kms_duplicate_gate(/, 77, X, atimes, etimes).

}

/* Set constants on first edge of paths of length >L. */

kms_set.constant(77, X, atimes, etimes).

Propagate constants as far as possible.

Remove remaining redundancy in any order.

}

Figure 3.13: Single-pass algorithm for redundancy removal with no increase in delay
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kms_setup_times(77, atimes, etimes) {

Perform a delay trace on the network.

Foreach node / of 77 {

atimes(f) = {}.

etimes(f) = {}.

}
/* For each node /, compute atimes(f).

Af is the arrival time at /. */

nodeJist = list of gates in 77 in topological order.

Foreach node / in nodeJist {

If / is a primary input {

atimes(f) = Af.

}

Else Foreach fanin g of / {

atimes(f) = {u + d(f,g)\u e atimes(g)}.

}

}
/* For each node /, compute etimes(f) */

nodeJist = list of gates in 77 in reverse topological order.

Foreach node / in nodeJist {

If / is a primary output {

etimes(f) = 0.

}
Else Foreach fanout g of / {

etimes(f)= {u+ d(f,g)\u e etimes(g)}.

}

}

}

Figure 3.14: Path length calculations in the single-pass algorithm
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kms_duplicate_gate(/, 77, L, atimes, etimes) {

9 = f.

Foreach time t € atimes(f) in ascending order {

If (t + minietimes(g)) < X && t + m9x(etimes(g)) > X) {

/* some fanout of gate must be split */

g' = duplicate-gate (g).

atimes(g') = atimes(g).

etimes(g') = etimes(g) —{te\te € etimes(g),t + te > X}.

etimes(g) = etimes(g) - {te\te € etimes(g),t + te < X}.

Foreach fanout h of g {

If (t + min(etimes(h)) + d(g,h) < X) {

Replace connection from g to h by g' to h.

}

}
/* repeat on duplicate gate of g */

9 = 9'-

Figure 3.15: Gate dupUcation in the single-pass algorithm



64 CHAPTER 3. IS REDUNDANCY NECESSARY TO REDUCE DELAY?

kms_set_constant(?7, X, atimes, etimes) {

/* 77 is a X-path-disjoint network */

Foreach primary input / of 77 {
/♦ atimesii) has exactly one entry */

t = atimes(f).

Foreach fanout g of / {

If (t + d(f,g) + min(etimes(g)) > L) {
Replace g by constant 0 ot 1.

}

)

}

}

Figure 3.16: Setting constants on false paths in the single-pass algorithm
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Lemma 3.6.1 Consider gate f, in network n, that is processed by the algorithm of Fig

ure 3.15. Assume that the lists atimes(/) and etimes(/) are computed using the procedure

of Figure 3.14. Let f refer to gate f or any of its duplicates4. Then the following in

variant is true for each f: for each fatime G atimes(/'),5 fatime + etimes(/') < X, or

fatime + etimes(f')>L.

Proof Note that the gates of network 77 are processed in reverse topological order. The

proof is by induction on the level of a node /. Also note that the invariant holds trivially

if etimes(f) has only one element.

Induction Basis: If level = 0, then / is a primary output with no fanout. Thus,

etimes(f) = {0 }. Let P/ be any path from a primary input to /. Since |P/| + etimes(f)

is either < X or > X, the invariant holds.

Induction Hypothesis: Assume the invariant is true for all gates of level < k.

Induction Step: Let / be a gate of level k.

min(etimes(f)) and max(e*imes(/)) represent the minimum and maximum times,

respectively, in the list etimes(f).

Case 1: / has single fanout.

Let h be the single fanout of /. By definition, h has level < k. By the induction

hypothesis, either hatime + etimes(h) < X, or, hatime + etimes(h) > X, for each

hatime € atimes(h). But, atimes(h) D atimes(f) + d(f,h). Rewriting the invariant

for h, fatime + d(f,h) + etimes(h) < X, or, fatime + d(f,h) + etimes(h) > X. But,

etimes(f) = etimes(h) + d(f,h), since / has single fanout. On further rewriting of

the invariant for h, fatime + etimes(f) < X, or, fatime + etimes(f) > X. Therefore, the

invariant holds for / also.

Case 2: / has multiple fanout, t + iaax(etimes(f)) < X,V* G atimes(f).

In this case, each path through gate / is of length < X and the invariant holds.

Case 3: / has multiple fanout, t + min(etimes(f)) > X,Vt € atimes(f).

In this case, each path through gate / is of length > X and the invariant holds.

4There is no loss in generality in referring to the gates by a single representative f, since, for each path
from the primary inputs to /, there exists a corresponding path to some duplicate gate of /.

&The notation x + S < L, for * a scalar and S a set, means that x + «,• < L for all «,• 6 5. x + S > L has
an analogous meaning.
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Case 4: / has multiple fanout, * + min(etimes(f)) < X and t + waji(etimes(f)) > X for

some t € atimes(f).

This is the case where a duplication and transfer of fanout connections is performed.

Let tmin represent the smallest time t € atimes(f) for which this condition holds.

Let fdup be a duplicate of /. Each fanout ft of / satisfies either tm,„ + d(f, h) +

min(etimes(h)) < X ortmtn +d(/,/i)+min(e^mes(/i)) > X. If the first condition holds

the connection from / to h is replaced by the connection from fdup to h. Nothing is

done if the second condition is true.

Consider the gate / after all its original fanout connections are processed. For each

fanout connection h retained on /, imin + d(f,h) + min(etimes(h)) > X.

For any tf Gatimes(f),tf > <rom, obviously, */ +d(f,h) + etimes(h) > X. Rewriting,

tf + etimes(f) > X.

For any tf e atimes(f),tf < tmj„, */+min(e*tmes(/)) < X and t + m*x(etimes(f)) <
X. This is true due to the choice of tmin assumed above. Thus, tf + etimes(f) < X.

Thus, / satisfies the invariance condition.

The algorithm repeats on fdup which ensures that the invariant eventually holds on

each duplicate of / that is created. •

Since the invariant stated in Lemma 3.6.1 holds for each primary input, the final network

is a X-path-disjoint network. Thus on completion of the second phase, the path-set of each

first edge of any path of length > X contains only paths of length > X. Hence, all such

edges are set to constant 0or 1 in the final phase of the single-pass algorithm (Figure 3.16).

Figure 3.17 illustrates the working of the algorithm on an example network. Each

gate hasunit delay andall primary inputs arrive at t = 0 . Assume that the initial network

(top of the figure) has a longest viable pathof length 3. Hence an X-path-disjoint network

for X = 4 is required. Following the first phase of the algorithm, the variables atimes and

etimes axe as follows:

atimes(gl) = {1} etimes(gl) = {2,3,4}

atimes(g2) = {l, 2} etimes(g2) = {2,3}

atimes(gS) ={1,2,3} etimes(gS) = {1,2}

atimes(g4) = {1,2,3,4} etimes(g4) = {1}

atimes(gS) = {1,2,3,4,5} etimes(g5) = {0}
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c d e \/

Figure 3.17: Example: Construction of an X-path-disjoint network
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The X-path-disjoint network is obtained by a reverse topological traversal. Since both g5

and g4 have single fanout, no duplication is done on these gates. g3 is duplicated to obtain

gates £31 and g32 (second network from the top of the figure). gZl is connected to g4

while <732 is connected to #5. Now, etimes(g31) = {2}, and etimes(g32) = {l}, and the

invariant of Lemma 3.6.1 is now satisfied for g31 and </32. Similarly, on duplicating gl and

<7l as shown in the figure, an X-path-disjoint network for X = 4 is obtained (bottom of the

figure). Any multiple stuck-fault on the inputs a and bof g11, and c of gate g21 can now be

removed. By the theorems discussed earlier in this section, the computed delay and logical

behavior of the resulting circuit remain unchanged.

It is also interesting to determine if a bound can be placed on the amount of

duplication performed by the algorithm of this section. A loose upper bound is now stated.

Lemma 3.6.2 Let W be the length of the (topologically) longest path, and V be the length

of the longest viable path in network n. Then the number of gates in network rj', resulting

by the application of Figure 3.15, is no more than n times the number of gates in n, where

n is the number of distinct path lengths between V and W.

Proof Consider a gate / that is being processed by the algorithm of Figure 3.15. Consider

the number of distinct values that can be generated by fatime + etimes(f) for any fatime £

atimes(f). If the value of fatime + fetime < V for any fatime G atimes(f) and any fetime €

etimes(f), let this be represented by the value V. There is no loss in generality in doing

so, because all paths of length < V are considered viable, and are dealt with identically

by the algorithm. There are n possible values between V and W which can be generated

by fatime + fetime for any fatime € atimes(f) and any fetime € etimes(f). For each distinct

value, there is at most one dupUcation that is performed (in the worst case) to achieve

the invariant of Lemma 3.6.1. There are n distinct path lengths of concern, so at most n

duplicates of / are required. Hence, 77' has no more than n times the number of gates in 77.

•

The area bound stated above is very weak. For example, in the example of Fig

ure 3.17, the lemma predicts 3 duplications per gate (V = 3 and W = 5 for the example),

whereas only 3 gate duplications axe required overall. A tighter bound on the area increase

remains open.
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3.6.1 Results using the single-pass algorithm

Results of an implementation of the single-pass algorithmfor redundancy removal,

guaranteeing the delay does not increase are shown in Tables 3.3 through 3.5. For each

circuit the length of the longest sensitizable path, T, is first determined using an efficient

timing analysis algorithm (c.f. Section 5.4). The smallest distinct path length X > T is

also known. Using the transformation of Figure 3.15, an X-path-disjoint circuit is derived

from the original circuit. Finally, using Theorem 3.6.1 and 3.6.2, the first edge of every

path of length > X is set to a constant. The topologically longest path in the resulting

circuit is now of length < X (or < T). Finally, standard redundancy removal is used to

derivean irredundant circuit that is no slower than the originalcircuit. The algorithm thus

provides the same effect as the KMS algorithmin a single-pass following the timing analysis

phase. The number of operations performed by the algorithm is linear in the number of

connections of the original circuit and the number of distinct path lengths > T in 77.

The single-pass algorithm completes on all the circuits experimented with. The

CPU time on a DEC 5000, not including the timing analysis phase and the final redundancy

removal, is a few seconds for the largest example.

The area increase for the largest adder circuit csa 64.8 is 22%. While this increase

in area is substantial, a smaller penalty is achieved if each 8-bit block of the adder is first

made irredundant using the KMS algorithm without an increase in the delay. In this case

the penalty is 15%. A similar decrease in area (and delay, too) is also observed for all

the other adder circuits, when each the KMS algorithm is performed independently on each

block of the adder6. Table 3.4 shows the results of the single-pass algorithm on optimized

mcnc circuits which are shown earlier in Table 3.2 for the KMS algorithm. It is observed

that there is no area penalty incurred by the algorithm for the two largest circuits, rot and

des. Note that straightforward redundancy removal on the initial rot circuit slows it down.

For the example bw, the final area by the single-pass algorithm is significantly

smaller than that returned by the iterative KMS algorithm. However, the delay of the

final circuit is larger for the single-pass algorithm. Although the single-pass algorithm

achieves the delay given by the longest sensitizable path in the initial circuit, i.e. 14.0, the

resulting circuit still has long false paths; the longest true path being of delay 10.0. The

6In performing the experiment, the arrival time of the carry-input to each block is set higher than the
arrival times of the other inputs. This correctly captures the actual critical paths through the block when
it is cascaded with the other blocks to form the complete adder.
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Name #Red. Initial delay Final delay # Gates
Long. True RR SKMS Init. RR SKMS

ripple.16 0 31.0 31.0 31.0 31.0 139 139 139

lookahead.16 0 16.0 16.0 16.0 16.0 172 172 172

ripple.32 0 63.0 63.0 63.0 63.0 283 283 283

lookahead.32 0 28.0 28.0 28.0 28.0 361 361 361

csa 2.2 2 8.0 8.0 6.0 6.0 22 18 18

csa 2.2f 2 11.0 9.0 9.0 6.0 22 18 21

csa 4.2 4 14.0 12.0 10.0 10.0 44 36 43

csa 4.4 2 12.0 12.0 10.0 10.0 40 36 36

csa 3.4 4 22.0 20.0 18.0 18.0 80 72 87

csa 16.8 4 38.0 36.0 34.0 36.0 152 144 175

csa 8.2 8 26.0 16.0 18.0 14.0 88 72 83

csa 16.2 16 50.0 24.0 34.0 22.0 176 144 179

csa 16.4 8 42.0 24.0 34.0 22.0 160 144 167

csa 32.4 16 82.0 32.0 66.0 30.0 320 288 353

csa 32.8 8 74.0 40.0 66.0 38.0 304 288 335

csa 64.8 16 146.0 48.0 130.0 46.0 608 576 711

csa 8.2$ 8 26.0 16.0 18.0 13.0 88 72 84

csa 16.2} 16 50.0 24.0 34.0 21.0 176 144 168

csa 16.4} 8 42.0 24.0 34.0 21.0 160 144 172

csa 32.4$ 16 82.0 32.0 66.0 29.0 320 288 344

csa 32.8$ 8 74.0 40.0 66.0 37.0 304 288 348

csa 64.8$ 16 146.0 48.0 130.0 45.0 608 1576 696

RR: redundancy removal

sKMS : single pass KMS algorithm

All primary input arrival time set at 0.0 delay units

f: Carry-input arrival time set at 5.0 delay units

$: Single pass KMS algorithm performed independently on each block

Final circuit verified against initial circuit

Table 3.3: Single-pass algorithm versus redundancy removal on adders
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Name #Red. Initial delay Final delay # Gates
Long. True RR SKMS Init. RR SKMS

5xpl

rot

des

1

37

17

11.0

19.0

15.0

9.0

17.0

13.0

9.0

19.0

13.0

9.0

17.0

13.0

58

437

2007

58

424

2000

61

423

1992

clip
duke2

4

2

8.0

9.0

8.0

9.0

7.0

9.0

7.0

9.0

64

190

61

190

61

190

f51m

misex2

rd73

sao2

z4ml

39

6

10

9

3

18.0

7.0

11.0

12.0

10.0

17.0

7.0

11.0

12.0

10.0

16.0

7.0

11.0

12.0

10.0

16.0

7.0

11.0

12.0

10.0

173

94

94

126

47

139

90

83

119

42

138

90

83

119

42

misexl

bw

z4ml

0

0

0

9.0

20.0

7.0

7.0

14.0

7.0

7.0

14.0

7.0

7.0

14.0

7.0

28

85

30

28

85

30

31

99

30

RR: redundancy removal

skms : single-pass KMS algorithm

All primary input arrival time set at 0.0 delay units

Final circuit verified against initial circuit

Table 3.4: Single-pass algorithm versus redundancy removal on mcnc circuits

71
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Name #Red. Initial delay Final delay # Gates
Long. True RR SKMS Init. RR SKMS

C1908

Cl908f
C6288

3

29

2

23.0

28.0

120.0

21.0

26.0

119.0

23.0

28.0

120.0

21.0

26.0

119.0

325

324

2353

322

319

2350

343

341

2363

s641

s713

S1238

s9234

S15850

0

35

67

224

310

19.0

27.0

20.0

29.0

40.0

18.0

24.0

19.0

28.0

39.0

18.0

19.0

17.0

24.0

37.0

18.0

18.0

17.0

24.0

37.0

122

148

429

1735

3268

122

122

392

1526

2954

126

126

396

1526

3013

RR: redundancy removal

sKMS : single-pass KMS algorithm

All primary input arrival time set at 0.0 delay units

f: optimized using the standard script in SIS

Final circuit verified against initial circuit

Table 3.5: Single-pass algorithm versus redundancy removal on iscas circuits

iterative algorithm picks this up and iterates until a circuit with a longest path of delay

10.0 is achieved. It is interesting to note that on repeating the single-pass algorithm the

same result as the iterative KMS algorithm is obtained. The iterative and the single-pass

KMS algorithms yield the same result in terms of delay on all the other circuits. On some

circuits there is some insignificant variation in the final number of gates.

Table 3.5 shows the result on combinational and iscas iscas circuits. Inverters

and buffers are removed from the initial circuit before application of timing analysis and

redundancy removal.
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3.6.2 Impact of transformations on fanout

In this section the impact of the transformations of the algorithm on the delay

due to the possible fanout increase in the resulting circuit is evaluated. In particular, the

principal concern is with the duplication of sub-circuits.

In typical static delay models the delay through a gate is a function of the fanin

of the gate, the individual delay of the gate, and the fanout of the gate. The delay of a

path is a function of the sum of these gate delays over the path. The algorithm presented

in Figure 3.4 (or Figure 3.15for the single-pass algorithm) may duplicate a sub-circuit nn.

For each path P' in the resulting circuit there is a corresponding path P in the original.

Compare the delay of P' relative to the delay of P. For each gate g[ in P' the individual

gate delay and fanin are precisely the same for g\ in P' and the corresponding gate <?,- in

P. Based on these considerations alone, the delay along P', being a function of sum of the

delays of each g- in P', is the same as the delay along P which is a function of sum of the

delays of each #,- in P.

There is one additional complication; the delay along an arbitrary path Q is also

a function of the fanout of each gate g in Q. After duplication, any gate g which formerly

fed a gate in nn now feeds a gate h'mrfn and a gate h' in the duplicated network n'n. Thus,

the fanout of a gate may increase. A formal upper-bound on the area or fanout increase

remains an open problem, though empirical evidence indicates that this increase is never

more than the size of the circuit itself.

Intuitively, consider how the fanout of any gate in a single-output circuit changes

during the algorithm. When a gate is duplicated, the fanouts on each fanin of the gate

increase. Let ghigh denote a gate that is duplicated. The original fanout connections to

9high axe now spread over ghigh and its duplicates; this leads to a decrease in the fanout

of each of these gates. However, the fanout on the gates feeding ghigh and its duplicates is

increased. Now, if the fanout on a gate g increases due to duplication of some of its fanout

gates, g itself is very likely to get duplicated. This in turn tends to reduce the fanout on

each duplicate gate of g, passing the fanout increase backwards to the fanin gates of g. This

effect of duplication ripples backwards until it reaches the primary inputs. Thus, it is likely

that the fanout on internal gates is low and often may be even lower than in the original

circuit.

Observe that on all the benchmark examples listed in Sections 3.5 and 3.6.1, the
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averageincrease in area (relative to the initial circuit) for examples with false paths is less

than 5%. The largest area increase is less than 15%. The area is often decreased in circuits

with large number of redundancies. These results indicate at most a small increase on

the fanout ofgates. Small increases in fanout typically may not impact the delay through

the gate. However, if a fanout increase does increase the delay through a gate, one of the

following techniques may be applied to retain the original delay estimate through paths in
the network.

Assume a CMOS technology and the use of custom design, standard cells or gate

arrays. Any increase in fanout due to running the algorithm is addressed by transistor

sizing in custom designs, and by cell selection in standard cell or gate-array designs. In

general, if a gate $r, in P feeds k gatesin r}n, then a suitable gate g\ in P' is chosen such that

g'i can drive a fanout of 2k gates in n'n at the same speed that #, drives a fanout of k. An

inspection of a typical standard cell library, such as the AT&T 1.25 n CMOS Library, shows

that "high" and "super" powered versions of such gates axe available that will accomplish

this even for values of k up to 30. If a transistor sizing program such as TILOS [44] is used

in a custom design methodology, then an even wider variety of techniques may be employed

to drive the larger fanout of g[. In the 2-bit carry skip adder, after removing redundancies

there is an increase in fanout of at most one for any gate, and no modification of the circuit

is required to accommodate the higher fanout. It would be interesting to obtain a practical

circuit for which these techniques are insufficient, if such a circuit exists.

3.7 Applications

The core idea of the KMS algorithm is a transformation that results in a circuit with

the longest path sensitizable yet no slowerthan the given initial circuit. This transformation

has several applications, which are touched upon in the following sub-sections.

3.7.1 Multiple stuck-fault testability

An important clarification with respect to circuits that may exhibit an increase in

circuit delay in the presence of a stuck-fault is the choice of the fault model. As mentioned

in the previous chapter, redundant faults that impact the timing behavior may be multiple-

stuck faults. Thus, even though a circuit may be 100% single stuck-fault testable, there

maybe a redundant multiple stuck-fault that impacts the timing behavior. This requires
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a circuit to actually be made fully multiple stuck-fault testable to avoid a speed-test. A

minor modification to the algorithm in Figure 3.4 allows a 100% multiple stuck-fault testable

circuit to be derived from an irredundant circuit with no increase in delay. This is stated

formally as:

Theorem 3.7.1 Performing multiple stuck-fault redundancy removal on an irredundant

circuit obtained by the KMS algorithm in Figure 3.4 on an initially redundant circuit does

not increase the delay of the circuit.

Proof In Theorems 3.3.1 and 3.3.2 it is proved that the KMS algorithm does not increase

the delay of the circuit, while making the longest path sensitizable. Using Theorem 3.1.1,

further multiple stuck-fault redundancy removal cannot slow down this circuit. •

Of course, this requires an algorithm for multiple-stuck fault redundancy removal.

3.7.2 Generalized bypass transformation

Recently, it is shown in [78] how the approach used to speed up a ripple-carry

adder to a carry-skip adder may be generalized to improve the delay in arbitrary circuits.

This generalized bypass transform (considered later in Section 4.9) speeds up a circuit by

converting long and sensitizable paths into false paths by using an extra and gate and

mux. Analogous to the case of the carry-skip adder, these enhanced circuits have redun

dancy introduced into them by the bypass transform. Additionally each of these statically

redundant faults is r-irredundant. While the KMS algorithm can be applied after the delay

optimization step is completed, [78] shows how it can be interleaved with the performance

enhancement process of the bypass transformation. No redundancy is introduced by this

modified procedure.

3.7.3 Don't care conditions

Don't care conditions have recently become an essential factor in the optimization

of Boolean networks [16]. The don't care conditionsfor a circuit can be easily incorporated

into both the timing analysis and redundancy determination phases of the KMS algorithm.

This merely requires the additional constraint of ensuring that any primary input vector that

satisfies the property being determined on a path, either the sensitizability or testability,

lies outside the don't care set.
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3.7.4 Sequential circuits

This algorithm may be generalized to sequential circuits by extracting the combi
national portion from thesequential circuit since the cycle time ofa synchronous sequential
circuit is determined by the delay of the combinational portion between latches. In these

circuits, don't cares are generated for values that cannot appear on the memory elements
and areused inthe timing analysis and redundancy removal phases ofthealgorithm, similar

to the discussion in Section 3.7.3.

3.8 Conclusions

In this chapter the relationship between the performance and redundancy of a
circuit has been explored. Prior experience has shown that performance optimizations can

introduce redundancies intocircuit designs. In the vast majority ofcases the longest path
in the circuit is sensitizable in spite of these redundancies; hence the redundancies may be
removed in any manner without affecting the speed of the circuit. However, the carry-skip
adders are constructed in such a way that the longest path in the circuit isnot sensitizable.

Furthermore, for these circuits a straightforward redundancy removal approach will result
in a slower, though irredundant, circuit. Thus, there is a question in general whether
redundancies are in fact necessary for performance. It is shown that redundancies are not

necessary for performance, and an algorithm is provided that removes redundancies from
any circuit, while guaranteeing to retain or improve its speed. Applying this algorithm to
the carry-skip adder produces a novel irredundant implementation. The algorithm has been
applied on several other circuits as well. The area increase in most of the examples that
exhibit long false paths is small. In a few such examples, the area remains unchanged or
even decreases. However, the existence ofa small upper-bound on the area increase ofany
circuit that undergoes the transformations described in this chapter remains open.

The first version of the algorithm iteratively performs redundancy removal on a
path-by-path basis. Since this approach is infeasible on large circuits, a single-pass algo
rithm is developed. This efficient algorithm is based on the relation ofcircuit structure to
the interaction between redundancy in delay. The construction of I-path-disjoint circuits
that are used in this algorithm appears tohave further ramifications, for example to timing
analysis and synthesis for robust delay-fault testability. These aspects are under investiga-
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tionand preliminary results are reported in [92, 93]. This approach using an I-path-disjoint

network belongs to the class of techniques that transform a given circuit to a functionally

equivalent circuit, whose structure realizes some significant or important relationship be

tween the delay, testability, and area. By performing this transformation, the solution of a

seemingly difficult or expensive problem, such as the iterative kms algorithm, is converted

to a simpler problem that is faster to solve.

As previously mentioned, the application of any algorithm aimed directly at the

identification and removal of stuck-faults, such as [13, 100], may diminish the speed of

circuits such as carry-skip adder. It is also worth noting that techniques for removing

untestable path delay-faults, such as [91], are alsolikely to increasethe delay of such circuits

since they radically change their structures to bring them within the stringent condition

of robust path delay-fault testability. It would be interesting to discover if the techniques

described here could be generalized to the removal of path delay-fault redundancies without

degrading circuit performance.
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Chapter 4

Testability Effects of Performance

Optimizations

Timing optimization procedures resynthesize a given circuit to meet the timing

requirements with minimal areaincrease [60, 105, 7, 33]. The effect of the transformations

used by these algorithms on the testability of the circuit has been mostly ignored and is

not well understood. In Chapters 2 and 3, a high-performance circuit with poor testability

is shown to be unreliable both in its logical and temporal behavior. It is proved that

redundancy is unnecessary to reduce delay. Motivated by these results and the need for a

further understanding of the relationship between performance optimization and testability,

this chapter attempts to resolve the question: "Can performance optimization be done

without introducing redundancy?" The impact of performance optimization techniques on

testability under different fault models is considered. Section 4.1 is an introduction to the

fault models to be considered. Background information on two multilevel operations that

are needed in the discussion is provided in Section 4.2. The testability results described in

this chapter will be derived for the timing optimization procedure that is described in [105],

and implemented in the sis logic synthesis system [102]. An overview of this approach is

provided in Section 4.3. This approach is representative of most timing optimizationsl.

First, the possibility ofmaintaining single-fault testability during timing optimiza

tion is considered in Section 4.4. After identifying the conditions that cause redundancy, an

attempt is made to maintain the testability of the circuit as invariant. It is demonstrated

1An exception is the recent work of [109], which involves the Boolean operation of collapsing.

79
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that while a redundant connection introduced into an irredundant circuit is easy to identify

and remove, its removal may lead to further redundancy (Section 4.5). These secondary

redundancies are difficult to identify. This motivates an attempt to find a circuit testability

property that may be easily maintained during the various timing optimization steps. Sec

tion 4.6 briefly states why multi-fault testability is not a candidate. In Section 4.7, robust

path delay-fault testable circuits, constructed using known synthesis procedures, are proven

to meet this criterion. Since not all circuits may have robust delay-fault testable versions,

an alternative testability-timing-invariant is proposed in Section 4.8 and shown to have the

same invariant properties as robust delay-fault testable circuits. Section 4.9 briefly consid

ers the effect on testability of recent techniques of performance optimizations, namely the

generalized select transformation [ll] and the generalized bypass transform [78]. Section 4.10

concludes the chapter by describing two relevant problems that remain unsolved.

4.1 Fault models

When studying the impact of each timing optimization step on the testability of

a circuit under a chosen fault model, it is assumed that the circuit before application of

each optimization step is fully testable, i.e. for each fault site of the chosen fault model,

there exists at least one test vector that tests for this fault. Before considering the change

in testability during timing optimization, a brief review of the conditions and synthesis

procedures that result in fully testable circuits is provided in this section.

4.1.1 Stuck-faults

Of all the known fault models, single stuck-faults (single-faults) have received the

most attention over the past three decades [19]. However, it is only relativelyrecent that the

precise relationship between the single-fault testability and optimization of a combinational

circuit has been established. The details of this are in [6] and are not considered here. It is

mentioned that 100% single-fault testability is equivalent to a first-order criterion for area

minimality, namely that a circuit is prime and irredundant [6]. Briefly stated, if a network

is prime and irredundant, no connection can be set to a constant value (0 or 1) without

changing the logical behavior of the circuit.

Synthesis techniques for 100% single-fault testable circuits use two approaches:

atpg based redundancy removal [100, 56], and, don't care based node minimization [6, 5,
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97]. In the second approach, the don't care sets are often approximated (or filtered) to
reduce the computation effort [95, 82], thus loosing any guarantee of full testability. While

both approaches are effective on a large collection ofbenchmark circuits [5, 97], the former

has an advantage in this regard [97]. Due to the effectiveness of these two approaches,

not much focus has been placed on maintaining the invariance of single-fault testability in

Boolean networks. The only previous work is reported in [58] where it is demonstrated that

single fault testability may not be retained under algebraic substitution. In Section 4.4,

the question of invariance of single-fault testability under various circuit transformations is

more fully explored.

Like single-fault testing, multiple stuck-fault (multi-fault) testability of circuits

has been long studied [99, 61]. However, only recent results have made the synthesis of

100% multi-fault testable circuits viable. While necessary conditions for 100% multi-fault

testability are still unknown, [51] relates 100% multi-fault testability to a second order

criterion for area optimality of a circuit, termed simultaneously prime and irredundant.

Briefly stated, if a network is simultaneously prime and irredundant, no set of connections

can be set to constant values without changingthe logicalbehavior of the circuit. [61] proves

that a fully single-fault testable single output two-level circuit implies that the circuit is

also 100% multi-fault testable. Sufficient conditions are given in [51] under which a two-

level multi-fault testable circuit may be transformed to a multilevel circuit that retains this

testability criterion. These conditions allow the unrestricted use of algebraic factorization

techniques on these circuits. However, Boolean operations such as simplification [18] are

shown not to preserve multi-fault testability and cannot be used. This implies a possible

reduction in the area optimality of an implementation when using this testability criterion.

4.1.2 Delay-faults

Up to now, the concern with regard to the testing of an IC has only been with

stuck-faults that impact the logical behavior of circuits. However, a circuit is deemed to

be performing correctly only if both its logical and temporal behavior meet the design

specifications. Due to the increasing need for reliability in high-performance VLSI circuits,

static testing which only ensures logical correctness of the circuit is becoming insufficient.

In particular, defects and random variations in process parameters often cause delays to

fall outside the specifications. Static testing may not detect such defects since there may
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be no impact on the logical (static) behavior of the circuit. However, since most circuits

operate in a clocked environment it is essential that the final logic value on the circuit be

asserted before the clock arrives. This need forensuring the temporal (dynamic) correctness

of circuits, given delay specifications, has led to the development of delay-testing for chips.

Definition 4.1.1 A delay-fault occurs when a propagation delayfalls outside the specified

limits.

Two models for delay-faults have been proposed to model delay defects on gates or along

paths. They are defined as follows:

Definition 4.1.2 A gate delay-fault is said to occur when any of the delays on the gate

inputs or outputfalls outside its specified limits. Thisdefect is modeled by a single (lumped)

delay-fault at the gate.

Definition 4.1.3 A path delay-fault is said to occurwhen the delay along the path falls

outside its specified limits.

Two notable deficiencies of the gate delay-fault are (1) the testability depends on the size of

the delay-fault, and (2) all defects axe not captured by the model [106]. The first problem

arises due to reconvergence of paths where even a gate operating with a delay-fault may not

cause any change to the timing of the circuit. The second problem arises if statistical timing

rather than worst case timing is used as the basis for setting the clock period of a design. In

such a situation, each gate delay may fall within specifications but some path nevertheless

may be slower than the specifications. Since a delay of a path is the cumulative delay of

gates along the path, even though a delay-fault exists for a path, no (gate) delay-fault may

exist on any of the gates along the path. For these reasons, the path delay-fault model

is considered more comprehensive. The testing protocol used for path delay-faults applies

to gate delay-faults only if the size of the delay-fault is large [106]. However, it applies to

all sizes of delay-faults along paths. Another difference is that the gate delay-fault model

assumes only a single occurrence of a delay-fault, thus modeling isolated failures, whereas

the path delay-fault models multiple delay-faults, due to more distributed failures2.

Since delay-faults model defects that impact the delay on gates or paths, testing

for them requires the application of a pair of vectors such that a transition is propagated

3Under the condition of robustness, however, a gate delay-fault test remains valid even in the presence
of multiple gate delay-faults.
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along the gate or path under test. The test for a path delay-fault P/ on a path P (assume

its delay is specified to be Pt), involves the application of vectors < i?oj i>i > to the primary

inputs of the circuit. It is assumed that there are no stuck-faults in the circuit under test.

After applying vo and allowing the circuit to stabilize, v\ is applied. This vector must cause

a transition along P. The circuit output of P is observed at time Pt after vi is applied. If

the transition is observed, no delay-fault along P is said to exist. If the transition is not

observed, P is said to have a delay-fault. There are two important observations.

First, the circuit is clocked aUspeed. This means that unlike static testing, the

circuit operates at the normal clocking speed. This requires test vectors to be loaded

and unloaded into the memory elements under normal operating conditions, which implies

substantially more testing overhead than static testing [4]. In this thesis, the presence of

enhanced scan structures that facilitate delay-fault testing is assumed [106].

Second, while the test pair < vo, v\ > propagates some transition along P, it may

also propagate transitions along other paths. Due to the occurrence of hazards, even if P

has a delay-fault, the output of P may have a spurious transition (due to a hazard) at the

time the output is observed. Thus, the test may be invalidated in the presence of hazards

caused by varying delays along other paths in the circuit. This phenomenon is illustrated

in Figure 4.1.

In circuit (1) of the figure, assume that the path shown in bold is to be tested. Let

the vectors < vo,v\ > be applied where vq = ab'cd'ef and v\ = abdde'f. The vector pair

causes a falling transition on input / of the path under test (in addition to transitions on 6,

c, d, and e). A transition from 0 to lis expected at the output /. Assume that some delay

assignment within gate 2 causes a hazard (or glitch) on its output that propagates to gate

5 as shown. The output / may be as shown in the figure. Even if a delay-fault exists along

the bold path, the correct value of 1 may be available at /, at the moment it is observed.

This invalidates the test < vo,t>i >.

This invalidation of a path delay-fault test is avoided by imposing the condition

of robustness, described in the next section.

4.1.3 Robust path delay-fault testing

A path is robust delay-fault testable if there exists a test for the path delay-fault

associated with the given path that is valid under arbitrary delays along other paths. A
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Figure 4.1: Examples: Delay-fault testing
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circuit is called 100% robust path delay-fault testable if every path from a primary input

to a primary output in the circuit is robust delay-fault testable. Over the past few years,

several definitions have been proposed for robust delay-fault testability [106, 96, 36, 88].
The classification may be described along three axes:

1. single or multiple path propagation,

2. presence or absence of hazards,

3. single or multiple input change for test vector pairs.

Of these, the last parameter is not considered here since every delay-fault that

is tested by multiple input changes can be tested by a single input change. See [106] for

a complete explanation of this. The main reason for choosing multiple input change test

vectors is to reduce the size of the test set; however, not much work has been reported on

this aspect.

The first two parameters are illustrated through the example of Figure 4.1. Con

sider the bold paths starting from input 6 in circuit (2) of the figure. The given transitions

at the inputs (applied using the appropriate vector pair) are robust tests for both paths.

In this case, the test is called a multiple path propagation delay-test. The same vectors,

however, are a single-path test for the delay-fault on the bold path from input /.

The circuit (3) in the figure illustrates a robust path delay-fault test even in the

presence of hazards. The hazard shown at k may be caused under some combination of

delays in gates 2 and 4. However, the output m transits from 1 to 0 only after the input

along the path being tested arrives. Thus, if the bold path has a delay-fault, the output is

delayed and a transition is not observed at the required time. The test is said to be robust

in the presence of hazards.

In [36] necessary and sufficient conditions for single path propagation hazard-free

robust path delay-fault testability (rpdft) are given. More recently, a complete classifica

tion of robust path delay-faultshas been provided [88]. While all the results in this chapter

are stated for the case of single path propagation hazard-free robust path delay-fault testa

bility [36], all results can be generalized to the conditions stated for general(multiple path

propagation with hazards) robust path delay-faults. Necessary and sufficient conditions for

hazard-freerobust path delay-fault testing of a path P are provided in [36] using an equiv

alent two-level expression of a given multilevel circuit, called the ENF expression. Instead
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of resorting to the enf of a circuit, the conditions are stated here directly in terms of the

structure of the multilevel circuit. The proof of this condition is not provided and is detailed

in [36].

Definition 4.1.4 (rpdft); A path P = {/o,/i,...,/m} is said to be single path robust

delay-fault testable without hazards by the vector pair < vi,v2 > if at each node /,,

fiM £ f»(v2), and for each g, 6 S(/;, P):

1- 9jM = 9jM = IUi) »* and

2. there is no transition on gj.

The vector v2 is assumed to be appliedafter v\, delayed by an amount greater than the delay

of the circuit.

Besides requiring each side input to the single path under test to be at a non-

controlling value, the definition requires that no transition (or hazard) appear on any of

these side-inputs as well. Thus, if the vector pair < v0, v\ > tests a given path for a rising

(0 to l) transition, < «i, vq > tests the same path for the falling transition.

In contrast to the above definition, the most general form of robust delay-fault

testing requires less stringent conditions on the side inputs:

Definition 4.1.5 (grpdft); A path P = {/o,/i, ...,/m} is said to be robust delay-fault

testable for the rising (falling) transition at fm by the vector pair < vi, v2 > if at each

node fi, fi{vi) ^ fi(v2) yields the desired transition being tested, and for eachgj € 5(/j,P);

1- 9jM = I(fi) ; and

2. if fi-i(v\) = I(fi), then there is no transition on gj.

The vector v2 is assumed to beapplied after v\} delayed by an amount greaterthan the delay

of the circuit.

This general robust test (grpdft) may involve multiple path propagation with hazards.

This definition does not specify the value on side-inputs for v\ when a transition from a

controlling to a non-controlling value is being tested along the path. This is because even

in the presence of hazards on side inputs, a delay on this input transition will appear as

a delay on the transition at the output of the gate. However, for the opposite transition

(from non-controlling to controlling value) on the gate input, no transitions are allowed on
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the side-inputs to this gate along the path. This difference in definitions between the two

categories of robust delay-faults appears minor. Nonetheless, circuits are known for which

no robust test exists using the first definition, while a robust test does exist in the presence

of hazards [88]. One advantage of using delay-tests with hazards is a possible reduction in

the size of the test set. This is because more paths can potentially be tested in the case

when hazards are allowed compared to the hazard-free case. This issue is not addressed in

this thesis.

[36] describes an approach to realize a 100% RPDFT two-level circuit by modifying

one step of a standard two-level logic minimization program [15]. Fully testable multilevel

circuits are then obtained by using algebraic factorization. Similar to the case of multi-fault

testability the rpdft test set remains invariant under algebraic factorization. Techniques

for creating 100% robust delay-fault testable implementations of common data-path designs,

such as adders and parity trees, which cannot be synthesized using two-level logic due to

the size of the circuit, are described in [37].

It is interesting to examine the relationship among the various fault models detailed

in this chapter. A multi-fault testable circuit implies the circuit is single-fault testable. A

robust path delay-fault testable circuit also implies single-fault testability. This is because

the ability of propagating a falling (rising) transition at some connection c using the vector

pair < vo,vi > along a path implies that the stuck-1 (stuck-0 ) fault on c is detected [63].

It is unknown whether full rpdft testability implies full multi-fault testability. This result

is conjectured in [36], but the proof provided there is incorrect.

4.2 Algebraic resynthesis and collapsing

Two of the principal operations in multilevel logic optimization are algebraic fac

torization and decomposition (together termed algebraic resynthesis) and collapsing [16].

Briefly explained, a factored form is a parenthesized logic expression, e.g. (a + b(c + d) +

(d+ e)(a + d)). Defined recursively, a factored form is either a product of singleliterals and

factored forms, or a sum of single literals and factored forms. Decomposition of a function is

the process of re-expressing a single function as a collection of new functions. For example,

F = abc+ abd + a'dd' + b'dd' may be decomposed to F = XY + X'Y\X - ab,Y = c+d.

Typically, the factored form is used to guide the decomposition of a function [16]. Collaps

ing of a function G into F is the process of re-expressing F without including G. The result
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of collapsing is an expression for F that uses its original inputs and the inputs of G.

Results pertaining to the effects of algebraic resynthesis and collapsing on the

network structure are required in proving testability results in subsequent sections. Let

n be a two-level (and-or gates) complex node in a multilevel network rj. Let algebraic

factorization and decomposition replace n by a sub-network nn to yield a network rjf. Let

Pn be the set of paths in n passing through an and gate and the or gate in n. Let Pnn be

the set of paths passing through gates in nn in *?'• Obviously, the logical functionality of n

and n' are identical. Moreover, n' is syntactically equivalent to n [51], meaning:

• for each path p€ Pn, there is a corresponding path q G Pnn, and

• each path q G P^n may correspond to more than one path p G Pn.

This means that for each path through an and gate and the OR gate in n there is a path

through some gates in nn. This many-to-one mapping of paths in n to paths in n' is referred

to as a merging of paths in the sequel.

The effect of collapsing on the paths in a network is analogous to algebraic fac

torization. Let nn be a sub-network in a multilevel network n. Let collapsing replace nn

by a single complex node n to yield a network rj'. Let P^ be the set of paths in n passing

through gates in nn. Let Pn be the set of paths in rf passing through an AND gate and the

OR gate in n. Obviously, the logical functionality of n and n' are identical. Moreover, n' is

syntactically equivalent to r/, which implies:

• for each path q G Pnn, there are one or more corresponding paths p G Pn.

This means that foreach path through nn there areone or more corresponding paths through

an AND gate and the OR gate in n. This one-to-many mapping of paths in n to paths in nf

is referred to as a splitting of paths.

4.3 Timing optimization procedure

The testability results described in the subsequent part of this chapter are derived

for the timing optimization procedure described in [105], which as mentioned previously, is

representative of most timing optimizations using restructuring.

Timing optimization is viewed as a three-phase process [16]. In the first phase,

global restructuring is performed on the circuit to reduce the maximum level or the longest
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pathin the circuit. Typically, this is accomplished in a technology independent fashion. For

example, changing from a ripple-carry-adder to a carry-look-ahead adder or something in
between is accomplished in this phase. The second phase is considerably more dependent on

the target technology and is referred to as technology mapping. Techniques for reducing the

delay of mapped circuits, with minimal area increases, have been studied recently in [108].

The final phase is to speed up the circuit during the physical design process. Transistor

sizing [44] or timing driven placement of modules [85] are examples of such optimizations.

In this phase, when an actual design exists, a more accurate timing analyzer is used to fine-

tune the circuit parameters. In this chapter, only the first phase of timing optimization is

considered, viz. technology independent logic resynthesis. It is shown elsewhere, [81], that

the most common approach to technology mapping, namely tree-mapping [35], preserves

testability. The other technology dependent optimizations of buffering [104] and transistor

sizing [44] do not change the testability of a design. This result is obvious since these

operations neither change the function nor the structure of the circuit.

A brief argument is provided that demonstrates that the testability results de

scribed here apply to most other approaches to achieving speed-up in networks. Two

transformations that are not covered by the resynthesis procedure being discussed here

are studied at the end of the chapter. Early attempts at speed-up make local changes only

in the topology. [53, 32] reduce the delay by adding buffers and decomposing an exist

ing gate into gates containing early and late arriving signals, with the latter being placed

closer to the output, socrates [7] uses a rule based system to improve the timing by local

transformations. A significant drawback of these techniques is that they may not achieve

the global restructuring desired. However, the strength of the approaches is that features

of the library and technology being used are fully exploited. [105] states that both these

approaches are subsumed by the resynthesis technique described herein.

The problem of restructuring the logic is solved using a global view. The approach

in [105] is similar to the circuit re-synthesis step of the Yorktown Silicon Compiler [33].

In both approaches, a sub-network is defined and a critical section to be transformed is

identified. The significant contrasts are that the former algorithm focuses only on logic

resynthesis and operates on a technology independent representation of the circuit. The

algorithms in [33] combine device sizing with logic manipulation and are somewhat special

ized to domino CMOS designs. [33] uses transformations only between neighboring gates,

whereas in [105] a parameter is available to control the extent of the transformations.
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The algorithm uses a timing driven decomposition of the network into 2-input

gates. This is important since the manner in which a complex gate is implemented changes

its delay characteristics. Various models are used for computing delays. One is a fast

technology mapping [35] of the two input gates into a standard cell library. This provides

more accuracy to the timing estimates. An algorithm, based on timing constraints, for

decomposing a complex function into two input gates is also used. This is done recursively

from the bottom up, so that at each stage the input arrival times are fairly accurate, and

thus subsequent decomposition of the upper nodes can be based on these updated arrival

times.

The resynthesis algorithm takes as input a network of 2-input nand gates and

inverters. Timing constraints are specified as the arrival times at the primary inputs and

required times at the primary outputs. The algorithm manipulates the network until the

timing constraints are satisfied or no further decrease in the delay is possible. The output

of the algorithm is also in terms of 2-input NAND gates and inverters.

An outline of the timing optimization algorithm is given in -Figure 4.2. Details

of each step of the algorithm and its parameters are in [105]. Givenvthe primary input

arrival times, the arrival times for each of the signals is computed. "Using the required

times at the outputs, the required times for all signals are computed. The slack at a

node s, is defined as R8 —A8 where A8 is its arrival time and Re its-required time. An

e-network is defined as the sub-network containing all signals with slack within e of the

most negative slack. The procedure nodejcutsetfe-network) determines a cut-set [46] of

nodes, each of which must be sped up in order to realize some global delay reduction.

The procedure partial-collapse(n, distance) collapses all the nodes in the transitive fanin

of the node n which are themselves in the e-network and at most distance distance from

n. All such internal nodes that fanout elsewhere will be duplicated in this process. The

speedupjwde(n) procedure performs timing driven decomposition on the complex node n.

The overall strategy attempts to place late-arriving signals closer to the output. Thus, in

the first phase, divisors (or common sub-expressions [17]) of the node with early arriving

inputs are factored out. After all such divisors areexhausted, a timing based decomposition

into a 2-input nand gate tree structure is done. This routine again places late-arriving

signals closer to the output and also ensures that the final timing-optimized network is

composed of 2-input gates only. A final step of area recovery may be performed to merge

identical gates.
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/* 77 is the Boolean network to be speeded up.

distance is the number of levels up to which the critical fanins are

collapsed. */

speed_up(77, distance) {

do {

delay_trace(7y).

e-network = select_critical_network(77, distance) .

nodeJist = node-cutset (e-networfc) .

Foreach node n G nodeJist {

partial^collapseCn, distance).

}
Foreach node n G nodeJList {

speedupjiode(n).

}

} while (delay(77) decreases && timing constraints not satisfied)

}

Figure 4.2: Outline of the timing optimization process
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Figure 4.3: Example: Timing optimization process
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Figure 4.3 illustrates the procedure on an example circuit. Primary input e is a

late-arriving signal which causes output n to be available after 6 units of time. Since this

signal is critical the timing optimization procedure attempts to reduce the delay to n. In the

first phase the €-critical network (encircled in the first schematic of the figure) is identified.

In the second step, these nodes are collapsed to yield a complex node at n. Note that nodes

h, j and m are duplicated since they are required at other places in the network. Finally,

the large node n is decomposed based on arrival times of its inputs. Notice that e passes

through fewer gates since it arrives after the other signals. The final optimized delay for n

is 4 units. While a simple unit-delay model is used in this example, several different delay

models can be employed to improve the correspondence of the delay estimate on the 2-input

nand gate network with its final mapped implementation [105].

The five principal steps in this timing resynthesis system and most others may be

summarized as being one or more of the following steps, executed iteratively and in any

order:

• Selection of a subset of gates (critical sub-network), to resynthesize.

• Duplication of gates in the critical sub-network that have fanout.

• Collapsing of the gates in the critical sub-network.

• Algebraic resynthesis (factoring and decomposition) of the collapsed node.

• Area reclamation by merging of identical gates.

4.4 Single stuck-fault testability effects

Table 4.1 shows a profile of the area and delay of a typical circuit as the algorithm

of [105] progresses. This illustrates the ability of the algorithm to trade off area for speed.

The first experiment with the example performs timing optimization on an area optimized

irredundant circuit. The delay and area on each pass of the algorithm are given in the first

two columns. The third column indicates the number of redundancies in the circuit. In this

example, speedup always led to redundancy. While the number of redundancies typically

increases, note that it may also decrease from one iteration to the next. The second experi

ment performs redundancy removal during each pass of the timing optimization algorithm.
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While this procedure is computationally expensive, it results in a significantly more opti

mized circuit. In fact, the final delay of the circuit in the second experiment is 23% less than

that of the first experiment (21.80 versus 26.80). On performing redundancy removal on

the final circuit of the first experiment, a delay of 21.80 is also obtained, but at an increase

of almost 7% in the area of the circuit. However, in general, no definite conclusion can be

made about the impact of redundancy during timing optimization on the delay or area of

the final circuit. It is conceivable that a redundant circuit may allow some operations that

lead to smaller delays and areas, while such an operation may not be possible on an irre

dundant version of the circuit. The merits of allowing redundancy in timing optimization is

not considered further, since few theoretical results appear to exist on this aspect. However,

recall the results of Chapter 3; redundancy is undesirable in optimized circuits and every

redundant circuit has an irredundant version at least as fast. The interest in this chapter is

in studying the conditions that create redundancy. Besides being of theoretical interest, the

invariance of testability properties also has several important practical benefits. First, test

vector sets are retained if testability remains invariant. This allows testability preserving

optimizations to be applied without the need for repeating the test generation phase on

the new circuit. Second, maintaining the invariance of some testability criterion may be

the only practical method for generating a fully testable multilevel circuit. An example is

multiple stuck-fault testability [51].

Table 4.2 shows the final number of redundant faults for various circuits after per

forming timing optimization on an initially irredundant area optimized circuit. The initial

circuits for timing optimization were obtained by using a standard area optimization script

in sis [102], followed by redundancy removal to ensure full testability. Only those circuits

in the iscas and mcnc benchmark suite that have redundant faults introduced by timing

optimization are reported in the table. While most of the circuits have a few redundancies

introduced into them during the delay optimization process, a few circuits have a large num

ber of redundant faults. In every case, redundancy removal interleaved with the speed up

operations results in smaller and faster circuits. However, recall that timing optimization is

performed using static analysis only. In the case when timing optimization uses more accu

rate delay estimates, such as viability analysis (c.f. Section 2.3.1), the redundancy removal

will have to be performed more carefully. This is to ensure that circuit does not slow down

under the more accurate delay analysis. In fact, a version of the kms algorithm, described

in the previous chapter, provides this form of careful redundancy removal.
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without redundancy removal with redundancy removal
Delay Area #Red. Delay Area

38.80 1229.0 0 38.80 1229.0

37.40 1233.0 7 37.40 1233.0

35.80 1241.0 6 35.60 1227.0

34.60 1261.0 10 34.40 1237.0

33.20 1273.0 10 32.80 1249.0

32.60 1292.0 15 31.60 1269.0

31.40 1318.0 20 30.60 1285.0

31.20 1328.0 23 30.00 1297.0

30.60 1338.0 23 29.80 1313.0

30.20 1350.0 23 28.80 1309.0

29.40 1358.0 26 28.00 1321.0

29.00 1376.0 26 26.80 1327.0

28.80 1394.0 28 26.20 1343.0

28.20 1400.0 33 25.80 1367.0

27.80 1414.0 37 25.80 1369.0

27.40 1439.0 40 25.60 1379.0

27.60 1443.0 41 24.40 1367.0

27.40 1471.0 42 23.80 1373.0

f26.80 1483.0 45 23.60

23.40

22.60

22.00

21.80

1395.0

1425.0

1437.0

1467.0

1473.0

Example circuit is rot.blif

Each primary input arrival time set at 0.0 delay units

f On performing timing optimization after redundancy removal

on this circuit, area of circuit with delay 21.80 is 1577.0

Table 4.1: Example: Impact of redundancy on timing optimization

95
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Four of the five steps listed in Section 2.3 alter the network structure during

the timing resynthesis algorithm. Each is considered below to determine its effect on the

testability. Assume that the circuit before timing resynthesis is fully testable for all sin

gle stuck-faults. This may be achieved either by synthesis [6] or redundancy removal via

automatic test pattern generation [100].

4.4.1 Node duplication

Node duplication may introduce redundancies. If a network is irredundant before

the duplication of a node then the check for an untestable fault in the new network has

only to be made on the fanin and fanout connections of the gate being duplicated and its

duplicate. In fact, the existence of redundancy in the network after the node duplication

can bepredicted by an analysis of the initial irredundant network itself.

Consider the irredundant circuit shown on the top in Figure 4.4. The stuck-0 fault

on input t'5 of the gate 2, cannot be tested by a single-path sensitization test. A single-path

sensitization test means that the fault effect (D or D in the terminology of [90]) propagates

along exactly one path to the output of the circuit. However, it is tested by multiple-

path sensitization, where the fault effect propagates along several reconvergent paths to the

output. Assume that gates 2 and 5 are to be collapsed for timing optimization, leading

to the duplication of gate 2. This new circuit, shown on the bottom in the figure, has

redundant stuck-0 faults on input iS of gate 2' and input i5 of gate 2". The only test vector

for the fault in the original circuit is i\i2%zUH —00001. This causes a D value on the output

of gates 5 and 6. On duplication, one of the D values becomes a 1 at gate 8, thus, blocking

the fault effect that is to propagate along the other path.

Now consider the irredundant circuit on the top in Figure 4.5. The stuck-1 fault on

the primary input i2 of the inverter, 2, can be detected only by multiple-path sensitization

via the vector ii22*3*4 = 0000, which causes a D value (1 in the good circuit, 0in the faulty

circuit) on the outputs of gates 5 and 6. On duplication of gate 2, however, no redundancy

is introduced into the circuit (bottom of Figure 4.5). This is because while testing for

the stuck-1 fault on the i2 input of gate 2' (2"), gate 6 (5) has a 0 value, which is the

non-controlling value for gate 8.

Definition 4.4.1 Let g be a gate with multiple fanouts and let c be one of its fanouts. The

reconvergent gate set of c, Rg(c), is defined as,
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i1

to>
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E>i
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^Z>

Figure 4.4: Example: Redundant fault on duplication
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Figure 4.5: Example: No redundant fault on duplication
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Rg(c) = {r ; paths from g to r include one path through c and one path not through c}. Each
path to a gate in Rg(c) that includes c is called a c->Rg(c) path. Each path from g to a gate

in Rg(c) that does not include c is called a c^Rg(c).

For example, in the circuit on the top in Figure 4.4, if c is the connection between gate 2

and gate 5, then R2(c) = {8}. The path through gates 2,5 and 8 is a c->R2(c) path and

the path through gates 2,6 and 8 is a c-*R2(c) path of c. Note that Rg(c) contains only

reconvergent points of paths from g.

Theorem 4.4.1 Let n be a simple gate in a fully testable circuit n, with fanout connections

co,ci,...,Cfc. Assume that Co is within the critical sub-circuit and ci,...,Ck are outside. Let

n' be the circuit obtained from n by replacing n by two identical gates n\ and n2. Let the

fanout connection of n\ be cq and let n2 have fanout connections ci,...,c*. Let C denote

the set offanin and fanout connections ofn in n. n' remains fully testable if and only if in

the original network rj both of the following conditions are satisfiedfor each fault f which

may occur on any c€ C.

• There exists a test vector vc and at least one fault-propagating path P with cq € P such

that all the c~o-*Rn{co) paths of cq have non-controlling values at the gates in Rn{co)-

• There exists a test vector v'c and at least one fault-propagating path P* with c0 &P' such

that all the co->Rn(co) paths have non-controlling values at the gates in Rn(co).

Proof Let f\ on n\ and f2 on n2 in rf correspond to the fault / on n in n.

If part: Assume that both conditions are true. Then vc detects f\ in rf and v'c detects

f2 in rf. The testability of all other connections in n' which do not correspond to some

connection c G C in n remains unchanged. Hence, rf is fully testable.

Only if part: Assume that the first condition does not hold. This implies that any test

vector vc with a fault propagating path through Co, some path in co—>Rn(co) causes a

controlling value at somegate in Rn(co) in n. (This however does not affect the testability

of / in n since this value changes to non-controlling in the faulty circuit. Otherwise vc

would not be a test for c). On duplication, this controlling value blocks the propagationof

the fault /i in rf. Thus, no test for c in rj is a test for c in rj'. A vector that is not a test

for / in 7/ cannot test f\ in rf. This is because the condition for testing / is weaker than

testing for f\. Considerany vector vc whichis not a test for /. This occurs due to at least

one controllingvalue on a side-input to a gate along each path that / can be tested along.
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The same holds when testing for f\, implying f\ cannot be tested by vc if / is not. Thus,

/i is redundant.

Assume that the second condition does not hold. Then any test vector v'c for c in

77 with a fault propagating path not through c0, some path in cQ-*Rn(co) has a controlling

value on some gate in iZ„(co) in 77. On duplication, this controlling value blocks the prop

agation of the fault in rf. A vector that is not a test for / in r? cannot test f\ in rf. This

is because the condition for testing / is weaker than testing for f\. Consider any vector vc

which is not a test for /. This occurs due to at least one controlling value on a side-input

to a gate along each path that / can be tested along. The same holds when testing for f\,

implying f\ cannot be tested by vc if / is not. Thus, f\ is redundant. •

4.4.2 Collapsing of critical sub-network

In this step of timing resynthesis the gates in the critical sub-network are collapsed

into a single node expressed as a sum-of-products. This sum-of-products is also made locally

prime and irredundant, in the sense that it is prime and irredundant considering its inputs

and output as primary inputs and output respectively.

The effect of collapsing is demonstrated by an example. The circuit on the top in

Figure 4.6 is irredundant. Gates 2,3 and 4 are to be collapsed into a two-level nor-nor

form. The circuit on the bottom is obtained after making the collapsed region locally prime

and irredundant. However, there is a single stuck- 0 redundant fault on the input of gate 5

that is marked with an X in the figure. This fault has been caused by reconvergence that

originates outside the collapsed region. Such a redundancy may only be created when the

fanout of an input to the collapsed region changes due to the collapse operation. In the

example, the fanout of the output of gate 1 increases to two and a redundant fault due to

reconvergence of c is created.

Theorem 4.4.2 Let C be a critical fanout-free sub-network of a fully testable network n

and let no, ...,«* be all the gates in C that are collapsed to obtaina two-level (and-or gates)

node n'k. A redundant connection can only be created on an input to a first-level (and,) gate

in the two-level representation of n'k. The rest of the new network rf outside n'k remains

fully testable.

Proof Since the output of the collapsed sub-network for each input vector is unchanged

by the collapse operation, the testability of faults not on n'k in rf remain unchanged. The
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Figure 4.6: Example: Redundant fault on collapsing
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input connections and the output connection of n'k are the same as those of C. Since each

connection is irredundant in rj it remains irredundant in rf. (As pointed out earlier, the

testability of some of the fanout connections of this input may change, but the faults located

before the fanout branches on these inputs remain testable in rf.) The testability of the

single output connection of n'k remains unchanged since the function at n'k is unchanged

(although its representation changes from multilevel to two-level logic). An internal single

fault in a single output two-level circuit (composed of and-or gates) is equivalent to some

single fault either on the output of the two-level circuit or the inputs to the and gates [19].

Thus, the only possible redundant connections are on the inputs to the first-level gates

within the two-level representation of n'k. m

4.4.3 Resynthesis of a collapsed node

The decomposition of a single collapsed node that is performed in the timing

optimization procedure described in [105] uses only algebraic factorization techniques. In

particular, the best common algebraic factor which is also suitable with respect to the

desired timing property is selected. When no further divisor can be found an algebraic

nand-nand decomposition into 2-input nand gates is performed.

Theorem 4.4.3 100% single-fault testability is preserved on algebraic synthesis of a node.

Proof Let n be a node in a fully testable network rj that is replaced by an equivalent

algebraically synthesized sub-network rjn in rf. The testability of any fault on connections

to gates which are outside 7?n remains unaffected. Any single fault in nn corresponds to a

multi-fault in the two-level representation of n [51]. Since the function at n is prime and

irredundant, any multi-fault in n is covered by some single fault on the inputs of n which

is testable. Hence, rf is fully single-fault testable. •

Single fault testability invariance when performing algebraic factoring that allows

a restricted use of complementation is shown in [20]. A similar result in [111] shows the

invariance of single-fault testability when factoring is carried out using sub-expressions each

with either two literals or two cubes.

4.4.4 Merging of identical nodes

After the timing optimization loop is completed, there is a final step that attempts

to reclaim some of the area of the circuit. If there exists two or more nodes with identical



104 CHAPTER 4. TESTABILITY EFFECTS OF PERFORMANCE OPTIMIZATIONS

inputs that compute the same function, these nodes are replaced by a single node. This
step may introduce redundancy into the circuit. An example was first provided in [51] and
is shown in Figure 4.7. On merging gates 1 and 2 in the irredundant circuit at the top of
the figure, a single stuck-0 redundancy is produced on the output ofthe merged gate. It is
easy to see that this is caused by a redundant multi-fault in the first circuit.

Necessary conditions that prove the absence ofredundancy on merging ofidentical

gates are not known. However, a sufficient condition for no redundancy to be introduced is

as follows.

Theorem 4.4.4 Let n be a single-fault testable network with identical gates n0, ...,n/t. Let

rf be obtained by replacing n0,...,nk by the single gate n. rf remains fully testable if for
each single fault f onn the corresponding multi-fault on the gates n0, ...,nk is testable inn.

Proof The testability of faults not on n0,...,nk, or n remain unchanged. Each single
fault on n in rf is equivalent to a testable multi-fault on n0, ...,nk in n. Thus, rf is fully

testable. m

The redundant connections may only be created on the merged gate (either on the

inputs ot the outputs). Other sufficient conditions can be constructed but they are fairly
weak and appear to be far from necessary. However, if the area of the circuit is not of
primary concern in the case where a redundant connection may be created, merging may

be omitted to retain testability.

4.5 Redundancy removal problem

Can all redundancies be identified and removed at the moment they are being

introduced? If so, it would be possible to efficiently maintain testability without resorting

to a complete and general redundancy removal such as that performed by automatic test
generation schemes (e.g. Socrates [100]). In particular, are local changes alone sufficient to
maintain single-fault testability? Unfortunately, the answer is no.

First consider node duplication. Assume we start witha given fully testable circuit,

7/, with a critical sub-network, C, where nodes n0,ni,...,nk must be duplicated before C
can be collapsed andresynthesized for delay. Assume that nodes n0,7ii, ...,71* arein reverse
topological order. Using the conditions mentioned in Section 4.4.1, determine whether the
duplication of a node n0 creates a redundancy. If not, duplicate n0 in the new circuit 770.
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Figure 4.7: Example: Redundant fault on merging
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If duplication of no causes a redundant connection, remove this connection from 770. Then

continue to check for further redundancy on dupUcation of the other nodes on this new

circuit 770.

Consider the irredundant circuit shown on the top left in Figure 4.8. On dupU

cation of gate 2 the stuck-0 fault on input b of gate 2' is untestable in the circuit at the

top right. On removal of this fault new redundant stuck-0 faults are created on input c of

gate 5, input a of gate 3 and input d' of gate 4, as shown in the circuit at the bottom of

the figure. These secondary redundancies may occur on other gates in the circuit. More

precisely, the secondary redundancies can only be created on gates in the transitive fanin

cone of the gates in the transitive fanout of the gate on which the redundant connection

is being removed. Other than this rough location, currently, there is no way of predicting

the effect of a redundancy removal. Analogously, the removal of a redundant connection

created by collapsing and gate merging may also introduce such secondary redundancies

which are difficult to locate precisely.

Thus, it is not possible to maintain complete single-fault testabiUty of a network

during timing optimization with local changes alone.

4.6 Multiple stuck-fault testability effects

Since single stuck-fault testability cannot be maintained, is there a stronger testa

bility property that can be easily maintained as an invariant during the various steps of

resynthesis? Two candidates are multi-fault testabiUty [51] and robust path delay-fault

testabiUty [36]. Similar to single stuck-fault testabiUty, it can be easily shown that dupU

cation and collapsing do not preserve multi-fault testabiUty, while algebraic synthesis of a

(single-output) node in a multi-fault testable network preserves testabiUty. However, unUke

single-fault testabiUty, multi-fault testabiUty is retained on merging of identical gates in a

fuUy testable network.

Theorem 4.6.1 100% multi-fault testability is preserved on gate merging.

Proof Let gates Tii and n2 in 77 be merged into a single gate n in circuit rf. Consider any

multi-fault m in rf corresponding to an array of single stuck-faults. Any single stuck-fault

in rf corresponds to either a single or multiple stuck-fault in 77. If the fault is on n in 77' it

corresponds to a multi-fault on n\ and n2 in 77, otherwise it corresponds to a single-fault in
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77. Thus, each component single-fault of a multi-fault in t?' corresponds to a multi-fault in

77, implying that for every multi-fault in 77' there is a corresponding multi-fault in 77. Since

77 is multi-fault testable, every multi-fault in 77' is testable. •

UnUke the case of single faults, a redundant multi-fault cannot be localized as

occurring only on the dupUcated or coUapsed gates. This happens because a redundant

multi-fault mayhaveits component single faultsanywhere in the circuit,althoughit appears

that at least one stuck-faultcomponent mustoccuron the dupUcated or coUapsed gate. This

causes the redundancy identification phase itself to be nearly hopeless.

In summary, the case of multi-fault testabiUty is similar to single-fault testabiUty.

UnUke single-fault testabiUty, multi-fault testabiUty is retained on gate merging. However,

it is not retained during dupUcation and coUapsing, and redundancy removal ofmulti-faults

is not practical.

4.7 Robust delay-fault testability effects

Here it is first shown that 100% robust path delay-fault testabiUty3 is retained

during timing optimization if the initial circuit is synthesized using algebraic factorization

on an initial two-level rpdft implementation. Besides providing high levels of testabiUty

these circuits have properties that make them attractive in timing optimization, as wiU be

discussed in Section 4.7.5. Each step of timing optimization is again considered as being

separately performed on a fuUy rpdft circuit to determine the effects on the testabiUty of

the resultant circuit.

4.7.1 Node duplication

Theorem 4.7.1 100% rpdft is preserved on gate duplication and the set of tests is pre

served.

Proof Let 77 be the initial network and 77' be the circuit after dupUcation. The number

ofpaths remains unchanged by dupUcation and each path P' in 77' corresponds to a unique
path P in 77. The paths in 77 and 77' are identical except for a relabeUng ofgates in thepath.
This means that for each input vector, for any path P in 77 and the corresponding path P'

3As mentioned earlier, all the results stated here are for the hazard-tree single-path propagating delay-
fault model. However, the results extend to the general model. Wherever possible, the proofs wiU avoid
discriminating between the two models.
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in 77', the side-paths and side-inputs to the gates have the same value. Thus, if P is robust

path delay-fault testable, so is P'. This also impUes that any test vector pair for P in 77 is

a test for P' in 77'. Hence, the set of tests is preserved. •

4.7.2 Resynthesis of a collapsed node

Theorem 4.7.2 100% RPDFT is preserved on algebraic synthesis of a node and the set of
tests is preserved.

Proof Let n be a node in a fuUy RPDFT network 77 that is replaced by an equivalent

algebraicallysynthesized sub-network 77„ in 77'. Let P be the paths in 77 and P' be the paths

in 77'. Let Pn be the paths passing through n in 77 and P;Jn be the paths passing through

7?n in 77'. Clearly, the paths P - Pn in 77 remain unchanged in 77', since they are unaffected

by the factoring on node n. Since the logical functionaUty of each side-input to every path

in P - Pn also remains unchanged, these paths remain RPDFT. Now consider the paths in

Pn. Each path pn € Pn passes through an AND gate and the OR gate in the complex node

representation of n. On factoring, two or more of these paths are merged into a single path

p'n G P{fn (c.f. Section 4.2). The concern is with the rpdft of p'n. Since each path in Pn

that is merged into p'n is RPDFT, pfn itself is tested for RPDFT by any one of the tests of a

component path. Hence, 77' is 100% RPDFT and the test set is preserved. •

4.7.3 Merging of identical nodes

Theorem 4.7.3 100% rpdft is preserved on gate merging and theset of tests is preserved.

Proof Similar to that of Theorem 4.7.1. Let 77 be the initial network and 77' be the circuit

after merging. The number of paths remains unchanged by merging and each path P' in

77' corresponds to a unique path P in 77. The paths in 77 and 77' are identical except for a

relabeling of gates in the path. This means that for each input vector, for any path P in 77

and the corresponding path P' in 77', the side-paths and side-inputs to the gates have the

same value. Thus, if P is robust path delay-fault testable, so is P'. This also impUes that

any test vector pair for P in 77 is a test for P' in 77'. Hence, the set of tests is preserved. •
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4.7.4 Collapsing of critical sub-network

CoUapsing of a sub-network in a RPDFT circuit may create untestable robust delay-

fault paths. This redundancy can be related to the spUtting of paths that occurs on col

lapsing (c.f. Section 4.2). For example, if a singlepath is spUt due to coUapsing, then some

of the paths resulting from this spUt may become untestable. An example is shown in Fig

ure 4.9. In the fuUy rpdft circuit shown on the top in the figure, consider the path shown

in bold, {d,5,7,o}. On coUapsing the encircled region; consider the bold paths {d,8,11,o},

{d,9,11,o}, {d,10,ll,o} in the new circuit. These three paths correspond to the spUtting

of path {d,5,7,o} in the initial circuit. The path {d,10,ll,o} is RPDFT whereas the other

two paths are (robust) untestable for delay-faults. Now consider the path {6,3,5,7,0} in the

original circuit. No spUtting occurs and the corresponding path is {b, 10,11,7,o}. Hence,

if the original path is RPDFT, so is the corresponding path after coUapsing.

Functions also exist that are not fuUy RPDFT in any two-level implementation,

but may be realized with 100% rpdft in a multilevel implementation [36, 63]. Therefore,

on coUapsing these circuits to two-levels it is impossible to retain the fuU rpdft property.

However, we can prove a result for a smaller class of RPDFT circuits, denoted ARPDFT,

namely those multilevel circuits that are obtainedfrom two-level 100% RPDFT circuitsusing

algebraic factorization only.

Theorem 4.7.4 Let no, ...,nk be all the nodes in a critical sub-network C of an arpdft

network rj that are collapsed into node nk. The new network rf is an ARPDFT network.

Proof The number of paths in the circuit may change due to coUapsing. Each path in

77 is a merge of some paths from the original two-level function F. Since the paths in 77'

correspond to some spUtting of paths in 77, 77' must also be some merge (possibly different

from that of 77) of paths from F. Thus, 77' remains rpdft since each path in the two-level

implementation of F is RPDFT. •

It can be easUy seen that performing dupUcation and merging on an arpdft

circuit results in an arpdft circuit. This foUows simply because any arpdft circuit is also

a rpdft circuit; applying Theorems 4.7.1 through 4.7.3 yields the result.

Thus, for the synthesis approach of obtaining multilevel RPDFT circuits starting

from fuUy testable circuits via algebraic factorization only, we have shown this testabiUty

criterion is retained during timing optimization.
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Figure 4.9: Example: rpdft untestabiUty on coUapsing
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4.7.5 Delay-fault testability in delay optimization

An important effect that arises out of using robust path delay-fault circuits in

delay optimization is discussed here. This is done by an analysis ofthe computed delay of
a circuit before and after timing optimization using three different techniques.

Static analysis: Consider a delay optimization algorithm that selects the critical

path based on the longest path delay in the circuit, which may be false. After timing
optimization, even though the path is topologicaUy shorter, it may become sensitizable and

possibly cause an increase in the delay of the circuit.

Viability analysis: The problem due to speed up offalse paths may be avoided

by resorting to a more accurate delay analysis algorithm, such as viabiUty analysis [76]
(Section 2.3.1). However, there are at least two disadvantages of this. First, viabiUty
analysis is computationally expensive. Second, whUe the longest sensitizable path isselected
to be sped up, the resynthesis may cause a previously non-sensitizable path to become

sensitizable. Though this new sensitizable path is not longer than the critical path of the
original circuit, it may weU become the longest sensitizable path in the new circuit. Thus,
in the worst case, the timing optimization operations may not have provided any speed up

in the circuit.

arpdft circuits: On the other hand, if a 100% ARPDFT testable circuit is used in

delay optimization, every path remains statically sensitizable throughout the process and
the longest pathis always critical. Thus, once the longest path is selected for speed up, the
circuit delay after timing optimization is always predictable. However, whUe arpdft is an

attractivetestabiUty criterion it is not known if allcircuits may be implemented as arpdft

circuits with the same performance, albeit with some (possibly significant) area penalty.

4.8 0-1 static sensitization

In the previous section, themost stringent condition known for testabiUty, namely
robust path delay-fault testabiUty (synthesized using algebraic factorization on a fuUy
testable two-level circuit), is shown to be invariant during timing optimization. This cri
terion also has a desirable property in the speed-up ofcircuits, since the problem of false

paths does not arise when using this criterion. However, it is not known whether there
exists an equivalent RPDFT implementation for every circuit. AdditionaUy, due to the (pos-
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sibly severe) area overhead when implementing this criterion, it is pertinent to ask if there

exists a weaker testabiUty criterion which can always be achieved on an arbitrary circuit

and preserved during timing optimization. A testability-timing invariant is now considered

by defining a new testabiUty model which includes the advantages of delay-fault testabiUty

for timing considerations, but reduces the stringent constraints on synthesis. It combines

the least common denominators for timing and testabiUty properties of a circuit. Recall the

definition of a path being statically sensitizable to 0 or 1 .

Definition 4.8.1 A path is said to be statically sensitizable to 0 (statically sensi

tizable to 1) if there exists an input cube which sets all the side-inputs to the path to

non-controlling values and causes a value ofO (l) on the output of the path.

Definition 4.8.2 A path is 0-1 statically sensitizable if it is statically sensitizable to a

0 and statically sensitizable to a 1 . A Boolean network is 100% 0-1 statically sensitiz

able if each path is 0-1 statically sensitizable.

From the definition above it is seen directly that a 100% 0-1 statically sensitizable

circuit impUes:

1. Each path is statically sensitizable, and hence there exist no false paths.

2. The network is fully single-fault testable. In fact, each single-fault is testable along

each path to any primary output since all the paths are statically sensitizable.

The weakest known invariant for predictable timing analysis is the static sensitization of

each path. If static analysis is used, then the occurrence of long false paths causes pessimism

in the results. If viabiUtyanalysis is used, then any increase in the delay of a gate (or path)

during speed-up (this may easily happen due to an increase in fanout of the gate) may

result in a change in viabiUty of other paths. This results in expensive recomputation of the

sensitization of paths throughout the circuit, and the possibility that a long false path may

become viable. (Note that viabiUty analysis on paths remain unchanged if gates are only

sped up [76].) Single-fault testabiUty is the weakest circuit testabiUty property. Thus, 0-1

static sensitization possesses the weakest properties that exist for accurate timing analysis

(using static analysis) and testabiUty of Boolean networks.

The relationship to the other known fault models is illustrated in Figure 4.10.

Complete 0-1 static sensitization is implied by a 100% rpdft circuit and in turn impUes fuU
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Figure 4.10: Relationship of 0-1-static-sensitization to fault models

single-fault testabiUty. There appears to be no relationship between multi-fault testabiUty
and 0-1 static sensitization. 100% 0-1 static-sensitizable circuits exist which are not fuUy
multi-fault testable [31]. However, it is not known if fuU multi-fault testabiUty in asingle
output circuit impUes fuU 0-1 static sensitizabiUty, although it appears that multiple output
multi-fault testabiUty does not require 100% 0-1 static sensitizabiUty.

4.8.1 Synthesis of 0-1 statically sensitizable circuits

By far the most significant difference between the 0-1 staticaUy sensitizable prop
erty and rpdft is that every circuit can be made 0-1 staticaUy sensitizable with no increase
in the delay ofthe circuit; the same is not true of RPDFT.

Conceptually, afuUy 0-1 staticaUy-sensitizable circuit may be achieved by convert
ing any arbitrary circuit, 77, into alogically equivalent circuit, 77 „ with fanout greater than
one only on the primary input leads. This is achieved by performing areverse topological
traversal of the circuit and performing adupUcation of agate which has fanout greater than
one. On performing redundancy removal on 77// afuUy 0-1 staticaUy sensitizable circuit is
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obtained. By using the kms algorithm of Chapter 3, the delay of the final circuit can be

ensured to be no greater than the initial circuit (c.f. Section 3.3).

In the case of rpdft, as mentioned previously, circuits exist for which fuUy rpdft

versions can only be achieved via resynthesis [63], which may result in an increase in the

delay of the circuit.

4.8.2 Node duplication and merging of identical nodes

Theorem 4.8.1 100% 0-1 static sensitization is preserved on gate duplication and gate

merging. In addition the test vectors are also preserved.

Proof Similar to that of Theorems 4.7.1. Let 77 be the initial network and 77' be the circuit

after dupUcation or merging. The number of paths remains unchanged by dupUcation or

merging and each path P' in 77' corresponds to a unique path P in 77. The paths in 77

and 77' are identical except for a relabeUng of gates in the path. This means that for each

input vector, for any path P in 77 and the corresponding path P' in 77', the side-paths and

side-inputs to the gates have the same value. Thus, if P is 0-1 statically sensitizable, so is

P'. This also impUes that any test vector pair for P in 77 is a test for P' in 77'. Hence, the

set of tests is preserved. •

4.8.3 Resynthesis of a collapsed node

Theorem 4.8.2 100% 0-1 static sensitization is preserved on algebraic synthesis of a node

and the set of tests is preserved.

Proof Similar to that of Theorem 4.7.2. Let n be a node in a fuUy 0-1 statically sensi

tizable network 77 that is replaced by an equivalent algebraically synthesized sub-network

77„ in rf. Let P be the paths in 77 and P' be the paths in 77'. Let Pn be the paths passing

through n in 77 and P^n be the paths passing through 7?n in 77'. Clearly, the paths P —Pn

in 77 remain unchanged in 77', since they are unaffected by the factoring on node n. Since

the logical functionality of each side-input to every path in P - Pn also remains unchanged,

these paths remain 0-1 staticaUy sensitizable. Now consider the paths in Pn. Each path

Pn € Pn passes through an and gate and the OR gate in the complex node representation

of n. On factoring, two or more of these paths are merged into a single path p'n G P^n

{c.f. Section 4.2). The concern is with the 0-1static sensitizabiUtyof p'n. Sinceeach path in
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Pn that is merged intopn is 0-1 statically sensitizable, p'n itself is 0-1 staticaUy sensitizable
by any one of the tests of a component path. Hence, t/ is 100% 0-1 staticaUy sensitizable
and the test set is preserved. m

4.8.4 Collapsing of critical sub-network

CoUapsing of a sub-network in a 0-1 static sensitization circuit may create paths
that are not statically sensitizable. While the 0-1 static sensitization property can be
recovered for these classes ofcircuits,it maybe computationally expensive. However, wecan

prove a result for a smaller class of 0-1 static sensitization circuits, namely those multUevel
circuits that are obtained from two-level 100% 0-1 staticsensitization circuits using algebraic

factorization only. Let the notation 0-1 algebraic static sensitization denote these circuits.

Theorem 4.8.3 Let n0, ...,nk be all the nodes ina critical sub-network C ofa 0-1 algebraic
static sensitization network n that are collapsed into node nk. The new network rf is a 0-1

algebraic static sensitization network.

Proof Similar to that ofTheorem 4.7.4. The number ofpaths in the circuit may change

due to coUapsing. Each path in 77 is a merge of some paths from the original two-level
function F. Since the paths in 77' correspond to some spUtting of paths in 77, 77' must also
be some merge (possibly different from that of 77) of paths from F. Thus, 77' remains 0-1
statically sensitizable since each path in the two-level implementation of F is 0-1 staticaUy
sensitizable.

It can beeasUy seen that performing dupUcation and merging on an 0-1 algebraic
static sensitization circuit results in a 0-1 algebraic static sensitization circuit.

4.9 Other performance optimizations

Generalized select transform: Ageneralization of the Shannon cofactor [103] is
effective in delay optimization ofcircuits with only a few long critical paths. This technique
is reported in [11] and is iUustrated using Figure 4.11, where the bold path is critical. The
transformation moves the late arriving signal a nearer to the output.

Generalized bypass transform: Chapter 2 describes the example ofthe carry-
skip adder which is obtained from a ripple-carry adder by adding bypass logic consisting
of an AND gate and a MUX. Arecent technique that generalizes this technique to speed
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Figure 4.11: GeneraUzed select transform

up arbitrary circuits by making critical paths false is described in [78]. This approach is

iUustrated using Figure 4.12. The speed-up is accompUshed by making the long path from

fm a false path.

Boolean simplification: Don't cares arising from the structure of a Boolean

network are most often used to minimize the area of the circuit. [26] describes a method

of optimizing the delay of the circuit by reducing the level of the critical paths whUe using

don't cares during simpUfication. The global flow technique of using impUcations between

connections to move late signals forward may be considered similar to this technique [11].

Each of these three techniques uses Boolean identities in the appUcation of the

timing optimization transform. Thus, it is more difficult to say much about the testabiUty

invariance of a circuit when employing these techniques. Similar to the reasoning used

earUer in this chapter, the locality of possible redundancies is known. However, removal of

these redundancies may create secondary redundancy elsewhere in the circuit.
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Figure 4.12: GeneraUzed bypass transform
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4.10 Conclusions

Motivated by the results of Chapter 3 where it is proved that redundancy is not

necessary to reduce the delay of a circuit, this chapter explores whether performance op

timization may be performed without introducing redundancy. It is demonstrated how

timing optimization may introduce single-fault redundancies. WhUe identification of these

redundancies is straightforward, removal of these redundancies on-the-fly during timing

optimization involves substantial computation, equivalent to complete (conventional) test

generation and redundancy removal [100].

These results motivate the need for an alternate testabiUty criterion that can be

easUy maintained during timing optimization. It is shown that the stringent condition

of robust path delay-fault testabiUty can be easUy maintained with the current known

synthesis procedures. This requires that only algebraic factorizations be used along with

dupUcation, coUapsing and merging of gates on an initially two-level robust path delay-fault

testable circuit. At the present time it is unclearwhether the use of robust path delay-fault

testable circuits may preclude high performance circuit implementations. The impact on

the resulting area is also an open question.

A new testabiUty property, termed 0-1 static sensitization, is developed that has

the same attractive properties of arpdft circuits, viz. invariance during timing optimization

and absence of false paths. UnUke ARPDFT however, fuUy 0-1 staticaUy sensitizable circuits

can always be realized with no increase in the delay of the circuit.

The results of this chapter restrict the speed-up operations to rpdft circuits

synthesized used constrained two-level minimization [36, 37], foUowed by algebraic factor

ization, i.e. ARPDFT circuits. Even though this is presently the only effective method of

synthesizing RPDFT circuits, it is interesting to explore if transformations exist which can

derive a fuUy rpdft circuit from a general Boolean network. While one such technique has

been proposed [63, 89], it is based on repeated appUcation of the select transformation de

scribed in Section 4.9. This procedure involves a significant area penalty and less expensive

techniques axe stiU desired. Future work wiU aim at developing an algorithm that appUes

a series of transformations to achieve fuU robust delay-fault testabiUty. Currently, a few

results are known in this direction, but further work is required before an efficient algorithm

is realized. For a given circuit, the goal of such an algorithm can be Usted as:

• Make the given circuit rpdft.
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• Ensure the final circuit is as fast as the initial circuit.

• Minimize the area overhead in the transformation.

As shown earUer, rpdft is not retained during coUapsing. However, it is plausible that ro

bust untestable delay-faultsintroduced during timing optimization may be removedby local

redundancy removal and resynthesis only. Further exploration of this aspect is required.

A second problem that remains unexplored is the effect of performance optimiza

tions on the timing behavior of a circuit. As mentioned qualitatively in Section 4.7.5, whUe

the timing characteristic of paths through the resynthesizedregion may improve, the timing

behavior of paths outside this region may deteriorate. This appears especiaUy true when

functional analysis is used to determine the delay of a network. Preliminary results of

the effects of transistor sizing on timing characteristic of paths has been recently reported

in [25]. However, the effectsof structuralchanges in the networkis not that weU understood

as yet.



Chapter 5

Path-Recursive Functions and

Applications

In Chapters 2 through 4, the interaction between the delay and testabiUty of

circuits is studied. Two properties of circuits considered there are the computed delay

of a circuit using viabiUty analysis and robust path delay-fault testabiUty. The efficient

computation of these two properties is the subject of this chapter. Both problems fall into

a class of problems that involve the functional analysis on paths or sets of paths. A general

approach that efficiently solves this class of problemsis developed. The chapter is organized

as foUows. Section 5.1 is an introduction and motivation to the difficulty of the problems

being solved. An overview of the proposed paradigm that can be used to solve any functional

path analysis problem is presented in Section 5.2. The first appUcation of the technique is

to viabiUty analysis using a weU-known path-tracing algorithm (Section 5.3). However, due

to a drawback arising from the amount of path-tracing required in large circuits, a timing

analysis technique without path-tracing is introduced and developed in Section 5.4. The

functions that provide necessary and sufficient conditions for the most stringent model of

delay-fault test generation are developed in Section 5.5. The appUcation of the technique to

the other delay-fault models is indicated in Section 5.6. Section 5.7 concludes the chapter.

5.1 Functional path analysis problems

Chapters 3 and 4 primarily deal with the synthesis of fuUy testable circuits during

or after the performance optimization process. However, the synthesis techniques discussed

121
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there only apply foUowing an analysis of the requisite property being synthesized for. For

example, the results of Chapters 2 and 3 require the computation of the delay of a circuit

using viabiUty analysis. Chapter 4 provides invariance results of the robust path delay-fault
testabiUty of circuits undergoing performance optimizations. Thus, a necessary require

ment before the synthesis procedures become efficient is the functional analysis of paths

for delay estimation or delay-fault test generation. In fact, the functional analysis of paths

through combinational logic circuits has emerged as a critical problem in timing analysis,

delay-fault and r-irredundant test generation, and hazard analysis. These areas have been

thoroughly studied and axe weU understood [14, 9, 76, 75,41,106, 68, 36, 88,110, 42]. The
algorithms devised, however, have not yet been able to analyze large combinational circuits.

In this chapter this problem is solved by introducing a general framework for algorithmic

development and applying this framework to timing analysis and delay-fault test generation

problems.

Timing analysis and delay-fault test generation are examples of problems which

require functional analysis on the paths of the circuit. In both problems the question of
interest is whether a pathora set of paths is capable of propagating anevent; the problems

differ in the subtleties of event propagation, and, more precisely, the delay assumptions

underlying event propagation. For example, in timing analysis theinterest is in determining

the longest path in the circuit along which a signal can propagate. In robust path delay-

fault test generation, for each path in the circuit, a vector pair that sensitizes the path

under test is required. Moreover, the test must not be invaUdated by hazards.

The first, and to date the only, approach taken for both problems is a modification

ofexisting stuck-fault test generation programs [14,41, 68,101]. Paths are traced, input to
output, asserting values on signal wires during the trace. The programs and problems differ
in the values which are asserted onsignal wires, butin noother essential manner. In [74], it

isobserved thatasserting values onsignal wires isequivalent to theimpUcit computation ofa
Boolean function. It is concluded there that the various programs can be analyzed through

the expUcit computation of these functions. In [74], the suite of programs presented in
the Uterature for the timing analysis problem axe analyzed and systematized in precisely

this fashion. It is shown that the various programs in fact differ only in the functions they

compute and themanner inwhich these functions axe determined tobesatisfiable. However,
this expUcit computation of the sensitization functions is viewed largely as a theoretical
tool in [74], though a program is devised which performs timing analysis through expUcit
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computation of these functions [75]. Up to now it appears that path-tracing algorithms

outperformed the approach of computing a single Boolean function that captured a desired

property for a path or a set of paths.

Recently, two factors have emerged which make expUcit computation of these

functions attractive as an implementation strategy for timing analysis and delay-fault test

generation:

• Analysis of the form of the sensitization functions reveals that the expUcit form of

these functions yields an efficient data structure for their storage and manipulation;

and

• Recent work in test generation [64] demonstrates that, whUe the asymptotic com

plexity of finding a satisfying assignment of an arbitrary Boolean function is Ukely

exponential, the practical performance of weU-chosen algorithms is very good.

The contribution of this chapter is to demonstrate the first aspect. The second factor is

described in Appendix A. Here timing analysis and delay-fault test generation are performed

through the expUcit computation of path sensitization functions. A recursive form of the

formulation of these functions is provided, from which a multUevel logic network is derived

to represent these functions. It is shown that the size of such a network is linear in the size

of the network under analysis.

5.2 Path-recursive functions

Any path analysis problem that involves the computation of Boolean functions

may be naively formulated as foUows. Let the property that is being determined for a path

P in a network rj be denoted by the function Tp. Tp is usually a function of the primary

inputs plus some intermediate variables in n depending on the computation involved. The

.property is said to exist for P if a satisfying assignment is found for Tp. Each satisfying

assignment is specified as a set of values on the primary inputs. Clearly, by exhaustively

computing Tp for each path P in n, it can be determined whether the desired property

holds for any path. The first drawback of this method is the number of computations

required to compute each Tp. A second drawback arises if the size of the representation

of Tp happens to be large. In general, a bound on the size of the representation cannot

be guaranteed by this method. Besides the impact on the memory usage, the size of the
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function is of concern for the satisfiability phase, where a bdd or sat program is invoked.

While there is no rigorous proof that a compact representation always requires less effort

for processing than a larger equivalent representation, this observation holds empirically for

both the SAT program (c.f. Appendix A) and BDD computations [12].

The most common approach to alleviate the first problem is to use a path-tracing

algorithm to compute the functions incrementaUy. Typically, a function of a given path P

may be expressed recursively as some Boolean combination of other functions on partial

paths that interact with P. These functions are buUt up while paths axe traced. Thus, it is

a small step from the realization that path-tracing algorithms impUcitly compute Boolean

functions to the realization that the reason algorithms trace paths is simply to compute

these functions efficiently. However, it is possible that there axe more efficient methods

than path-tracing to compute these functions; hence it is worthwhUe to write the functions

out expUcitly so that algebraic machinery may be used to simpUfy the functions and suggest

new methods of computation. The set of functions which are computed by path-tracing

algorithms are coUectively called path-recursive functions. A path-recursive function 7 on

a path P is denoted 7p, and is a function from the space of primary input variables onto

{0,1}.

Definition 5.2.1 A function 7 is path-recursive over a network N if and only if there

is a partial order •< on thepaths of N, such thatfor eachpath P = {fn,..., /TO} = {P',fm},

where /m-i><7i>---><7n are the fanins of fm, there exist functions 7p,—,7p (one for each

fanin of fm), such that:

1. 7P = ^(/m_i,yi,...,flfn,7P',7p,».,7p); and

2. Each 7j> is a function of path-recursive functions 7q for Q •< P.

If there is an expressionfor ~fp linear in the size of the set g\, ...,gnf 7 is said to be linear

path-recursive.

Path-recursive functions over a given network rj may be represented in a single

multilevel network f/pojfo. Since each path-recursive function 7p is dependent only upon
thefunctions 7q for Qpreceding P in the partial order, the construction ofVpaths mav ^e
efficiently interleaved with path-tracing by choosing a path-tracing order consistent with

the partial order -<. In particular the best-first order, preferred for efficiency reasons for
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timing analysis on Boolean networks [74], is consistent with the partial order under which

the viabiUty function is path-recursive.

There are two scenarios that arise when tracing paths. In the first category of

problems, such as the best-first path-tracing algorithm for viabiUty analysis, the size of

Vpaths 1S ^near m both the size of n and the number of paths traced before a true path
is found. In the second case, such as robust delay-fault test generation, the size of the

function computed is independent of the number of paths traced before the current path.

In this case, any topological order is consistent with the partial order -<, and the size of

Ipaths 1S ^near onHj m tne s*ze °f Tl- Both cases permit compact representations, and
rapid satisfiabiUty tests in the average case. This is because the efficacy of the satisfiabiUty

procedure is dependent upon the size of the function being tested for satisfiabiUty. However,

as shown in Section 2.3.1, the functions computed for problems in the first category may

sometimes get very large if the number of false paths is huge. Thus, it is advantageous to

determine formulations that fall into the second category. One such formulation for viabiUty

analysis is developed in Section 5.4 and is empirically shown to be superior to the original

formulation.

Figure 5.1 iUustrates the construction of the multilevel network that is used to

compactly represent Unear path-recursive functions. The network on the left is to be ana

lyzed for some path-recursive function. For each node i in this network, the corresponding

path-recursive function Ri is created in the network on the right (shown in bold). This is

done by traversing the nodes in topologicalorder. Thus, when creating the function Ri, the

functions Rj for each fanin node j of i axe already created and available for use in creating

the node function. In addition the node functions of the fanins of i may also be used in

creating Ri (shown by the dotted Unes in the figure). To determine the existence of the

property for node i, either a bdd is buUt, or the sat program (Appendix A) is called for

the function Ri.

The importance of path-recursive functions in general, and Unear recursive func

tions in particular, becomes clear when we consider the complexity of the general path

analysis algorithms. If the function computation is Unear in the number of fanins to a node,

then the amortized overhead of function computation is Unear in the maximum fanin of

a network node. This overhead compares favorably with the common practice of tracing

impUcations of assertions, which (depending upon the algorithm used) is no better than

Unear in network size and may be as much as quartic in network size [74]. Further details
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Original network Network to compute path-recursive functions

Figure 5.1: Example: Representing path-recursive functions by multilevel network
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on the amount of computation required when employing the path-recursive paradigm is

provided when each problem is considered individuaUy.

5.2.1 Linearizing Boolean functions

A result is now stated that guarantees a Unear sized representation for Boolean

functions that exhibit a specific property. In particular, this holds for any Boolean function

that is true when any subset of variables satisfy some Boolean function and the remaining

variables satisfy some other property.

Theorem 5.2.1 If Tf is a Boolean function expressed as

^/=E{iK n m (s.i)
UCE g€U g€£-U

where ag and (3g are arbitrary Boolean functions, and S is an arbitrary set,

then an equivalent representation of Tf is

g€£

Proof Assume that £ is the set of k+ 1elements, go,gi,...,gk- Let Xj for j = 1,2,...,2*+1

denote index functions from the domain 0,1,..., k to the range 0,1,..., k.

The jth product term in the sum-of-products expression in the right hand side of

Equation (5.1) can be written as

m k

n«fVo n fat* (5-3)
i=0 i=m+l

Note that there axe 2k+1 product terms in Equation (5.1).

The right hand side of Equation (5.2) can be written as

(«» + A* )(** + 4/i ).»(<*,* + Pg„ ) (5.4)

Thus, the ith term in Equation (5.4) is (ag. + figi).

E(II<*, II MQlHeLi + P.):
UCe g&J g€£-U g&

For each term of the right-hand side of Equation (5.1) an equivalent term is be generated

when the right-hand side of Equation (5.2) is expanded. In particular, the general term in

Equation (5.3) is obtained as the product ofctgx.(i) for 0 < i < mand /?ffA.(t) for m+1 < i < k
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from the \j(i)th term in Equation (5.4).

II(«» +A)£E{IItt» n M'
g€£ UC£ g€U g€£-U

In the sum-of-products representation derived from the right-hand side of Equation (5.2),

each term is of the form given by the right-hand side of Equation (5.3). Hence right hand

side of Equation (5.2) C right hand side of Equation (5.1). •

This result can be considered analogous to the weU known result for equivalence

between a sum-of-product of minterms and a product-of-sums of minterms for a given

set of Boolean variables. The significance of this theorem is that it allows an arbitrary

Boolean function that is defined in the form of (5.1) to be realized by an equivalent Unear

sized representation. The remainder of this chapter demonstrates three appUcations of this

theorem in performing fast timing analysis and delay-fault test generation.

The statement of the theorem can be easUy generalized to more than two subsets1.

Theorem 5.2.2 If Tf is a Boolean function expressed as

VC£ i=l g€U{ g€V

where S is an arbitrary set, ag, i = l,...,n and ftg are arbitrary Boolean functions, Ui C £

for i = 1, ...,n, £?=i Ui = 6- V, Ui n U, = 0 for all i ± j,

then an equivalent representation of Tf is

g€£ t=l

Proof Similar to Theorem 5.2.1. •

5.3 Viability analysis

The contributions of the work presented here is discussed foUowing a brief review

of the research in the area of timing analysis. The obstacles that these methods face in

realizing effective practical algorithms axe highlighted.

Functional timing analysis is important during synthesis since circuit simulation is

typically too slow to be used for an entire circuit. It is weU known that using static analysis

with the longest path delay as an estimator of the true delay is sub-optimal. Often both

1This general form is not used in this thesis.
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designers and synthesis algorithms [66, 78] actuaUy exploit the fact that the longest path

does not contribute to the delay of the circuit to come up with high-performance circuits.

There axe two requirements for a functional timing analyzer. The delay estimation

must be accurate and the analysis must be robust [76], that is, it must provide a correct

delay estimate over a range of delays. The simple condition of static sensitization for a

path does not guarantee accuracy, since it may sometimesunderestimate the true delayof a

circuit [14]. The condition of dynamic sensitization is not robust. ViabiUty analysis hasbeen

shown to be the most accurate and robust of all pubUshed timing analysis algorithms. The

algorithms of [14] and [41] have been shown to sometimes provide more pessimistic delay

estimates than viabiUty analysis. The method of [24] gives the same result as viabiUty

analysis, but reports fewer true paths.

As mentioned earUer, the most common approach to timing analysis has been mod

ifications to existing test generation algorithms. The first approach to timing analysis used

the condition of static sensitization to determine if a path is true or false [9]. This condition

easUy fits into the test generation paradigm; it requires the justification of non-controlling

values on the side-inputs to the path being analyzed. However, static sensitization is known

to underestimate the actual delay of a circuit [14, 76]. A way to correct this optimistic,

and erroneous, estimation by static sensitization is provided in [14]. The algorithm there

again naturally extends to the test generation paradigm. This approach, however, does not

guarantee as tight a delay estimate as may be possible. Hence, recourse is taken to viabil

ity analysis theory for delay estimation, first presented in [76]. More recently, the method

of [41] gives the same delay estimate as viabiUty analysis. The approach there uses test

generation approach to determine the sensitization condition of each path being traced.

A test generation based approach to determine whether a path is sensitizable,

performed on a path by path basis, is undesirable for two reasons. First, numerous paths

may be traced before a true path is found, thus requiring several calls to the modified test

generation program. Second, justification on a complete path is often overkiU. There may

be a short partial path which is not sensitizable under any input vector. Hence all paths

that include this partial path segment axe not sensitizable, and several individual calls to

the modified test generation program for each complete path can be replaced by a single caU

on the partial path segment. This drawback is alleviated by the best-first algorithm that is

suggested in [9] and also employed in viabiUty analysis [75]. Recently, [38] provides a new

algorithm for delay estimation based on a modified multi-fault test generation algorithm
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that also considers timing information. The delay is estimated using the same conditions

as [24], but path-tracing is not performed.

5.3.1 Viability equations

In viabiUty analysis, the longest path along which an event can propagate from

the inputs to the outputs, given an input vector c and an upper bound on the delay of

each input to a gate, is to be determined. This determination of whether an input could

propagate through gate /,- is performed as foUows. For an input /,_i to /,-, some of the

other side-inputs to /,• have a lesser upper bound on their delays; these inputs must be set to

their sensitizing (non-controUing) values. The inputs which have an equal or greater upper

bound on their delays axe of indeterminate value when an event on /,_i is to propagate

through /,-. To be conservative, their values must be assumed to be the sensitizing values.

Thus, to determine an upper bound on the delay of a gate input one finds a set of paths

which contain all the paths down which an event travels under input vector c.

An algorithm for viabiUty analysis is given in [75]. The first step in computing

the longest viable path through a network is to formulate the functions associated with the

viabiUty conditions. The second step is the interleaving of the computation of the viabtt-

ity function with the path-tracing procedure in such a way that the overhead of function

computation is minimized to a large extent. In particular, it is shown that computation of

the viabiUty function can be interleaved with the most efficient known path-tracing algo

rithm in such a way that exactly one function computation is required for each partial path

that is traced. This procedure, while as efficient as possible from a path-tracing viewpoint,

nevertheless results in very large functions being generated for analysis [74]. Even though

the best known path-tracing algorithm to perform viabiUty analysis is provided in [75], an

efficient implementation has been lacking because the Boolean function that is derived is

formidable to compute and represent.

The version of viabiUty analysis restricted to networks of simple gates is provided

in Section 2.3.1. The formal definition for the viabiUty function given in [76, 75] is stated

in abstract functional terms, which requires the machinery of an operator calculus. It is

provided here for the sake of completeness.

RecaU that Vg>t denotes the set of paths of length > t which terminate at gate g.

Definition 5.3.1 The Boolean difference off with respect to variable g is fg(& fgi and
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is denoted %/-.

The Boolean difference |£ represents all the conditions under which / is sensitive to a
change in value of g. This is the generalization of the static sensitization condition of /

with respect to g (c.f. Definition 2.3.9).

Definition 5.3.2 The viability function ipP of a path P = {fo,h,...,fm} is defined as
follows

m

tfp=n^p (5-5)
i=0

*£= E ta^n***1) (5-6)
UCS(fi,P) geu

*"*= £ *«• (5-7)

5.3.2 Dynamic programming algorithm for viability analysis

AU the timing analysis algorithms in the Uterature are based on constructing 10-

paths by enumeration of partial paths [9, 14, 41, 75]. WhUe in the case of the procedures

described in [9,14,41], the sensitization condition depends onlyon the path being extended,

in the case of viabiUty analysis, the viabiUty function of a path is not only a function of the

path itself, but also of the viabiUty function of aU adjoining paths at least as long. Correct

computation of the viabiUty function requires that this function be computed for each side

input for each node on the candidate path as that node is encountered. This recursive path-

tracing is too expensive and a more efficient dynamic programming algorithm is suggested

in [75] to avoid recursive computations of path viabiUty function. Refer to [75, 74] for a

complete explanation of the algorithm.

In order to properly maintain the correct value of if?9'* it is necessary that all paths

longer than t be traced before any path of length t is traced through /,-. It is shown in [76]

that any path through /,- is of length > t if and only if it has esperance (The esperance of

a path is the length of its longest remaining extension.) greater than a path of length t

through /t-_i, and hence is traced first by the best-first procedure. This fact allows us to

drop the path lengthsuperscript (t and t£_i in Definition 5.3.2) from the viabiUty functions.

Henceforth, ip9 and Vg%-. axe used instead of ^s,r«-i and Vg,t respectively.

ViabiUty computations were extremely expensive in the implementation reported

in [75], due to two principal difficulties.
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• There was no good procedure implemented for determining whether a Boolean func

tion is satisfiable; and

• In general, the representation of i>p is very large. Indeed, one can see from examina

tion of the equation for ij)p, that computation of a power-set sum is required.

In the next subsection, the path-recursive function for viabiUty analysis is manipulated to

ensure that the function ijtp is of size equal to the size of /,-, and that ij)9 is of size at most

equal to the number of true paths in Pfl,-.

5.3.3 Linearizing the viability equations

Careless computation of the viabiUty functions can lead to exceptional running

times since the functions Vp and ty9 produce very large functions. Therefore, efficient

computation and representation of these functions is a necessity. It is immediate that the

function ij>p in Definition 5.3.2 is path-recursive. Unfortunately, this function is not Unear

path recursive, due to the power-set sum Y^ucsif^P^u-^-Yl^u V,fl,r*'"1}. However, the
function is made Unear path-recursive through the foUowing two steps:

1. Restrict the network to be composed of simple gates only; in this case, the viabiUty

definition becomes:

Definition 5.3.3 A path P = {/o>/i»...»/m} w viable under an input cube c if, at

each node /,- for each gj € 5(/t-, P), either:

• 9j(c) = /(/,-) ; or

• 3Qj € Vg. T/» such that Qj is viable under c

(5.6) is now rewritten as:

UCS{fi,P) g&J h£U

2. Apply Theorem 5.2.1 to the revised equation to get,

«£- n {*•*+(»=wi)» (s-9)
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which is plainly Uneax.

The computation of the sensitization functions using a multilevel representation

is now explained.

Substitute a new variable U9'** for (g = I(fi)) + i*9, and write

tfp= II U9'fi (5-10)
S€S(/,-,P)

where

U9* = (g = /(/,)) + V5 (5.11)

and (as in Definition 5.3.2)

V>fl= £ Ifoj. (5.12)

Note that each ij)p is nowat most the size of fi, and that each newnode U9^ is of constant

size. This has been obtained using two new functions at each connection of the network.

However, the number of new functions is Uneax in the size of the network.

The second step in the transformation is the compact representation of ty9. Main

tain a separate node for each ij>p and add that as a symbol to tj)9 as path P is traced through

g. This transformation has the effect of ensuring that tf)9 has at most one cube (each cube

of size 1) for each true path in Vg,-.

The third step in the transformation is the efficient representation of ij)p. Since

a separate ij)p is to be maintained for each partial path P, let P = {Q,f} for Q a partial

path. Then tj)Q must have already been calculated and available as a separate node before

tfrp is computed. Hence:

il>P = ^>Qi>p (5.13)

i.e., each path sensitization function is a two-input AND gate.

This completes the transformation of an exponentiaUy-sized function into a Unear

number gates. Note that this has been accompUshed by an increase in the number of nodes

in the path analysis network, which means a larger number of nodes to form bdd's for in the

case of bdd justification, and a much larger problem space to explore for the sat program.

Experimental results indicate that this tradeoff is a good one on the benchmark circuits.

The complete algorithm is shown in Figures 5.2 and 5.3. In the main procedure

shown in Figure 5.2, a priority queuedata structure is used to retrieve a partial path (among

those on the queue) that has the maximum esperance [76]. Initially the primary inputs axe
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placed on the priority queue; each has its viabiUty function equal to 1. When a partial path

P is retrieved from the queue, if it is satisfiable the path is extended through its fanout

connection with the longest unexplored path length (or esperance) to obtain a new path

Q. The function C/"/«'-i«/< is updated according to Equation 5.11. The viabiUty function

of Q is computed according to Equations 5.10 and 5.13. FinaUy the esperance of P is

updated before placing it back on the queue. This aUows the other unexplored (and shorter

or equal) extensions from P to be considered at a later time, if necessary. Note that the

functions U^-1 '& and if)p axenodes that axe created in the multUevel network used to store

the path-sensitization conditions (c.f. Figure 5.1).

5.3.4 Complex gates

One assumption made throughout this discussion is that the gates dealt with

are simple gates. Only these gates have controlling vs. non-controlling values for each

input. In [75], complex gates axe dealt with through the use of functional generalizations

of controlling vs. non-controUing values, namely the Boolean difference and associated

operators [76]. However, the data structure representations introduced have reUed expUcitly

on the simple gate model of networks. In order to handle complex gates properly, reference

is made to the use of the macro-expansion operation reported in [76]. A macro-expansion

of a gate g is its realization as a network of gates, with one distinguished fanout gate. Each

internal gate and wire in the network realizing g has delay 0, and the output gate of the

macro-expanded network has delay equal to the delay of g.

An example of the macro-expansion operation is shown in Figure 5.4 [74]. Two

macro-expansion networks of a complex gate / computing the function b(a+ c) with a delay

of 2 axe shown; in circuit (l) the AND gates axe assigned delays of 0 and the OR gate is

assigned delay 2 (in circuit (2) the OR gate has delay 0 and the and gate has delay 2). As

pointed out in [74], for every viable path through the complex gate, there exists a viable

path with the same delay in the macro-expansion network of the complex gate. However,

the converse does not hold. For example, if b is late-arriving, the path {a, x,f} is viable

when c = 1 in circuit (1) of Figure 5.4. For the complex gate however, the path from a

through / is not viable, using the computation of Equations 5.5 through 5.7.

The macro-expansion theorem [76] guarantees that viabiUty analysis on any cho

sen macro-expansion of the network n wiU not underestimate the length of the longest
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find_longest_true_path(T/) {

/* U9'f represents sensitizing condition for connection from g to / */
rjg,f - j(^) f0r eacn fanin g 0f eacn gate / in 77.

initialize queue to primary inputs of circuit.

Foreach path P on queue

V>P = 1.

while (path P = pop(queue)) {

/* satisfiability check */

if (^p^O) {

/,-_! is last gate of P.

if (/t_i is a primary output)

return "True path is" P.

/* fi is a fanout of /,_! with longest unexplored path,

sensitizing condition for connection from fi-\ to /,- is

increased (c.f. Equations 5.11 and 5.12) */

Jjfi-iJi —Tjfi-ufi _j_ typm

Q = {P> fi}.

/* Store i{>q for later use */

ij)Q = viabilityjfunction(P, /,).

if there are more fanouts of /t_i {

update esperance of P.

insert P on queue.

}

}

}

Return "No true paths".

}

Figure 5.2: Dynamic programming procedure to find longest viable path
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/* path-recursive computation of viability condition */

viability_function(P, /,-) {

fi-i is the last gate of P.

4>P{ = 1.

Foreach fanin g of /,- {

if tg*fi-0 {

/* Computation of Equation 5.10 */

^ = t/)p{ * TjgJi #

}

}

return• i>p * Vp.

Figure 5.3: Computation of the viabiUty function
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3>T>
d)

(2)

Figure 5.4: Macro-expansion operation for the function / = b(a + c)
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viable path. It may, however, possibly overestimate the length, depending upon the ex

tent to which internal gUtches can occur inside the implementation of gates. However, one

macro-expansion is guaranteed to report the correct longest viable path. In the example of

Figure 5.4, viabiUty analysis on circuit (2) yields the same result as on the complex gate.

Consider an arbitrary static CMOS gate: in general, it consists of an arbitrary se

ries/parallel pull-down structure of n-transistors and a dual pull-up structure of p-transistors.

It has long been known that this structure maps onto a factored-formmodel of gates, where

the gate itself is considered the inverted form of a smaU network of AND and OR gates. Now,

if this equivalent factored form of a gate is considered as its macro-expanded form, then

it is clear that this network will glitch only when the gate it represents physically glitches;

it is trivial to show (from induction on the inputs of the original network) that the delay

under any cube c to the macro-expanded network for g is equal to the delay under c to g in

rj. Thus, in the example of Figure 5.4, circuit (2) has exactly the same delay as that of the

complex gate / = b(a+ c); the same cannot be asserted for the circuit (1) realization of /.

5.3.5 Timing analysis results with path-tracing

A timing analysis system based on the ideas of the preceding discussion is imple

mented in the sis system [18, 102], and results on some examples axe shown in Tables 5.1

and 5.2. Delay estimation is performed using three methods: static sensitization (column

labeled Static), the Brand and Iyengar approach [14] (column labeled Brand) and viabiUty

analysis (column labeled Viable). The sensitization functions of connections used by the

first two methods remain unchanged during the path-tracing algorithm and each function

is represented as a multUevel connection of simple gates as described in Section 2.3.1. The

sensitization function for viabiUty analysis is similarly represented by a multUevel function,

which is updated as the path tracing is being performed (c.f. Figures 5.2 and 5.3).

Table 5.1 shows the results of using bdd's to solve the Boolean satisfaction problem

required during timing analysis. The examples axe from the iscas benchmark suite and

the run times are for a DEC 5000. Equal arrival times at all inputs and a unit delay for

each gate in the circuit axe assumed. C6288 can not be analyzed since the bdd's for this

multipUer circuit cannot be constructed [21]. SimUaxly, C3540does not complete since the

bdd's for some of the intermediate functions required during timing analysis are too large.

In the case of C2670, the Brand and Iyengar approach overestimates the delay of the circuit
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Name Delay Estimate CPU sees.

Longest Static Brand Viable Static Brand Viable

C1908

C2670

C3540

C5315

C6288

C7552

40.0

32.0

47.0

49.0

124.0

43.0

37.0

30.0

M

47.0

M

42.0

37.0

31.0

M

47.0

M

42.0

T

30.0

M

47.0

M

42.0

406

134

169

22

364

91

25

18

1025

205

23

T : Did not finish in 10 hours

M : out of memory

Table 5.1: BDD based path-tracing timing analysis on ISCAS circuits

Name Delay Estimate CPU sees.

Longest Static Brand Viable Static Brand Viable

C1908

C2670

C3540

C5315

C6288

C7552

40.0

32.0

47.0

49.0

124.0

43.0

37.0

30.0

46.0

47.0

T

42.0

37.0

31.0

46.0

47.0

T

42.0

T

T

46.0

47.0

T

42.0

97

415

18

12

11

1223

74

15

11

14

24

20

11

T : Did not finish in 10 hours

Table 5.2: sat based path-tracing timing analysis on iscas circuits

139

whUe viabiUty analysis takes significantly longer to get a better estimate.

In Table 5.2, timing analysis on the iscas circuits is performed using the sat al

gorithm, described in Appendix A, to check the sensitization condition. The static sen

sitization and the Brand and Iyengar approaches for timing analysis complete on all but

the circuit C6288. The analysis does not complete in 10 hours due to the number of false

paths in this circuit. The sat program checks at least 300,000 sensitization functions for

this circuit.

For the circuit C3540, whUe the BDD based approach fails due to the amount of

memory required, the sat approach yields an answer in very short time.

On the other hand, for circuits C1908 and C2670, the SAT approach fails to com

plete in 10 hours. The BDD approach is significantly faster in these cases. Note that the
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both the SAT and the BDD programs see identical sensitization functions. The discrepancy

in running times is explained as foUows. The BDD based approach constructs a BDD for

each new function and it does not recompute the bdd's of existing functions. In contrast,

each satisfiabiUty call in the SAT approach is independent of the other caUs. In the case of

CI908 and C2670, the processing time for each of the large number of satisfiabiUty calls

is very large, leading to the long running time. This mainly arises due to the number of

impUcations and backtrackings that axe made in each satisfiabiUty call. From these exam

ples, it may be summarized that the BDD approach is very effective if the bdd's for all the

functions can be compactly represented. Another reason BDD's axe more effective than the

SAT approach on the path-tracing approach is that many intermediate functions axe the

same from one satisfiabiUty call to the next. Thus, creating the BDD once for each of these

functions is advantageous compared to determining a single satisfyingassignment (possibly

different each time) on each SAT call. In the cases where BDD's cannot be stored in the

allocated memory, resort must be made to the SAT approach. Neither approach completes

when the number of false paths is very large.

5.3.6 Performance optimization and false paths

Tables 5.3 and 5.4 show timing analysis results for three carry-skip adder circuits

and five optimized circuits, aU of which exhibit false paths. AU other unoptimized and

optimized circuits experimented with have at least one longest path that is true, though

there may be some false paths.

The adder circuits used in timing analysis axe not optimized. The three examples

Ulustrate the large discrepancy between the length of the topologicallylongest path and the

longest sensitizable path. The BDD approach significantly outperforms the sat approach on

the adder examples for viabiUty analysis. Besides the laxge number of sat caUs required,

the sat program also performs poorly with the current heuristics (Appendix A) on each

sat caU.

The mcnc circuits axe optimized using the Boolean script in sis [18, 102]. The

sat based approach does not complete on the adder examples for viabiUty analysis. This

occurs because the laxge number of false paths leads to a huge number of intermediate

sensitization functions. Thus, each successive SAT call sees an increase in the size of the

satisfiabiUty problem, which leads to a dramatic slowdown. Since the sensitization func-
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Name Delay Estimate CPU sees.

Longest Static Brand Viable Static Brand Viable

csa 16.2

csa 16.4

csa 32.4

50.0

42.0

82.0

24.0

24.0

32.0

24.0

24.0

32.0

24.0

24.0

32.0

11

8

90

17

10

145

65

35

656

5xpl

bw

des

misexl

rot

11.0

20.0

15.0

9.0

19.0

9.0

14.0

13.0

7.0

17.0

9.0

14.0

13.0

7.0

18.0

9.0

14.0

13.0

7.0

17.0

1

2

20

1

10

1

4

35

1

7

1

14

40

1

10

bw.sp.in
bw.sp.out
bw.kms

bw.kms.sp

29.0

27.0

18.0

15.0

22.0

22.0

18.0

15.0

22.0

22.0

18.0

15.0

22.0

22.0

18.0

15.0

3

3

1

2

7

3

1

1

22

11

1

2

bw.sp.in : Circuit before timing optimization (2-input nand gates)

bw.sp.out : Circuit after timing optimization (2-input NAND gates)

bw.kms : Circuit after KMS algorithm and before timing optimization

bw.kms.sp : Circuit after KMS algorithm and timing optimization

Table 5.3: bdd based path-tracing timing analysis on mcnc circuits
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tions do not change for the static sensitization or the Brand and Iyengar approach, the

SAT program yields similar results to the BDD program in these cases.

The most interesting circuit among the optimized mcnc circuits is bw, which

highlights the need for accurate timing analysis. The true delay of the initial area optimized

circuit before timing optimization is 22.0 instead of 29.0. Due to the nature of the technology

independent timing optimization program, note that this circuit is composed of only 2-input

NAND gates. The speedjup command in sis is used to improve the delay of the circuit. WhUe

the depth of the circuit decreases to 27.0, the true delay remains 22.0. In effect, speed-up

provides no improvement in circuit performance since it enhances only false paths. This

example highUghts the importance of false path analysis for combinational performance

optimization techniques. By using the KMS algorithm of Chapter 3, the initial optimized

bwcircuit is first converted to an equivalent circuit with the same (or less) computed delay

(circuit bw.kms). For this circuit, speed-up guarantees a performance enhancement since

there axe no false paths. This is iUustrated by the circuit bw.kms.sp in Tables 5.3 or 5.4. In

fact, without the use of the KMS algorithm, a circuit with a delay of 15.0 cannot be achieved
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Name Delay Estimate CPU sees.

Longest Static Brand Viable Static Brand Viable

csa 16.2

csa 16.4

csa 32.4

50.0

42.0

82.0

24.0

24.0

32.0

24.0

24.0

32.0

24.0

24.0

32.0

31

20

232

30

19

202

T

T

T

5xpl
bw

des

misexl

rot

11.0

29.0

15.0

9.0

19.0

9.0

25.0

13.0

7.0

17.0

9.0

26.0

13.0

7.0

18.0

9.0

25.0

13.0

7.0

17.0

1

6

24

1

6

1

12

21

1

5

2

3027

1140

9

18

bw.sp.in
bw.sp.out
bw.kms

bw.kms.sp

29.0

27.0

18.0

15.0

22.0

22.0

18.0

15.0

22.0

22.0

18.0

15.0

22.0

22.0

18.0

15.0

3

5

1

1

7

6

1

1

2551

735

1

3

T : Did not finish in 10 hours

bw.sp.in : Circuit before timing optimization (2-input NAND gates)

bw.sp.out: Circuit after timing optimization (2-input NAND gates)

bw.kms : Circuit after KMS algorithm and before timing optimization

bw.kms.sp : Circuit after KMS algorithm and timing optimization

Table 5.4: SAT based path-tracing timing analysis on mcnc circuits
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even after applying the strongest options available in the speed-up command on the circuit

bw.sp.in.

Note the significantly larger run time consumed by viabiUty analysis compared to

static sensitization for the example bw. The satisfiabiUty is checked on each partial path

that is enumerated during path-tracing. Static sensitization incorrectly estimates a partial

path (call it P) to be false when it is in fact true. It then determines that another path of

the length 22.0 is true, which is returned as the delay estimate. However, viabiUty analysis

correctly determines that the partial path P is true and explores several extensions of

paths through P before returning a correct delay estimate of 22.0. The Brand and Iyengar

algorithm yields the true delay estimate for this example. However, it overestimates the

delay in the case of the circuit rot. Of course, if the path sensitization conditions axe only

checked for satisfiabiUty only on IO-paths (paths terminating at primary outputs) rather

than on partial paths, viabiUty analysis explores fewer or equal number of paths than static

sensitization, since the latter impUes the former. In this case, the run time for viabiUty is

comparable to that of static sensitization or the Brand and Iyengar procedure.

5.4 Timing analysis without path-tracing

Since the optimal path-tracing procedure for timing analysis requires tracing each

false path longer than the longest true path, these algorithms break down when there axe

a great many false paths as long or longer than the longest true path. In vaniUa best-first-

search path-tracing, this problem is alleviated by justifying path sensitization functions at

each fanout point along the path; in this manner, the branches of a false trunk are never

explored. Nevertheless, this approach has its limits. As first proposed in [38], ideaUy,

one would not Uke to trace paths at all. The objective in timing analysis is principaUy to

determine when a primary output / achieves its final value, not to determine down which

paths the final event travels. Nonetheless, clearly in performance optimization one wishes

for precisely this latter information, and for that appUcation path-tracing is stiU the only

appropriate approach. In the foUowing, the path recursive paradigm is appUed to delay

estimation using viabiUty analysis but without performing expUcit path-tracing.

Define the input vectors under which a node / settles to a final value no earUer
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than t as the Boolean function x^U i.e.

X (c) = 1 O / settles no earUer than t when c is appUed to the primary inputs.

Clearly, the delay ofa circuit is equal to thegreatest t such that xF,t r^ 0for some primary
output F. From the viabiUty theory, it is clear that:

Lemma 5.4.1

xu= £ *p
PeP/.t

Proof Let c C xf,t. By the viabiUty definition (c.f. Definition 5.3.2), there is some path
P oflength > t, terminating in /, viable under c. By the definition ofVf,t, P € Vftt, and
since P is viable under c, c C tfjp. Conversely, if c C Epg?,, ^P» then c C if)P for some
P € Vf,t. P is viable under c, of length > t, and terminates in /, and hence / must settle

to a final value no earUer than t when c is appUed. Consequently, c C x^. •

This lemmais not in and of itselfextremely useful in the correct derivation of x''*;

direct appUcation leads back to path-tracing. Fortunately, x*'1 can be expressed directly in

terms of the x functions of the inputs to f2.

Theorem 5.4.1

XU= £ xg,t-d(M £ Su% JJ xM-d(/,ff) (514)
g€FI(f) UCS(f,g) h€U

Proof FoUows directly from the definition of viabiUty (c.f. Definition 5.3.2). A path

terminating in / of length > t is viable under cube c if and only if:

1. there exists a viable path of length >t-d(f,g) to some input g oi f under c; and,

2. each of the remaining inputs of / either is at a statically sensitized value (non-

controlling value for a simple gate), or terminates a viable path of length >t-d(f,g)
under c.

Thefirst condition is equivalent to asserting x9,t~d^^ and the second condition is equivalent

to Zucsv,g) Su% Tlheu xh>l-d^9)- m
2In subsequent discussion S(f,g) denotes the inputs ofgate / other than fanin g. While this is slightly

different from previous usage, there is no ambiguity introduced.
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In Theorem 5.4.1, for each g G FI(f) for which x9,t~d^^ holds, a different time

t-d(f,g) appears in the term T,ucs(f,g) SU%$ FUet/ XM_d(/,flr). This may lead to apotential
inefficiency in the representation of x'*'» as iUustrated by the foUowing example.

Given inputs g\, g2, and g$ for gate /,

xu= X9ut-<iu,9i) £ Suyi jj xh,t-d(f,9l) +

UC{gltgs} h(=U

x9i,t-dU,g3) Y" Sujt TT Xh,t~^f,93)'
UCigug*} h€U

Clearly, if each d(f,gi) for i = 1,2,3 is distinct, then no further factorization of the above

expression is possible. In fact, three different functions x9l'T for t — {t - d(f,g\),t -

d(fi92)>t- d(f,g$)} axe required. Sinularly, three different functions are also required at g<i

and g$. Thus, for a gate / with i inputs, x9i,t for each input gate gj of / may potentially

have to be computed for i different times. This impUes that the number of functions

required during the computation may easUy become exponential in number. Fortunately,

a more efficient form of the computation exists when symmetric complex gates axe being

considered3.

The next theorem requires a technical lemma stated in [76]. It is reproduced here

without proof for ease of reference.

Definition 5.4.1 A function f is said to besymmetric in some set of variables U if, for

every permutation of U, there exists a phase assignment to the variables in U such that f

is invariant.

Lemma 5.4.2 Iff is symmetric in a set of variables U thenfor every V C U where \V\ > 2

and x,y 6 V:

Sv-{y}% =sv-{x)U
Note the subtle difference in the term H^u xh,t~d^%h^ in the next theorem from

the term Ilheu Xhlt~d{f'9) in Theorem 5.4.1.

Theorem 5.4.2

XU= £ xg,t-d{f«) £ 54IIxM-d(M) (5-15)
g€FI(f) UCS(f,g) h€V

3The case for asymmetric complex gates is handled by using the macro-expansion operator discussed in
Section 5.3.4 to obtain an equivalent network of symmetric gates. There may be some penalty due to an
increase in the number of paths, but the estimate on the true delay remains a correct upper bound.
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Proof Let c C x''*.

By Lemma 5.4.1, there exists some P € Vftt such that P is viable under c. Let V be the

subset of FI(f), such that:

V = {h\h GFI(f) and 3ft = {P'h,h,f},Ph <E ?/(t,cC 0^}

Since c C x'1', the set V is non-empty. Choose /i06 V for which t - d(f,ho) is maximum.
By the definition of viabiUty,

cCSV$L ior U= {h\h eV-{h0},t - d(f,h) = t-d(f,h0)}.

Since there is a viable path under c of length > t - d(f,h0) terminating at /i0> using

Theorem 5.4.1:

cC xhott~d^,ho) V 5y^- T7 xM"d(Mo).
tfCS(/,/»o) h€t/

By definition, for a node / and any t > 0 and c > 0, x/,f Q X/,t-e- For each /i € V - {h0},
t - d(f,ho) > t - d(f,h). Hence x*>*-<Hf*o) C x>M-d(M). Consider the term

v-{ho} hev-{h0)

Since c C xhtt-d{fih°\ it foUows that c C XM-<*(M) Vh6V- {/*o}. For £/" = {/i|/i 6

V-{to},*-d(/,fc) = t-d(/,Ao)},

cc X^>.M/.N>) £ ^ «£. JJ xKt-d{fyh)
UCS(fM) h&J

Thus, c is contained in at least one term in the right hand side of 5.15. Hence,

Now, let

x"c £ x"-«/*> ^ si#n*M-d(M)-
geFI(f) UCS(f,g) h&J

i76F/(/) tfC5(/,s) heU

Choose any term of the first sum containing c, i.e.,

cCx9tt~d{Sl9) Yj Su¥ II XM_d(M).
UCS(f,g) h&J
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For each h GU, there exists a path P/,, viable under c, of length > t —d(f,h) terminatingin

h. SimUarly, there exists a path Pg, viable under c, of length > t - d(f, g) terminating in g.

Let V = U + {g}. For each element h of V, let ft be the path of least length > t - d(f, h)

viable under c, terminating in h. Let P* be any path of minimum length among these paths,

and let P* terminate in k € V. By the symmetry of / (c.f. Lemma 5.4.2), c C Sv_{g}%L
impUes that c C Sv-{k}m> an^ eac^ h e V - {k} terminates a path of length at least

|ft|, viable under c. Hence the path {P*,/} is viable under c and of length at least t, and

c c x*'*. Hence,

XU2 £ x9,t-dU«) £ 5c/a£JI XM-«(M).
g€F/(/) I/C5(/)fl) /•€£/

•

Though this function is expressed in terms of the smoothed Boolean difference to

properly handle the case of symmetric, complex gates, it may be Unearized in the case of

simple gates using Theorem 5.2.1.

Equation (5.15) for simple gates is written as:

XU= £ xg,t-d(f,g) £ {JJxM-d(M) JJ (* =/(/))} (5.16)
g€FI(f) UCS(f,g) h€U k€S(f,g)-U

Using the transformation of Theorem 5.2.1 this becomes:

XU= £ {x9*-^ JJ (XV"d(M) +(h =/(/))} (5.17)
g€FI(f) h€S(f,g)

Since x9,t~d^^(x9,t~d^,9) + (9 = 1(f))) is equal to x9,t~d^ft9\ the product term
on the right hand side can be made to include the term (^«*-d(/«ff) + (g = /(/))) without

changing the function. This leads to the further simplification:

x/.'= £ x^-rf(/^) JJ (xM"d(M) +(/t =/(/)) (5.18)
g€FI(f) heFI(f)

Note that while each function computed at any gate / is Unear in the size of the gate,

a function is created for each different time t for which x^1 is required. This may be a

problem if the number of functions computed for each different time is large. Figure 5.5 is

an iUustration of this phenomenon. Assume that each gate in the figure has unit delay. To

determine if a viable path of length greater than or equal to 5 exists, gate gl in the figure

requires the computation of xgl»* at two different times, namely t = 2 and t = 4. This is
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Figure 5.5: Example: Multiple function computations at a node during timing analysis

because there is a path of length 2 from primary inputs a and 6 up to the output of gl, and

a path from gl to P of length 3; there is also a path of length 4 from a and 6 to the output

of gl and there exists a path of length 1 to P from gl. This occurs because of reconvergent

paths of different lengths. If viabiUty is being checked for the longest path length L, then

only a single function is computed at each node [38]. In the remaining cases, a tight upper

bound is not known. However, a loose upper bound on the number of functions required at

a node when determining viabiUty for delay T, is the number of distinct path lengths that

exist between T and L [38]. The detailed algorithm is given in the next section.

5.4.1 Timing analysis algorithm without path-tracing

The algorithm for performing timing analysis based on the computation shown

in Equation (5.18) is described in pseudo-code in Figures 5.6 through 5.8. There are two

phases in the main algorithm shown in Figure 5.6.

The first step, shown in Figure 5.7 consists of computing the distinct times required

at each node that result in path lengths > T to the primary outputs (variable rtimes in the

figure). This is done by performing a delay trace foUowed by traversals of the network in

topological and reverse topological order, respectively.

The second step is the computation ofx '̂* at eachgate / fordifferent timest. This

is done by traversing the network from primary inputs to primary outputs in topological

order. The computations of Figure 5.8 directly reflect the form of Equation (5.18).
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/* determine if there exists a viable path of length > T in network r\ */

is_path_true(7/, T) {

/* Circuit 77 has only simple gates.

Aft Rf, and 5/ are respectively the arrival time,

required time, and slack time at gate /.

rtimes(f) are the different times t at which x^'* is required. */

/* Compute rtimes(f) for each node /. */

setup_times(77, rtimes).

/* Compute x*'1 *°r each node / at different times. */

nodeJist = list of gates in r? in topological order.

Foreach node / in nodeJist {

Foreach time t G rtimes(f) {

Xu= chijenC/, t).

}

}

/* Check if xp0'T is 1 for any primary output po of n */

Foreach primary output po of 77 {

If xpo,t 7* 0 {

Return TRUE.

}

}

Return FALSE.

Figure 5.6: Delay estimation using viabiUty analysis without path-tracing
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setup_times (77, rtimes) {

Foreach primary output F of 77 {

RF = T.

}

Perform a delay trace on 77 to obtain {Rf,Af} for all nodes /.

Foreach node / of 77 {

Sf = Rf-Af.

rtimes(f) = {}.

}

/* For each node /, compute times t at which x^1 is required */

nodeJist = list of gates in 77 in reverse topological order.

Foreach node / in nodeJist {

If Sf < 0 {

If / is a primary output {

rtimes(f) = T.

}

Else Foreach fanout g of / {

If (Af-rd(f,g)>T) {

rtimes(f) = {u - d(f,g)\u G rtimes(g)}.

}

}

>

}

}

Figure 5.7: Path length calculations for timing analysis without path-tracing
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chi_fn(/, 0 {

If Sf < 0 {

If / is a primary input {

return 1 .

}

Else {

sum = 0.

prod = 1.

Foreach fanin g of / {

If (Af + d(f,g)>t) {

sum —sum + xtM-M*).

cond = (g = 1(f)) + x9tt~d{ft9)
prod = prod * cond.

}

Else {

prod = prod *(g = 1(f)).

}

}

return sum * prod.

}

}

Else {

return 0.

}

}

Figure 5.8: Computation of x',f
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Name Delay Estimate CPU

sees.Longest ViabiUty

C1908 40.0 37.0 9

C2670 32.0 30.0 22

C3540 47.0 46.0 7

C5315 49.0 47.0 10

C6288 124.0 123.0 31

C7552 43.0 42.0 7

s641 74.0 71.0 2

s713 74.0 70.0 4

sl238f 20.0 19.0 1

s9234f 29.0 28.0 4

sl5850 82.0 81.0 27

S35932 29.0 26.0 308

S38417 47.0 40.0 136

f: Inverters and buffers removed from initial circuit

Table 5.5: Timing analysis without path-tracing on iscas circuits

The final step in Figure 5.6 is to determine if xpo'T is satisfiable for any primary

output po of 77. This is done using either BDD's or SAT .

5.4.2 Timing analysis results without path-tracing

Tables 5.5 and 5.6 show the results of timing analysis on benchmark circuits. A

unit delay through each gate in the networkis assumed. The topologically longest path is

indicated in the second column of the table. ViabiUty analysis is performed without path

tracing. The time required on a DEC 5000 for viabiUty analysis is shown in the last column.

From Tables 5.5 and 5.6 it is clear that the non path-tracing algorithm outperforms

the path-tracing version on every example. The primary reason for this is that the huge

number of satisfiabiUty calls in the latter approach is replaced by a single satisfiabiUty caU

for each distinct path length in the former approach. The fact that each function is Unear in

the sizeof the networkwhen no path-tracing is employed is also a significant factor for the

verylowrunning times. In the case of path-tracing, the size of the sensitization function at

a node n is Unear in the network size and the number of paths already explored through n.

AU the results shown here use only the sat package to determine if a function is
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Name Delay Estimate CPU

sees.Longest ViabUity
csa 16.2 50.0 24.0 47

csa 16.4 42.0 24.0 19

csa 32.4 82.0 32.0 260

5xpl 11.0 9.0 1

bw 20.0 14.0 4

des 15.0 13.0 7

misexl 9.0 7.0 1

rot 19.0 17.0 2

153

Table 5.6: Timing analysis without path-tracing on MCNC circuits

non-zero. The BDD package performs worse on this problem for two reasons. First, the time

consumed in building up the bdd's is considerably longer than the time used by sat to find

a single satisfying assignment or prove the absence of any satisfying assignment. Since each

satisfiabiUtycall involvescompletely different functions, unlike the case of the path-tracing

approach, there is no advantage to building the BDD at each node that is created during the

computations. Second, the bdd's cannot be buUt for a few of the examples. Thus, for this

problem the sat approach is preferred to the BDD approach since only a single satisfiabiUty

check is being determined. A similar speed-up in the computation times is also observed

when the static sensitization and Brand and Iyengar [14] criteria are implemented without

path-tracing.

5.5 Delay-fault test generation

This section describes the computations required by an algorithm to perform ro

bust path delay-fault (rpdft) test generation using the path-recursive function technique.

5.5.1 Hazard-free robust delay-fault testability

There have been a variety of definitions givenfor rpdft over the past few years [106,

68, 36, 88]. The definition of robust path delay-fault testabiUty considered in subsequent

discussion is the strongest of all the criteria proposed up to now. A later section indicates

how the conditions developed for the most stringent form of robust delay-fault testabiUty

are easUy extended to the more general forms of robust delay-fault testing in the presence



154 CHAPTER 5. PATH-RECURSIVE FUNCTIONS AND APPLICATIONS

Figure 5.9: Example: Hazard problem in robust delay-fault test generation

of hazards and multiple path propagation. Definition 4.1.4 from Chapter 4 is repeated here

for ease of reference.

Definition 5.5.1 Apath P = {/0, f\,..., fm] is said to be single path robust delay-fault

testable without hazards by the vector pair <vi,v2>ifat each node fi, fi(vi) ^ fi(v2),
andfor each gj 6 5(/,-, P):

1- 9jM = gj(v2) = I(fi) ; and

2. there is no transition on gj.

The vector v2 is assumed to be applied after v\, delayed by an amount greater than the delay
of the circuit.

A necessary requirement of the above definition is that the side-inputs to gates

along the path being tested must be at non-controlling values. As shown in [36], this

condition is not sufficient to guarantee a valid test under arbitrary delays in the circuit.

Consider the circuit in Figure 5.9 where the output of gate 2 is statically always 0. Under

a feasible combinationof delays, while delay-fault testing the bold path by applying a 0-1

transition at a, a static hazard (shown in the figure) may be created at the output of gate

2 which invaUdates the test. [36] handles this case by providing necessary and sufficient

conditions for robust hazard-free delay-fault test vectors in the two-level representation

(caUed the enf expression) of any multUevel circuit being tested. As pointed out in [36],

due to the enormous size of the two-level expression representing most multilevel circuits,
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using the ENF expression is not feasible for actual test generation. Thus, it is impossible to

perform hazard-free delay-fault test generation by simply modifying a combinational test

generator to ensure non-controUing values on side inputs.

The only deterministic and complete approaches to hazard-free delay-fault test

generation pubUshed up to now have employed multiple-valued test generation [106, 68].

This approach suffers from the amount of backtracking possibly required, since each side-

input to a path under test may have up to two vaUd values assigned that allow for a test.

A detailed look at this aspect is provided in the foUowing sub-section.

There are two assumptions made in the discussion of delay-fault test generation

here. First, the description of the delay-fault testing conditions assumes an enhanced scan

structure for performing the actual manufacture test. Several approaches have been sug

gested for delay-fault test generation in sequential circuits when reduced requirements on

the scan structure are desired. These approaches are heuristic techniques that use standard

stuck-fault scan structures [28], rearrange enhanced or standard scan structures to improve

fault coverage [72], or use no scan structures at all [l]. These situations are beyond the

scope of this thesis. It should be noted that most of the techniques described here can

be extended to situations that reduce or eUminate the requirement for the enhanced scan

structures.

The huge number of paths in large circuits impUes that complete test generation

for each path delay-fault requires an inordinate amount of time. Most approaches resolve

this bottleneck by performing test generation on a selection of paths in the circuit. There

are two parameters of concern; first, all connections should be included in at least one test,

and secondly, critical paths must be covered. In the discussion here, path selection is not

an issue. The interest in this chapter is to illustrate a technique for test generation on a

given path. The results apply to any selection of paths made by the different approaches

proposed in the Uterature. For the experimental results, when the number of paths is over

25,000, the paths are restricted to 500 longest paths from each primary input. In even

larger circuits, this limit is lowered to 100 longest paths from each input.

5.5.2 Previous work

Compared to the problem of test generation for static faults, test generation for

delay-faults is a relatively recent problem. A brief overview of previous work in delay-
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fault test generation is provided here. AU the previous approaches are modifications to the

algorithms for test generation for static faults. A huge volume of Uterature is avaUable on

the subject of stuck-fault testing, for example [90, 49, 45, 100, 64].

The concept of a robust delay-fault test that is vaUd under arbitrary delays on side-

inputs to a path under test is introduced in [106]. An accompanying six-valued calculus

is also introduced there to perform test generation for a delay-fault on a selected path in

the circuit. [106] does not provide any indication of the actual algorithms used to justify

the valid values on the side-inputs to the path under test. However, [68] provides a test

generation algorithm based on the calculus proposed in [106]. In fact, [68] demonstrates

that a five-valued calculus is sufficient to perform robust delay-fault testing. The test

generation algorithm is a direct modification of the podEM [49] algorithm, which has proved

successful in stuck-fault test generation. Briefly summarized, podem generates a test vector

by impUcitly enumerating the Boolean space on the primary inputs until a test vector is

found. Thus cubes instead of minterms of the primary input Boolean space are explored in

determining a test vector. For the case of delay-faults, a pair of vectors is determined to

be a test by similarly exploring the space on the primary inputs. However, there are up to

five valid values on each primary input compared to two in the case of stuck-fault testing.

This impUes that a significant increase in the amount of backtracking may be required in

generating a test. [68] indicates that the complexity is less than 4n, where n is the number

of primary inputs. In fact, it is demonstrated there that the complexity is 2(n+m) where
m is the number of internal connections in the circuit. This foUows since each internal

connection may only have up to two vaUd assignments [68]. However, this is stiU much

larger than the 2n worst-case complexity for stuck-fault test generation.

The only other pubUshed and exact approach to robust delay-fault test generation

is theextension ofthe socrates testgeneration program to delay-fault test generation [101].

socrates is the state-of-the-art test generation program for deterministic stuck-fault test

generation and redundancy removal. [100] reports that twoprocedures provide aremarkable

reductionin the test generation effort,namely static impUcations and dynamicimpUcations.

The former is a pre-processing routine whereas the latter is invoked during the impUcit

enumeration of the search space. [101] uses a 10-valued calculus and extends the binary-

value impUcation mechanism of [100] to this new calculus. However, no indication, other

than empirical evidence, is made that this provides a reduction in the search for a delay-

fault test. No bounds are provided in [101] that restrict the worst-case size of the search
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space to less than 10n, for n primary inputs.

There are several proposals made for approximate delay-fault test generation in

the Uterature. The first approach in this area is that of pseudo-random delay-fault test

generation [96]. In [48], a heuristic approach to deriving robust tests from single stuck-fault

tests is employed along with eight-valued delay-fault simulation to check the validity of a

candidate test vector pair. This approach was shown to be better than pseudo-random

delay-fault test generation but the algorithm may generate invalid (non-robust) tests which

have to be detected using fault simulation. There is also no guarantee of the completeness

of this technique.

Another recent proposal is made in [28], where the problem of delay-fault test

generation is reduced to sequential test generation over two time frames. This is done

by performing test generation over two copies of the combinational logic to generate the

required transitions along the path under test, in addition to other side-inputs where tran

sitions are permitted [28]. The vector corresponding to the first time frame is used as the

first vector of the test pair, foUowed by the vector for the second time frame. The size of

the worst-case search space in this case is 22n, for n primary inputs. WhUe this technique

appears attractive, since sequential test generation techniques can be exploited, it suffers

from the drawback that it may generate non-robust delay-fault tests, since hazards are not

considered at all.

In the next section a function is derived that ensures the proper dynamic behavior

(no static and dynamic hazards) during test generation. The formulation allows us to

restrict the test generation algorithm to the binary valued case and the Boolean satisfiabiUty

program, described in Appendix A, can be invoked to determine whether a test exists.

5.5.3 Delay-fault test generation equations

There are two properties that a hazard-free robust delay-fault test for a path P

must satisfy. First, the side-inputs to P must be at non-controUing values. This can be

easUy ensured by the static sensitization (or Boolean difference) condition. Second, there

should be no transitions or hazards on any of the side-inputs to P when the input to P

is toggled during the appUcation of the test-vector pair. The next definition describes this

path-recursive function.
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Definition 5.5.2 Let TJ be the Boolean function (ofprimary inputs) which is 1 if there
is no transition at the output of gate j under all possible delays when primary input i is

changedfrom 0-1 or 1-0 and all the other primary inputs maintain their constant values.

For primary input nodes i and j, thus, T\ = 0 and TJ = 1 for all i ^ j, assuming

independence of the inputs.

Definition 5.5.3 The consensus operator applied to a function f with respect to a vari

able x is Cxf = fxfe. Cxf yields the largest Boolean function contained in f which is

independent ofx. If X is a set of variables {xo,xi,...,xm}, Cxf = CSoCXl...CXmf.

For a simple gate /, the transition function with respect to an arbitrary primary

input i is computed recursively as foUows:

Proposition 5.5.1

T)= £ {(Cuf +CuDimHn}
UCFI(f) g€U h&J

Proof Let U be the set of fanins of / that make a transition when i is toggled. The term

Cuf gives the conditions under which the value of / is set to 1 independent of the values

(and hence transitions) on the inputs in U. SimUarly, the term CtjJspecifies the conditions

under which the value of / is set to 0 independent of the values (and hence transitions)

on the inputs in U. Hence, the condition that there wiU be no transition on the output of

the gate /, under all possible delays, isgiven by (Cuf + CuJ). The term \[g&J Tg \[hiU Th
indicates that the fanins in U make a transition when i is toggled and the other fanins of

/ remain constant. Summing over all such subsets (in general, an exponential number in

the number of fanin of /), results in the only conditions under which / does not make a

transition under arbitrary delays when input i is toggled. •

Having described both conditions for a delay-fault test, the Boolean function, for

which each satisfying vector yields a robust delay-fault test, is now defined.

Theorem 5.5.1 Thepath P = {/0, /i, ...,/m} w hazard-free robust delay-fault testable (for

both transitions along the path) if and only if there is a input assignment that satisfies Up

where
m

*i>=ii{ n (s='(/.» n th)
1=0 9€S(/.,P) *€5(/,-,P)
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Proof FoUows directly from the Definition 5.5.1 and Proposition 5.5.1. Consider a connec

tion from /i_i to fi along P. The Boolean difference condition ensures the non-controUing

values along each side-input s to /, and the term YlhesiUi>P) ^h ensures tnat h does not
have any transition when the input /o is toggled. •

It foUows that the test vector pairs for delay-faults in the 1-0 and 0-1 transitions

along a path P are 4< v n /o, v n /o > and < v n /0, v n /o > respectively, for any v GUp.

Similar to the original viability function definition [74], the function T defined by

Proposition 5.5.1 is difficult to compute directly. As before, a more direct computation is

shown for the case when deaUng with simple gates.

Proposition 5.5.2

ri= n v e (rh(h * WW
g€FI(f) h€FI{f)

Proof Recourse is made to Theorem 5.2.1 in proving the transformation. First derive an

expression for Ty, which gives the conditions under which there may be a transition at /

when primary input i is toggled. When no input makes a transition, the output cannot

make a transition. If some set of inputs, U, makes a transition, then the consensus terms

Cuf + Cuf simpUfies to the assertion of a controlUng value on at least one input not in U.

The complement of this term is the assertion of non-controlUng values on all these inputs.

That is, when at least one input makes a transition, there wiU be a transition at the output

if all the inputs that do not have a transition on them are at non-controlUng values. From

this we obtain:

T) = II Ti9 E {TLnji(h = i(f))rh}
geFi(f) ucfiU) teu h&J

The transformation of Theorem 5.2.1 yields

T) = II Tg II {Tih + (h = I(f))Tih}
geFI(f) h£FI(f)

On simpUfying the second term and complementing the entire expression, we get

T>= II Tig+ E (M/(/))n
gZFIU) hZFI(f)

4Note that Tip is a function independent of/o.
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The Boolean function T described by Proposition 5.5.2 is convenient for comput

ing the hazard-free robust delay-fault test condition for any given path. The robust path

delay-fault testabiUty condition of Theorem 5.5.1 can now be expressed as a path-recursive

function. Let P = {Q,/,}, with Qa partial path. Then ftp = nQUh€S(fi,P)(h = HfiWh-
As is the case in viabiUty analysis, the number of simple gates in the multilevel network

needed to represent the robust delay-fault test condition is Unear in the number of connec

tions and gates in the original circuit.

Note that for each path, we derive a test vector pair < vi,v2 >, where Vi and v2

differ in the literal at the input to the path. It has been shown that when a path is delay-

fault testable then such a vector pair always exists [106]. Thus, the conditions formulated

above are necessary and sufficient to guarantee a test is generated if and only if a path

is hazard-free robust delay-fault testable with single-path propagation. Note that allowing

multiple input changes allows test set compaction, but is not considered here.

5.5.4 Delay-fault test generation results

Path delay-fault test generation is performed by replacing the viabiUty sensitiza

tion functions of the path-tracing basedtiming analysis algorithm described in Section 5.3.5

with the conditions specified by Theorem 5.5.1 and Proposition 5.5.2.

Table 5.7 shows results obtained on a dec 5000for some large circuits These results

are significantly better than those reported in[68] and [101]. Adirect comparison isdifficult
because each program uses a different selection ofpaths on the large circuits. Nonetheless,

the times by the proposed technique are superior to those in reported in [68] and are
comparable to those of [101]. While both previous approaches report some aborted faults,
there are no aborted faults by this approach. The times reported here are conservative

estimates because much of the overhead is often consumed by the path-tracing procedures.

This contribution is especially significant when there is a small number ofpaths from each

primary input.

AU the results reported here are obtained using the sat package. BDD's perform

comparably for those examples on which they can be buUt in the aUocated memory. How
ever, the BDD's for the delay-fault testfunctions cannot bebuilt for several oftheexamples.
Interestingly, this occurs even on circuits which can themselves be compactly represented

by BDD's , e.g. C880.
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It must also be noted that the paths are enumerated using the best-first algorithm

employed for tracing paths in timing analysis. This approach incurs some penalty due to

the processing required for this selection of paths. This penalty is particularly significant in

examples where there are very few paths from a primary input; surprisingly, this happens

in almost all the examples reported here.

5.6 Extensions of the path-recursive paradigm

5.6.1 General robust delay-fault models

The treatment of robust delay-fault test generation in Section 5.5 is confined to

the most stringent of the different robust delay-fault models proposed in the Uterature. The

extension of the path-recursive paradigm to the general robust delay-fault model is briefly

indicated here. A full description requires an understanding of the hazard phenomenon in

circuits, and is beyond the scope of this thesis.

Consider the definition of the general robust delay-fault testabiUty of Chapter 4,

which is repeated here:

Definition 5.6.1 A path P = {/o,/i, ...,/m} w said to be robust delay-fault testable

for the rising (falling) transition at fm by the vector pair < vi,v2 > if at each node fi,

fi(i>i) £ fi(v2) yields the desired transition being tested, and for each gj G 5(/,,P);

1- 9j(v2) = I(fi) ; and

2. If fi-i(vi) ss I(fi), then there is no transition on gj.

The vector v2 is assumed to be applied after v\, delayed by an amount greater than the delay

of the circuit.

There are a few notable differences from the hazard-free single-path propagation

RPDFT definition of Section 5.5. Using this delay-fault model, the rising and falUng transi

tion at each gate is treated separately. While each side-input to a gate along the path being

tested must be at a non-controlUng value on v2, it may or may not be required to be at the

non-controUing value on v\. This condition depends on the transition that is propagated

along the path under test. When the side-input is constrained to have no transition (when

condition (3) is satisfied in the definition), the conditions of hazard-free delay-fault testing

apply unchanged. When there is no condition on the value of the side-input under v\, there
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Name #PI #P0 # Gates # Paths # Testable CPU sees.

5xpl 7 10 58 1072 146 59

9sym 9 1 88 560 270 114

9symml 9 1 73 485 212 90

apex6 135 99 483 4045 2401 998

apex7 49 37 151 951 833 92

b9 41 21 89 684 475 70

cUp 9 5 64 506 285 33

conl 7 2 11 23 23 1

duke2 22 29 190 1366 1300 109

e64 65 65 95 2145 2145 115

misexl 8 7 28 860 68 22

misex2 25 18 38 196 179 14

o64 130 1 66 130 130 196

rd53 5 3 22 187 46 5

rd73 7 3 44 2290 177 117

rd84 8 4 68 793 277 50

vg2 25 8 130 438 392 26

xor5 5 1 12 46 46 1

z4ml 7 4 30 342 112 12

alu4f 14 8 157 7000 10 2486

bwf 5 28 85 2500 0 233

desf 256 245 2007 44537 5714 12240

f51mf 8 8 56 2869 35 253

rotf 135 107 437 20193 2553 3294

sao2f 10 4 64 4790 32 536

SatisfiabiUty check using sat program

t Limited to 500longest paths from each primary input

Table 5.7: Hazard-free rpdft test generation on mcnc circuits



H
<

D
(D

ft
p

*
P

u
c
r

r
t
-

«
-t

-

JT
O

O

C
n

t-
»

C
n

o
O

0
0

o
o t—

•

W
o

o

B
p e
ra

p

e
C

O
ft

)
C

O

a
.

c
*

-
r
t
-

V
•
d

H
*

p
p

8
r
t
-

e
*

p
*

p
-

C
0

C
O

r* •
o

t*
O

o
O

"
3

B
B

A
<

D
r
t
-

p
P

o
n

c
*

-
P

*
P

*

(W
•
a

»
d

<X
>

H
H

£
B

B
p

e
B

e
+

<
<

*
<

o
i
—

.
I
—

.

p
p

p

o p

»
tf

•
o

P
p

C
O

C
O

C
O

C
O

C
Q

1—
»

C
O

o
o

o
o

o
o

o
o

o
^

C
O

4»
>

-
4

C
O

ft
4

*
IO

->
l

t
o

O
i

C
n

C
O

H
*

h
-»

0
0

£>
>

fi
)

o«
>

C
O

C
n

O
i

t
o

C
O

e
n

C
O

C
O

0
0

C
O

o

0
0

4
*

0
0

C
O

o
o

O
i

C
n

t
o

o
0

0
0

0
C

n
4

^
o

o 0
0

—
♦
•

C
n

C
n

o
t
o

—
t
-

to =
fe

H
-*

t
o

t
o

»
-»

«
o

i-
»

H
-*

c
o

C
O

C
O

o
C

O
C

O
->

!
c
n

C
O

4
*

O
i

c
o

T
1

C
O

4»
>

4
*

H
*

t
o

t
o

-*
J

C
O

t
o

0
0

o
C

O
H

-»
o

O
i

1
—

1

=
fc

t
o

H
*

H
»

t-
»

o
•-

»
t
o

t
o

-
4

C
O

C
O

o
4

*
C

O
I
O

t
o

t
o

C
O

t
o

C
O

C
n

c
n

c
o

t
o

t
o

0
0

o
t
o

C
O

t
o

C
n

t
o

O
i

-
4

=
fc

t
o

C
O

l-
»

t
o

t
o

»
-»

Q p
-*

q
c
»

O
i

O
i

C
n

C
n

4»
>

I
-
1

4*
-

t
o

O
i

0
0

C
n

C
O

I
-
*

-
a

4
*

C
n

C
n

o
t
o

O
i

O
i

t-
»

C
O

O
i

0
0

H
*

C
n

O
i

to
C

O
-
J

C
O

-
J

0
0

C
O

O
i

H
-»

O
i

o
•*

4
o

4
^

-
4

o
C

O

=
fe

H
-»

»
-»

h
-»

t
o

t
o

l-
»

t
o

h
-»

*-
o

C
O

O
i

C
O

C
O

4
*

C
O

C
O

C
O

o
C

n
o

o
o

C
O

p
C

O
C

O
C

O
I
-
*

e
n

o
0

0
-*

l
t
o

O
i

O
i

-
4

C
n

O
i

0
0

•v
j

-
J

O
i

^
1

c
n

C
O

C
O

o
o

4
*

t-
*

o
o

£
t

4
*

r
r

-»
1

O
i

0
0

0
0

C
O

0
0

4
*

C
O

o
C

O
O

i
o

o
t
o

C
O

C
O

* 0 C
O

0
0

O
i

h
-»

I-
1

4
*

l-
»

-
4

I
-
1

-
a

e
t
-

4>
C

O
0

0
h

-»
C

O
O

i
4

*
C

n
»

-»
C

O
C

O
H

*
C

n
»

-*
0

0
t
o

4
*

C
O

o
O

i
C

O
O

i
C

n
0

0
O

C
O

O
i

O
i

O
i

4
»

t
o

C
O

o
O

i
4

*
o

o
l-

»
t
o

to o

t
o

h
-»

t
o

t
o

C
O

IO
H

»
t-

»
o

4
*

O
i

C
O

o
£

»
^

t
o

I
-
1

C
O

tO
H

*
h

-»
-
J

r
o

o
t
o

O
i

s
»

-»
c
n

C
n

r
C

O
c
o

to

O
i

0
0

-»
J

4
*

-
J

O
i

4
*

O
i

4
*

o
C

O
0

0
l-

»
o

o
a C

O
t
o

«
q

-
4

-^
1

C
O

o
C

O
t
o

^
l

C
O

c
n

H
-»

C
O

o
l-

»

O
i

c
o



164 CHAPTER 5. PATH-RECURSIVE FUNCTIONS AND APPLICATIONS

are several scenarios that arise. First, the side-input may have the same non-controlling

value under v\ and v2, yet there may be transitions on the side-inputs. This is termed a

static hazard [42]. Second, the side-input may have a controlUng value under v\ and makes

exactly one transition to the non-controlling valuewhen v2 is appUed. Third, the side-input

may make several transitions before changing from controlUng to non-controlling valuewhen

v\ and v2 axe appUed in sequence. This situation on the side-input is termed a dynamic

hazard [42].

SimUar to the creation of the transition function T used for the hazard-free case,

functions can be defined at each gate representing the static, dynamic and hazard-free

conditions with respect to a transition on some primary input. Each of these functions at a

gate is described recursively in terms of functions on the gate inputs. Intuitively, each such

function is of the form of Theorem 5.2.1 since some set of inputs exhibit a single property

(captured by a function) whUe the remaining inputs exhibit another property.

5.7 Conclusions

In this chapter a new approach to solving functional path sensitization problems

that have previously lacked efficient algorithms is demonstrated. First the Boolean function

representing a desired condition is formulated recursively for a given path in terms of sinnlar

Boolean functions on partial or side paths (or other paths that may interact with the given

path). The Boolean functions for conditions on all the paths in the original network is then

represented by a multilevel network that is Unear in the size of the original network. This

guarantees that the condition that is being determined can always be represented for a given

circuit. The second step is to determine whether the multUevel network has a satisfying

assignment. We have shown that, given the multilevel network built up by the first step,

one or the other of the two recent techniques of BDD's and SAT successfuUy perform timing

analysis and delay-fault test generation on all largebenchmark examples. The BDD approach

is more effective than sat when timing analysis is performed with path-tracing, and the

bdd's for the multUevel functions can be buUt in the allocated memory. However, for timing

analysis without path-tracing and delay-fault test generation, the SAT approach outperforms

the BDD approach.

This paradigm is quite general and has recently been appUed to determine the for

mulation of path characteristic functions for hazard conditions under simultaneous multiple
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input changes [79]. This allowsreduced test size in the case of delay-fault test generation by

aUowing a single test vector pair to test several paths simultaneously. A potential benefit

of the technique should also be in the synthesis of hazard-free asynchronous circuits.
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Chapter 6

Conclusions

Logic synthesis has three principal optimization criteria, area, performance, and

testabiUty. WhUe optimization techniques for each of theseparameters is weU developed, not

much is understood of the interaction among the three criteria. This thesis has attempted

to deepen the understanding of the interaction between the area, delay, and testabiUty of

an optimized combinational logic circuit. The focus has been on the interaction between

performance and testabiUty in both the synthesis and analysis process in the design of

circuits. The contributions of the preceding chapters are summarized below.

Motivated by the example of a high-performance circuit that exhibits unreUable

functional behavior in the presence of redundancy, it is shown that redundancy is not

necessary to reduce the delay of a circuit. That is, for every redundant circuit there exists

a logically equivalent (single ormultiple-stuck fault) irredundant circuit guaranteed to have

the same or less delay. The most accurate functional analysis technique for estimating the
delay, namely viabiUty analysis, is employed in proving this result. An efficient single-pass
implementation of the algorithmhas been developed. WhUe the increase in areaand fanout

on the gates due to dupUcation during the algorithm is empirically small, an open question

is whether a theoretical bound exists on the area of the final irredundant circuit relative to

the area of the initial circuit.

The result of the first part of the thesis leads to the question of whether perfor

mance optimization can be done without creating redundancy in a circuit. The resolutionof

this question constitutes the second contribution of the thesis. The conditions under which

common performance optimization operations introduce redundancy into an initially single

stuck-fault irredundant circuit are derived. It is shown that recovering the testabiUty of the

167
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circuit is difficult and alternate fault models are considered to determine invariance under

performance optimization. The testabiUty of 100% robust path delay-fault testable circuits

is shown to remain invariant during timing optimization. These circuits also have another

property desirable during timing optimization,namely that there are no false paths. Thus,

the need for delay estimation using techniques such asviabiUty analysis is obviated by static

analysis (longest path estimate). Two open questions remain before testabiUty canbe com

pletely considered while optimizing the delay of a circuit. WhUe synthesis procedures for

some classes of robust delay-fault testable circuits are known, an unanswered question is

whether a robust delay-fault testable implementation exists for any circuit with at most the

same delay and minimal area increase.

The first two problems addressed in this thesis are concerned with the synthesis

aspects for optimizing the performance and testability of a circuit. However, the synthesis

procedures require the analysis of two properties of a circuit: the computed delay of a

circuit using viabiUty analysis and robust delay-fault testabiUty. Both properties are weU

understood but efficient algorithms have been lacking. Most previous approaches attempt to

solve the two similar problems using modifications to a standard stuck-fault test generation

program. The final contribution of this thesis is the development of a general framework

for solving a class of problems, which includes both viabiUty analysis and delay-fault test

generation, that requires functional analysis on paths in the circuit. It is shown that an

efficient Uneax sized formulation exists for these two problems by expressing the Boolean

function capturing the desired property recursively.

The techniques used in Chapter 3 in implementing both versions of the KMS al

gorithm consist of structurally modifying a given circuit (such as gate dupUcations and

connection movement) to obtain a functionally identical circuit which realizes an important

(topological) relationship between the delay, testabiUty, and area of the circuit. While the

property being studied is difficult to analyze or synthesize for on the given circuit struc

ture, it is simplified to some direct (topological) relationship between the delay, testabiUty,

and area on the transformed (but equivalent) circuit. For example, if all paths of length

> L are non-viable in a given circuit, this impUes a redundant multiple-stuck fault in the

corresponding X-path-disjoint circuit (c.f. Chapter 3). However, nothing is impUed about

testabiUty in the original circuit. This class of techniques has further ramifications both

in the synthesis and analysis of problems concerned with functional timing analysis [92]

and delay-fault test generation [93]. The transformations are easy to apply (mostly Un-
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ear time in the size of the initial circuit), and often, the increase in area can be bounded.

For example, in the case of redundancy removal to ensure no increase in the delay, only

a single redundant multiple-stuck fault is removed; in the case of robust delay-fault test

generation [93], single stuck-fault test generation is required. It is expected that similar

techniques can be appUed to other circuit properties (such as hazards) that appear to be

difficult to analyze and synthesize.

While all of the results have been proved for combinational logic circuits they

potentially apply to synchronous sequential circuits. An additional dimension arises in

sequential circuits due to the presence of memory elements. Thus, the impact of state

assignment on the resulting performance and testabiUty of the circuit is an extremely in

teresting and important problem to be explored. Some understanding of the relationship

between state assignment and sequential single stuck-fault testabiUtyis reported in [40, 39].

Circuit restructuring and resynthesis techniques have also been proposed that can optimize

logic across latch boundaries [67, 71]. However, Uttle is understood of the remaining inter

actions that occur among the memory elements, performance, and testabiUty in sequential

circuits.

Both timing analysisusing accurate functional analysis techniques such as viabiUty

analysis and robust delay-fault testabiUty are emerging criteria in logic synthesis. The

work reported in this thesis has deepened the theoretical understanding and interactionsof

these two properties while simultaneously providing a novel framework for solving practical

instances of these and other problems. It is hoped that these contributions wiU become part

of the state-of-the-art techniques in digital circuit synthesis in the near future.
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Appendix A

Boolean Network Satisfiability

A.l The satisfiability problem

The problem satisfiability is considered the first NP-complete problem since it was

used to introduce this class of problems [46]. The satisfiabiUty problem is [46]:

Satisfiability

Instance: A set U of variables and a coUection C of clauses over U.

Each clause is a sum term of some variables from U.

Question: Is there a satisfying truth assignment for CI

As a general problem solving technique, satisfiabiUty is related to important cad

problems. Some of these and their previous solutions are briefly described below:

• Two-level logic minimization: A fundamental question askedin several two-level logic

minimization programs [15, 30, 70, 98] is the tautology question. This is the comple

ment of the satisfiabiUty problem and asks whether a Boolean function is identicaUy

one, or equivalently, is there a satisfying truth assignment to the complement of the

satisfiabiUty problem, a two-level sum-of-products expression. The tautology algo

rithm is solved in [15] using an algorithm based on the unate recursive paradigm.

Given a Boolean cover, a set of rules is used to detect if the cover is not a tautology.

If this step does not succeed, the Boolean cover is spUt into two coverscorresponding

to the Shannon cofactors with respect to a selected variable. The rules are then ap

pUed to each cofactored cover independently. This divide and conquer approach has

proved successful on almost all two-level minimization examples [15].

171
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• Test-generation: The goal in stuck-fault test generation is to determine an assignment

of values to the primaryinput of a circuit such that the true and faulty circuits exhibit

different logical behavior. Almost every test generation program up to now has solved

this problem directly at the circuit levelby developing a suite of heuristics that attempt

to speed up the search for a satisfying test vector. Among these are deterministic

improvements which always guarantee an improvement in the search process, such as

the use of impUcations [45,100]. Other heuristics, although not guaranteed to always

yield fast solutions yet perform exceptionally weU on most benchmark examples, are

also widely used. One such technique is impUcit enumeration of the Boolean space

restricted to the primary inputs [49].

• Logic verification: The equivalence of two circuits is checked by ensuring that a sat

isfying assignment exists for an output in one circuit if and only if the assignment

satisfies the same output in the other circuit. This assumes the assignment is not a

don't care for the output [55]. The pervasive approach of logic simulation has given

way to techniques using bdd's [21,12]. The latter is successful in solving most com

binational circuit verification problems and has recently been extended to sequential

circuit verification [29]. A few comments on the BDD ordering problem are given in

Section A.2.

• Path sensitization conditions: Timing analysis and delay-fault test generation are

examples of path-sensitization problems considered in depth in Chapter 5. Other

examples include r-irredundant test generation [77] and hazard analysis [42]. AU of

the approaches to these problems, with the exception of the techniques discussed in

this thesis, involve modifications of the test generation paradigm used for stuck-faults

[14, 41, 38, 68].

Each problem has been solved individually by tailoringthe algorithms and heuristics to the

particular appUcation at hand. Two factors have emerged that warrant a second look at

solutions to these problems. First, the interaction and similarity among the problems is

better understood now. For example, in this thesis the close-knit similarity between timing

analysis and delay-fault test generation is exploited. Second, two recent proposals for an

efficient solution to the satisfiabiUty problem represented by a multUevel network [12, 64],

has enabled a large class of existing and emerging problems to be solvedefficiently. Thus, in
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place of adapting search strategies to each specific problem, which is the usual method, one

can translate the problem into a general satisfiabiUty question and use a generic algorithm.

This allows the powerful search techniques and heuristics that are developed for the single

general problem to be easily appUed to related problems.

The general satisfiabiUty problem on Boolean networks is stated as:

Boolean Network Satisfiability

Instance: A Boolean network with primary inputs I and a single primary output O.

Question: Does there exists an assignment to I that causes O to be 1 ?

Clearly, every satisfiabiUty problem can be converted into a Boolean network satisfiabiUty

problem and vice versa. In the sequel, the discussion is restricted to the Boolean network

satisfiabiUty problem.

Twotechniques haveemerged recentlywhich haveprovento be successful in solving

the general satisfiabiUty problems that arise in a class of problems.

A.2 BDD's

A reduced ordered binary decision diagram (bdd) is a canonical representation of

a function that allows very fast Boolean function manipulations, such as cofactoring and

equivalence checking. The size of the BDD is very sensitive to the ordering used for the

variables in constructing the bdd. Since the problem of determining an optimum order

is NP-complete, this technique is Umited by the size of the BDD when a good ordering is

not obtained heuristicaUy. There are also functions known for which every order yields an

exponentially sized BDD [21]. The details of the implementation of the BDD package used

in the work reported in this thesis can be found in [12].

A.3 The SAT package

Larrabee has shown that for a certain class of problems, the satisfiabiUty problem

can be effectively solved by a heuristic technique [64]. This approach is adopted here and

augmented with new search strategies that provide a significant improvement over earUer

results [65, 23]. The interface to the SAT package is quite simple. It accepts a set of



174 APPENDIX A. BOOLEAN NETWORK SATISFIABILITY

clauses and determines if they can be satisfied; if a satisfying solutionis found, the variable

assignment is returned.

A.3.1 Forming clauses

In order to use SAT, the specific problem must be converted into a set of clauses.

It is assumed that the circuit represents the set of all solutions for the property being

determined. For example, the circuit description for testing a stuck-fault must include the

condition that at least one output is different in the good and faulty circuit. This is done

by using an EXOR gate between each output in the true and faulty circuit [64].

Often additional information can be passed to the satisfiabiUty program that en

hances the efficiency of the search problem. For example, [64] iUustrates the use of active

clauses for improving the speed of test generation. Active clauses capture the close inter

action between gates in the true and faulty circuits. More precisely, active clauses ensure

the existence of at least one path in the transitive fanout of the fault site such that the true

and faulty values on the gates along the path are at different values. WhUe [64] generates

these active clauses via an independent analysis of the circuit, these clauses are just as

easUy captured as part of the multUevel circuit being checked for satisfiabiUty. This aUows

uniform treatment of all the problems being solved using the Boolean network satisfiabiUty

approach.

The overhead of generating the clauses is generally negUgible compared to the

complexity of solving the problem.

The set of clauses which describe a combinational logic element are found by

expressing its characteristic function in product of sums form. The characteristic function

can be formed by rewriting the conventionalrepresentation of / = g, where / is a gate and

g is an expression, as fg 4- fg'. For example, an AND gate, f = ab has the characteristic

function f(ab) + f(a' + 6'). Expressing this in product of sums form gives (a + f')(b +

f)(a' + V+ f). The characteristicfunction of a Boolean network is the conjunction of the

characteristic functions of the circuit elements.

A.3.2 The search problem

Given the clauses, searching for a solution can be done using standard branch and

bound techniques. In SAT, branching consists of selecting an unassigned variable, setting it
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to either 1 or 0 (true or false, respectively), and reversing the assignment (backtracking) if

the first choice does not lead to a solution.

The search is bounded in three ways. First, if an unassigned clause has no more

unassigned Uterals (i.e. the clause evaluates to false), the current partial assignment is

contradictory, and the search can be bounded. Second, if an unsatisfied clause has only

one unassigned Uteral, that Uteral can be immediately impUed. Third, if the previous step

impUes x, but x' is already asserted, the assignment is contradictory and the search can be

bounded. Despite these rules for bounding the search, a contradictory partial assignment

may stiU not be detected unless it is completed to all the variables. This often leads to

exponential worst case performance. However, there are several deterministic improvements

that are made to the basic brand and bound algorithm that help improve this situation.

Rejecting a partial assignment is termed backtracking, Typically, the goal of an

efficient algorithm is to minimize the number of backtracks needed to find a satisfying

assignment. Nevertheless, the amount of computation required for determining each as

signment must alsobe accounted for. Thus, a heuristic that reduces the backtrackUmit by

a factor of twobut increases the amount of computation in choosing each assignment by a

factor of four is not effective.

The set of heuristics used to guide the branch and bound search is caUedthe search

strategy. There are three parameters in the Boolean network satisfiabiUty problem:

• Variable (and clause) order for branching.

• Processing performed at each branch point.

• Amount of backtracking performed.

Each of these aspects is touched upon now.

Variable ordering

Three heuristics for variable orderings are reported in [64]. AU of them are static

orderings which use a single order for the variables throughout the search process. The

problem with static ordering is that it often does many unnecessary variable assignments.

This exacerbates the exponential behavior of the search. For example, if one input of an

AND gate is assigned 0, this fixes the output to 0. Since the other inputs remainunassigned,
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a static ordering may assign values to each of these inputs, before reaUzing that the actual

conflict is by the gate output being 0 .

In the sat package developed here, three simple greedy dynamic orderings are

employed. In the first ordering, at each branch point, the first unsatisfied variable in the

first unassigned clause is selected for assignment. In the second ordering, at each branch

point, the last unsatisfied variable in the first unassigned clause is selected for assignment.

These two strategies perform approximately equally weU. In the third strategy, at each

branch point, the variable that occurs most frequently in each of the remaining clauses is

selected for assignment.

Clause ordering

Since the variable orderings described above depend on the ordering of the clauses,

this is also a factor.

The strategy foUowed for ordering clauses is based upon the ideas proposed in

the pod EM algorithm, podem performs test generation by performing assignments only

on the primary inputs of the circuit. This heuristic often provides an order of magnitude

improvement over the D-algorithm of [90]. A simUar strategy is reaUzed in sat by ordering

the clauses from inputs to outputs; even though the SAT program makes no distinction

between primary inputs and intermediate variables, ties are broken in favor of primary

inputs and variables closest to primary inputs. The first two variable ordering strategies

branch only on primary inputs if the clauses are presented in topological order to the

sat program.

Implications

The greedy strategies alone do not generate 100% fault coverage on most circuits.

Increasing the backtrack Umit beyond a small number does not prove to be cost effective.

Thus, additional heuristics are used. These are based on the notion of impUcations, first

described in [45,100] and extended to the sat framework in [64].

Referring to a clause with n Uterals as a n-clause, the clauses are partitioned into

1-clauses, 2-clauses, and (3+)-clauses. All 1-clauses force the corresponding Uteral to be

asserted. The 2-clauses are converted into an implication graph which makes it easy to

process impUcations and compute nonlocal impUcations. The remaining clauses are put in
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an efficient data structure for detecting contradictions during the branch and bound. A

contradiction occurs when assigning a variable a value impUes the opposite value, or if a

(3+)-clause has no satisfied Uterals.

There are two kinds of impUcations: local impUcations and non-local impUcations.

Local impUcations correspond to 2-clauses whichmostly relate valueson inputs and outputs

of single nodes and values on branch points of connections. Non-local impUcations are

derived by foUowing impUcations through (3+)-clauses. When an impUcation involves a

(3+)-clause, the contra-positive impUcation is also added to the impUcation graph. For

example, if A =$• F is derived through a (3+)-clause, F' =*• A' is added to the impUcation

graph.

A further impUcation may be derived by determining if a variable must be forced

to a unique value for a satisfying solution. To detect such an impUcation for a variable

A, assign a value to A and apply the bounding steps described above. If this leads to a

contradiction, then the opposite value is asserted on A. If this leads to a contradiction,

the partial assignment is contradictory. This technique finds more impUcations since it also

uses the (3+)-clauses.

Of course, all the heuristics are not required on each sat call. In fact, using all

of them often leads to a very slow implementation. [23] provides an approach where each

of these heuristics can be incorporated into the search problem. However, that approach

involves thecomputation ofthetransitive closure oftheimpUcations among aU thevariables,
which leads to excessive pre-processing times. The approach sketched above and reported
in [107] invokes the increasingly powerful heuristics only after theweaker and faster options
faU to determine a solution within a fixed number of backtracks.

A.3.3 Network structure and satisfiability

It is empirically observed that the sat program behaves differently on alternate

representations of a given network structure. Forexample, a network composed of complex

gates is typically harder to solve for a satisfying assignment compared to an equivalent

network of simple gates. [65] also observes this behavior for xor gates, and replaces each

xor gate by an equivalent connection of and-or gates before performing test generation.

The sat framework also has another significant advantage over structure based

test generation that is performed directly on an existing network. By formulating the
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sat problem as a multUevel function, network restructuring techniques can be employed

to realize alternate structures that are more amenable to Boolean satisfiabiUty. At this

time, while SAT successfuUy completes on aU circuits experimented with for test generation,

timing analysis and delay-fault test generation, it is expected that as larger circuits are

encountered, the sat problem wiU become proportionately more difficult to solve. The

added dimension of network synthesis before sat remains an interesting open problem

where more experimentation is required.
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