
Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SYNTHESIS OF VLSI DESIGNS WITH

SYMBOLIC TECHNIQUES

by

Bill Lin

Memorandum No. UCB/ERL M91/105

27 November 1991

SYNTHESIS OF VLSI DESIGNS WITH

SYMBOLIC TECHNIQUES

by

Bill Lin

Memorandum No. UCB/ERL M91/105

27 November 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Synthesis of VLSI Designs with Symbolic Techniques

Bill Lin

Ph.D. Department of Electrical Engineering
University of California, Berkeley and Computer Sciences

Abstract

Very large-scale integrated circuits are essential in modern digital electronic systems. Integrated

circuits with over a million transistors are possible with current technology. The design of these

circuits is an extremely difficult and time consuming process, virtually impossible without the use

of design-aids to assist in some aspects of design. In this dissertation, a variety of techniques are

presented for automating this design process starting from a register-transfer level hardware descrip

tion of the desired functionality down to an optimized circuit implementation for fabrication. This

automation is referred to as synthesis. Specifically, the synthesis of sequential designs is considered.

To model real life situations, the hardware description may contain variables that carry symbolic

values. This form of specification is referred to as a symbolic specification. The first contribution

of this work is to present the concept of symbolic relation for specifying multiple choices of output

mappings. This is useful for capturing the next-state behavior of a finite state machine in the pres

ence of equivalent states. The optimization problem requires both the selection of output mappings

and binary code assignments. A unified framework for solving this problem exactly for two-level

implementations has been developed. The second contribution of this research is a set of encoding

algorithms for multi-level logic implementations. These algorithms have the merit of being very fast

and can be used to encode large hardware descriptions compiled from hardware description lan

guages. Techniques for optimizing sequential circuits, once they have been encoded, have also been

developed in this research. These techniques are based on the use of global state-space information

with well-developed combinational logic optimization algorithms. A key problem that arises is the

need for efficient algorithms to derive state-space information for large sequential circuits. Efficient

algorithms based on binary decision diagrams have been developed for this purpose. An associated

problem is the state minimization of large sequential circuits. New concepts and machinery for rep

resenting and manipulating equivalence classes efficiently are presented for solving this and related

problems.

Prof. A. Richard Newton
Thesis Committee Chairman

Synthesis of VLSI Designs with Symbolic Techniques

Copyright© 1991

Bill Lin

Acknowledgments

I would first like to thank my advisor, Prof. Richard Newton, for his guidance, inspiration,

encouragement, and support during my graduate years at Berkeley. This work would not

have been possible without his help and trust in me. I am also grateful to Prof. Bob Brayton

for taking the burden of being on both my qualifying examination and thesis committees.

He read my dissertation meticulously and offered many constructive criticisms. He has also

influenced me to be more rigorous and precise in my thinking. I have also to thank Prof.

Jan Rabaey for being on my qualifying examination committee. Although I have not had

the opportunity to work with him directly, I have enjoyed all our stimulating conversations

on a broad range of topics. Prof. Sarah Beckman has been a member of both my qualifying

examination and thesis committees. I am thankful for her time and suggestions. My

research was sponsored in part by National Science Foundation and Defense Advanced

Research Project Agency. I am grateful for their financial support.

Part of the work reported here has been done in collaboration with others. The

symbolic relations work was done together with Fabio Somenzi of University of Colorado,

Boulder. The sequential optimization work using implicit enumeration was done together

with Herv6 Touati.

Being a part of the Berkeley CAD-group has really been an enriching experience.

I have Richard Newton, Bob Brayton, Don Pederson, and Alberto Sangiovanni-Vincentelli

to thank for creating such an extraordinary research environment and for recruiting a truly

remarkable team of people. This might well be the "best" place in the world for research.

I have been extremely fortunate and privileged to be a part of this talented group. I have

also to thank the many interesting and brilliant people in the group for making the CAD-

group an exciting place. Thanks go to Wendell Baker, Brian O'Krafka, and Masahiro Fukui

for being great office-mates. I would like to thank Pranav Ashar, Wendell Baker, Mark

Beardslee, Srinivas Devadas, Abhijit Ghosh, Tim Kam, Sharad Malik, Rajeev Murgai, Alex

Saldanha, Hamid Savoj, Ellen Sentovich, Narandra Shenoy, Kanwar Jit Singh, Herve* Touati,

Yosinori Watanabe, and Greg Whitcomb for many interesting discussions on a wide variety

of topics. Thanks also to Andrea Casotto, Gary Jones, Chuck Kring, Luciano Lavagno,

Brian Lee, Chris Lennard, Rick McGeer, Cho Moon, Jaijeet Roychowdhury, Henry Sheng,

Paul Stephan, and Tiziano Villa for making 550-Cory a more lively place. Special thanks

to Gary Jones, Henry Sheng, and Dan Preslar for "being there" in the last few months. I

11

don't think! would have gotten through without them.

Many thanks to Kia Cooper, Elise Mills, and Flora Oviedo for all the friendly

assistance provided over the years. Brad Krebs and Mike Kiernan were always helpful in

hardware and software problems.

During my graduate years at Berkeley, I have also had the fortune to interact

with many people from other places. I have certainly enjoyed my interactions with Fabio

Somenzi, Gary Hachtel, and Xuejun Du from University of Colorado, Boulder. I have also

had the pleasure to interact with Olivier Coudert and Jean-Christophe Madre from the

Bull Research Center in France, and Takayasu Sakurai from Toshiba Corporation in Japan.

Apart from, many stimulating discussions on research issues, David Ku from Stanford has

also been a very good friend. I hope our friendship continues for many years to come.

Above all, I would like to thank Joyce Fung for her constant love and support,

especially this past year. Words cannot express my feelings. We have been through a great

deal together. I don't think I could have made it through without her. I would like to thank

my family, especially my parents, Michael and Kitty Lin, for their support, encouragement,

and enthusiasm in my life. I thank them for everything that I am today.

Contents

Acknowledgements i

Table of Contents iii

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 A Design Trajectory 1
1.2 Previous Work 5

1.2.1 Symbolic Encoding Techniques 5
1.2.2 Sequential Optimization Techniques 7
1.2.3 Symbolic Representations and Computation 9

1.3 Overview of Dissertation 10

2 Symbolic Relations and Two-Level Encoding 13
2.1 Introduction 13

2.2 Background and Terminology 17
2.2.1 Boolean Functions and Relations 17

2.2.2 Symbolic Functions 18
2.2.3 Symbolic Relations 20
2.2.4 Finite State Machines 21

2.2.5 Binary Decision Diagrams 23
2.3 Minimization of Symbolic Relations 24

2.3.1 Definitions of Symbolic Relations Problems 24
2.3.2 FSM Synthesis: Restructuring and State Assignment 26

2.4 A Unified Framework 30

2.5 Prime Generation 31

2.5.1 Candidate Primes for Boolean Relations 31

2.5.2 Generalized Candidate Primes for Symbolic Relations 32
2.5.3 Reduced Prime Implicant Table 35

2.6 Exact Symbolic Relation Constraints 35
2.6.1 Output Encoding 35

in

iv CONTENTS

2.6.2 State Encoding 38
2.6.3 State Minimization and State Encoding 39

2.7 Solving the Binate? Covering Problem 40
2.7.1 The Problem 40

2.7.2 Branch-and-Bound Techniques 41
2.7.3 BDD-Based Formulation of Binate Covering 43
2.7.4 The Threshold Operator 45

2.8 Example and Results 48
2.8.1 An Illustrative Example 48
2.8.2 Experimental Results 50

2.9 Conclusions 52

3 Multi-Level Symbolic Encoding 53
3.1 Introduction 53

3.2 Definitions 55

3.3 Problem Formulation 55

3.4 Weight Estimation Models 57
3.5 A Spectrum of Graph Embedding Algorithms 59

3.5.1 A Clustering Algorithm 60
3.5.2 Simulated Annealing Formulation 62
3.5.3 Exact Binate Covering Formulation 62

3.6 Experimental Results 66
3.6.1 Comparing Encoding Programs 68
3.6.2 Comparing Post Encoding Optimization Procedures 69
3.6.3 Comparing Graph Embedding Algorithms 72

3.7 Conclusions 74

4 Optimization of Sequential Circuits 78
4.1 Introduction 78

4.2 State Space Analysis for Sequential Optimization 80
4.3 Efficient State Enumeration 84

4.3.1 Set Computation and BDD Operators 84
4.3.2 Representation of States and State Relations 85
4.3.3 Implicit Enumeration and Fixed Point Computation 87

4.4 Computing the Equivalent States 88
4.4.1 Equivalence-Based Analysis 90
4.4.2 Differentiation-Based Analysis 90
4.4.3 Computing Single Cycle State Equivalence 93
4.4.4 Computing State Equivalence in the Valid Component 94

4.5 Experimental Results 95
4.6 Conclusions 99

CONTENTS v

5 Implicit Manipulation of Equivalence Classes 100
5.1 Introduction 100

5.2 Definitions and Notation 102

5.3 Efficient Representation of Equivalence Classes 104
5.4 The Compatible Projection Operator 105

5.4.1 Definition and Properties 105
5.4.2 An Efficient Algorithm using BDD's 107

5.5 Example Applications 108
5.5.1 Communication Complexity 108
5.5.2 Reduction of Finite Automata 110

5.6 Experimental Results 112
5.7 Conclusions 116

6 Minimization of State Latches 118

6.1 Introduction 118

6.2 Redundant Encoding Variable Removal 120
6.3 BDD-Based Branch-and-Bound Algorithm 122
6.4 Experimental Results 124
6.5 Conclusions 128

7 Conclusions 129

Bibliography 133

List of Figures

1.1 A Symbolic Specification Fragment written in VHDL 3

2.1 Lattice of Symbolic Minimization Problems 25
2.2 Symbolic Minimization Problems with Implicit Merging 26
2.3 Limitation of State Assignment 27
2.4 Splitting and Merging of States 28
2.5 Limitation of State Minimization 29

2.6 Prime Generation Procedure for c-primes of Boolean Relations 33
2.7 Binary Decision Diagram and Shortest Path Solution 44
2.8 Binary Decision Diagram and Shortest Path Solution using a Different Or

dering 46
2.9 (a) Example FSM and (b) Minimized FSM with Two Possible Choices for

One Next State Entry. 48

3.1 The Algorithm cluster_encode for the Minimum Cost Graph Embedding
Problem 61

3.2 The Algorithm anneal_encode for the Minimum Cost Graph Embedding
Problem 63

3.3 The Algorithm newjconf iguration for Annealing Based Embedding. ... 64
3.4 The E Post Encoding Optimization Script 71
3.5 The ES Post Encoding Optimization Script 71
3.6 The ESO Post Encoding Optimization Script 72

4.1 The Original Circuit 81
4.2 The State Diagram Corresponding to the Above Example 81
4.3 The Simplified Circuit under Invalid and Equivalent States 83
4.4 The Corresponding State Diagrams 83
4.5 Product Machine 87

5.1 A Recursive Algorithm for the Compatible Projection Operator 109
5.2 Calculating Communication Complexity. 110

VI

List of Tables

2.1 Experimental Results 51

3.1 Statistics for IWLS'89 FSM Benchmarks 67

3.2 Experimental Results for IWLS'89 FSM Benchmarks 70
3.3 Comparisons of JEDI and muse with Different Post Optimization Procedures. 73
3.4 Comparing the Effectiveness of Different Graph Embedding Algorithms. . . 75
3.5 CPU Expenditures of cluster-encode vs. anneal.encode 76
3.6 Comparisons with Exact Graph Embedding 77

4.1 Computation of Invalid States 96
4.2 Computation of Equivalent States 97
4.3 Results on Sequential Optimization 98
4.4 Computation of Single-Cycle Equivalent States 99

5.1 Computing and Representing Equivalent Pairs 113
5.2 Computing the Communication Complexity 114
5.3 Computation of Equivalent State Pairs 115
5.4 State Minimization Results 115

6.1 Exact Redundant State Register Removal Results 124
6.2 Comparisons of Transition Relation Sizes 125
6.3 Comparisons of Gate-Level Implementations 126
6.4 Comparisons of State-Bit Removal with script, rugged 127

vn

viiii USTXOF^TABLES^

Chapter 1

Introduction

Very Large Scale Integrated (VLSI) circuits are widely used in modern digital

electronic systems. The development of a new system usually requires the design of several

custom application-specific integrated circuits (ASIC's). Using current VLSI technology, it

is possible to manufacture integrated circuits (IC's) with over a million transistors. This

level of integration is still increasing at a rapid rate.

With the availability of commercial ASIC vendors, very complex VLSI designs can

be readily implemented in silicon by using such ASIC design-styles as standard cells, gate

arrays, or sea-of-gates (also known as channel-less gate arrays) [55]. Despite the ease of

fabricating ASIC's today, their design time remains one of the most crucial bottlenecks in

the overall product development cycle for most new systems. In a highly competitive global

market, with many strong domestic as well as international contenders, time-to-market is a

key strategic factor. Therefore, effective computer-aided design (CAD) tools are urgently

needed for helping designers to reduce the time required to design new ASIC's. Techniques

for automating VLSI design steps can greatly help in this direction. This automation is

referred to as synthesis.

1.1 A Design Trajectory

The design of a custom ASIC involves a series of design steps. A typical design

process begins with a specification of circuit behavior in the form of a hardware description

language (HDL). ELLA [71], VHDL [50], ISPS [6], are examples of hardware description

languages. In this dissertation, a hardware description where the specified cycle-to-cycle

2 CHAPTER 1. INTRODUCTION

behavior cannot be changed is referred to as a register-transfer level (RTL) model. This

means that final implementation must produce the same output at every clock cycle when

the same input sequence is applied, i.e., the cycle-to-cycle behavior must be preserved.

A hardware specification where the cycle-to-cycle behavior can be modified is referred to

as a behavioral model. Behavioral synthesis transformations like scheduling allocation, and

pipelining can be applied to a behavioral model to obtain an optimized register-transfer level

model. The topic of behavioral synthesis is beyond the scope of this research. The reader is

instead referred to the following literature for detailed expositions on some representative

work in behavioral synthesis [84, 30, 22]. At this time, behavioral synthesis is still an active

area of research and many open issues remain unresolved.

If the hardware is only specified in terms of Boolean values, i.e., in terms of 0's and

l's, then software compilation-like techniques [1,83] can be used to map the RTL model into

an interconnection ofcombinational logic blocks and synchronous memory elements directly.

Many RTL synthesis systems assume this type of description [83]. However, to model real

life situations more naturally, the hardware specification may include symbolic (also referred

to as multi-valued) variables, that can assume finite sets of values, in addition to Boolean

variables, which can only assume values from the set {0, l}. This form of specification is

referred to as a symbolic specification. For example, symbolic specification is widely used

in describing finite state machines (FSM's) where the internal states are initially specified

symbolically rather than with Boolean vectors. This is, however, a highly restricted form

of symbolic specification. In general, the concept can be used for describing complete hard

ware designs with potentially many symbolic variables. A number of hardware description

languages, including VHDL [50] and ELLA[71], provide abstract data typing mechanisms

for specifying the variables and functional behavior symbolically. As an example, a partial

hardware description written in VHDL for a process control interface module is shown in

Figure 1.1. Here, the variables representing process instructions may take on four possi

ble values from the symbol set {ADD, SUB, MUL, CMP}, and the variables representing the

control stages may assume the values {WAIT, RESET, FETCH}. This example is shown to

illustrate the use of symbolic variables and the description of symbolic functions.

Since symbolic descriptions cannot be implemented in digital logic directly with

conventional logic families *, a binary representation must be derived. This can be obtained

lSome multi-valued logic circuit families do exist, but they are not yet practical for commercial use.

1.1. A DESIGN TRAJECTORY

— declaration of symbolic data types

package data_type is
type stages is (PAUSE, RESET, FETCH);
type instructions is (ADD, SUB, MUL, CMP);

end data.type;

— interface specification

use work. data-type. all;

entity process.control is

port (elk, c, flagl, flag2: in bit;
mode: out bit; opcodel, opcode2: out instructions);

end process.control;

— model specification

architecture behavior of processjcontrol is

component latch port

(elk: in bit; d: in bit; q: out bit);
end component;

signal pfork, pjoin: stages;
begin

process (c, flagl, flag2, pfork)
begin

if (pfork o PAUSE) and (flagl = »0') then
mode <= '0'; opcodel <= SUB; opcode2 <= MUL; pjoin <= PAUSE;

elsif (pfork = FETCH) and (flagl = '0') then
mode <= '0'; opcodel <= CMP; opcode2 <= SUB; pjoin <= FETCH;

end if;

end process;

state:latch port map (elk, pjoin, pfork);
end behavior;

Figure 1.1: A Symbolic Specification Fragment written in VHDL.

4 CHAPTER 1. INTRODUCTION

by encoding the symbolic variables with binary-valued variables. This process is referred

to as symbolic encoding. During symbolic encoding, a binary pattern must be determined

to represent uniquely each symbolic value in the symbol-set. Each symbolic variable is

then replaced by a set of binary-valued variables, known as encoding variables, to represent

the binary encoding patterns. For example, in the case of the symbol set representing the

process instructions in Figure 1.1, the four admissiblevalues {ADD, SUB, MUL, CMP} might

be represented with the binary codes 00, 01, 11, 10, respectively, using two binary-valued

encoding variables per symbolic value. Depending on the choice of encoding, the resulting

Boolean logic may differ substantially. Therefore, it is crucial to develop effective encoding

algorithms that can optimize for the eventual logic implementation under some criteria,

e.g., area, performance, or testability.

After symbolic encoding, an interconnection of combinational logic blocks and

memory elements is generated. Each combinational logic block is made up of logic gates

interconnected in a prescribed way to implement a particular Boolean logic function. The

memory elements are used to store data between successive evaluations of the logic blocks.

The memory elements are alsoreferredto as latches or registers. This block-leveldescription

is referred to as a sequential logic network. The next step in the design process is to optimize

the sequential logic network under some criteria. This process is referred to as sequential

logic synthesisor sequential logic optimization. This step is extremely crucialin the overall

synthesis process since the initially translated description may containa significant amount

of unnecessary (redundant) logic. Again, the optimization criteria may be in terms of

area, performance, testability, or some combination. In this research, a restricted class of

sequential circuits called synchronous circuitsis assumed. These circuits have the property

that a common global clock is used to determine when the memory elements latch in new

data. A large percentage of circuits designed fall into this category. This is especially the

case for semi-custom designs that target gate array or standard cell technologies.

The result of sequential logic synthesis is an optimized gate-level description of

the circuit. The next step in the synthesis process is to produce a mask-leveldescription

for fabrication. There are many approaches to performing this transformation. One widely

used approach is to map the logic gates and memory elements from an optimized gate-level

description on to a set of pre-designed library cells. This mapping step is referred to as

technology mapping [52, 31, 87]. Since the actual physical layouts for the library cells are

available, accurate area and load information for each cell can be obtained easily. The final

1.2. PREVIOUS WORK 5

step in the synthesis process is to place and route the mapped library cells. A detailed

exposition on various placement and routing techniques can be found in [55]. The placed

and routed mask-level description can be used to manufacture the final product.

1.2 Previous Work

1.2.1 Symbolic Encoding Techniques

The encoding problem is perhaps one of the oldest problems in switching and

automata theory [46]. In general, a symbolic specification of hardware may have either

symbolic input variables, symbolic output variables, or both. Input encoding refers to the

version of the problem where only symbolic input variables are considered, and output en

coding refers to the version where only symbolic outputs are considered. In the case of

state assignment for finite state machine synthesis, the two symbolic variables representing

the present-state input and the next-state output are in fact used to represent the same

set of symbolic values. Additional constraints must be imposed such that the same encod

ing is selected for both variables. This instance of the encoding problem is referred to as

the input-output encoding or the state assignment problem. For optimization, the target

implementation can be either two-level or multi-level logic. Depending on the target imple

mentation, the goal for the encoding step, be it input, output, or input-output encoding,

varies. Encoding problems are difficult because they typically have to model a complicated

optimization step that follows.

Two-Level Encoding: In the case where the target implementation is two-level logic,

many approaches have been proposed. The encoding problem has been studied since the

1960's [38, 46], but these earlier approaches do not have a strong correlation with the logic

minimization step that follows. De Micheli et al. [70] introduced a new paradigm where the

two-level encoding problem was divided into two stages: an encoding independent optimiza

tion phase called symbolicminimization, and a constraint satisfaction step. In the symbolic

minimization step, two-level logic minimization techniques [78, 74, 67] were extended to

perform minimization with symbolic variables. The minimized symbolic result can then

be mapped to a binary implementation by satisfying a set of encoding constraints. This

paradigm was originally introduced for the input encoding problem as an approximation to

state assignment. It was later generalized to solve the output encoding and input-output
'.; i'iuStii

6 CHAPTER 1. INTRODUCTION

encoding problems [68]. Similar approaches were followed in [92, 95]. These approaches

are heuristic in nature. In [35], Devadas et al. presented exact symbolic minimization al

gorithms that can solve the problems of input, output, and input-output encoding for the

two-level case.

In all of these approaches, symbolic functions were assumed. That is, for every

possible input condition, either the output is left unspecified or there is exactly one map

ping. For example, in the classical state assignment problem, the next-state function is a

symbolic function since every primary input and present-state combination is deterministi-

cally mapped to a unique next-state. Thus, the techniques described above are applicable,

and the problem can be regarded as well-solved. However, in many important applications

in synthesis, the need for capturing multiple output choices arises [60, 63, 61]. Symbolic

relations (one-to-many mapping) rather than functions must be considered, meaning that

the possible output response for a given input condition may be one of several symbolic

values rather than just one. For example, when synthesizing a finite state machine, either

in isolation or in the context of an interacting network, there may be a number of equiva

lent states. Equivalent states may be exploited by permitting the next-state to be any one

of the equivalent states [60]. Previous encoding methods did not consider the selection of

output mapping {viz. symbolic relation). However, the cost of the final implementation

depends heavily on this mapping. A careful selection is therefore extremely crucial. Unfor

tunately, the choice of output mapping interacts in complex ways with the encoding process.

Ideally, both problems should be solved simultaneously. The problem of minimizing sym

bolic relations with both degrees of freedom considered has not be been addressed so far.

Also, equivalent states may be assigned the same binary code, provided that appropriate

constraints are satisfied. This additional degree of freedom has also not been explored in

previous work.

Multi-Level Encoding: The problem of encoding an arbitrary symbolic specification

as to minimize the area of the eventual multi-level logic implementation is an extremely

difficult problem in general. This is partly due to the inherent difficulties of multi-level

logic optimization. Current encoding techniques that target multi-level logic implementa

tion can be classified into two classes: symbolic-minimization-based and estimation-based.

In the work of Malik et al. [56], a symbolic minimization procedure was proposed for

encoding specifications with symbolic input variables. Analogous to two-level symbolic

1.2. PREVIOUS WORK 7

minimization, multi-level logic transformations like algebraic decomposition were extended

to minimize under symbolic inputs. These multi-level symbolic minimization techniques can

be used to solve the input encoding problem. Although the proposed approach has been

shown to produce good results for the input encoding problem, the current implementation

relies on an expensive simulated annealing based encoding step that uses two-level logic

minimization [12] in the the inner loop of the annealing procedure to determine the size of

the algebraic factors [65]. Multi-level symbolic minimization for output encoding remains

an open problem.

An alternative approach is to estimate the outcome of multi-level logic optimiza

tion. Devadas et al [33] proposed an approach for state assignment based on enhancing

the likelihood of finding common subexpressions in the encoded logic prior to logic opti

mization. In this approach, weights were statically computed between pairs of states based

on the observation that encoding states close together in the Boolean space may result in

many common subexpressions. Following the weight computation phase, a graph embedding

step is solved to encode heuristically state pairs with large weights closer together in the

Boolean space. Recently, new encoding procedures based on this encoding paradigm have

been presented in [59] and [39]. These new procedures make use of improved estimation

models and new graph embedding algorithms that have been shown to produce consistently

better results.

In contrast with the symbolic minimization approach, the choice of code assign

ments in estimation-based approaches are determined by modeling the effects of encoding

on the multi-level logic optimization process. The main drawback is the weak correlation

that these approaches have with the actual logic transformations that are typically used

in multi-level logic synthesis. However, they have been shown to consistently yield good

results, and have the merit of being extremely fast.

1.2.2 Sequential Optimization Techniques

Combinational logic optimization has reached significant maturity in the past

decade. This is partially reflected by the number of successful combinational logic opti

mization systems that have been developed in universities as well as the industry [78, 13,

10, 29, 45]. A detailed review of the state-of-the-art in combinational logic optimization

techniques can be found in [12, 15]. While combinational logic optimization techniques

8 CHAPTERU. INTRODUCTION

are relatively well-developed, research in sequential optimization is still in its earlier stages.

Techniques for sequential optimization can be classified into two categories: those that work

on a state transition graph (STG) model of the finite state machine, and those that work

directly at the structure of the sequential circuit.

STG-Based Optimization: Sequential optimization techniques that work at the state

transition graph level have been studied since the 60's [46, 54]. Traditionally, a state tran

sition graph model is converted to a sequential logic network viz. the process of state

assignment. While effective state assignment techniques are available, they do not explore

possible state assignments from other equivalent state transition graph structures. There

fore, the solutions achieved using even exact state assignment may be sttboptimal. One

heuristic is to apply a state minimization procedure [44, 54] to reduce the number of in

ternal states prior to state encoding. The primary objective of classical state minimization

is to minimize the number of states. It is well known, however, that non-reduced state

machines may actually lead to superior logic implementations [47]. Techniques for relating

state minimization and state assignment have not been developed to date.

Algorithms for decomposing a finite state machine into a set of interacting FSM's

have been proposed. Earlier work on FSM decomposition was based on a theory of partition

[46, 54]. Researchers have recently developed more sophisticated methods that attempt to

relate FSM decomposition with state assignment and two-level logic minimization [36, 5].

Methods for synthesizing interacting FSM's have also been actively pursued [32, 4].

Structural-Based Optimization: Transformations that attempt to optimize the se

quential logic at the circuit-level have been proposed. Leiserson and Saxe [57] developed

a transformation called retiming for improving the performance of a synchronous digital

system by re-positioning the registers. This technique was further developed in [69] in

the context of sequential logic optimization. In [66], retiming was used to temporarily re

position the registers such that combinational logic optimization can be applied to a larger

portion of the network. Although these retiming-based techniques have been found to be

usefulfor clockcycle minimization, they have had only limited success for aarea optimization.

Another important source of sequential optimization is the use of don't-care in

formation. Don't-care conditions represent the degrees of freedom that tlbecircuit can be

modified without affecting its intended behavior. In [7, 15], various dom't-care sets for

1.2. PREVIOUS WORK 9

combinational logic circuits have been identified. Recently, efficient procedures have been

developed for computing them [81]. For hierarchically-defined logic networks, Brayton and

Somenzi [16] proposed the use of Boolean relations to capture the possible degrees of free

dom. This is related to the work of Cerny and Marin [23] of observability relations for

hierarchical combinational network specification and synthesis.

Combinational don't-care conditions are not sufficient when sequential machines

are considered. For finite state machines, Devadas et al. [34] described a don't-care based

optimization procedure for two-level logic implementations that can produce a fully-testable

sequential machine, under the single-stuck-at fault model in testing [18], without access to

the memory elements. In their work, invalid and equivalent state information was extracted

from a state transition graph representation of the FSM. This information was then used

by a two-level Boolean minimizer [12, 14] as don't-care conditions to obtain an optimized

implementation. This procedure was limited to those sequential circuits whose state-space

can be enumerated explicitly. Multi-level logic optimization was not considered.

In [28], the notion of synchronous don't-cares was proposed to capture sequential

don't-care conditions at the circuit-level. New synchronous don't-care sets were proposed

along with computation algorithms. Sequential don't-care sets that correspond to an acyclic

portion of the sequential circuit can be captured using their techniques. Larger sets of don't-

cares may be derived by considering different acyclic portions of the feedback network. It

is not currently known if all degrees of freedom can be captured this way.

1.2.3 Symbolic Representations and Computation

Recently, it has become apparent that many tasks in logic synthesis are intimately

related in that they are often fundamentally dependent on the same set of basic logic manip

ulations. Therefore, it is important to improve existing and develop new logic manipulation

methods. The binary decision diagram (BDD) [20, 11, 2] is an efficient data structure for

representing logic. Bryant proposed a restricted version of BDD that requires an ordering

on the variables. It was shown that the resulting reduced decision graph is canonical with

respect to a given variable ordering. It also has the important advantage that Boolean oper

ations {e.g., Boolean and and Boolean or) can be performed directly on the data structure.

Another important idea is the concept of characteristic functions proposed by Cerny and

Marin [23]. Their original idea was to capture the input-output behavior of a combina-

10 CHAPTER 1. INTRODUCTION

tional circuit as a single Boolean function. This form of specification can naturally express

multiple output mappings, as in Boolean relations. The concept of characteristic function

can be applied in general to represent and manipulate finite sets of elements. Recently,

Coudert et al. developed the concept of implicit enumeration for efficiently traversing large

state-spaces [26,27]. This method is based on the use of BDD's and characteristic functions

for implicitly representing the state space. While BDD's, characteristic functions, and im

plicit enumeration provide the basic machinery and concepts to manipulate logic functions,

sets, and state-spaces efficiently, efficient representations and manipulation algorithms have

not been developed for handling equivalence classes. The ability to represent and manipu

late equivalence classes efficiently is important in a number of problems in sequential logic

synthesis, e.g., manipulation of equivalent states in finite state machines.

1.3 Overview of Dissertation

The goal of this research has been to develop new synthesis techniques for au

tomating the design process for transforming a symbolic specification of hardware into an

optimized VLSI circuit. The designs considered are synchronous sequential circuits that

are composed of combinational logic blocks and synchronously-clocked memory elements.

The first part of the dissertation is focussed on the optimization problem of encoding a

symbolic specification into a binary representation. This is necessary since conventional

digital circuits can only implement Boolean logic.

In Chapter 2, the encoding problem for two-level logic implementations is consid

ered. Although this problem has been well-investigated in the past, techniques developed

thus far have not considered the interactions between the encoding process and sequential

optimization. La the case of finite state machine (FSM) synthesis, optimizations at the

FSM-level can be implicitly captured in the encoding process if multiple output choices are

considered. This gives rise to the symbolic relations problem where each input condition

may be mapped to one of many output choices. The optimization problem requires both

the selection of output mappings and code assignments. A unified framework is presented

for finding exact solutions, in terms of area, to the symbolic relation minimization prob

lem. The formulation is based on prime generation and minimum-cost covering. Various

versions of the minimization problem can be uniformly treated by incorporating problem-

specific constraints to the covering problem. The problem of FSMsynthesis usinga symbolic

1.3. OVERVIEW OF DISSERTATION 11

relations formulation is also described. Extensions to symbolic relations are presented to

consider implicitly the merging of equivalent states in the synthesis process. Based on these

extensions, the traditionally separate problems of state minimization and state assignment

are formulated as a single unified optimization problem.

In Chapter 3, new algorithms are described for solving the encoding problem for

multi-level logic implementations. For encoding large symbolic specifications, such as those

translated from hardware description languages (e.g., VHDL [50] or ELLA [71]), fast, but

effective, algorithms are required. The techniques in this chapter build on the work of

Devadas et aL [33]. The new techniques presented include modified estimation models for

general symbolic specifications rather than state machines, and new optimization algorithms

for solving the graph embedding problem.

The second part of this dissertation is concerned with the problem ofoptimizing an

already encoded circuit description. Specifically, the optimization of synchronous sequential

circuits is considered. In Chapter 4, an approach based on combining global state-space

information with logic-level transformations is presented. In particular, efficient algorithms

are presented for computing invalid and equivalent state information from a structural-level

description. The extracted information can then be used as sequential don't-care condi

tions in logic optimization. These don't-care conditions provide more degrees of freedom

for combinational logic optimization algorithms to optimize the circuit, both for area and

performance improvement. Although synthesis for testability is not directly addressed in

this research, it has been shown that the use of these sequential don't-cares in optimization

can greatly enhance the testability of the resulting circuit, if not making it fully testable

[34]. The main bottleneck in previous methods for extracting similar don't-care informa

tion has been the size of the problems that they can handled. Many circuits considered in

practice typically contain a large number of latches. Hence, the size of the corresponding

state-spaces are usually quite vast, rendering existing methods, based on state diagrams or

cube enumeration, impractical. New algorithms based on binary decision diagrams (BDD's

[20]) are presented in Chapter 4 that can greatly extend current capabilities in computing

these don't-care conditions for large circuits. These algorithms build on the implicit state

enumeration techniques recently introduced by Coudert et al. [25].

The work presented in Chapter 5 is concerned with efficient techniques for repre

senting and manipulating equivalence classes. The main motivation for investigating this

problem in this research is in the application of sequential optimization. Specifically, equiv-

12 CHAPTER1. INTRODUCTION

alent states information can:also be used in synthesis to reduce the size of the state-space by

merging them together, i.e., state minimization. To perform this transformation for large

sequential circuits, efficient techniques for representing and manipulating equivalent classes

are required. These problems are addressed in Chapter 5 by introducing a new representa

tion for equivalence classes and a new Boolean operator for manipulating them that can be

applied to very large problem instances.

The work presented in Chapter 6 is concerned with optimizing sequential circuits

by means of removing redundant state latches. Unoptimized sequential circuits may contain

latches and next-state functions that can be re-derived from information contained in the

other latches in the circuits. These latches and next-state functions can be deleted from

the circuit if appropriate re-encoding logic is added. A simple algorithm is presented for

performing this transformation that has been shown to heuristically reduce the size of the

circuits for verification purposes and physical implementations.

Finally, in Chapter 7, conclusions from this work are summarized.

Chapter 2

Symbolic Relations and Two-Level

Encoding

2.1 Introduction

Many problems in synthesis can be posed as encoding problems and so effective

encoding methods are fundamental to high-quality results from synthesis. As mentioned al

ready in Chapter 1, different encoding techniques must be developed depending on whether

the eventual logic implementation is two-level or multi-level. This is, in part, because state-

of-the-art logic optimization techniques for both styles of implementations are different,

and the cost functions for physical realizations are different. In this chapter, techniques

targeting two-level implementations are considered.

For two-level encoding, the eventual physical realization is in most cases a pro

grammable logic array (PLA). Since a PLA is typically implemented as a two-dimensional

transistor array, the area complexity is roughly proportional to the number of rows times

the number of columns. The number of rows corresponds to the number of product terms

(i.e., implicants), and the number of columns is determined by the code lengths used to

encode the symbolic variables, as well as the number of primary inputs and outputs of the

finite state machine in the most general case. Hence, a widely accepted first-order measure

of area complexity of a PLA is simply the number of product terms (which is a first-order

approximation). Therefore, the goal of two-level encoding has been to produce a realizable

binary implementation with as few product terms as possible. Based on this cost measure,

13

14 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

a significant amount of work has been published since the 1960's, as reviewed briefly in

Chapter 1. The most successful approaches for two-level encoding to date have been based

on the paradigm of symbolic minimization. Symbolic minimization is the process of

minimizing directly the logic specification with symbolic variables such that the minimized

result can be translated into a binary representation by satisfying some prescribed encoding

constraints. Such an approach was used in [70] to minimize functions with only symbolic

inputs. The basic approach was later generalized to minimize functions with both symbolic

inputs and outputs [68, 92] (e.g., the state assignment problem). Recently, Devadas et al.

[35] proposed an exact symbolic minimization procedure for minimizing symbolic functions

with both symbolic input and output variables.

In all of the previous work on symbolic encoding, symbolic functions were as

sumed. That is, for every possible input condition, either the output is left entirely unspec

ified or there is exactly one mapping. However, in many interesting applications, relations

rather than functions have to be considered, meaning that several output choices of symbolic

values may be possible for each input condition rather than just one.

Symbolic relations arise in many contexts in synthesis [60, 63, 61]. Many opti

mization problems can in fact be naturally formulated as a symbolic relation minimization

problem. For example, when synthesizing a finite state machine, there may be a number

of equivalent states in the original specification. Equivalent states may be exploited by

permitting the next-state to be any one of the equivalent states. Let the behavior of a com

pletely specified finite state machine be given by the function T:JxS->Sx0. In the

classical state machine synthesis problem, T is treated as a symbolic function with I x S as

the domain (i.e., the machine inputs and present-states) and SxOas the co-domain (i.e.,

the next-states and machine outputs). For every combination of input and present-state,

exactly one next-state and one output pattern is produced. However, if a set of equivalent

states E C S x S is known, where (y,y') € E means the state y and the state y' are

equivalent, then the behavior of the finite state machine, under the degrees of freedom of

equivalent states, can in fact be formulated as a symbolic relation T'CJxExExOas

follows: for every (i,x) € J X E, (y,o) is a possible output mapping for T' if and only if

either (y, o) was the mappingfor the original function T(t,a?), or thereexists a state y' such

that y and y* are equivalent states and (y',o) was the original mapping for T(i, x).

In this way, it may be possible to implement a more efficient machine using the

equivalent states. In essence, T' is a symbolic relation that captures a complete family of

2.1. INTRODUCTION 15

equivalent FSM's that can be obtained by re-directing state transitions to equivalent states

in a state transition graph. The idea of using equivalent states to formulate a symbolic

relation was first introduced in [58, 60]. Another FSM synthesis problem is the state min

imization of incompletely specified finite state machines. In this problem, a set of prime

classes are selected to represent the minimized machine. However, a state in the original

machine may be covered by a number of prime classes. There is an optimization problem

that must be solved in choosing which prime class implements a next-state. This is referred

to as the mapping problem [75] and can be naturally formulated as a symbolic relation

minimization problem.

Other problems that can be formulated with symbolic relations include any ap

plications for Boolean relations with the added degree of re-encoding the binary outputs.

For example, consider the problem of minimizing a pair of cascaded PLA's. The signals

passing from the first PLA to the second may be re-encoded to simplify the two combi

national blocks. A symbolic relation may arise if some output vectors of the first PLA

are not differentiable by the second PLA. This is the same phenomenon that gave rise to

Boolean relations. However, these intermediate signals can be re-encoded. Straightforward

re-encoding without considering relations does not exploit all degrees of freedom.

The goal of two-level symbolic relation minimization is to find the minimum (or

a minimal) two-level binary implementation to realize the symbolic relation. The prob

lem of minimizing symbolic relations is fundamentally more difficult than the problem of

minimizing symbolic functions. In addition to the degrees of freedom of choosing different

encodings for the symbolic variables (both symbolic inputs and outputs), the choice of out

put mapping for each input condition must also be decided. The choice of output mapping

can, and often do, affect tremendously the optimality of the final result. In fact, the choice

of output mapping and the choice of encoding have complex interactions with each other.

Hence, it is important that they be considered together during the optimization process.

In this chapter, a unified framework is presented for solving various two-level

symbolic relation minimization problems exactly. The overall framework is based on the

classical paradigm of prime implicant generation and covering, but generalized to minimize

symbolic relations. The notion of generalized prime implicants (GPI's) proposed by Devadas

et al. [35] for symbolic function minimization is extended to the concept of generalized

candidate primes (or simply generalized c-primes). This is similar to the notion of

candidate primes in the Boolean relation problem [14]. After the generalized c-primes have

16 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

been generated, a covering problem must be solved whereby a subset of the generalized c-

primes is selected to implement the symbolic relation. In [35], the problem was formulated

as a minimum unate covering problem with encodeability check; The branch-and-bound

strategies are similar to those used in classical two-level minimization [78],but encodeability

must be checked before a solution is declared valid. The encodeability check was performed

using a separate graph resolution algorithm.

Here, a binate covering formulation of the problem is proposed whereby the

covering step, the encodeability check, and the all-zero code problem1 are solved simulta

neously. A succinct set of covering constraint equations is given that considers the complete

covering process. When formulated as a binate covering problem (BCP), a number of de

veloped bounding strategies (e.g., implications) can be exploited to prune the search space.

Also, the formulation into one unified framework permits a deeper understanding of the un

derlying problem. Most importantly, a variety of symbolic relation minimization problems

can be solved uniformly by modifying the covering constraints without the need to change

the core mechanisms for solving the binate coveringproblem.

The framework for symbolic relation minimizationis further generalized for solving

the FSM synthesis problem. As already mentioned, knowledge of equivalent states can be

exploited in FSM synthesis by permitting the next-state transition to be any one of the

equivalent states. Formulating the symbolic relation problem this way accounts for all the

degrees of freedom of state encoding and re-direction of state transitions in a state transition

graph. However, this is not the most general case since equivalent states can be merged

to reduce the number of states. Merging of equivalent states can be considered implicitly

in the minimization process by permitting them to assume an identical code2. This is

in contrast with the classical statement of the encoding problem where the assignment

of distinct codes to each symbolic value is required. Relaxing this requirement adds yet

another dimension in the optimization space, but doing so captures implicitly the state

minimization process as one of state encoding. The key difference is the use of actual logic

area as the cost function rather than the number of states. However, new constraints must

be imposed such that resulting solution is realizable. In particular, the implicit merging of

some equivalent states may necessitate the merging of other equivalent states (c/. Section

In a PLA implementation, if the outputs of a product term are all O's, then the product term can be
discarded. This condition must be accounted for during the minimization process.

The idea of assigning identical codes to equivalent states as a means for considering state merging
implicitly was first proposed in [58, 60].

2.2. BACKGROUND AND TERMINOLOGY 17

2.3.2 and Section 2.6.3). These additional constraints can be treated uniformly using the

unified framework described in this chapter.

The remainder of the chapter is organized as follows. In the next section, def

initions and notation used throughout the chapter are given. In Section 2.3, different

symbolic relation minimization problems are classified along with a global view of the uni

fied framework, namely prime generation, constraints generation, and minimum covering.

The problem of generating generalized candidate primes is examined in Section 2.5. Then

in Section 2.6, succinct sets of covering constraints are given for various symbolic relation

minimization problems. Specifically, in Section 2.6.3, the complete set of constraints for

capturing the degrees of freedom of state encoding, re-direction of state transitions, and

implicit merging is succinctly stated. This set of constraints essentially captures a complete

family of equivalent FSM's under state minimization and state assignment. In Section 2.7,

the binate covering problem, which is also known as the minimum-cost satisfiability

problem, is addressed. Specifically, a novel approach based on the use of binary decision

diagrams (BDD's) is presented that can handle constraints specified in multi-level form

directly. It is shown that the minimum cost solution can be found in linear time if the

corresponding BDD can be built. Experimental results for the algorithms described in this

chapter are given in Section 2.8. A complete example is worked out to illustrate the overall

minimization process.

2.2 Background and Terminology

2.2.1 Boolean Functions and Relations

Let B = {0,1} be the set of Boolean3 values. A Boolean variable, or binary

variable, is a variable that can accept values from the set B. A Boolean function / (also

called a binary function) with r binary input variables and n binary output variables is a

mapping function from an r-dimensional Boolean space to a n-dimensional Boolean space,

denoted as

f:Br^ Bn.

Br is called the domain and Bn is called the co-domain of the function /. Each element in

the domain of the function is called a minterm of the function. Given a subset of the domain

^Throughout the dissertation, the term "Boolean" will be used to refer to the two-valued set {0, 1}.

18 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

X C Br, the image of X with respect to / is the set f(X) = {y GBn | 3x GX : y = /(x)}

that the minterms in X can map to. The range of a function is the image of the entire

domain. A single-output function is a special case where m = 1. A multi-output function

/ : Br -*• Bn is in fact a collection of single output functions [/i, /2,..., /J.

A Boolean function / : Br —• Bn is said to be incompletely specified if there

exists some minterms in the domain, XDC C Br, where an output /; of / is not specified

(i.e.f the output can take on either value in B = {0,1}). This set of minterms XDC is
called a don't-care set of /,-. A more general form of incomplete specification is a Boolean

relation defined as follows:

Definition 2.1 A Boolean relation is a one-to-many multi-output Boolean mapping

H C Br x Bn. For each minterm x G Br, ft(x) = {y G Bn | (x,y) G 11} is the set of

possible mappings for x, also called the image o/x.

The image for a set of points in the domain is similarly defined. Given a subset of the

domain X C Br, the image of X with respect to H is the set H(X) = {y € Bn | 3x G X :

(x, y) G It}. A Boolean relation, in essence, captures a set of completely specified functions

over the domain Br and the co-domain Bn. In the following definitions, the relationship

between a Boolean function and a Boolean relation is established.

Definition 2.2 A Boolean relation It C Br x Bn is said to be well-defined «/Vx G Br,

ft(x) is not empty.

Definition 2.3 A multi-output Boolean function f is a mapping compatible with 1Z if

Vx 6 5r, /(x) Gft(x). This is denoted by f -<H.

2.2.2 Symbolic Functions

Definition 2.4 Let Di = {do^i,...^^-!}, D2 = {d0,di,...,dp2|-i}, •••> o.nd Dr =

{do,di,...,d\Dr_i}, and Hi = {<7o,0,i,...,0'|Ei|-i}> S2 = {^o,^i,--.»^|E2|-i}, ••., and
Sn = {(To, <7i».. •»^|En|-i} be finite sets of elements. Each Di and Sj represents a finite set
of symbolic values. A symbolic function with r input variables and n output variables

is a mapping

f : Di x D2 x • • • x Dr -*> Si x 22 x • • • x Sn.

Each variable is called a symbolic variable. Associated with each input variable U{ is

a set of admissible values D{ = {do,d\,...,d\j)._i} that the symbolic variable «,- can

2.2. BACKGROUND AND TERMINOLOGY 19

assume. Similarly, associated with each output variable v,- is a set of admissible values

E; = {oo,oi,..., 0"|s.|_:i} that v,- can assume.

The Cartesian product D = D\ x D2 X•• «X Dr is called the domain of the symbolic

function, and the Cartesian product S = Si x S2 x • • • x Sn is called its co-domain.

For compactness, the symbolic function / : D\ x D2 x • • •x DT —• Si x S2 X• • •x Sn

may simply be written as / : D —• S with a single symbolic input variable taking values

from D\ x D2 x • • •x Dr and a single output variable taking values from S1 x S2 x • ••x Sn.

As in the Boolean case, each point x G D in the domain is called a minterm.

A completely specified symbolic function is a symbolic function that maps

every minterm of the domain to exactly one element in the co-domain. A symbolic function

is said to be incompletely specified if for some inputs, the value of the some symbolic

outputs are left entirely unspecified (i.e., can take any value from the corresponding set

of symbolic values). The collection of such points of the domain for a particular output

is called the don't-care set for that output. To make the terminology more precise, the

following distinctions are made.

1. A function / : D —• Bn with symbolic inputs but only binary outputs is referred to

as a symbolic-input-binary-output function.

2. A function / : Br -*• S with only binary inputs but symbolic outputs is referred to as

a binary-input-symbolic-output function.

3. A function / : 2? -• S with both symbolic inputs and outputs is referred to as a

symbolic-input-symbolic-output function.

The latter is the most general case. To avoid confusion, in the remainder of the dissertation,

unless otherwise qualified, a symbolic function is referred to as a function that maps to

symbolic outputs (i.e., either a binary-input-symbolic-output function or a symbolic-input-

symbolic-output function), and a Boolean function is referred as to a function that maps

to binary values with possibly symbolic inputs (i.e., either a binary-input-binary-output

function or a symbolic-input-binary-output function)4. A symbolic-input-binary-output

function will also be called a symbolic-input Boolean function.

In the literature [79,77,56], a variable that can take on multiple, but finite, number

of values has often been referred to as a multiple-valued (or multi-valued) variable instead

4These points are belabored here because these distinctions are usually not clarified in the literature.

20 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

of a symbolic variable. The set of values that the variable can take is often denoted by a set

of integers P = {0,1, ...,?i— 1} instead of a set of mnemonics or symbols. The-terminology

is in fact interchangeable. Note that there is a one-to-one correspondence between a set

of n symbols S = {<t0,a\,...,<t„-i} and the multiple-valued set P = {0,1,..., n —1}. A

multiple-valued function is a function with multiple-valued variables. It is in fact the

same as a symbolic function. The difference is only again in the terminology. However, a

multiple-valued function is typically referred to as a function with only symbolic inputs

(*.e., no symbolicoutputs) [79,77,56]5. Forhistoricalreasons, someresearchersprefer to use

the terminologyof multi-valued variable and multi-valuedfunction [79, 77, 56] while others

prefer to use the terminologyof symbolic variableand symbolic function [68, 35, 70, 61]. In

this dissertation, terminology of symbolic variable and symbolic function is used.

2.2.3 Symbolic Relations

In this section, a symbolic relation is defined. As in the Boolean case, symbolic

functions can only be used to specify a one-to-one mapping and cannot capture fully spec

ifications in the general case with multiple output mappings (the use of don't-cares can

capture a limited set of output choices). Hence, a definition for specifying a one-to-many

mapping relation with symbolic inputs and symbolic outputs is needed.

Definition 2.5 A symbolic relation HC DxS isa one-to-many relation over the two

sets D and S. D is the domain of the relation, and S is the co-domain of the relation.

Symbolic relation was originally introduced in [60] as a means for formulating the problem

of minimizing state machines under equivalent states.

Definition 2.6 For each minterm x GD, the image o/x is the set of possible mappings

^(x)={yGS|(x,y)Gft}.

The image for a subset of the domain X CD is theset U(X) = {y GS | 3x GX : (x,y) G
11}. This is similar to the terminology used for Boolean relation (c/. Section 2.2.1). The
domain D mayin fact be the Cartesian product of r sets D\ x D2 x ... x Dr. Likewise, the

co-domain S may actually be the Cartesian product of n sets Si x S2 x ... x Sn.

*The optimization techniques presented in [79, 77, 56] for multiple-valued functions are for functions with
symbolic inputs only.

2.2. BACKGROUND AND TERMINOLOGY 21

Definition 2.7 A symbolic relationll C 2? x 2 is said to be well-defined */Vx GD, H(x.)

is not empty.

Definition 2.8 A multi-output Booleanfunction f : Br -* Bn is a compatible mapping

for H C D x S if there exists an input encoding £ : D —*• Br and an output encoding

tff : S -• Bn such that Vx G D, 3y G H(x) such that /(f(x)) = if>(y). This is denoted by

Like in the function case, the optimization problems are different for relations

depending whether symbolic inputs and/or symbolic outputs are considered. Here, a sub-

classification similar to Section 2.2.2 is given:

1. A relation 1Z C D x Bn with symbolic inputs but only binary outputs is referred to

as a symbolic-input-binary-output relation.

2. A relation It C Br x S with only binary inputs but symbolic outputs is referred to

a binary-input-symbolic-output relation.

3. A relation 1Z C D x S with both symbolic inputs and outputs is referred to as a

symbolic-input-symbolic-output relation.

In [94], the problem of minimizing multiple-valued relations is considered where only re

lations with symbolic-inputs are permitted. Symbolic output variables are not considered6.

In the remainder of the dissertation, unless otherwise qualified, a symbolic relation refers

to a relation with symbolic output mappings (i.e., either a binary-input-symbolic-output

relation or a symbolic-input-symbolic-output relation), and a Boolean relation refers to a

relation with binary output mappings (i.e., either a binary-input-binary-output relation or

a symbolic-input-binary-output relation). A symbolic-input-binary-output is also referred

to as a symbolic-input Boolean relation.

2.2.4 Finite State Machines

A finite state machine (FSM) is defined as a 6-tuple M = (J,C?,S,£,A,<7i) where

I = Br represents the primary-input space, O —Bn represents the primary-output space,

and S = {<7o, 0"i> •••>0"|E|-i} represents the state-space. The next-state (symbolic) function

as

6Symbolicoutputs arehandled in [94] by giving them one-hot binaryencodings, not by dealing with them
in symbolic form.

22 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

is defined as 6 : I x S -• S where each combination of primary-input vector i G I and

present state crpa GS is mapped to a next-state onB GS. The output function Ais defined

as A : I x S.—> O for the case of a Mealy machine and A : S -*• O for the case of a

Moore machine. The output is dependent on both the primary-inputs and present-state

for a Mealy machine whereas the output is only dependent on the present-state in the case

of a Moore machine.

A machine is said to be fully specified if for every combination of primary-

input and present-state, the next-state and all primary-outputs are defined. Otherwise, the

machine is said to be incompletely specified.

A reset state oT G S is assumed to be given for the machine. In general, there

may be a set of legal reset states, denoted as X C S. A state a is said to be reachable if

there exists an input sequence that will transform the machine from a reset state <rr G X

to a. Such an input sequence is called the justification sequence. A reachable state is

also called a valid state. If a state is unreachable, then it is called an invalid state.

For a completely specified machine, twostates <rt- and <Jj are said to be equivalent

if all possible input sequences when the machine is initially in either of the two states produce

the same output response. For an incompletely specified machine, two states <7t- and <Jj are

said to be compatible if all possible applicable input sequences when the machine is

initially in either of the two states do not produce conflicting output response. An input

vector from a state of an incompletely specified machine is said to be applicable if the

next-state response for this input is defined.

A FSM can also be specified in terms of a two-level truth table called a state

transition table where the left hand side represents the domain, corresponding to primary-

inputs and present-states, and the right hand side represents the co-domain, corresponding

next-states and primary-outputs. This truth table is essentially a specification of the sym

bolic function T(= tfxA):JxS-*Sx0.

A FSM can also be represented by a state transition graph (STG) G(V, E, L)

where each vertex v G V corresponds to a state a GS. An edge ey GE connects v,- to Vj if

there is a primary-input that causes the FSM to evolve from state vt to state Vj. Associated

with each edge is a label /(e) G L that carries the information of the value of the input

that caused that transition and the values of the primary-outputs corresponding to that

transition. Let the number of primary-inputs and primary-outputs be r and n respectively.

The fanin of a state a* is a set of edges and is denoted FI(a). The fanout of a state cr

2.2. BACKGROUND AND TERMINOLOGY 23

is denoted FO{a). The number of fanout edges for a given state is bounded by \I\ = 2r.

However, in general, the edges are labeled with cubes and are hence considerably more

compact. A state transition graph G\ is said to be isomorphic to another state transition

graph G2 if and only if they are identical except for a renaming of states. In the remainder

of this dissertation, extended definitions related to finite state machines will be given or

clarified when necessary.

2.2.5 Binary Decision Diagrams

A binary decision diagram (BDD) [2,20] is a data structure to represent a (single-

output) Boolean function / : Br —• B. Specifically, a BDD is a directed acyclic graph

(DAG) representation where each internal node in the graph is associated with a Boolean

variable and two outgoing arcs. One outgoing arc corresponds to the case when the variable

is set to 0, and the other corresponds to when the variable is set to 1. At the leaves of

the graph are two constant nodes 0 and 1. In the form introduced by Bryant [20], several

restrictions apply. First, a variable ordering is imposed such that all nodes reachable from

the current node must have a higher ordering index, except for the constant nodes (which are

not associated with a variable). Also, a variable may not appear more than once along any

directed path. The third requirement is that all isomorphic subgraphs are combined. Such a

resulting BDD is called a a reduced ordered binary decision diagram (ROBDD), which

is commonly referred to simply as a BDD. A fundamental property of Bryant's BDD is that

the representation is unique for a given variable ordering. This canonical property makes

it possible verify the equivalence of two Boolean functions simply by comparing their BDD

representations. Also, standard Boolean operations like intersection (f-g), union (/+<?), and

negation (J) can be implemented directly on the data structure. Hence, these operations

are very efficient with BDD's. Recently, efficient implementation techniques such as the

use of strong canonical forms, run-time function caches, and automatic garbage collection

have been proposed [11]. Using these techniques, an order of magnitude improvement in

performance can be achieved. A particularly useful operator with BDD's is the if-then-else

(ITE) operator.

Definition 2.9 Given three Boolean formulae f, g, and h over some Boolean space Br,

the if-then-else (ITE) operator is defined as follows:

ITE{f,g,h) = 7-g + f-h. (2.1)

24 CHAPTERS SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

This operation forms the foundation of many basic Boolean operations, as is seen later.

2.3 Minimization of; Symbolic Relations

2.3.1 Definitions of Symbolic Relations Problems

In this section, relationships between different two-level minimization problems

are examined. First, the minimization problems where different symbolic values must be

given distinct codes axe considered. These minimization problems can be parameterized

along three major axes depending on the degrees of freedom permitted. These dimensions

corresponds to whether 1) symbolic inputs, 2) symbolic outputs, or 3) multiple output

choices are considered. The Cartesian product of these three degrees of freedom forms a

problem space of eight possible minimization problems. In Figure 2.1, a lattice is depicted

to show the relationships between these different minimization problems. A directed arrow

in the diagram indicates that the minimization problem at the head of the arrow subsumes

the minimization problem at the tail. The simplest is the minimization of Boolean functions

where neither symbolic inputs, symbolic outputs, or multiple output choices is considered.

The most general and the most difficult problem is the minimization of relations with both

symbolic inputs and outputs since all three degrees of freedom are permitted.

In the case of Boolean function minimization, very mature methods have been

developed [12]. The problems of minimizing functions with symbolic inputs and/or symbolic

outputs are the classical symbolic minimization problems for which the techniques presented

in [70, 95, 78] can be used to handle functions with symbolic inputs and the techniques

presented in [68, 92, 35] can be used to handle functions with both symbolic inputs and

outputs7.

Minimizing relations is more difficult. Techniques for minimizing Boolean relations

and Boolean relations with symbolic inputs (i.e., a symbolic-input-binary-output relation)

havebeen developed. An exact procedurefor minimizing Boolean relations waspresented in

[14]. Recently, heuristic Boolean relation minimizers have also been proposed [93,41]. These
minimizers consider only binary variables. More recently, the heuristic minimizer described

in [93] was generalized to handle symbolic inputs [94]. However, symbolic outputs were not

In this section, for the sake of comparisons, no distinction is made between the problems of symbolic
minimization and encoding.

2.3. MINIMIZATION OF SYMBOLIC RELATIONS

Symbolic-Input
Binary-Output
Relation

Symbolic-Input
Binary-Output
Function

Symbolic-Input
Symbolic-Output
Relation

Boolean
Function

Binary-Input
Symbolic-Output
Relation

Binary-input
Symbolic-Output
Function

Figure 2.1: Lattice of Symbolic Minimization Problems.

25

considered8.

When formulating the FSM synthesis problem as a symbolic relation problem, the

final codes assigned to the states need not be orthogonal if knowledge of equivalent states

is known. In particular, the freedom of assigning identical codes to equivalent states should

be considered in order to fully exploit the presence of equivalent states. This effectively

corresponds to performing state minimization implicitly. However, one must take care to

8In [94], a symbolic-input-binary-output relation was referred to as a multiple-valued relation. The
multiple-valued relation minimizer handles symbolic outputs by impUcitly one-hot encoding the symbolic
outputs, and hence it does not fully exploit the degrees of freedom permitted with symbolic outputs.

26

Symbolic-Input
Binary-Output
Function

CHAPTERS. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

Symbolic-Input
Symbolic-Output
Relation

Boolean
Function

(WITHOUT IMPLICITMERGING)

Symboile-lnput
Symbolic-Output
Relation

Symbolic-Input -»«™ „,„-, ,._lrt

Relation

(WITH IMPLICIT MERGING)

Figure 2.2: Symbolic Minimization Problems with Implicit Merging.

Binary-Input
Symbolic-Output
Function

ensure that the merging of states is consistent. Nonetheless, permitting implicit merging

in the problem definition adds a fourth dimension to the problem space. Each minimization

problem with symbolic variables can be generalized to a broader problem that considers

the assignment of identical codes with constraints. The relationships between these mini

mization problems is depicted in Figure 2.2. The formulation of FSM synthesis as one of

symbolic relation minimization is addressed further in the next section.

2.3.2 FSM Synthesis: Restructuring and State Assignment

The classical approach to synthesizing finite state machines from a state transition

graph model of behavior has been by means of a state assignment step. The goal of state

2.3. MINIMIZATION OF SYMBOLIC RELATIONS

I 5 5 0 I S S 0 S Codes IxS SxO

0 S\ 52 1 0 s\ s2 1 S\ 00 000 Oil

1 S\ *3 0 1 S\ s2 0 s2 01 100 010

— S2,Sz

54

54 1

1

— s2

54 8\

1

0

54 10 -01

-10

101

000

(a) Machine M\ (b) Machine M2 (c) Code 52 (d) Logic N2

Figure 2.3: Limitation of State Assignment.

27

assignment is to optimally assign binary codes to the internal states of a finite state machine

such that the resulting synthesized logic is minimized. The assignment is restricted such

that no two states are assigned the same binary code. While effective state assignment meth

ods exist, they generally do not explore possible state assignments from other equivalent

state machine structures. Therefore, the solutions obtainable by means of standard state

assignment may be suboptimal. That is, a better realization may have been possible from

an equivalent machine with a different structure. In general, two machines can exhibit the

same overall terminal behavior even though their respective structures are different. Equiv

alent state machines can be realized by merging or splitting states. Such transformations

are referred to as machine restructuring. Consider the following example:

Example 2.1 Referring to Figure 2.3, logic implementation N2 is a valid implementation

of machine Mi. However, one cannot find a conventional state assignment that will result

in such a logic implementation. •

N2 is a valid implementation of machine M\ because it corresponds to a state assignment

from an equivalent machine M2. Thus, even if optimum state assignment can be found for

a given machine specification, there may still exists a superior valid implementation that

can only be obtained if other equivalent machines are considered.

In the above example, M2 was obtained by state minimizing M\. In general, differ

ent equivalent machines can be derived by splitting or merging states. In effect, equivalent

states are introduced or eliminated.

28 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

I 5 5 0

0 «i 52 1

1 si S3 0

— s2,s3 54 1

— 54 51 1

(a) Machine Mi

I 5 5 0

0 si 52 1

merging => 1 si s2 0

=»- splitting - s2 54 1

— 54 Si 0

(b) Machine M2

Figure 2.4: Splitting and Merging of States.

Example 2.2 Referring to Figure2.4, both machines Mi and M2 are equivalent. Machine

M2 can be derived from machine Mi by merging the states 52 and 53 of Mi into a single

state 52 in M2. Similarly, machine Mi can be derived from machine M2 by splitting the

state 52 in M2 into two states 52 and 53 of Mi. Machine M2 is a reduced machine and

machine Mi is a non-reduced machine. D

One commonly used method of restructuring is state minimization[54]. In this process,

equivalent states are systematically identified and merged. The primary objective of state

minimization is to obtain an equivalent machine with the minimal number of states. How

ever, it is well known that a non-reduced machine may in fact lead to a superior logic

implementation[47]. This point maybe better appreciated in the following example (taken
from [47]).

Example 2.3 Consider the two machines shown in Figure 2.5. Machine Mi is a reduced

machine (ie. it has no equivalent states). Machine M2 is not a reduced machine since the

states 53 and 54 are equivalent. Machine M2 was derived from Ml by splittingthe state 53

of Mi into 53 and 54 in M2. The optimum two-level result for the reduced machine Mi is

eight product terms, while optimum result for the non-reduced machine M2 is only seven
product terms. D

Therefore, it is crucial to explore possible state assignments not from just one machine
specification, but from a number of equivalent ones.

2.3. MINIMIZATION OF SYMBOLIC RELATIONS

Example: (taken from Hartmanis, 1962)

I 5 5 0

0 so 52 0

1 so S6 0

0 si S3 0

1 si Si 0

0 s2 so 0

1 52 «5 0

0 S3 S\ 0

1 S3 S3 0

0 S5 so 1

1 S5 Si 1

— S6 S3 0

— 57 s2 0

(a) reduced

(8 terms)

I 5 5 O

0 so 52 0

1 so 56 0

0 si 53 0

1 si 57 0

0 s2 50 0

1 s2 55 0

0 S3 51 0

1 S3 54 0

0 54 51 0

1 54 53 0

0 *5 50 1

1 «5 52 1

— 56 53 0

— 57 52 0

(b) non-reduced

(7 terms)

Figure 2.5: Limitation of State Minimization.

29

In this research, it is proposed that the state minimization and state assignment

problems be solved together by formulating the combined problem as a general case of

symbolic relations. Precisely, the problem is formulated as one of minimizing a symbolic-

input-symbolic-output relation with implicit merging. To capture the effects of

implicit merging, new constraints must be imposed on the covering problem, as described

in Section 2.6.3. However, as will be seen in the next section, these new constraints can

be handled uniformly using a unified framework. The main result of formulating the FSM

synthesis problem as one of symbolic relation minimization under implicit merging is that

the formulation captures an entire family of equivalent state machines that can be obtain

by state minimization and re-direction of state transitions simultaneously. Each of these

steps is elaborated in greater detail in remainder of the chapter.

30 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

2.4 A Unified Framework

A unified framework is now presented for solving various two-level symbolic relation

minimization problems exactly. The approach is based on the classical paradigm of prime

implicant generation and covering, but generalized to minimize symbolic relations. The

overall exact minimization process involves the following three steps.

1. Prime Generation: In this step, all the prime implicants of the symbolic relation

are generated. To handle symbolic relations, the classical notion of a prime implicant

must be extended. In [35], Devadas et al. introduced the concept of generalized prime

implicants (GPI's) for minimizing symbolic functions. To handle multiple output

choicesin the symbolic relation problem, the notion of GPI's is extended to the concept

of generalized candidate primes (or simply generalized c-primes), similar to the

notion of candidate primes in the Boolean relation problem [14]. Depending on the

degrees of freedom considered (e.g., symbolic inputs, symbolic outputs, or multiple

output choices), different sets of generalized candidate primes must be generated.

However, the same prime generation procedure can be used, as described in Section

2.5.

2. Constraint Generation: After the generalized c-primes havebeen generated, a cov

ering problem must be solved whereby a subset of generalized c-primes is selected to

implement the symbolic relation. Unlike classical Boolean minimization, constraints

must be imposed on the selection process such that the selected set of generalized c-

primes can be encoded and does actually realize a compatiblemapping of the relation.

Tohandle arbitrary constraints, the covering step is formulated as a single binate cov

ering problem. These constraints include encoding constraints, selection constraints,

and general constraints like the all-0 code problem. For different symbolic relation

minimization problems, the constraints are modified appropriately.

3. Binate Covering: To solve the binate covering problem, which is also called a

minimum-cost satisfiability problem, a binary decision diagram (BDD) based
formulation is proposed whereby a BDD is built for a Boolean formula that implicitly

captures all possible selections of generalized c-primes that satisfy all the imposed

constraints. It is shown in Section 2.7 that the minimum cost solution actually corre

sponds to the shortest weighted path in the BDD, which can be found in linear time

2.5. PRIME GENERATION 31

if the corresponding BDD can be built (i.e., 0(\V\) where \V\ is the size of the BDD).

2.5 Prime Generation

2.5.1 Candidate Primes for Boolean Relations

Before addressing the problem of prime generation for symbolic relations, prime

generation for the restricted case of Boolean relations is first reviewed. The idea behind

the use of relations in optimization problems is to anticipate all possible choices. For this

reason, in Boolean relations one tries to anticipate all possible combinations of output

values. One method for deriving all primes for a Boolean relation 1Z C Br x Bn is to

write down all mappings compatible with H and generate all the primes for each of these

mappings. However, if mintermx GBr has mx = |72.(x)| choices, then there are ILceS*- mx
different compatible mappings. In [14], a prime generation procedure for Boolean relations

was given that can produce the complete set of primes without having to enumerate all

mappings compatible with H explicitly. The exposition of this procedure requires some

definition first (a more detailed explanation of the theory and algorithms can be found in

M).

Definition 2.10 A candidate prime (or c-prime) of a Boolean relation 11 is a prime of

a mapping f -< H.

Definition 2.11 A cube, CC BrxBn, is a Boolean relation, denoted by the pairC= (c|J),

such that c is a cube of Br, I C Bn, and

C(x) = J,VxGc

C(x) = {0},Vxgc

c is called the support set ofC and I is called the influence set of the cube. The size of

C is |c|.

Definition 2.12 Let 11 C Br xBn be a Boolean relation, and CC BT x Bn be a cube, C is
an implicant of11 if and only if

Vx€£r,Vy'eC(x),3yeft(x) such that y' < y.

(note: y7 < y means y bit-wise contains y'.) A prime implicant, (c|J), of"JZ is a cube
with theproperty that i e I if and only if(c\i) is a c-prime ofH.

32 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

Definition 2.13 A fundamental implicant of a~Boolean relation TZ C Br x Bn is an

implicant, (x|7), where xGF and I = 1Z(x).

Definition 2.14 Two cubes, C andC", of'1Z are adjacent- if and only if their supports cf

and c" are distance one (differ in only one variable) from each other. The merge (denoted
C oC") ofC and C" is a cube C with support set

c = c'Uc"

and influence set

I = {y € Bn : y = (7./.6.(y',y"),y' 6 J',y" 6 I"}

where g.Lb stands for the greatest lower bound, the bit-wise AND ofy' and y".

The procedure for generating c-primes proposed in [14] is based on iterated consensus. It

is summarized in Figure 2.6 (takendirectly from [14]). The procedure begins with a set of

fundamental implicants and iteratively construct larger cubes. At each iteration, the set

of maximal implicants of size s are produced. Also at each iteration, implicants from the

previous iterationthat are contained by the current set ofimplicants are removed. A proof
of correctness can be found in [17].

2.5.2 Generalized Candidate Primes for Symbolic Relations

When symbolic variables are considered, provisions must be made for all possible

combinations ofcode assignments and outputchoices. Recall that given a symbolic relation
11 C .DxE, a multi-output Boolean function / : BT -+ Bn issaid tobea compatible mapping
for H if there exists an input encoding f : D -* BT and anoutput encoding tf) : S -*• Bn such
that Vx 6 2?, 3y 6 K(x) such that /(f(x)) = ^(y) (denoted by / -<Uttl,y It). Therefore, all
primes corresponding to all possible compatible mappings must be considered. This leads

to the following definitions ofgeneralized fundamental implicant and generalized c-primes.

Definition 2.15 A generalized fundamental implicant of a symbolic relation H C
DxH is an implicant (x|<r), where x 6 D and a —H(x).

Definition 2.16 A generalized candidate prime (or simply generalized c-prime or gc-
prime) ofa symbolic relation H is a cube (c|a) CDxS such that there exists an input
encoding £:D -+ Bn and an output encoding t/>: S -> Bn for which (f(c)|^(a)) is a prime
of a mapping f -^} 11.

2.5. PRIME GENERATION 33

input: The set of. fundamental implicants of 1Z
output: The set P of all prime implicants of 1Z

Aq= {all fundamental implicants of R};
P = 0;
for s= 1,...,r {

B, = Q;
for each pair (a',a") 6 Aa_i x As-i,a' ^ a" {

if a' is adjacent to a" {
b = a'oc";
mark all «' € /' such that W € I",i' < i"\
mark all i" e I" such that Vi' € J',t" < i';
5a = J?au{&};

}
}
remove all marked vertices from the influence sets of the cubes in A8-i;
P = PuAa_u

A8 = Ba;

}
P = PUArl

Figure 2.6: Prime Generation Procedure for c-primes of Boolean Relations.

These definitions can be trivially extended when multiple symbol sets are considered. In

the remainder of the chapter, generalized c-primes will occasionally be simply referred to

as primes where no confusion arises. The fundamental concept behind the minimization of

symbolic relations is similar for Boolean relations, viz. finding all the candidate primes and

then forming a covering problem.

In [35], it was shown that generalized primes for symbolic functions can be gener

ated using already existing prime implicant generation procedures. This is accomplished by

transforming a symbolic truth table into a multi-valued input multi-output binary-valued

output function. Precisely, the output symbols are assigned O-hot codes [35]. Given N sym

bolic values, N bits are used (i.e., &i is encoded as 0111 •••1, a2 as 1011 ••-1, and so on).

It was shown that the prime implicants of this new multi-output function have a one-to-one

34 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

correspondence with the generalized primes of the original symbolic function. A proof can

be found in [35]. This transformation is independent of the eventual code-length to encode

the symbolic values.

The procedure for generating generalized c-primes in the symbolic relation problem

is similar, but it must account for multiple choices of output symbols. The generation of

generalized c-primes proceeds as follows. First, the output symbols are 0-hot encoded as

in the case for symbolic functions. If the output for a particular input value is a complete

don't-care, as in the case when a given input value cannot take place, then the all-one code is

used. The resulting Boolean relation is then submitted to the c-prime generation procedure

described in Figure 2.6 [14], modified to take into account the following results. Since a

Boolean relation c-prime generation procedure is used, the following result can be used

to remove locally-redundant c-primes. At the end of the process, primes with the all-one

output part are discarded, as they only cover vertices for which the output is completely

free.

Theorem 2.1 Generalized c-primes with all-one output part can be discarded.

Proof: Using the 0-hot encoded scheme, an all-one output part means the corresponding

cube does not assert any output symbols. Therefore, it cannot be used to form a minimal

cover. •

For theses primes, noconstraints need be generated for the minimum-cost covering problem.

Constraints are required for all other primes for which some restrictions apply. Depending

on the problem, different constraints must be satisfied in achieving a minimum-cost cover.

If eventually the selection of primes will be encoded using a fixed code-length L,
then it ispossible to discard some primes already before solving theminimum-cost covering
problem.

Lemma 2.2 The intersection ofn> 2L~X codes of L bits is the all-zero code.

Proof: For every bit in the code there are at most 2L~l codes with a 1 in that position.
•

The application ofthis lemma is straightforward. When a new cube isgenerated (in Figure
2.6), the number of zeroes in its output part is counted. If it isgreater than 2L_1, then the
cube is marked as non-prime.

2.6. EXACT SYMBOLIC RELATION CONSTRAINTS 35

Example 2.4 Let S = {&ita2,a3ia4}. Let L = 2. A cube with output part o\ n cr2 n a3

(output part represented as 0001) can be dropped immediately. D

2.5.3 Reduced Prime Implicant Table

The generalized c-prime generation procedure can be further optimized by con

sidering the construction of a reduced generalized c-prime table. In classical Boolean min

imization, many techniques have been developed for determining all the prime implicants

[67, 12, 77]. Unlike Quine-McCluskey's (Q-M) procedure [67] where a rowis introduced for

each minterm, minimizers like ESPRESSO-EXACT [77] produces a reduced prime implicant

table where each row corresponds to a collection of minterms (ie. a larger subspace), all of

which are covered by the same set of prime implicants. In principle, this general idea can

also be applied in the case of relations to reduce the size of the table. However, whether the

prime generation procedure for Boolean relations, described in Figure 2.6 can be extended

to exploit this idea remains an open question.

2.6 Exact Symbolic Relation Constraints

After the generation of generalized c-primes, a constrained covering problem is

solved to select a suitable subset of generalized c-primes. This is formulated as a binate

covering problem. As a by-product, the encoding of the symbols are derived automatically.

In this section the generation of constraints, expressed as Boolean formulas, is considered

in detail for three forms of the symbolic relationproblem that involve symbolic outputs and

multiple output choices. They naturally correspond to three encoding problems: output

encoding for two-level combinational circuits, state encoding for two-level implementations

of finite state machines, and simultaneous state minimization and encoding for two-level

implementations of finite state machines. In describing the constraints for these three

problems, relations are assumed.

2.6.1 Output Encoding

First, the problem of minimizing symbolic relations with only binary inputs is

considered. This is referred to as the output encoding problem. More formally, the problem

is stated as follows. Given a symbolic relation H C Br x S, where B = {0,1} and S =

36 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

{cri,...,<7jv}, encode S with at most L bits, so that Ok = &jfci&ifc2v&JfeL« There are 2L

possible codes and the inequality N < 2L must be satisfied. The encoding must be such

that the number of product terms in the minimized relation is minimum. In this problem,

a fixed code length L is given.

The satisfaction of two sets of constraints are required for the output encoding

problem. One set of constraints is required for all vertices for which some restrictions on

the output values apply (corresponding to constraints on encoding and multiple output

choices), and the other set is used to express the fact that no two symbols may have the

same code9. These constraints are expressed as follows.

Output Constraints: Consider a minterm x € Br. Without loss of generality, suppose

the image (the possible output mappings) of x is H(x) = {o"i,...,<7p}. Let gi,...,gn

be all the gc-primes that cover minterm x. Let n?Liaij De tne output part of gi. Let
J= {1,...,ti} and

/fc = {t|»6JA(3i)(<Tii=(7fc)}

In other words, Ik is the index set of the gc-primes covering x that contain Ok in their

output parts. Then the following output covering constraints must be satisfied.

where e(ai.) and e(&k) represent theencodings given toa^ and a*, respectively. These can
be rewritten as

I. ((j,.,") b((s(-MH)-1
and simplified to

t ((n »)n(*+s:(*(ft *J\))) =i. (2.2)
Here, the </,-'s represent the selection variables corresponding to the gc-primes, and the fcy's
represent the encoding variables (i.e., 6tJ- corresponds to the j-th encoding bit of the i-th
symbolic value).

This restriction can be relaxed if twosymbols are equivalent In which case, theycan be given the same
code (c/. Section 2.6.3) if the required constraints are satisfied.

2.6. EXACT SYMBOLIC RELATION CONSTRAINTS 37

Disjointness Constraints: The disjointness constraints are imposed to ensure that the

final codes are orthogonal and can be simply expressed for L bits and N symbolic values

as:

N-i N L

II II E (*» ®***) = 1- (2-3)
1=1 jzzi+l fcsl

The derivation of these constraints is similar to the one presented in [35], with three major

points of departure.

1. The introduction of the variables gi makes it possible to cast the whole problem into

a single, uniform, binate covering problem.

2. The solution of the all-zero state problem is incorporated in the formulation. This

can be seen by observing that in Equation 2.2, the requirement that a prime be

selected to cover a vertex, expressed by

e(*(n »v<
is implied by bu = 1. This result is quite significant since the all-zero code problem

was previously handled by performing N + 1 exact minimizations, where N is the

number of symbolic values [35]. No other approach was previously known. Clearly,

performing N + 1 exact minimizations is extremely CPU intensive.

3. As the problem here is the minimization of relations rather than functions, one has

to account for the fact that the simultaneous selection of a set of primes may be

incorrect. These restrictions are embodied in the term

of Equation 2.2.

These constraint can be put in product-of-sum (POS) form or, if the BDD formulation of

the binate coveringproblem is used, the BDD can be built directly from these constraints.

The weights are as follows:

• weight(flff) = 1;

• weight(6tJ) = 0;

38 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

The minimum cost assignment using the above weights that satisfies both Equation 2.2 and

Equation 2.3 corresponds exactly to the minimum two-level solution to the output encoding

problem.

2.6.2 State Encoding

In the exact state encoding problem, symbolic inputs must be considered in addi

tion to symbolic outputs. The achievement of the minimum number of terms for the exact

state encoding problem requires the satisfaction of face embedding constraints [70] in

addition to those imposed by exact output encoding. These face embedding constraints

are derived from the primes of the symbolic relation describing the state transition graph.

The primes are derived taking into account that the present-state field is a single symbolic

variable. Unlike the previous approaches, the entire set of face embedding constraints that

correspond to all the primes of the relation is considered. However, the coveringconstraints

axeform in such a way that a given face embedding constraint will have to be satisfied only

if some primes are selected.

Face Embedding Constraints: More specifically, there are as many non-trivial face

embedding constraints as there are unique present-state parts in the primes, having elim

inated the present-state parts that cover either one or all states. These last present-state

parts are known to represent trivially-satisfied face embedding constraints.

For each non-trivial face embedding constraint <f> there is an associated group of

primes. Let {<7i,...,<7„} be this set of primes. Furthermore, let crtl1 ... crtT be the states
that 4> requires to be in the same face and let vri, ... arR be the states that <f> requires not

to be in that face. The following covering constraints must be satisfied:

n R. / T T \

Us,.+n En(**®**) = i- (2.4)
i=i *=i \ t=i j=i /

Equation 2.4 must be satisfied in addition to Equation 2.2 and Equation 2.3 to obtain the

minimum-cost solution to state encoding. The exact solution corresponds to the minimum

implementation for entire family of FSM's under state encoding and equivalent next-state
transitions.

2.6. EXACT SYMBOLIC RELATION CONSTRAINTS 39

2.6.3 State Minimization and State Encoding

As described in Section 2.3.2, the two tasks of state minimization and state en

coding for completely specified finite state machines can be solved exactly as a modified

symbolic relation problem as follows:

1. Apply a standard procedure [54, 44] for identifying equivalent states and implied

state pairs. This process can be performed with 0(N log N) time complexity where

N is the number of states. Then construct an implication graph &(V,E) where

each v 6 V corresponds to an equivalent state pair {ffvi^av2) and each directed edge

e : u —• v between two vertices corresponds to a merging constraint whereby the

merging of state pair (<rui, ^2) implies the merging of state pair (o^i, o\a)>

2. Convert the state encoding problem into a symbolic relation problem by permitting

the next-state of any transition to be any one of the equivalent states, as in the exact

encoding problem.

3. Solve the symbolic relations problem modified to permit equivalent states to have the

same code and ensure all implied conditions are satisfied.

To solve exact state encoding under state minimization, the covering constraints must be

modified to take into account the following two conditions: 1) Equivalent states need not

have orthogonal codes. The disjointness constraints of Equation 2.3 can be modified to

account for this flexibility. 2) If two states are implicitly merged (by assigning the same

code), then all the implied state pairs must also be merged. This requires the addition of

a set of constraints called implied equivalence constraints. These constraints are given

below.

Modified Disjointness Constraints: A modified set of disjointness constraints must be

imposed to ensure that the final codes for non-equivalent states are orthogonal. The codes

given to equivalent states however need not be orthogonal. This can be simply expressed

for L bits and N symbolic values as:

N-\ N L

n n e (*••* ®*>*) = !• (2-5)
»=1 j=i+l&ifr$ k=l

40 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

Implied Equivalence Constraints: Another set of constraints is imposed to guarantee

that if two states are implicitly merged, then all implied state pairs are also merged. This is

expressed as follows. Let (<7,-, aj) be an equivalent state pair, and {(aPl, cr^),..., (crpj, aqi)}

be the set of I implied equivalence pairs. Then

II («(*•') = 6(<Ti)) =* W^r) =<**)) = 1-
r=l

must be satisfied for every equivalent state pair. These can be rewritten as:

1 (h L \

II E (6«* ©*i») + II (bPrk V Kk) = 1- (2-6)
r=l *=1 *=1 /

The minimum cost assignment under the constraints of Equation 2.2, Equation 2.5, and

Equation 2.6 corresponds exactly to the minimum two-level solution to the state minimiza

tion and state encoding problem. This is complete for an entire family of FSM's under state

encoding, state merging, and state transition re-direction.

2.7 Solving the Binate Covering Problem

2.7.1 The Problem

Solving the binate covering problem efficiently has many important applications

in logic and sequential synthesis. They include Boolean relation minimization, state min

imization, exact encoding, and technology mapping. It is well known that minimum cost

binate covering can be formulated as a 0-1 integer linear program (ILP). However, optimum

solution to the ILP problem is known to be intractable. Alternatively, binate covering is

better viewed as a minimum-cost satisfiability problem where effective logic manipu

lation techniques may be applied. For clarity, a statement of the minimum binate covering

problem is given.

Problem 2.1 (The Minimum Binate Covering Problem) Let the Boolean formula

T(xi, ...,£„) represent the covering constraints where an input assignment x is said to be

a satisfying assignment if and only if T(x) = 1. Let cost of a positive literal x,- be given by

w,-, and the cost of a negative literal xj be 0. Find a minimum cost assignment x satisfying

T, i.e., find an assignment x such that T(x) = 1 and J^-i x{ •Wi is minimum. •

2.7. SOLVING THE BINATE COVERING PROBLEM 41

This is referred to as the general or factored form binate covering problem. One approach

to the binate covering problem is to express the constraints in POS form, also called the

conjunctive normal form, and apply branch-and-bound techniques to solve the problem.

This instance of the problem is referred to as the two-level binate covering problem. When

formulated in this form, effective algorithms have been developed for exploring the search

space [14, 78, 44]. In the POS form, the covering constraints T can be written in a binary

matrix form with coefficients from the set {0,1,2}, and the problem is formulated in the

following way.

Problem 2.2 Find a subset C of columns of minimum cost, where the cost of selecting

column c, is wt-, such that for every row r&, either

1. 3j : Tkj = 1 A Cj 6 C or

2. 3j : Tkj = 0 A Cj; g C.

a

In this section, a branch-and-bound strategy for solving the binate covering in POS form is

first addressed. Empirically, the techniques for two-level binate covering are quite effective.

However, a limiting factor is that the covering problem must be expressed in two-level POS

form. This is not always easy (if even possible) for many interesting applications. This

motivates the need to explore binate covering techniques that attack the factored form

representation directly. The exact symbolic relation problem being solved in this chapter

is an example of such application. Instead, a graph-oriented formulation based on binary

decision diagrams (BDD) [20] is proposed in Section 2.7.3. Pruning strategies are described

in Section 2.7.4 for expediting BDD construction.

2.7.2 Branch-and-Bound Techniques

The efficiency of binate coveringin POS form depends heavily on the pruning and

branching strategies used. Here, direct extensions to the implementation describe in [14] for

reducing the covering matrix and bounding the search are described. First, the reduction

rules described in [14] are summarized.

Definition 2.17 An essential row of T is a row r; where only one coefficient is different

from 2.

42 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

Essential rows can be removed. The corresponding column Cj is included in the selection

set 5 if Tij = 1. Column Cj can then be removed.

Definition 2.18 A row ri dominates another row ri i/r,- is satisfied whenever ri is sat

isfied.

Dominating rows can be eliminated. Row dominance corresponds to single cube contain

ment.

Definition 2.19 Let Cj and Ck be two columns ofT. Then Cj dominates c& if, for each

row ofT, Tij = 1 or Tij = 2 and Tik ^ 1 or Tij = 0 and Tik = 0.

The dominated column can be eliminated. These reduction rules are essentially the ones

proposed by Grasselli and Luccio [44]. An additional reduction rule that can be applied is

directly adapted from a paper by House and Stevens [48].

Theorem 2.3 Let T be satisfiable. Let Ck be a column ofT. Suppose for some rows ri and

rj, Tik = 1 and Tjk = 0, and Tji = 1 implies T,/ = 1. Then a minimum solution to the

modified matrix by setting Tik = 2 is also a minimum solution to the original matrix.

This is essentially a restricted form of consensus where the clauses are simplified. Like logic

minimization, the overall simplification is order dependent. This technique can be effective

in some cases. However, note that the simplification of constraints interplays with other

reduction steps and the column selection algorithm.

All bounding techniques presented can be used to reduce the size of the covering

matrix. In general, branching heuristics are required to explore the search space. In [14],

maximal independent sets were used to give a lower bound. Columns that intersect many

short rows were favored. In the symbolic relation minimization problem, a large number

of the variables (those corresponding to encoding bits) have zero cost. These variables are

introduced to impose additional selection constraints and do not contribute to the final cost.

A possible strategy is to use the same branching heuristics as before, but defer selecting

the zero cost columns as late as possible. When the only branching columns are zero cost

columns, then the problem degenerates to simply a satisfiability problem. The maximal

independent set method should be able to quickly bound the recursion.

2.7. SOLVING THE BINATE COVERING PROBLEM 43

2.7.3 BDD-Based Formulation of Binate Covering

An alternative approach to the binate covering problem is to formulate it with

binary decision diagrams (BDD's) (cf. Section 2.2.5). The essence of the BDD approach

can be captured in the following definition and theorem.

Definition 2.20 The cost of a path in a BDD, D, is defined to be the sum cost of the arcs

along thepath where a '0' arc costs 0 and a '1' arc costs w (or 1 for an unweighted problem).

Theorem 2.4 Let D be a reduced (ordered) BDD a Booleanformula T(xi,.. .,£„). Then

the minimum cost assignment satisfyingT is given by the minimum cost (or shortest) path

connectingthe '1' leaf to the root in D independent of the choice ofvariable ordering.

Proof: Every path from '1' to the root represents a set of satisfying assignments. By

taking all the variables that do not appear along the path as 0, one obtains a unique minimal

assignment corresponding to the path. For this unique assignment, the cost is equal to the

weighted length of the path. Let x be the unique minimal assignment corresponding to the

shortest path P of D. x is proved to be minimum. Suppose there is another assignment

x7 such that cost(x/)<cost(x). x' corresponds to at least one path from '1' to the root of

D. Let P' be the shortest such path. Then cost(x')>length(P/)^lenStll(P) = cost(x), a

contradiction. •

The above theorem states that binate covering problem can be solved by constructing the

BDD for the Boolean formula T and solving the shortest path problem using Dijkstra's

shortest path algorithm which is 0(E). For reduced BDD's the algorithm is also 0(V).

The BDD can be constructed using a state-of-the-art BDD package.

Example 2.5 Suppose the minimum cost solution to the following constraint formula is

sought:

T = (a?2 + «3)(^3 + x4)(x2 + x3 + x4)(xi + x3 + x5)(xi + x4)x5.

Assuming a variable ordering of x5 •< x2 -< x3 -< x4 •< a?i, a BDD can be constructed for

formula T, as shownin Figure 2.7(a). Assuming all the variables have a weight of 1 for x ,-

and 0 for x7, then the minimum cost binate covering solution can be derived from the shortest

weighted path (cf. Figure 2.7(b)). Using the variable ordering x5 -< x2 -< x3 -< x4 -< xi,

a shortest path solution is x5X2X32:4. The variables that do not appear (xi) are set to 0.

This transformation leads to the minimum cost solution X1X2X3X4X5 (with cost equal to 2)

44 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

(a) A Binary Decision Diagram for T.

(b) A Corresponding Shortest Path Solution.

Figure 2.7: Binary Decision Diagram and Shortest Path Solution.

2.7. SOLVING THE BINATE COVERING PROBLEM 45

for satisfying T. If instead the variable ordering X5 -< x4 -< xi -< X3 -< X2 is used, a more

compact BDD can be derived, as in Figure 2.8(a). Using this variable ordering, a shortest

path solution is x5X4X3. Here, xi and X2 axe set to 0 and the same solution as before is

obtained (cf. Figure 2.8(b)). •

Since the minimum cost solution is independent of the variable ordering, any existing

variable ordering heuristics may be applied to derive a more compact BDD representation.

However, the straightforward approach to building the BDD is unnecessarily la

borious. In essence, the BDD captures all possible input assignments. Paths leading to the

(1' leaf represent valid assignments while paths to the '0' leaf represent invalid solutions.

However, among the valid solutions, one is usually only interested in a potentially very

small subset, those that have a low cost. Typically, a reasonably tight upper bound on

the problem can be derived. For example, in technology mapping a fast tree-mapper can

be invoked to obtain a tight bound. In state minimization, the minimum cost solution is

bounded by the number of states and the number of maximal compatibles. In Boolean

relations, a fast heuristic two-level minimization solution on a function that approximates

the relation can provide a tight bound. If the equations can be written in POS form, then a

quasi-greedy covering strategy can always be used to bound the solution cost. If an upper

bound is provided, then more costly input assignments can be pruned. To do this, a new

Boolean operator called the threshold operator is introduced.

2.7.4 The Threshold Operator

A naive approach to pruning away input assignments with cost greater than some

upper bound u is to delete from the on-set of T those minterms with cost greater than u.

Lemma 2.5 Let T(xi,.. .,xn) be the Booleanformula for the covering constraints, and u

be an upper bound on the assignment cost. Let G(xi,.. .,xn) be a function where G(x.) = 1

if and only if the cost o/x is less than or equal to u. Let Tq = TnG. Then minimum cost

assignment for Tq, if one exists with a cost less than or equal to u, is the same as T.

However, the Boolean formula G can be quite complicated. An alternative approach is to

eliminate paths from the BDD whose path cost is greater than u. This is in fact what the

threshold operator does.

46 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

(a) A Binary Decision Diagram for T using a Different Ordering.

(b) A Corresponding Shortest Path Solution.

Figure 2.8: Binary Decision Diagramand Shortest Path Solution using a Different Ordering.

2.7. SOLVING THE BINATE COVERING PROBLEM 47

Definition 2.21 Let D be the BDD of a Boolean formula T(xi,..., xn), and u bean upper

bound on the input assignment cost. Define D' = A(JD, u) to be a new BDD where there

exists no path from root of D to <V with cost greater than u and the minimum cost, and all

paths with less than u are retained. All paths with cost greater than u are redirected to the

<0' leaf.

Theorem 2.6 Let D be the BDD of a Booleanformula T(xi,.. .,x„) to a set of covering

constraints, and u be an upper bound on the input assignment cost. Then the minimum path

cost for D' = A(D, u) is the same as the minimum path cost for D as long as the minimum

cost is less than or equal to u.

Proof: A satisfying assignment is one that leads from the root to the *1' leaf. All paths

leading from the root to the *1' leaf of D' also exists in D. Since the only paths in D not

in D' are those with a path cost greater than «, it is not possible to find a minimum cost

path greater than u in D but not in D'. •

Essentially, A(D, u) restricts the assignments under consideration to those with cost less

than or equal to u. The threshold operator can be used to discard irrelevant solutions. This

is quite powerful since it can greatly reduce the final size of the BDD. However, BDDs are

rarely built up at once. It is usually built bottom-up using the apply or ITE operators.

Building the global BDD first before applying the threshold operator is not very effective

since it may take a long time and a great deal of storage to build. It is next shown how

the threshold operator can be used, in the case when T = IlELi *n to build the global BDD
bottom-up.

Theorem 2.7 Let D = FELiA*. Then A(D,u) C nj=iA(2?,-, w).

Proof: Theorem 2.6 states that any satisfying assignment with cost less than or equal to

u is retained after the threshold operator. Let x be a satisfying assignment of D with cost

less than or equal to u. By definition, xGD^xe Di,Vi. After the threshold operator,

x is retained in A(D,u) and A(2?,-, u),V«, which implies x is also a satisfying assignment in
U?=iMDi,u). m

The application of threshold operator when building the global BDD could help to keep

the size of the BDD compact. In many applications, it has been found that it is usually

possible to build the BDD for each constraint. The problem arises when combining them

48 CHAPTER 2; SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

PS

NS,z
x=0 x=l

a

b

c

a,0

b,0
b,0

c,0

b,-
a,l

(a) Example FSM.

PS

NS,z
x=0 x=l

a

b

a,0
a or b,0

b,0
a,l

(b) Minimized FSM.

Figure 2.9: (a) Example FSM and (b) Minimized FSM with Two Possible Choices for One

Next State Entry.

together viz. conjunction. The application of Theorem 2.7 viz. the threshold operator after

each pairwise conjunction of the constraints could help to limit the size of the intermediate

BDDs. For example, when constructing the BDD for a binate covering problem from a

two-level POS form, a BDD can be easily built for each clause. In fact, The size of the

BDD corresponding to a POS clause is linear to the number of literals in the clause. Thus,

for binate covering problems in the POS form, the BDD construction for each POS clause is

trivial. The problem again arises when performing the conjunction over all the constraints.

2.8 Example and Results

2.8.1 An Illustrative Example

Consider the simple FSM shown in Figure 2.9(a) (taken from [54]). A state-

minimized version of this machine can be obtained from the two compatible sets of states

a = {A,B} and b= {B,C}. The corresponding flow table is shown in Figure 2.9(b). As

2.8. EXAMPLE AND RESULTS 49

can be seen, there is an alternative for one next-state entry. In order not to preclude any

optimization possibility, the flow table in Figure 2.9(b) should be regarded as a symbolic

relation. The flow table can be rewritten in the familiar cube-table representation:

0 a a 0

1 a b 0

0 b a,b 0

1 b a 1

The set of states in this example can be encoded with just one bit (L = 1). It should

be observed however that this actually makes the problem at hand a special case in terms

of relations, since the next-state entry "a,b" can be now replaced by "—" (don't-care).

Nonetheless, the example is continued without exploiting this knowledge so that the general

procedure can be illustrated. Application of the prime generation procedure yields the

following seven primes:

9V 0 a a 0

92- 1 a b 0

93- 0 b a 0

9a: 0 b b 0

95'- 1 b a 1

<fc: 0 aUb a 0

97: - b a 0

The corresponding output constraints are given by:

0 a: (61 + gi + g6)
1 a: (52 + g2)
Ob: (l\+g3 + g6 + 97)9* + (h + 9a)§2§^7
lb: ,75

The disjointness constraints are simply expressed in this case by (61 © b2). There are no

non-trivial face embedding constraints in the case of two states only. It can be easilyverified

now that the constraints for 'aU6',when simplified usingthe complementof the disjointness

constraint as don't-care, result in the tautology. This corresponds to our earlier observation

that a "-" (don't-care) could be replaced for the pair of next-states. Carrying on this

simplification, the following constraints are left in POS form:

(h +gi+ ge)(h + g2)g5(bi + b2)(bi + b2)

50 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

There are two solutions with two terms and 6 literals. One is:

The other is:

9i = 0 92 = 0

93 = 0 9a = 0

9s = 1 96 = 1

97 = 0 h = 1

b2 = 0.

9i = 0 92 = 1

93 = 0 9a = 0

95 = 1 96 = 0

97 = 0 h = 0

b2 = 1.

Note that both of these solutions can be derived by solving the binate covering problem.

2.8.2 Experimental Results

An experimental program has been developed. There are two main components to

the program: a prime generation procedure, and a binate covering solver. The generation of

generalized candidate primes is performed using an extended version of the prime generation

procedure developed by Somenzi et al. for exact Boolean relation minimization [14]. The

0-hot conversion scheme proposed by Devadas et al. [35] was used as a preprocessing

step. A binate covering solver using binary decision diagrams has been developed using

Berkeley's BDD package [72]. The shortest path algorithm for finding the minimum cost

solution is simply a bottom-up procedure on the BDD data structure. Using this solver, the

covering and encoding constraints described in Section 2.6 can be generated directly using

BDD operations (e.g., Boolean and, or, not). An advantage of this approach is that the

constraints can be built directly from the constraints expressions without first flattening

them to a two-level POS form.

In Table 2.1, experimental results collected for some output encoding examples are

given. In the table, in is the number of inputs, out is the number of output symbols, size

is the size of the constraint BDD, cost is the number of primes selected in the solution, and

time is measured on a DECstation 3100 and expressed in seconds.

The examples that can be completed by experimental exact solverhave only been

very small. The bottleneck is in the binate covering solver. There are several reasons for

2.8. EXAMPLE AND RESULTS

name in out primes size cost time

el 4 4 13 135 2 0.40

e2 4 5 29 14963 4 21.92

e3 4 4 15 179 2 0.51

e4 4 4 20 679 4 0.88

g5 4 4 19 244 4 0.98

e6 2 4 14 493 2 0.87

Table 2.1: Experimental Results.

in: number of inputs
out: number of output symbols
primes: number of generalized c-primes generated
size: size of the BDD representing the binate covering problem
cost: number of generalized c-primes in the final cover
time: CPU time in seconds

51

this. One is that the number of generalized candidate primes even for a modest size problem

can be extremely large. For example, in an example tested with only 20 symbolic values,

the number of generalized candidate primes generated was already over 10,000. This is

a problem for the BDD formulation because many variables must be introduced into the

constraint formula. Precisely, a variable gi is required to represent each generalized prime,

and a variable 6IJt is required to represent each encoding bit of each symbolic value. So

for an example with only 20 symbolic values, but 10,000 primes, the number of variables

required is 10,000+ (20* £), where L is the code length. Suppose a code length of 5 was

chosen. Then a single BDD formula with 10,100 variables must be constructed! In other

applications of BDD's, functions typically have no more then a few hundred of variables.

The number of generalized primes may be reduced substantially if essential primes

can be detected. Essential primes are those that must be included in any minimal solution.

Hence, they can be selected and removed from the covering problem. Also, there may be

primes that are completely covered by the essential primes. These primes can be regarded

as redundant and be removedfrom the covering problem. These techniques arewidely used

in classical two-levelBoolean logic minimization [77].

Another problem is the variable ordering. In the experimental program, an arbi

trary variable ordering was used. It is well-known that the BDD size is strongly influenced

52 CHAPTER 2. SYMBOLIC RELATIONS AND TWO-LEVEL ENCODING

by the choice of variable ordering. Therefore, it may be possible to significantly reduce

the size of the BDD's that represent the constraint expressions if effective variable ordering

heuristics can be developed. Then, it may also be possible to extend the applicability of

the BDD formulation for solving more difiicult binate covering problems.

2.9 Conclusions

In this chapter, the minimization problem of symbolic relations was introduced.

It has been shown that the problem of minimizing symbolic relations naturally arises in

many contexts in synthesis. A unified framework for finding exact solutions to the two-level

minimization of symbolic relations has been developed and described. Based on a general

ization of primes and a minimum cost satisfiability formulation of the constrained covering

problem, various versions of the minimization problem can be systematically treated. The

problem of FSM synthesis using a symbolic relations formulation has also been described.

Extensions to the symbolic relations problem were presented to implicitly considered the

merging of equivalent states in the synthesis process. Based on these extensions, the tradi

tionally separate problems of state minimization and state assignment were formulated as

a single unified optimization problem.

Chapter 3

Multi-Level Symbolic Encoding

3.1 Introduction

Symbolic encoding for two-level implementations (e.g., PLA) is a well-investigated

area. A number of viable approaches have been developed [70, 68, 92]. In Chapter 2, the

traditional encoding problem was generalized to the case of symbolic relations and it was

shown that the solution space is greatly enlarged if multiple output choices and implicit

merging are permitted. Incorporating these extra degrees of freedom into the framework of

symbolic relation minimization makes it possible to formulate problems such as exact state

minimization and state encoding as a single unified optimization problem.

Although a very strong theoretical framework can be built for the two-level case,

two-level logic implementations are often inefficient orinappropriate for practical applica

tions. There are many functions for which a two-level realization is known to be explosive

in complexity. Even if a two-level implementationis feasible, it is often much more efficient

to implement the same behavior in multi-level form. Thus, effective symbolic encoding
strategies targeting specifically towards multi-level logic optimization must be developed.

Optimal symbolic encoding targeting multi-level implementations is in general more difficult

than the two-level case. The main reason for this is that combinational logic optimization
of multi-levelcircuits is itself a developing field.

In the past few years, a numberof multi-level encoding strategies have been de

veloped. These multi-level encoding techniques fall into two basic categories: symbolic-
minimization-based, and estimation-based. In [56], it was shown howmulti-level logic trans

formations can be extended to symbolically minimize specifications with symbolic inputs.

53

54 CHAPTER 3. MULTI-LEVEL SYMBOLIC ENCODING

However, analogous extensions for symbolic outputs have not been developed.

An alternative approach is to determine the encodings such that the encoded

circuit description can be better optimized by a multi-level logic optimization system (e.g.,

the system mis-ii developed at Berkeley [13]). In contrast to the symbolic minimization

paradigm, these encodings are determined "prior" to multi-level logic optimization using

static estimation models. The multi-level encoding program JEDI (written as part of this

research) [59], MUSTANG [33], and MUSE [39] fall into this category. These encodingprograms

have been shown to produce high-quality results for multi-level logic implementations. In

all of these programs, the effects of encoding choices on the multi-level logic optimization

process are captured by computing a set of pairwise weights (called adjacency relations)

between each pair of symbolic values in the encoding problem. The problem of multi

level encoding is then reduced to the solution of the combinational optimization problem

defined by the embedding of symbolic values onto a ^-dimensional Boolean space. The cost

is measured by the total weighted distance, as defined by the Hamming distance metric

(cf. Section 3.2), between all code assignments. The goal is to find the embedding of

symbolic values with the minimum cost. This combinatorial optimization problem is called

the minimum cost graph embedding problem (or simply the graph embedding problem).

Armstrong [3] was the first to formulate the encoding problem for state assignment in

this manner. In Armstrong's approach, adjacency relations in terms of Hamming distance

between codes of states are defined. These adjacency relations must then be satisfied during

the embedding step. However, rather than minimizing the total weighted distance, state

pairs are forced to be adjacent to each other whenever possible.

In this chapter, the algorithms and encoding models developed for the multi-level

symbolic encoding program JEDI [59] are described. The chapter is organized as follows.

Basic definitions are given in the next section. In Section 3.3, the encoding problems

considered are defined and a global framework for solving them is proposed. In Section 3.4,

new estimation models in JEDI for input, output, and input-output encoding are described.

In Section 3.5, a spectrum of algorithms are described for solving the minimum cost graph

embedding problem. In particular, a fast heuristic method based on clustering, a simulated

annealingbased procedure, and an exact formulationbased on binate covering (cf. Chapter

2) have been developed. These new algorithms represent a tradeoff between CPU time

and quality of solutions. Experimental results comparing JEDI with other public domain

encoding programs are presented in Section 3.6, and concluding remarks are given in Section

3.2. DEFINITIONS 55

3.7.

3.2 Definitions

A Boolean space Bn can be thought of as a n-dimensional hypercube where each

minterm corresponds uniquely to a coordinate in this space. Therefore, a notion of distance

can be defined.

Definition 3.1 Let a 6 Bn and (3 e Bn be two vertices in the space Bn. The Hamming

distance between the two vertices a and /3 is defined as:

A(a,/*) =£|a,--fc|. (3.1)
t=i

This corresponds to the number of bit positions where the value of the two vertices differ.

The proximity, P(a,/3), between two vertices is denned as the number of identical bit

positions, which can be computed simply as n —A(a,/3). The Hamming distance and

the proximity measure are "dual" metrics that can be used to gauge the relative distance

between two vertices in a Boolean space.

The distance between twocubes can alsobe defined. Specifically, when evaluating

A(a, /?), each component a,- and /?,- may be either a 0,1, or a 2 (a don't-care). Themodified
Hamming distance metric is defined as follows.

A(a,/J) = £ {
i=l

3.3 Problem Formulation

0 ifa; = #,

\ ifa, = 2or# = 2, (3.2)
1 otherwise

In this section, the encoding problems considered are stated and the global formu

lation is defined. The encoding problems considered can be roughly stated as follows.

1. Input Encoding: Given a function /:5rxE-»5n, where S = {<r0,oi, ••^ctn-i}
and B = {0,1}, find anencoding E:Y,-* BL such that Lis some code length greater
or equal to [log2 JV], and V<r,-, er, GS, E(<n) ^ E(o~j).

2. Output Encoding: Given a function / : Br -• S x Bn, where S and B are as

defined above, find an encoding function of length L for S such that each symbolic
value is given a unique code.

56 CHAPTERS: MULTI-LEVEL SYMBOLIC ENCODING

3. Input-Output Encoding: Given a function /: Br X S -♦ S X Bn, where S and

B are as defined above, find.an.encoding.function.of length L for S such that each

symbolic value is given a.unique code. Here, the symbolic input variable and the

symbolic output variable both represent the same set of symbolic values. Therefore,

they are constrained to be given the same encodings (e.g. in state assignment).

In the above encoding problems, only one set of symbolic values is considered for encoding

at a time. Multiple symbolic variables can be handled by either by taking their Cartesian

product, i.e. S = Si x S2 ... X Sm, to be one symbol set or by considering one symbolic

variable at a time and temporarily one-hot encoding the remaining symbolic variables for

the purpose of determining the encodings.

The basic global strategy used in JEDI follows the same paradigm as mustang

[33]. In particular, the encoding procedure proceeds in two steps: a weight calculation step

and a minimum cost graph embedding step. In the weight calculation step, a JV xN integer

weight matrix M is derived for the set of N symbolic values S = {(To, 01,..., &n-.i}. Each

entry MtJ € Z represents the gains that can be achieved by embedding the symbols <rt- and

<7j as closeas possible in the Boolean space. In JEDI, these weights are calculated statically

by examining the input-output behavior the symbolic specification directly.

Then, the symbols are encoded using the weight matrix M to provide the cost of

an assignment of symbols onto the vertices of the Boolean space. In particular, an optimal

solution to the following combinatorial optimization problem is sought.

Problem 3.1 (Minimum Cost Graph Embedding) Given a set of symbolic values

S = {<7o,0i,...,0"jv-i}, a weight matrix M, and a code length X, determine an optimal

encoding function E : S -> BL such that V<7t-,<7j € S,l?(<7,) ^ E(crj) and the objective

function
L-i L

cost(E) = J2 E MH x A(£(<rt), £(*,)) (3.3)
i=i j=i+i

is minimized. Here, A is the Hamming distance operator defined in Section 3.2. •

Optimizing the objection function (Equation 3.3) will implicitly force pairs of symbols

with large weights to be as close together in the Boolean space as possible. This global

formulation is then used to solve all of the.above encoding problems (i.e., input, output,

and input-output encoding). However, depending on the encoding problem, the weights are

computed differently.

3.4. WEIGHT ESTIMATION MODELS 57

In [33], the principles behind this basic formulation of the encoding problems were

described. Essentially, the formulation attempts to capture the process of common cube

extraction in multi-level logic synthesis. Specifically, the goal is to either maximize the sizes

of potential common cubes (in input encoding) or the number of occurrences of the largest

common cubes (in output encoding). Two key factors influence the effectiveness of this

encoding procedure. One is the accuracy of the estimation models, and the other is the

robustness of the embedding algorithms. The latter is especially important in evaluating

the accuracy of the models. As is presented in the next section, the formulas used for

computing the weights between symbolic values are different than those described in [33].

Specifically, the models used in JEDI are not based on a state transition graph model, as in

mustang. Effective embedding algorithms are presented in Section 3.5.

3.4 Weight Estimation Models

In this section, estimation models that define a set of pairwise weights between

symbolic values are presented. In the program mustang [33], estimation models were

presented for the state assignment problem. They are based on analyzing the interaction

between states in a state transition graph model of the FSM. In JEDI, the aim is to solve a

generic symbolic encoding problem rather state assignment specifically, as was the case for

MUSTANG. Hence, it does not rely on a state transition graph model for encoding. Instead,

estimation models in JEDI are based on analyzing the input-output behavior of the given

symbolic function directly. Specifically, a two-level tabular representation of the symbolic

function is used. The weight between a pair of symbolic values (<7i,<7j) is computed by

summing over the "proximity" between all pairs of cubes in the tabular representation of

the symbolic function that contain 0{ in one cube and Gj in the other. This is in contrast

to muse, which uses models based on analyzing an algebraically factorized one-hot coded

implementation [39].

There are two main models in jedi, one for input encoding and one for output

encoding. In the caseof input-output encoding,a weighted combination of these two models

is used.

58 CHAPTER 3. MULTI-LEVEL SYMBOLIC ENCODING

Input Encoding:

For input encoding, the problem is to encode a symbolic function of the form

/ : Br x S -*• B*1. For the purpose of weight calculation, this function is represented in

tabular form as a set of 3-tuples

Each entry (Ij, Xj, Oi) 6 T represents a mapping of some input combination Ij x Xj to

an output value Oj. In the input encoding formulation, the goal is to encode the symbolic

input values in a manner that will result in many common cubes in the output functions

that they assert. In particular, two cubes (with symbolic inputs) that assert similar output

patterns can be made to have more common literals by encoding the corresponding symbolic

values in the two cubes closer together in the Boolean space. To achieve this, a weight is

computed between a pair of symbolic values (o"t,Oj) by comparing the output patterns of

the subset of cubes that contain <7,- and the subset of cubes that contain aj. The subset of

cubes that contain <7t- is defined by

d = {Oj | 3Ij : (Ij, ait Oj) e T}. (3.4)

The subset of cubes containing Oj is similarly defined. Then a weight between them is

computed by summing over the proximity between their output patterns as follows:

ic.ll^l

M« = E £ L- A(C*ti, Qj). (3.5)
fc=i /=i

Here, the term L —A(Cjb,,-, Cjj) is the proximity term.

Output Encoding:

The weights for output encoding is computed in a symmetric way. The problem is

to encode a symbolic function of the form / : Br —• S x Bn. Similar to the input encoding

case, the function / is represented again in tabular form as a set of 3-tuples T(I, X,0).

However, each entry (Ij,Xj,Oi) € T now represents a mapping of some input Ij to an

output combination of Xj x Oj. In the output encoding formulation, the goal is to find

output encodings that will lead to more frequent occurrences of large common cubes. This

is achieved by comparing now the input patterns of the subset of cubes that contain <r,- and

3.5. A SPECTRUM.OF GRAPH EMBEDDING ALGORITHMS 59

the subset of cubes that contain oj as outputs. The subset of cubes that contain a\ is now

defined by

Di = {Ij | 30j : (Ij, o-i, Oj) e T}. (3.6)

Dj is similarly defined for gj. If the input patterns in Di are very similarly to those Dj,

then many common subexpressions can be formed between them. These potential common

subexpressions can be made more useful by maximizing their occurrences in the encoded

representation. This is achieved by assigning the two corresponding symbolic values with

closer codes. Specifically, the weight between a pair of symbolic output values is computed

by summing over the proximity between the input patterns that assert them as follows:

\Di\\Dj\

M* = E E L- *(J>W. Dt j). (3.7)
*=i/=i

Input-Output Encoding:

In the case of input-output encoding, the weights are computed by forming a

weighted sum of the input weights and the output weights. To compute the input weights,

the output symbolic variable is temporarily one-hot encoded. Equation 3.5 is then applied.

To compute the output weights, the input symbolic variableis temporarily one-hot encoded,

and Equation 3.7is then applied. LetM1 be the input weight matrixand M° be the output

weight matrix. Then each entry of the input-output weight matrix M is simply

Mij^t-Ml + ip-Mfj. (3.8)

To give more emphasis on either the input or output effects, the coefficients <f> and <p can

be scaled accordingly. Experimentally, using the value lV for both coefficients have been

found to be effective.

3.5 A Spectrum of Graph Embedding Algorithms

The estimation models presented in the previous section are used to generate a
set ofweights to guide in the symbolic encoding process. The problem now is to assign the

actual binary codes to the symbolic values so that a binary representation of the circuit

specification can be derived. The problem was formally stated in Problem 3.1. Given a

set of symbolic values S = {Go,cri,...,<rN-i}, a weight matrix M, and a code length L,

60 CHAPTER 3. MULTI-LEVEL SYMBOLIC ENCODING

the goal is to determine an encoding.that minimizes Equation 3.3. This objectivefunction

accounts for minimal distance codes between symbolic values with large cost relationships.

Clearly,the shortest distance that one can embed two symbolicvaluesin a Boolean

space is to assign them adjacent to each other (i.e., Hamming distance of 1). However,

since the number of adjacent vertices in a finite Boolean space is extremely limited, this

is not possible for all symbol pairs. In fact, only a very smallpercentage of symbol pairs

can be made adjacent to each other. This percentage decreases exponentially with the

number of symbols in the encoding set. Therefore, the weights are used to determine

the tradeoffs. Unfortunately, the minimum cost graph embedding problem is in the NP

[43]. In this section, a number of algorithms for solving the graph embedding problem

are presented. First, a fast heuristic procedure based on clustering is presented. Then, a

simulated annealing based procedure is described. Finally, an exact formulation based on

binate covering (minimum-cost satisfiability) is described.

3.5.1 A Clustering Algorithm

A simple, but effective, algorithm is incremental clustering. The procedure is

presented in Figure 3.1. The main idea is to select one symbolic value at a time to encode.

For the duration of the procedure, three sets are kept: one representing the set of symbols

that have been encoded, simply represented by the set S itself, one representing the set of

encoded symbols, denoted by A, and one containing the set of already used binary codes,

denoted by C. Both A and C are initially empty. The core of the algorithm involves a

selection step and an assignment step. At each iteration, the selection step is used to select

an unassigned symbolic value ai such that it has the strongest cost relationship to the set of

already encoded symbolic values. This can be determined by ai = argmax fe^gA-My)-
Once an un-encoded symbolic value a{ is chosen, an unused binary code must be chosen to

represent it. The assignment step tries to assign an unused binary code such that it is closest

to the binary codes already given to the encoded symbolic values. This can be determined

by the expression x, = arg min fe^g^ My xA(x,-, x7)). The process is iterated until all
symbolic values have been encoded.

This basic algorithm can be improved in eificiency by keeping a priority queue of

un-encoded symbolic values and availablecodes. For the selectionstep, a gain value 7,- can

3.5. A SPECTRUM OF GRAPH EMBEDDING ALGORITHMS 61

/*

— inputs: E (set of symbols), M (weight matrix)
— output: E (the encoding)
*/

cluster.encode(S, M)

{
/* initialize */

A = {}; C = {};
repeat{

a{= arg max (E^eA Mij) I

/* assign code */
£(*,-) = xt-;
/* update sets */

S = S - <r,-;

C = CUx,-;
}until E is empty;
return E;

Figure 3.1: The Algorithm cluster-encode for the Minimum Cost Graph Embedding
Problem.

be kept for each un-encoded <7y. The quantity 7; is defined as follows:

7; =]T My, where J = {j\aj € A}. (3.9)
J

The un-encoded symbolic value with the largest 7; is selected in the inner loop. A direct

pointer to this un-encoded symbolic value is kept so that it can be returned in constant

time. After selection, updating each 7,- for the next selection step can be accomplished by

simply incrementing it with the cost Mij, where j corresponds to the symbolic value, aj,
that was just selected. While updating each unselected 7;, the direct pointer to the highest
gain unassigned symbolic value is also updated. The same trick can be applied to keep a

62 CHAPTER 3. MULTI-LEVEL SYMBOLIC ENCODING

priority queue of unused codes.

3.5.2 Simulated Annealing Formulation

Alternatively, the graph embedding problem can be solved using the technique of

simulated annealing. Simulated annealing belongs to a class of probabilistic hill climbing
algorithms and wasfirst proposed by Kirkpatrick [53] for solving general discrete optimiza

tion problems. Simulated annealing has since attracted a great deal of attention for its

effectiveness. It has been successfully applied to such CAD problems as placement and

floorplanning [82] and module folding [37]. A significant theoretical foundation has also

been developed for simulated annealing [76, 85]. Although probabilistic hill climbing algo

rithms in general may not be well-suited for all combinatorial optimization problems, they

have been seen to be extremely effective for the graph embedding problem (cf. Section 3.6).

The simulated annealing algorithmfor encoding, anneal.encode, is shownin Fig

ure 3.2. The core of the simulated annealing algorithm is characterized by a configuration

space, a costfunction, and a probabilistic procedure for controlling the search through the

solution space. The controllingprocedure used here is a simplegeometric cooling schedule.

The initial configuration is generated by a random assignment. Successive moves are gener

ated either by swapping codes or changing the assignmentof a symbol with an unused code,

as shownin the procedure new_cconfiguration in Figure 3.3. The cost of an assignment is

evaluated using Equation 3.3. The acceptance condition at the inner loop is determined by

the change in cost c and the current temperature T. Specifically, if the cost was improved,

then the new configuration is accepted. Otherwise, it is accepted with the probability e~T.

More details on simulated annealing can be found in [53].

3.5.3 Exact Binate Covering Formulation

The abovealgorithmsare basedon heuristics. Whileeffective, they cannot guaran

tee the globaloptimum solution. A naive approach to the exact graph embedding problem

is to enumerate all possible bindings of codes. However, this is not practical and does not

contribute to the deeper understanding of the problem.

In this section, an exact solution to the minimum costgraph embedding problem

is described. The problem is formulated asa minimum binate covering problem. The graph

3.5. A SPECTRUM OF GRAPH EMBEDDING ALGORITHMS 63

/*

— inputs: E (set of symbols), M (weight matrix)
— output: E (the encoding)
*/

anneal_encode(E,M)

{
/* initialize */

E - random_encoding(E);
foreach temperature point T{

repeat{
E' = new.configuration(iJ) ;
c • cost(£70 - costCE);

if(accept(c,T)){
E = E';

}
}until inner loop condition is satisfied;

}
return E;

>

Figure 3.2: The Algorithm anneal_encode for the Minimum Cost Graph Embedding Prob

lem.

embedding problem can be solved by casting the optimization problem into a set of Boolean

constraints. The constraints axe then combined together into a single Boolean formula by

taking their conjunction. The set of assignments that satisfies the formula corresponds to

the set of possible encodings. The problem is then to find a satisfying assignment with

the minimum cost. This is similar to the binate covering formulation described in Chapter

2 for the symbolic relation minimization problem. Specifically, two sets of constraints are

required. The first set of constraints expresses the condition that no two symbols may have

the same code l. These constraints are called disjointness constraints.

lThis restriction can berelaxed if two symbols are equivalent, as described in Chapter 2.

64 CHAPTER 3. MULTI-LEVEL SYMBOLIC ENCODING

/*

— inputs: E (old encoding)
— output: E (modified encoding)
*/

new.configuration{E)

{
repeat{

randomly select codes xi and X2;

}until codeJ.s_used(xi) or code_is_used(x2);
if(code_is_used(xi)){

/* change the code of <7t- */
ai = code_assigned_to_symbol(xi);
E(ai) = x2;

}else if(code_is_used(x2)){
/* change the code of a\ */
ai = code_assigned_to_symbol(x2);
E(ai) = Ki;

}else{
/* exchange codes */
<7t- = codejass igned-to_symbol (x 1) ;
aj a codejassigned_to_symbol(x2);
tmp = xi;

E(ai) = x2;
E(aj) = tmp;

}
/* return modified encoding */
return E;

}

Figure 3.3: The Algorithm nevuconfiguration for Annealing Based Embedding.

Disjointness Constraints: The disjointness constraints axe required here are the same

asthoseneeded for the symbolic relation minimization problem. Precisely, givenN symbolic

3.5. A SPECTRUM OF GRAPH EMBEDDING ALGORITHMS 65

values and L bits for encoding, the set of disjointness constraints can be expressed as follows.

N-i N L

u n £).'(** ©*>*) = !• (3-10)
i=l j=i+l fc=l

The disjointness constraints guarantee that each symbolicvalue is assigned a distinct code.

Weighting Constraints: A second set of constraints is introduced to capture the cost

of an assignment. This is accomplished by introducing a set of Boolean variables {toyi,

w*i,2> •••, lOijj,} for every pair ofsymbols <r,- and <tj. If a variable toy,* is assigned a T, it

means that the k-th. bit of the codes assigned to <7; and <Tj are different. The accounting of

the weights accumulated for L bits and N symbolic values can be expressed as follows:

JV-l n L

n n n k*« ©**) ©»**] = *• (3.n)

This expression can be expanded into POS (product-of-sum) form as follows.

N-l N L

n n n (*» + *** + ^*) = *. (3.12)
i=i j=i+i jb=i

JV-1 JV L

n n n (*» + ^ + ^a = 1, (3.13)
1=1 jssi+l *=1

N-l N L

n nnfi + ** + »«**) = *> (3.14)
tssl J=$+l Jfe=l

N-l AT L

n n n (** + *** + ««.*) = *• (3.15)
i=l j=»+l *=1

(3.16)

Expressing the constraints in POS form makes it possible to use the branch-and-bound

strategies for binate covering described in Section 2.7.2 of Chapter 2.

Here, the expression [(bik © &#) © wy,*] forces wfJtfc to assume a value '1' if the

k-th. bit of codes for <r; and <tj are different and '0' if they are the same. Thus, in essence

the Wijtk variables also captures the disjointness of two bit assignments. Therefore, the
disjointness constraints can be simplified to:

N-l N L

n n e «««»= i- (3-i7)
i=i i=i+i jb=i

66 CHAPTER 3. MULTI-LEVEL SYMBOLIC ENCODING

The total cost of an assignment can be determined by summing over all the t0y,jfc

variables. The minimum cost solution can be found using the binate covering techniques

described in Chapter 2. To obtain the global optimum solution, the Boolean variables of

the overall constraint formula must be weighted. The weights are as follows:

1. weight^-,*) = Mij;

2. weight(6y) = 0;

Theorem 3.1 The minimum cost satisfying assignment to the above binate coveringfor

mulation is also the solution to the minimum cost graph embedding problem.

Proof: The disjointness constraints guarantee that no two symbols are assigned the same

code. The variable wtjtk can only be true if in fact the k-th bit of symbols <r,- and ffj
differs. Hence, the solution would only incur that cost if the encodings are different. By

the definition of Hamming distance, this properly accounts for the cost. •

This formulation of the problem also permits an effective heuristic solution by solving the

binate covering problem heuristically.

3.6 Experimental Results

In this section, empirical results from a number of experiments are presented to

demonstrate the the effectiveness of the proposed encoding models and optimization al

gorithms. The examples used for these experiments are the 1989 International Workshop

on Logic Synthesis (IWLS'89) finite state machine benchmarks [64]. There are 40 FSM

examples in total. The largest of these examples has 121 states. The IWLS'89 bench

mark distribution is publicly available from the Micro-electronics Center of North Carolina

(MCNC). Some general statistics on the 40 benchmark examples are given in Table 3.1.

Specifically, the number of primary inputs (#1) and primary outputs (#0), the number

of internal states (#S), and the minimum code length used to encode the states (#L) for
each benchmark FSM are indicated. All experiment results presented in this chapter were
obtained on a DECstation 3100.

To test the performance of jedi, three sets of experiments were conducted. These

experiments are as follows:

3.6. EXPERIMENTAL RESULTS

machine #1 #o #s #L

bbara; 4 2 10 4

bbsse 7 7 16 4

bbtas 2 2 6 3

beecount 3 4 7 3

cse 7 7 16 4

dkl4 3 5 7 3

dkl5 3 5 4 2

dkl6 2 3 27 5

dkl7 2 3 8 3

dk27 1 2 7 3

dk512 1 3 15 4

donfile 2 1 24 5

exl 9 19 20 5

ex2 2 2 19 5

ex3 2 2 10 4

ex4 6 9 14 4

0x5 2 2 9 4

ex6 5 8 8 3

ex7 2 2 10 4

keyb 7 2 19 5

kirkman 12 6 16 4

lion 2 1 4 2

lion9 2 1 9 4

markl 5 16 15 4

mc 3 5 4 2

modulo12 1 1 12 4

opus 5 6 10 4

planet 7 19 48 6

si 8 6 20 5

sla 8 6 20 5

s8 4 1 5 3

sand 11 9 32 5

scf 27 56 121 7

shiftreg 1 1 8 3

sse 7 7 16 4

styr 9 10 30 5

tav 4 4 4 2

tbk 6 3 32 5

trainll 2 1 11 4

train4 2 1 4 2

Table 3.1: Statistics for IWLS'89 FSM Benchmarks.

67

68 CHAPTER 3. MULTI-LEVEL SYMBOLIC ENCODING

1. The goal of the first experiment is to determine the effectiveness of JEDI on the prob

lem of multi-level symbolic encoding. For this purpose* three -other public domain

programs that can perform both input and output encoding are used for compar

isons. Specifically, the programs NOVA [92], MUSTANG [33], and MUSE [39] are used.

In addition, results using one-hot and random encodings were also collected.

2. In the second experiment, different post-encoding optimization procedures are com

pared. Since the programs jedi, muse, and mustang are not based on symbolic

minimization, logic optimization must be carried out after the replacement of the

symbolic values by their binary codes.

3. In the third experiment, the effectiveness of the different graph embedding algorithms

presented in Section 3.5 are compared.

3.6.1 "Comparing Encoding Programs

The experimental results for the first experiment are given in Table 3.2 for the

40 IWLS'89 benchmark FSM's. The problem being solved is the classical state assignment

problem. The experiment was conducted as follows:

• Except for one-hot encoding, minimum code length was always used.

• For each program, all available options were used, and the best results are reported

in Table 3.2.

1. For jedi, four options were used: "-i" for input encoding, tt-o" and "-y" for

output encoding, and "-c" for input-output encoding.

2. For muse, three options were used: "-p" for input encoding, tt-n" for output

encoding, and "-pn" for input-output encoding.

3. For mustang, four options were used: tt-p" and a-pt" for input encoding, and

tt-n" and "-nt" for output encoding.

4. For nova, 8 options were used: "-ig", u-ih", "-ioh", "-iov", u-ie", tt-ia", "-j",

and "-y". These options reflect the differentoptimization algorithms in nova for

performing input, output, and input-output encoding.

5. For one-hot encoding, a simple translation was performed.

3.6. EXPERIMENTAL RESULTS 69

6. For random encoding, the results obtained are the best of N runs with different

random seeds, where N is the number of states of the benchmark.

• After the encoding has been determined, the optimized logic was obtained as follows:

1. espresso [78] was run on the encoded machine using the unused binary codes

as don't-cares.

2. The optimized two-level description was then optimized using Mis-il version 2.2

[13] from Berkeley. The standard script was used once in all cases.

• The results reported are expressed in terms of factored form literals in the optimized

encoded representation.

The benchmark examples are listed in alphabetical order. The row labeled total

indicates the total literal count of the best results over all options for each program. The row

labeled ratio gives the percentage of total literal count improvement made by JEDI. From

the experiment, several observations can be made. First, the program jedi consistently

produces better or comparable results on the examples tested. The overall total is the best

among the programs compared. Second, the program is extremely fast. On most examples,

the program completes in only a few minutes or less. This makes it possible to apply the

program to very large examples. Forthe program MUSE, better results were reported in [39]

when longer than minimum code lengths were used. In the experiments reported here, the

same code lengths (minimum) were used for all the programs to obtain a direct comparison.

3.6.2 Comparing Post Encoding Optimization Procedures

Next, the effects of different post encoding optimization procedures are examined.

The basic post encoding optimization procedure is to apply espresso on the initially en

coded representation with the unused codes as don't-cares. This is followed by using Mis-il

for multi-level logic optimization using the standard script. Here, several subtle variations

to this basic procedure are examined. The results are shown in Table 3.3. The programs

jedi and muse are used for this comparison.

The default optimization script is shown in Figure 3.5. This option is referred to

as the ES script. The command read.pla -s reads the PLA representation produced by

70 CHAPTER 3. MULTI-LEVEL SYMBOLIC ENCODING

machine JEDI MUSE NOVA MUSTANG one-hot random

bbara 59 60 54 58 73 73

bbsse 99 96 103 99 112 116

bbtas 22 22 22 25 28 26

beecount 33 42 32 37 74 40

cse 173 175 167 189 185 203

dkl4 93 96 72 101 116 81

dkl5 60 63 61 60 94 58

dkl6 210 208 209 231 180 287

dkl7 49 51 52 47 66 55

dk27 22 20 25 21 25 23

dk512 50 57 53 59 55 68

donfile 49 84 78 153 152 202

exl 224 209 220 254 179 276

ex2 124 118 102 121 119 173

ex3 61 59 70 71 68 68

ex4 57 65 57 65 62 70

ex5 54 57 56 63 71 56

ex6 79 84 77 82 72 79

ex7 62 62 69 67 69 66

keyb 184 173 185 191 159 253

kirkman 138 148 129 178 178 175

lion 13 13 13 13 27 13

lion9 15 21 25 17 51 33

markl 74 74 75 80 86 89

mc 25 22 21 23 31 21

modulo12 30 29 22 36 48 34

opus 71 68 67 72 67 83

planet 481 469 564 513 332 607

si 81 119 242 218 205 336

sla 130 87 244 182 168 324

s8 28 22 27 21 57 25

sand 437 430 433 462 450 490

scf 829 810 834 830 527 980

shiftreg 2 2 0 2 28 21

sse 99 96 103 99 112 116

styr 371 370 422 409 342 482

tav 26 26 25 25 24 22

tbk 219 264 241 473 664 535

train11 28 31 34 38 56 35

train4 17 13 14 18 20 13

total 4878 4915 5299 5703 5432 6702

ratio 1.00 1.01 1.09 1.17 1.11 1.37

Table 3.2: Experimental Results for IWLS'89 FSM Benchmarks.

3.6. EXPERIMENTAL RESULTS

E. script {
'/. espresso < fsm. encode > fsm. espresso;

7, misll

misll> reacLpla fsm. espresso

misII> source script
misll> printjitats -f

misll> writej>lif fsm.blif

misll> quit

}

Figure 3.4: The E Post Encoding Optimization Script.

ES script {
% espresso < fsm.encode > fsm.espresso;
•/. misll

misII> reacLpla -s fsm.espresso

misll> source script

misll> printj3tats -f
misll> writ9_blif fsm.blif

misll> quit

}

Figure 3.5: The ES Post Encoding Optimization Script.

71

espresso and collapses the logic for each output function into a one-level logic. If instead

the command read.pla is used, then the two-level form is kept. This option is referred to

as the E script and is shown in Figure 3.4. The results obtained using this script is less

effective by a factor of 12% in the case of JEDI and a factor of about 15% in the case of

muse. This can be partly explained by the fact that the two-level representation can be

recovered by re-extracting the common cubes from the one-level form. Hence, a one-level

form has, in some sense, a greater degree of freedom. If ESPRESSO is forced to minimize

each function separately, then the overall results axe even better. This option is referred

to as the ESO script and is shown in Figure 3.6. For this, the -Dso option of espresso is

used. This leads to a farther reduction of about 3%. The column labeled BEST is the best

72 CHAPTER 3. MULTI-LEVEL SYMBOLIC ENCODING

ESO script {
'/, espresso -Dso < fsm. encode > fsm. espresso;

'/. misll

misll> reacLpla -s fsm.espresso

misll> source script
misII> print_stats -f

misll> write_blif fsm.blif

misll> quit

}

Figure 3.6: The ESO Post Encoding Optimization Script.

of the three post encoding optimization scripts.

3.6.3 Comparing Graph Embedding Algorithms

Finally, the effectiveness of various graph embedding algorithms are compared.

The ability to solve the graph embedding problem effectively is essential to the encoding

approach presented in this chapter. First, a comparison of the heuristic algorithms are

compared. In particular, the clustering algorithm described in Section 3.5.1 is compared

with the simulated annealing algorithm described in Section 3.5.2. The results are tabulated

in Table 3.4 and Table 3.5. In Table 3.4, the cost obtained for each benchmark as measured

by Equation 3.3 is given. The weight matrix M for each example was obtained using

jedi with the -o (default) option. To normalize the comparisons, the results of randoming

encodings were also obtained. Relative comparisons are made with the random encoded

results. On the examples tested, the clustering algorithm was able to produced results

with 8 to 75% reduction in cost. The simulated annealingalgorithmis strictly better than

clustering in all cases. The last row labeled total gives the overall results. The column

labeled ratio gives the geometric mean. As can be seen, both clustering and simulated

annealing were able to obtain substantial reduction over a naive random encoding strategy.

Overall, simulated annealing is the most effective. However, the superior results obtained

using simulated annealing comes with a priceof higher CPU times. Table3.5givesthe CPU

times for both algorithms. On average, clustering is over two orders of magnitude faster.

Despite this, with the exception of the largest example scf, the CPU times for either

3.6. EXPERIMENTAL RESULTS

machine JEDI MUSE

E ES ESO BEST E ES ESO BEST

bbara 61 59 53 53 59 60 55 55

bbsse 119 99 102 99 114 96 94 94

bbtas 22 22 22 22 22 22 23 22

beecount 32 33 28 28 49 42 32 32

cse 213 173 169 169 218 175 171 171

dkl4 99 93 85 85 111 96 79 79

dklS 67 60 57 57 66 63 61 61

dkl6 237 210 204 204 232 208 211 208

dkl7 52 49 49 49 48 51 49 48

dk27 22 22 20 20 20 20 19 19

dk512 51 50 46 46 68 57 55 55

donfile 47 49 48 47 84 84 80 80

exl 272 224 231 224 245 209 186 186

ex2 123 124 115 115 125 118 115 115

ex3 60 61 61 60 59 59 54 54

ex4 64 57 50 50 67 65 64 64

ex5 54 54 51 51 57 57 55 55

ex6 114 79 76 76 115 84 88 84

ex7 63 62 60 60 62 62 60 60

keyb 170 184 176 170 226 173 189 173

kirkman 156 138 136 136 157 148 143 143

lion 13 13 12 12 13 13 12 12

lion9 15 15 14 14 21 21 22 21

markl 87 74 64 64 90 74 66 66

mc 28 25 23 23 25 22 21 21

modulo12 31 30 31 30 29 29 29 29

opus 83 71 67 67 75 68 71 68

planet 523 481 430 430 508 469 434 434

si 78 81 78 78 166 119 110 110

sla 161 130 117 117 101 87 86 86

s8 28 28 22 22 22 22 22 22

sand 560 437 441 437 526 430 432 430

scf 812 829 817 812 825 810 817 810

shiftreg 2 2 2 2 2 2 2 2

sse 119 99 102 99 114 96 94 94

styr 471 371 401 371 529 370 398 370

tav 26 26 26 26 26 26 26 26

tbk 277 219 215 215 337 264 261 261

trainll 28 28 26 26 31 31 27 27

train4 17 17 15 15 13 13 13 13

total 5457 4878 4742 4681 5657 4915 4826 4760

ratio 1.12 1.00 0.97 0.96 1.16 1.01 0.99 0.97

73

Table 3.3: Comparisons of jedi and muse with Different Post Optimization Procedures.

74 CHAPTER 3. MULTI-LEVEL SYMBOLIC ENCODING

clustering or-simulated annealing are insignificant. Since simulated annealing produces

strictly better results with moderate CPU times, it is used as the default graph embedding

algorithm.

The heuristic algorithms are also compared against the exact solution. In par

ticularly, the binate covering formulation of the problem described in Section 3.5.3 has

been implemented using a branch-and-bound procedure. The results are given in Table

3.6. Here, a subset of 9 small examples are used for comparisons. Although the binate

covering formulation can guarantee the exact result under the chosen cost function, it is at

present infeasible for large examples. However, it can be used to measure the robustness of

the heuristic algorithms. For the examples that binate covering can complete in reasonable

time, the simulated annealing algorithm was able to obtain the same exact result in all

cases, but in a substantially shorter time period. The clustering algorithm is also quite

robust despite its simplicity.

3.7 Conclusions

Simple, but effective, encoding algorithms for multi-level logic synthesis have been

provided. These algorithms have been implemented in the computer program jedi. The

presented algorithms are based on an estimation approach to encoding and are extremely

fast. Hence, they can be can applied to relatively large problem instances. The estimation

models purposed rely on a symbolic description of functionality rather than a state diagram,

as in previous state assignment programs. Therefore, the algorithms can be directly used in

other encoding applications, such as encoding hardware description languages for general

synthesis. The main weakness of the proposed approach is that it has only very limited

analytical correlation with the transformations developed for multi-level logic optimization.

Nonetheless, the approach has been shown to perform consistently well on a wide range of

benchmarks. This is demonstrated by comparing the program implementation JEDI against

the best available programs that can perform both input and output encoding.

Central to the encoding formulation presented is the problem of miTiimimn cost

graph embedding. For this problem, a spectrum of optimization algorithms have been de

vised. The simplest of these is an incremental clustering strategy. This method is extremely

fast and has been shown to produce excellent results on the chosen cost function despite its

simplicity. A simulated annealing algorithm has also been devised. It also can produce very

3.7. CONCLUSIONS

machine random cluster annealing

cost cost ratio cost ratio

bbara 2762 1828 0.66 1761 0.64

bbsse 1464 992 0.68 947 0.65

bbtas 194 159 0.82 145 0.75

beecount 323 273 0.85 262 0.81

cse 5021 4195 0.84 4150 0.83

dkl4 1589 1187 0.75 1171 0.74

dkl5 231 179 0.77 179 0.77

dkl6 9689 7281 0.75 7285 0.75

dki7 317 293 0.92 273 0.86

dk27 35 26 0.74 21 0.60

dk512 277 155 0.56 149 0.54

donfile 7796 5836 0.75 5420 0.70

exl 26384 14930 0.57 14490 0.55

ex2 4227 2020 0.48 1958 0.46

ex3 824 346 0.42 346 0.42

ex4 223 202 0.91 192 0.86

ex5 652 268 0.41 250 0.38

ex6 269 281 1.04 201 0.75

ex7 621 335 0.54 299 0.48

keyb 13921 5420 0.39 5273 0.38

kirkman 332451 287839 0.87 280010 0.84

lion 14 8 0.57 8 0.57

lion9 429 166 0.39 166 0.39

markl 349 272 0.78 241 0.69

mc 8 4 0.50 4 0.50

modulo12 206 144 0.70 150 0.73

opus 365 255 0.70 221 0.61

planet 4985 2494 0.50 2423 0.49

planet1 4985 2494 0.50 2423 0.49

si 7844 4926 0.63 4420 0.56

sla 7844 4926 0.63 4420 0.56

s8 322 200 0.62 200 0.62

sand 24394 16997 0.70 15340 0.63

scf 36407 32621 0.90 32380 0.89

shiftreg 64 16 0.25 16 0.25

sse 1464 992 0.68 947 0.65

styr 31534 26075 0.83 25530 0.81

tav 384 384 1.00 384 1.00

tbk 5075263 1511030 0.30 1496000 0.29

train11 424 226 0.53 200 0.47

train4 36 24 0.67 24 0.67

total 5606591 1938299 0.66 1910280 0.62

Table 3.4: Comparing the Effectiveness of Different Graph Embedding Algorithms.

75

76 CHAPTER 3. MULTI-LEVEL SYMBOLIC ENCODING

machine cluster annealing

time time ratio

bbara 0.01 0.35 35.00

bbsse 0.01 1.66 166.00

bbtas 0.01 0.11 11.00

beecount 0.01 0.15 15.00

cse 0.01 1.67 167.00

dkl4 0.01 0.16 16.00

dkl5 0.01 0.05 5.00

dkl6 0.01 6.18 618.00

dkl7 0.01 0.23 23.00

dk27 0.01 0.21 21.00

dk512 0.01 1.09 109.00

donfile 0.01 4.43 443.00

exl 0.01 2.60 260.00

ex2 0.01 2.27 227.00

ex3 0.01 0.41 41.00

ex4 0.01 1.03 103.00

ex5 0.01 0.26 26.00

ex6 0.01 0.20 20.00

ex7 0.01 0.38 38.00

keyb 0.02 2.52 126.00

kirkman 0.01 1.30 130.00

lion 0.01 0.06 6.00

lion9 0.01 0.25 25.00

markl 0.01 1.25 125.00

mc 0.01 0.05 5.00

modulo12 0.01 0.66 66.00

opus 0.01 0.40 40.00

planet 0.12 40.69 339.08

planet1 0.11 40.78 370.73

si 0.02 2.55 127.50

sla 0.01 2.61 261.00

s8 0.01 0.07 7.00

sand 0.02 10.23 511.50

scf 1.34 551.93 411.89

shiftreg 0.01 0.19 19.00

sse 0.01 1.39 139.00

styr 0.02 8.03 401.50

tav 0.01 0.06 6.00

tbk 0.03 9.63 321.00

train11 0.01 0.44 44.00

train4 0.01 0.05 5.00

total 2.01 698.58 142.22

Table 3.5: CPU Expenditures of cluster-encode vs. anneal_encode.

3.7. CONCLUSIONS

machine cluster annealing exact

cost time cost time cost time

bbtas 159 0.01 145 0.11 145 164.81

beecount 273 0.01 262 0.15 262 1992.64

dkl4 1187 0.01 1171 0.16 1171 1554.58

dklS 179 0.01 179 0.05 179 0.17

dk27 26 0.01 21 0.21 21 1557.96

lion 8 0.01 8 0.06 8 0.15

mc 4 0.01 4 0.05 4 0.17

s8 200 0.01 200 0.07 200 17.30

tav 384 0.01 384 0.06 384 0.17

train4 24 0.01 24 0.05 24 0.18

Table 3.6: Comparisons with Exact Graph Embedding.

77

good results. Although simulated annealing is typically thought of as a time-consuming

algorithm that should only be used as a last resort, it has been shown in this chapter that

a carefully implemented annealing strategy can in fact produce excellent results with only

modest CPU times, at least for the graph embedding problem. This algorithm is consis

tently better than the clustering algorithm, and hence it is used as the default in jedi.

An exact formulation of the graph embedding problem based on binate covering has also

been developed. While it is only feasible for small examples, it can be used to measure the

robustness of the heuristic algorithms, which according to the comparisons on a small set

of examples, they do surprisingly well. It is expected that larger examples can be handled

by the exact formulation when better binate covering strategies become available.

Chapter 4

Optimization of Sequential

Circuits

4.1 Introduction

In the previous two chapters, algorithms were presented for encoding a symbolic

specification of hardware, possibly starting from a HDL description [71,50], to a circuit-level

description consisting of Boolean logic gates and synchronous latches. In this chapter, the

problem of optimizing the encoded sequential circuit before mapping it into a final physical

implementation is addressed. Over the past few years, synthesis methods for optimizing

combinational logic have achieved a significant level of maturity. This can be seen by the

number of successful multi-level logic optimization systems that have been developed from

both universities [13, 10] and industry [29, 45]. Although these systems provide powerful

optimization techniques for reducing area and improving circuit performance, to date they

have only tackled the combinational portions of the sequential circuit and have not consider

interactions between combinational logic blocks separated by latches.

In contrast with methods for combinational circuits, techniques for optimizing se

quential circuits are considerably less developed. Previous methods have been proposed for

optimizing a state diagram model before encoding it to a logic-level description for opti

mization. State minimization [90, 44] is one such method. The major drawback of methods

that optimize at the state diagram level (such as trying to minimize the number of states

or edges) is the remoteness of the state diagram model from the actual cost of the final

78

4,1. INTRODUCTION 79

implementation. This makes it difficult to evaluate such key figures of merit as area and

performance-during the optimization process. A more critical shortcoming is that many

sequential circuits of practical interest cannot be represented with state diagrams, either

because there are too many states or the combinational blocks cannot be flattened into a

two-level form. Alternatively, recent research efforts [69, 66, 28, 57] have focussed on meth

ods that operate directly at the structural level. These methods are capable of detecting

interactions between combinational blocks separated by latches, and hence can potentially

optimize across latch boundaries, either by temporarily re-positioning some latches [66] or

by establishing don't-care conditions across latches [28]. These techniques, while potentially

powerful, make only limited use of global state-space information during their optimization

step.

Global state-space information, such as knowledge about invalid states and equiva

lent states, can be used to optimize sequential circuits at the structural level by considering

them as sequential don't-care conditions. Don't-cares have long been recognized as very

important in synthesizing combinational [7] and sequential logic [34]. In effect, information

on invalid states and equivalent states can be used to provide "bounds" on how much the

combinational portions of the sequential circuit can be "perturbed" or optimized without

modifying the overall sequential behavior. For example, if a state is invalid, then the output

or next-state behavior of the sequential circuit starting from this state is not important.

This represents an important sequential don't-care condition that can very often be found.

Equivalent states are also quite important. Given an input condition, the next state re

sponse can be any one of the equivalent states. Invalid and equivalent state information can

be computed by examining the underlying state-space of the circuit. A key advantage of us

ing global state-space information is that well-developed algorithms for combinational logic

synthesis axe directly applicable. Global state-space information can potentially be used in

conjunction with structural level transformations such as retiming. In addition to reducing

area, and possibly improving performance, an intimate relationship exists between the op

timal exploitation of don't-cares and the combinational [7] and sequential [34] testability of

the resulting circuit [7, 34]. In [34], it was recognized that the optimal use of don't-cares in

minimizing a finite state machine will lead to a fully non-scan testable sequential circuit.

Traditional techniques for state-space exploration have relied on the use of state

diagram models. Unfortunately, these techniques are not applicable to a substantial class

of sequential circuits that contain many memory elements and data path circuitry. This

80 CHAPTER 4, OPTIMIZATION OF SEQUENTIAL CIRCUITS:

limitation is due either to a state explosion or a logic explosion (when collapsed to two-level

logic form). Recently, more efficient procedures based on enumerating covers or cubes have

been proposed that do not require explicit construction of state diagrams [42]. Although

these procedures can be applied to larger circuits, their applicability is still limited to circuits

whose state-space can be represented compactly in two-level form. This is because covers

and cubes are essentially two-level representations.

To extend the applicability of global state-space information in synthesis, new ef

ficient procedures for computing global state-space information must be developed so that

much larger state-spaces can be handled. In this chapter, new algorithms using binary

decision diagrams (BDD's [20]) are proposed for extracting global state-space information.

These algorithms are based on the concept of breadth-first implicit state enumeration re

cently developed by Coudert et al. [25], and are capable of computing sequential don't-care

conditions like invalid and equivalent states for very large sequential circuits. The extracted

sequential don't-care conditions are then used to optimize circuit-level representation di

rectly by using multi-level logic optimization techniques.

The remainder of this chapter is organized as follows. In the next section, the

basic method of state-space analysis and its application to sequential optimization is pre

sented. Then in Section 4.3, techniques for implicit state enumeration using binary decision

diagrams axe reviewed. These techniques can be directly used for computing the set of

invalid states by performing reachability analysis. The computation of equivalent states is,

however, more difficult. Algorithms for computing equivalent states are described in Section

4.4. Experimental results are given in Section 4.5, and finally, concluding remarks are given

in Section 4.6.

4.2 State Space Analysis for Sequential Optimization

An example of a sequential circuit is shown in Figure 4.1. The behavior of such

a circuit can be modeled with a state diagram. The state diagram corresponding to the

above circuit is shown in Figure 4.2. Each of possible binary vectors that can be stored in

the latches corresponds to a "state" of the sequential circuit. Since there are two latches,

there can be 4 = 22 possible states, namely 00, 01, 10, and 11. In general, there can be as

many as 2n states for a circuit with n latches. Suppose a reset state-code of 00 is given.

Then from this state, only a subset of the state-space may be reachable. In the example

4.2. STATE SPACE ANALYSIS FOR SEQUENTIAL OPTIMIZATION 81

Q O^

>

Figure 4.1: The Original Circuit.

Figure 4.2: The State Diagram Corresponding to the Above Example.

of Figure 4.2, the state 10 cannot be reached with any input sequence from 00. Therefore,

it is called an invalid state. The other states that can be reached from the reset state by

some input sequence are called valid states. The corresponding input sequence is termed

a justification sequence. The portion of the state diagram consisting only of invalid states

and the associated edges emanating from them is called the invalid component of the state

diagram. The remainder part of the state diagram is called the valid component.

A pair of states ($1,32) are considered equivalentif no input sequence exists that

82 CHAPTER 4. OPTIMIZATION OF SEQUENTIAL CIRCUITS

can be applied to the two states such that a different output is produced. An input sequence

that can differentiate a state pair (51,52) is called a differentiating sequence for the state

pair. Referring to the state diagram shown in and Figure 4.2, the state pair (01,11) are

equivalent, but all other state pairs, e.g., (00,10), are differentiable. The invalid states and

equivalent states information can be used to advantage in logic optimization. In a sense, the

invalid states and equivalent states information provide "bounds" on how much the combi

national portions of the circuit can be perturbed or optimized without modifying the overall

sequential behavior. Invalid states can be used as traditional external don't-care conditions

in combinational logic synthesis. Combinational logic optimization techniques such as those

described in [7, 81] can be applied to optimize a circuit under external don't-cares. Equiva

lent states can also be used in logic optimization by considering output equivalence classes

or Boolean relations. The main idea is to permit the output of the next state functions to

be any one of the equivalent next-states. This is the same idea as described in Chapter

2 for giving more degrees of freedom to the encoding process. Recently, techniques have

been proposed to optimize a multi-level logic circuit under a Boolean relation specification

[80, 40]. In this work, the authors proposed to add an observability function on top of the

original network to capture the degrees of freedom permitted by a Boolean relation. Current

logic synthesis algorithms can then freely modify the original network as long as the overall

behavior at the output of the observability function remains unchanged. The main point

that should be emphasized here is that existing combinational logic optimization methods

are capable of exploiting both of these kinds of sequential don't-care conditions.

Considering again the example shown in Figure 4.1. It can easily be verified that

the circuit cannot be simplified any further using only combinational techniques. However,

if the state 10 is used as an invalid state don't-care and the equivalent state pair (00,10)

is used as an output equivalence class in logic optimization, then the circuit can be further

simplified to a much more cost-effective version shown in Figure 4.3. Note that this mini

mized circuit can be implemented with onesimplegaterather than four. The corresponding

modified state diagram is shown in Figure 4.4(a). Note that one of the two next state func

tions degenerates to a constant "0". Hence, the corresponding latch can be removed. Doing

so willleave a circuit with only one simple gate andone latch. The resulting state diagram

is shown in Figure 4.4(b).

It should be clear from the above example that the use of global state space

information in logic optimization is extremely important from the pointof viewof producing

4.2. STATE SPACE ANALYSIS FOR SEQUENTIAL OPTIMIZATION S3

o „

>

Figure 4.3: The Simplified Circuit under Invalid and Equivalent States.

(b)

Figure 4.4: The Corresponding State Diagrams.

a more cost effective solution. In addition to reducing area, it is well known that the optimal

use of invalid states and equivalent states don't-care conditions in logic minimization will

lead to a fully-test able sequential circuit without memory access [34]. The main bottleneck

is the computation of invalid states and equivalent states. In practice, these computations

are very difficult: either because the circuit contains data-path-like components such as

adders and comparators, which causes logic explosion, or the circuit contains many latches,

which causes state-space explosion. Circuits with these properties would render traditional

techniques based on state diagrams ineffective. Therefore, more sophisticated algorithms

based on binary decision diagrams are proposed in the sequel.

84 CHAPTER 4. OPTIMIZATION OF SEQUENTIAL CIRCUITS

4.3 Efficient State: Enumeration

In .this section; basic operations using binary decision diagrams (BDD's) and tech

niques for implicit state enumeration using BDD's are reviewed. Binary decision diagrams

have already been presented in Section 2.2.5 of Chapter 2. The concept of implicit state

enumeration was recently proposed by Coudert et al. [25] for checking the equivalence of

sequential circuits. They proposed the use of binary decision diagrams for representing the

state-space and the transition behavior symbolically. This makes it possible to perform

breadth-first state enumeration by traversing a set of states at a time. For the remainder of

the chapter, all Boolean and set operations axe assumed to be implemented using BDD's.

Also, unless otherwise noted, no distinction will be made between a set, the characteristic

function of a set, or the BDD representation of a set. A relation can be viewed as a set of

n-tuples. Hence, a relation can also be represented using BDD's as a characteristic function.

4.3.1 Set Computation and BDD Operators

The cofactor of a function / with respect to a literal 3,(s7), denoted by fXi(fer),

is a new function obtained by substituting 1(0) in place of the variable X{ in the function /

[12]. The Boole expansion [19] (also called the Shannon expansion) of a Boolean function

/ with respect to a variable X{ is

f = Xifxt + xihi>

Binary decision diagram [20] is a compact representation of a nested Boole decomposition,

la addition to the basic propositionallogic operations, the existential operator (3)

and the universal operator (V) axe required for implicit enumeration. These Boolean quan

tifiers can also be computed directly on a BDD representation as follows. The existential

quantification (also called smoothing) of a set of Boolean variables X = {a?i,... ,xn} with

respect to the Boolean formula / can be evaluated as

3X(f) = 3«1(3*2(...3*n_1(3*B(/))...)),

3*.-(/) = /x..+/xT,

where /x<(/*r) denotes the cofactor offormula / with respect to a literalxt(xj). fXi{hi)ls
a new formula obtained by substituting 1(0) in place of the variable X{ in the formula /.

4.3. EFFICIENT STATE ENUMERATION 85

Likewise, the universal quantifier (also called the consensus) can be evaluated as

VX(f) = V«1(V«2(...V*fl_1(Vaf|l(/))...)),

Vs.Cf) = /»«-Ar-

Any quantified propositional formula can be rewritten into a propositional formula using

the above rewriting rules.

Let / : Br —* Bn be a Boolean function and (C5ra subset of the input space.

The imageof f by / is the set /(£) = {y 6 Bn \ y = f(x), x e £}. If f = Br, the image of f

by / is also called the range of /. Let if) C Bn be a subset of the output space. The inverse-

image (or the reverse-image) of ^ by / is the set /_1(£) = {x € Br \ y = f(x), y e ty}.

The cofactor operation for single literals or cubes was previously defined [12].

However, cofactoring with respect to an arbitrary function in an important operation for

image computation and simplification. Let / : BT -* Bn be a Boolean function and c :

Br —• B be a care sei. The generalized cofactor of / with respect to c, written /c or

gen_cofactor(/, c), is the new function

f /(*) if
\ y susuch that y e /(c)

This operator was initially proposed by Coudert et al. in [25] and was called the constraint

operator. In Coudert's implementation, fc is dependent on the variable ordering.

4.3.2 Representation of States and State Relations

Let M be a sequential circuit with r primary inputs, m latches, and n primary

outputs. States, state relations, and output relations can be represented as follows.

Definition 4.1 Let Q be a set of states in Bm. The characteristic function of Q is a

function such that <?(x)= 1 if and only if mis a state in Q.

For example, the set ofpossible reset states may be represented by the characteristic function

J(x).

Definition 4.2 The next-state transition relation for sequential circuit M is T C

BT x Bm x Bm such that T(i,x,y) = 1 if and only if the state y can be reached in exactly

one state transition from state x when input i is applied.

86 CHAPTER 4. OPTIMIZATION OF SEQUENTIAL CIRCUITS

The transition relation can be interpreted as a set of state transitions. It can also be

represented as a binary relation T(x,y) = 3i T(i,x,y), where T(x,y) = 1 if and only if

state y can be reached in one transition from state x under some input. In this case, T

represents a set of un-labeled transitions.

In general, the transition relation can be non-deterministic or incompletely spec

ified. However, for the algorithms developed in this chapter, a deterministic transition

relation is assumed.

Definition 4.3 The output relation for sequential circuit M is O C Br XBm x Bn such

that 0(it x, z) = 1 */ and only if the output pattern z can be produced from state x when

input i is applied.

In the algorithms used for extracting global state-space information (e.g., equivalent states

calculation), a product machine is required. A product machine for a sequential circuit

M is simply a new network constructed by duplicating itself, connecting the same primary

inputs to both copies of the circuit, and connecting the primary outputs of the two copies

to a set of bit-wise equivalence gates:

(Z11WZ21)(ZU'^Z22) ••'{Zlr$Z2n).

This is shown in Figure 4.5. The state-space is defined by the Cartesian product Bm x Bm.

A set of states of the product machine is as represented before. The product transition

relation can also be implicitly represented as follows.

Definition 4.4 The product transition relation of M is P C Br x B2m x B2m such

thatP(i, X, Y) = 1 ifand only if theproduct stateY = (y, y') can be reached in exactly one

state transition from the product state X = (x, x') when input i is applied. Each product

state corresponds to a state pair of the original circuit M.

For a product transition relation, the primary inputs can be abstracted away to produce

P(X,Y)=3iP(t,X,Y).

Definition 4.5 The output of theproduct machine is a single-output output equivalence

function £(i,X) that evaluates to al if the output patterns produced under input i by the

circuit M are the same starting from either the state x or the state x7. Otherwise, it

evaluates to a 0.

4.3. EFFICIENT STATE ENUMERATION 87

Figure 4.5: Product Machine.

In equivalent states calculation, the problem is to find the complete set of state pairs (x, x')

such that the output equivalence function 2 always remains a 1 under all possible input

sequences.

4.3.3 Implicit Enumeration and Fixed Point Computation

Given a BDD representation of the transition relation, forward (image) and back

ward (inverse-image) computations can be done simply by performing a simple conjunction

followed by variable quantifications. Given a set of states c(x), the set of next-states that

can be reached in one transition is simply

c'(y) = 3i,x (T(z,x,y).c(x)).

Similarly, given a set of states c(y), the set of previous states that can be reached in one

step back is

c'(x) = 3i,y (T(t,x,y).c(y)).

Recently, the idea of representing the global transition relation T as a conjunction of sim

pler partitioned transition relations was proposed [89]. This technique makes it possible

88 CHAPTER 4. OPTIMIZATION OF SEQUENTIAL CIRCUITS

to perform state enumeration when, the global transition relation cannot be built. The

method relies on the fact that many variables can be abstracted away before taking the

full conjunction. Coudert et al. [25] also proposed efficient algorithms based on transition

functions for image computation. Although their method may be more efficient on some

examples, it cannot be used for backward traversal, which is required for equivalent states

computation. Since the technique of transition relation, in particular partitioned relations

[89], is as enicient in almost all cases, it is used to develop the algorithms in the remainder

of this chapter.

The last concept required to describe the algorithms is the notion of fixed point

computation. The notation and terminology used here axe same as those found in [88, 21].

Let 5 be a finite set of elements. Let Z be a function that maps the power set V(S) to itself,

i.e.t Z :V(S) -*• V{S)j and assume Z is monotone, i.e.f AC B implies that Z(A) C Z(B).

The least fixed point of Z, Ifp(Z), and the greatest fixed point of Z, gfp(Z), are defined as

follows:

lfp(Z) = £ A
A=Z(A)

gtp(z) = n a
A=Z(A)

Since Z is monotone, it can be checked [21] that there is always some integer j > 0 such that

Zj(S) = Zj+1(S) = lfp(Z), and Z,(0) = ZJ+i(0) = gfp(Z), where S denotes the complete

set and 0 denotes the empty set. Here Zj refers to the set obtained after the j-th iteration

of the fixed point computation. The check for termination is simply a tautology check, for

which the use of BDD's is particularly well-suited.

A simple example is the computation of reachablestates R(x) given a set of initial

states J(x). It can be easily computed as the least fixed point computation

J2o(x) = J(x)

£i+1(x) = RiW + iliXtyPfryrf-Rjiy)). (4.1)

The set of invalid states J7(x) is simply the complement of R.

4.4 Computing the Equivalent States

The problem of computing invalid states was already shown in the previous sec

tion. The computation of equivalent states is more complicated. Classical equivalent states

4.4. COMPUTING THE EQUIVALENT STATES 89

identification procedure requires the construction of merger graphs where each state must

be explicitly represented [54]. However, the algorithm is known to be 0(N\og2N)i where

N = 2r is the number of states and r is the number of state-bits. Hence, this algorithm is

not feasible for a large class of circuits.

In this section, algorithms are given for computing this information implicitly using

binary decision diagrams and fixed point computations. Given a sequential circuit, the goal

is to compute the complete set of equivalent state pairs. This set can be represented as a

characteristic function using BDD's as follows.

Definition 4.6 The equivalent state relation for a sequential circuit M is a character

istic function J5(x,x') such that 2?(x,x') = 1 if and only if state x is equivalent to state x'

in M.

To perform the equivalent state relation, a product machine is first constructed, as shown in

Figure 4.5. The product transition relation P(t,X,Y) and the output equivalence function

£(t,X) axe then built using binary decision diagrams. These relations can be kept as

partitioned relations whenever possible to reduce the storage requirements.

Recall that the condition for a pair of states (x,x') to be equivalent is that under

all input sequences starting from either state, the output response is the same. This cor

responds to the set of "product" states in the product machine such that under all input

sequences, the output equivalence function Z evaluates to a 1. Thus, the problem is reduced

to finding the set of product states, £7(X), that satisfy this requirement. This equivalence

relation can be computed using a backward traversal of the state-space 1.

In this section, two BDD-based proof procedures axe described for computing this

equivalence relation. One is to find a set of product states such that Z evaluates to 1 under

all (single) inputs i, and all the possible next product states axe also equivalent. This can

be computed as a greatest fixed point computation. The other is to instead determine a set

of product states that axe differentiable, i.e. there exists some input sequence such that Z

eventually evaluates to a 0. This can be computed as a least fixed point computation.

rA forward traversal algorithm for equivalent states computation has not been explored.

90 CHAPTER 4. OPTIMIZATION OF SEQUENTIAL CIRCUITS

4.4.1 Equivalence-Based Analysis

In the first proof method, the following greatest fixed point computation can be

used for computing the set of equivalent states:

£o(X) = (Vi)*(*\X)

i7i+1(X) = Ej(X) • (Vi)(3Y) [P(i, X, Y). Ej(Y)]. (4.2)

Here, a deterministic transition relation is assumed. Given i, X, Y is unique such that

P(i,X,Y) = 1. A similar fixed point computation was independently proposed in [73].

However, this formula, as written, has several notable disadvantages. In the term

(Vf)(3Y)[P(i,X,Y).i;i(Y)],

the primary input variables cannot be abstracted away before the complete expression

(3Y) [P(i,X, Y) •Ej(Y)] is computed since the universaland existential quantifiers do not

commute. Although the partitioned transition relation idea introduced in [89] can abstract

away some of the existentiaUy quantified variables, such as the Y variables here, computing

the complete expression without abstracting the primary input variables in the process

may be too memory intensive (in terms of the number of BDD nodes). Therefore, the

computation may, and does fail on larger examples. Indeed, this problem has been the

cause for failure on many examples. Also, an important trick proposed by Coudert et al.

[25] for reducing the cost of computing least fixed points can not be applied here. The

main idea of their trick is to perform a backward (or forward) computation on only a

subset of states at each iteration. Specifically, only new states generated at each iteration

need to considered rather than the total set. They proposed the use of the generalized

cofactor operator to heuristically select a set between those two extremes such that the

BDD representation is small. It turns out that this trick is crucial for some computations

but unfortunately it cannot be applied directly here.

4.4.2 Differentiation-Based Analysis

An alternative proof procedure is to compute the complete set of state pairs,

I?(x,x') or -D(X), that are differentiable. The set of equivalent state pairs can simply be

obtained by taking the complement. This can be computed with the following least fixed

4.4. COMPUTING THE EQUIVALENT STATES 91

point computation:

A)(X) = (3i)Z(i,X)

Dj+1(X) = Dj(X) + (3i)(3Y)[P(i,X,Y).2?i(Y)]. (4.3)

This formula, as written, can be evaluated much more efficiently than Equation 4.2. Since

this is a least fixed point computation, the trick of Coudert et al. [25] applies, which is

essential for many large examples. Since existential quantifications can commute, one can

order the computation in the term (3i)(3Y) [P(i, X, Y) •Dj(Y)] such that the variablesin

i and Y can be abstracted away as soon as possible using the technique presented in [89].

This is also essential for large examples.

Equations 4.2 and 4.3 axe in fact dual of each other. At each iteration, Dj(X) is

the complement of Ej(X). Both algorithms require the same number of iterations to reach

their fixed points, and the final sets axe complementary to each other.

Theorem 4.1 For all j, Ej(X) = Dj(X).

To prove Theorem 4.1, the following lemmas axe first presented.

Lemma 4.2 E0(X) = D0(X).

Proof: Trivial. (V*)2(t,X)= (3t)£(t,X). •

Lemma 4.3 Given i, X,ifYis unique such that P(i,X,Y) = 1, then

(3Y) [P(i, X, Y) •Ej(Y)] =(VY) [P(«,X,Y) + E/X)].

To prove Lemma 4.3, a more general lemma is posed.

Lemma 4.4 LetF : Br -* Bn be any function and letJr:BrxBn -»5 be its characteristic

function. Let C C Bn such that y € C if and only ifC(y) = 1. Then,

(3y)[jF(x,y).C(y)] =(Vy) [7(xTS?) + C(y)] .

Proof: To prove the above, the following should first be noted:

1. Vx G BT, y = ^"(x) is unique and well-defined.

92 CHAPTER 4. OPTIMIZATION OF SEQUENTIAL CIRCUITS

2. (Vy) [^(xTSO + <?(y)] =(Vy) [^y) + ^(x,y)c(y)].

Let

5(x) = (3y)[JF(x,y).C(y)] (4.4)

5(x) = (Vy)[7(xT30 + ^(x,y)C(y)]. (4.5)

The prove will now proceed in two steps. First, x € 5(x) implies x € 5(x) is shown. In

Equation 4.4, x € 5(x) implies (y = .F(x)) € C(y). In Equation 4.5, Y = ^(x) for the same

x is the set of elements Y= Bn - y. Therefore, 5(x) = (Vy) [^(x,y) + ^"(x,y)C(y)]
will also contain x.

Next, x € 5(x) implies x € 5(x) is shown. Since y = ^(x) is unique and well-

defined, (Vy) f.F(x, y)l is always empty. Therefore, x 6 5(x) implies that there exists at
least one y such that JF(x,y)C(y) is true. This implies that x is also contained in 5(x). •

Proof: [Proof of Lemma 4.3] P(t,X, Y) is a characteristic function corresponding to a

deterministic function. Therefore, Vi,X, Y = P(i, X) is unique and well-defined. Lemma

4.3 then follows from Lemma 4.4. •

Proof: [Proof of Theorem 4.1] The prove is by induction on k.

Induction Hypothesis: Assume the statement in the theorem is true for all j up to k.

Induction Basis: The statement in the theorem was proven in Lemma 4.2 for j —0.

Induction Step: It is now proven for j + 1.

Ei+1(X) = Di+1(X)

= D^X) + (3i)(3Y)[P(t,X,Y)..Di(Y)]

= Di(X)) • (3i)(3Y) [P(»,X, Y) •.0,00]

= Ej(X) •(V«)(VY) [P(«, X, Y) •DjfX)]

= Ej(X)-(\fi)(iY) [P(i,X,Y) + D](XJ]
= £,(X).(V«)(VY) [P(*',X,Y) + BjOO]

From Lemma 4.3,

Bj+tCX) = £i(X).(Vi)(3Y)[P(«,X,Y)-£i(Y)]

4.4. COMPUTING THE EQUIVALENT STATES 93

Therefore, the computations given in Equations 4.2 and 4.3 produces exactly the dual

results. Note that although the formulas given in Equation 4.2 and Equation 4.3 can be

rewritten from one form to the other, Equation 4.3 is much more enicient to evaluate using

state-of-the-art computation techniques.

4.4.3 Computing Single Cycle State Equivalence

Although current state enumeration techniques based on binary decision diagrams

axe very powerful, there axe still many difficult examples where the necessary fixed point

computations for computing equivalent states cannot be performed. While current trends

seem to dictate that more enicient techniques will likely be developed in the near future,

they may still not be sufficient to tackle all realistic examples in practice. In the reachable

state computation, only the state-space of the circuit needs to be examined. However, in

the equivalent state computation, it is the state-space of the product machine that must be

examined. This state-space is much more complicated in most cases.

Depending on the sequential circuit, relatively large sets of equivalent state pairs

can be detected without a full state-space traversal. In some cases, surprisingly, a significant

percentage of the equivalent state pairs axe in fact single-cycle equivalent, meaning that the

output response and the next-state transitions axe exactly the same under all primary input

conditions (single vector). Therefore, these equivalent state pairs can all be derived in only

one backward computation step. For this computation, a new function on the product

machine is defined.

Definition 4.7 Given a product machine (as shown in Figure J^.5), a next-state equiv

alence function £(i, X) is defined by connecting the corresponding next-state functions of

the two copies of the machine to a set of bit-wise equivalence gates:

(tu®tl2)(t2lW22) •••(tmi 0*ma),

where tjt and U2 are corresponding next-state functions. £(i,X), X = (x,xr), evaluates to

al if the next-states produced under input i by the circuit M are the same, starting from

either the state x or the state x'. Otherwise, it evaluates to a 0.

This function is analogous to the output equivalence function £(i, X). Given this function,

94 CHAPTER 4. OPTIMIZATION OF SEQUENTIAL CIRCUITS

the set of single-cycle equivalent state pairs can be computed as follows:

5(X) = (Vi)[Z(i,X) • £(t,X)],

5(X) = (3t) p^TxJ + C(£X)] . (4.6)

This computation requires only one step. Larger subsets can be generated by traversing

backwards on the product relation.

4.4.4 Computing State Equivalence in the Valid Component

The fixed point computations in Equation 4.2 and Equation 4.3 can be used to

compute the complete set of equivalent state pairs. However, one is often only concerned

about the equivalent states in the valid component of the state-space (i.e. the reachable

states). Let M be the finite state machine under consideration. Let iZ(x) be the char

acteristic function representing the set of reachable states in M and let JE(x,x') be the

characteristic function representing the set of equivalent state pairs of M. The set E con

tains both valid and invalid states. If only the set of equivalent state pairs in the valid

component of the state-space is required, then it can be computed simply as follows:

Ev(x, x') = £(x,xO •£(x) •#(x'). (4.7)

However, this is unnecessarily expensive. In fact, the set E is usually much more expen

sive to compute than the set R for most examples. Hence computing E first is a crucial

bottleneck.

If the eventual goal is to compute only the set of equivalent state pairs in the

valid component, then it is possible to first simply the transition relations representing the

state machineusing the invalidstates as don't-cares before computingthe equivalentstates.

Doing so almost always makes the equivalent states computation much easier. Specifically,

the product transition relation P(i, X,Y) and the output equivalence function Z(i, X) can

first be reduced with respect to the reachable states R. The generalized cofactor can be used

for this purpose as a heuristic minimizer to minimize the BDD representation as follows:

r(x,y) = £(x).£(x').£(y).i2(y'),

R(X) = R(x) •R(x%

PR(i,X,Y) = gen.cofactor(P(«,X,Y),22(X,Y)), (4.8)

ZR(i,X) = gen_cofactor(2(i,X),£(X)). (4.9)

4.5. EXPERIMENTAL RESULTS 95

In Equation 4.8, Pfi(i, X, Y) is actually computed by applying gen_cofactor with R on each

of the next-state functions of the product machine before building the product transition

relation. This ensures that Y is still unique for each combination of i and X in the reduced

product transition relation P#(i,X,Y).

It can be shown that the set of equivalent states in the valid component using

the reduced product transition relation, Pr(i,X,Y), and the reduced output equivalence

function, Zr{%, X), is in fact the same as the equivalent states in the valid component using

P(i,X,Y)and2(t,X).

Theorem 4.5 Let Pjr(«, X, Y) and Zr(i, X) be the reduced product transition relation and

the reduced output equivalence function, respectively. Let Er(x,x.*) be the set of equivalent

states using Pr(%, X, Y) and 2/j(i, X), and let

£*y(x,x') = £*(x,x') •J*(x) •£(x')

be the set of equivalent states in the valid component. Then

£V(x,xO = £ji,v(x,x').

Proof: Simplifying the product transition relation and output equivalence function using

invalid states as don't-cares does not change the behavior of the valid component of M.

Therefore, if two reachable states x and x' were equivalent in M, they will remain equiva

lent. •

4.5 Experimental Results

In this section, empirical results on the techniques described in this chapter. All

results presented were collected on a DECstation 5000 and the CPU times axe reported

in seconds. The algorithms were developed using Mis-il [13] version 2.2 as a package,

which provided extensive support for experimentation. For the experiments, the following

benchmark examples were used: a set of sequential circuits from the 1989 ISCAS sequential

benchmark set, a 32-bit carry-bypass adder called cbp.32.4, a 32-bit minmax benchmark

from IMEC called minmax32, a key encryption circuit called key from a data encryption

standard (DES) chip [91], and a simplified version of key called tkey. The example tkey

96 CHAPTER 4. OPTIMIZATION OF SEQUENTIAL CIRCUITS

Circuit #L states iter. time

s344 15 2625 7 24.0

s349 15 2625 7 23.5

s382 21 8865 151 56.8

s400 21 8865 151 56.6

s420 16 18 18 2.0

s444 21 8865 151 65.6

s641 19 1544 7 9.9

s713 19 1544 7 9.8

s838 32 18 18 5.1

tkey 228 1.35e+68 17 1325.22

key 228 1.35e+68 17 1325.22

cbp.32.4 32 4.29e+9 2 4.00

minmax32 96 1.32e+28 4 45.50

Table 4.1: Computation of Invalid States.

#L: number of latches
states: number of reachable states

iter.: number of iterations in the FSM forward traversal

time: CPU time in seconds for computing the invalid states

was obtained from key by simply considering only a subset of outputs. The purpose of

the experiments was to determine the computational efficiency of the sequential don't-care

extraction algorithms and the effectiveness of the don't-cares in optimization.

In Table 4.1 and Table 4.2, results are given for the computing reachable and

equivalent states. For reachable state computation, the number of latches (#L), the number

ofreachablestates (set), the numberofiterationsin the fixed point computation (iter.), and

the required CPU time (time) axepresented. For equivalent state computation, the number

of equivalent state pairs (pairs), the size of the BDD's representing the set of equivalent

states, the number of iterations in the backwards fixed point computation (iter.), and the

required CPU time (time) axe in Table 4.2. The results presented in Table 4.2 axe for the

complete set of equivalent state pairs, including both valid and invalid states. This is much

more difficult in general to compute than just those state pairs for the valid component of

the circuit. For non-scan sequential testability, the complete set of equivalent states is

required [34].

Once the invalid and equivalent states have been computed, they can be used in

4.5. EXPERIMENTAL RESULTS

Circuit pairs size iter. time

s344 2.59e+05 68268 5 57.79

s349 2.59e+05 68780 5 56.75

3382 5.35e+07 11928 93 541.16

s400 5.35e+07 11928 93 541.77

s420 1.68e+08 2040 8 3.76

s444 5.35e+07 12010 93 534.63

s641 1.18e+06 371 1 22.44

s713 1.18e+06 371 1 22.36

s838 4.42e+17 31985 8 56.19

tkey 1.06e+124 226 7 177.83

key 4.31e+68 1135 5 517.85

cbp.32.4 4.29e+9 95 1 1.51

minmax32 7.29e+28 1855 1 149.58

Table 4.2: Computation of Equivalent States.

pairs: number of equivalent state pairs
size: size of the BDD representation for the equivalent pairs
iter.: number of iterations in the FSM backwards traversal

time: CPU time in seconds for computing the invalid states

97

conjunction with combinational logic optimization techniques. At the time of this exper

iment, techniques for exploiting Boolean relations in multi-level logic optimization were

not fully implemented. However, it should be noted that they are forthcoming [80]. In

the absence of these techniques, only invalid states were used in this experiment. Invalid

states were used as external don't-cares in MIS-II. The results for the ISCAS examples are

shown in Table 4.3. start is the count of factored form literals of the initial circuit. Each

circuit is then optimized using MIS-II with a new script called script.rugged without the

invalid states don't-cares. This script contains the new don't-care simplification procedure

full-simplify described in [81]. script.rugged also uses improved factorization proce

dures for area optimization. The results without sequential don't-cares axe reported under

the column labeled script1. Then the invalid states were used as external don't-cares with

the command full-simplify to further reduce the size of the circuit. The factored form

literal counts after this step axe reported under the column labeled script2. In general, the

amount of simplification gained by using the sequential don't-cares depends directly on the

specific example and the effectiveness of the logic minimization technique.

98 CHAPTER 4. OPTIMIZATION OF SEQUENTIAL CIRCUITS

Circuit #L start script1 script2

s344 15 269 150 140

s349 15 273 151 139

s382 21 306 162 151

s400 21 320 157 146

s420 16 336 159 46

s444 21 352 152 142

s641 19 539 185 151

s713 19 591 186 151

s838 32 670 320 47

tkey 228 3865 3662T 366lt

key 228 3865 3669t 366lt

cbp.32.4 32 480 416 400

minmax32 96 1874 1594 1534

Table 4.3: Results on Sequential Optimization.

#L: number of latches
start: starting point (literals in factored form)
scriptl: results after MIS-II with script .nigged
script2: further optimization with full_simplif y [81]

using sequential don't-cares
f: full .simplify or script did not complete

In Table 4.4, results axe given for computing only the single-cycle equivalent state-

pairs using Equation 4.6. In most cases, the CPU time required for computing only the

single-cycle equivalent state-pairs is considerably less. For example in s444, computing all

equivalent state-pairs requires 534.63 seconds whereas the single-cycle equivalent state-pairs

can be computed in only 2.77 seconds. As can be seen from the table, a reasonable subset of

equivalent state-pairs can be derived using only single-cycle equivalence. In some cases, the

computation is actually more expensive because the BDD representation for the single-cycle

equivalent state-pairs is larger than the BDD representation for all equivalent state-pairs,

tkey is such an example.

4.6. CONCLUSIONS

Circuit all pairs single-cycle pairs
pairs time pairs time

s344 2.59e+05 57.79 9.42e+04 4.04

s349 2.59e+05 56.75 9.42e+04 3.06

s382 5.35e+07 541.16 4.39e+07 5.09

s400 5.35e+07 541.77 4.39e+07 5.12

s420 1.68e+08 3.76 1.65e+08 1.47

s444 5.35e+07 534.63 4.39e+07 2.77

s641 1.18e+06 22.44 1.18e+06 7.14

s713 1.18e+06 22.36 1.18e+06 7.02

s838 4.42e+17 56.19 4.23e+17 18.95

tkey 1.06e+124 177.83 6.84e+84 260.04

key 4.31e+68 517.85 4.31e+68 313.01

cbp.32.4 4.29e+09 1.51 4.29e+09 1.23

minmax32 7.29e+28 149.68 7.29e+28 116.01

Table 4.4: Computation of Single-Cycle Equivalent States.

pairs:

time:

number of equivalent state pairs
CPU time in seconds for computing the invalid states

4.6 Conclusions

99

Efficient algorithms for extracting global state-space information from a logic-

level description of a sequential circuit were presented in this chapter. These algorithms

axe based on a symbolic representation of the state-space using binary decision diagrams.

In particular, algorithms have been developed for computing invalid and equivalent state

information for large circuits such that the information can be used as don't-care conditions

for combinational logic synthesis. In contrast with previous methods based on explicit state

diagram construction or cube enumeration, these algorithms can be used on much larger

circuits that may contain both control and data-path circuitry.

Chapter 5

Implicit Manipulation of

Equivalence Classes

5.1 Introduction

In Chapter 4, it was shown how binary decision diagrams (BDD's) [20] and the

concept of implicit state enumeration [25] can be used to extract global state-space infor

mation (e.g. invalid and equivalent states) for sequential optimization. The use of BDD's

and implicit state enumeration makes it possible to develop efficient algorithms that can

be applied to very large circuits. Recently, it has become apparent that many problems in

synthesis, testing, and verification axe intimately related in that they axe often fundamen

tally dependent on the same set ofbasic logic manipulations. Therefore, efficient techniques

developed in this area can be viewed as "core" technologies that can be applied to a wide

spectrum of problems in all three areas. For example, binary decision diagrams can be used

to represent and manipulate logic functions and relations very efficiently and the concept of

implicit state enumeration can be used to solve many problems requiring spatial or temporal

analysis of a large state-space. Since many algorithms in synthesis, testing, and verification

make use of such basic core computations extensively, new developments in this area are

extremely important.

While BDD's and implicit enumeration provide the basic machinery and concepts

to manipulate functions, relations, and state-spaces efficiently, analogous machinery for

representing and manipulating equivalence classes efficiently (other than straightforward

100

5.1. INTRODUCTION 101

truth-table enumeration) have not been developed. In many interesting applications, the

ability to represent and manipulate equivalence classes is in fact the fundamental bottle

neck. Example applications where efficient methods for representing and manipulating

equivalence classes axe crucial include communication complexity calculation and manipu

lation of sequential machines. In communication complexity calculation, the problem is to

compute the amount of "real" information being transmitted between two combinational

logic blocks. This calculation forms the core (and the most expensive) computation in many

problems, such as functional decomposition for logic synthesis [49,51] and logic partitioning

[8]. The problem of calculating communication complexity is equivalent to the problem of

computing the number of equivalence classes across the partition. Consider the case of a

two block partition with n signals going from one block to the other. A number of binary

patterns from the first block may be considered "equivalent" with respect to the observ

able behavior of the second block. Each set of these equivalent binary patterns form an

equivalence class. In effect, these equivalent binary patterns partition the space into a num

ber of (disjoint) equivalent classes. Using implicit enumeration and characteristic function

techniques, only pairwise equivalence relationships can be derived. However, techniques

have not been developed for deriving or representing the equivalence classes efficiently. One

approach is to represent each equivalence class separately with a characteristic function in

BDD form. Although each characteristic function may be reasonably compact, there can be

an exponential number (i.e. 2n) of equivalence classes in the worst case. Since the number

of signals is usually large, this severely limits the analysis to only small problems. Similar

problems arise in the manipulation of state machines under equivalent states.

In this chapter, new methods based on binary decision diagrams axe presented for

representing and manipulating equivalence classes efficiently. A new concept, the equivalence

class characterization junction, is introduced to implicitly represent equivalence classes. In

formally, an equivalence class characterization function is effectively an encoding function

that encodes all equivalent binary patterns into a unique binary pattern. An equivalence

class characterization function has several interesting properties that make it very useful for

representing and manipulating classes. One is that all equivalence classes can be implicitly

represented with a single multi-output function with at most n output variables rather than

possibly 2n individual functions if each equivalence class is represented by a separate char

acteristic function. This makes it possible to represent the all equivalence classes for very

large Boolean spaces implicitly, since the number of output variables required to represent

102 chapters: implicit manipulation of equivalence classes

the equivalence class characterization function is bounded by the number of dimensions of

the Boolean space considered. Another property of the equivalence class characterization

function is that the number of equivalences classes can be readily determined by computing

the size of the range (which can be easily determined by a simple traversal of the BDD

representation). To compute the equivalence class characterization function, a new Boolean

operator called the compatible projection operator is introduced. Conceptually, the compat

ible projection operator is used to select a single member from each equivalence class to

"characterize'' the class. In manipulating equivalence classes symbolically, the compatible

projection operator is used to derive implicitly an encoding function from the equivalence

relation that encodes the equivalence class information symbolically. The resulting func

tion produced by the compatible projection operator is well-defined for any fixed variable

ordering. The compatible projection operator can also be seen as a basic mechanism for

selecting a compatible mapping corresponding to any relation. An efficient algorithm using

binary decision diagrams has been developed for implementing the compatible projection

operator.

The remainder of this chapter is organized as follows. In the next section, basic

terminology for equivalence relations and equivalence classes are given. In Section 5.3, the

importance of representing and manipulating equivalence classes efficiently is motivated

using the problem of state minimizing large finite automata (e.g. over 1050 states) as an

example application. Then the concept of an equivalence class characterization function

is described as a means for representing equivalence classes efficiently. In Section 5.4, the

compatible projection operator is described. In Section 5.5, two example applications axe

presented to demonstrate the use of the compatible projection operator and the concept of

equivalence characterization function. In particular, the problemof reducing finite automata

is further developed and the problem of computing communication complexity is described.

Experimental results are given in Section 5.6 and concluding remarks axe given in Section

5.7.

5.2 Definitions and Notation

In Chapter 2, relations were introduced as a means to represent logic behavior.

In general, a relation is any subset over some Cartesian product of (possibly non-Boolean)
finite domains 11 C Dx x D2 X... x Dn. The cardinality of a finite set D is denoted by \D\.

5.2. DEFINITIONS AND NOTATION 103

Without loss of generality, all domains can be assumed to be over Boolean values for the

purpose of analysis. Non-Boolean domains (i.e., symbolic relations, cf. Chapter 2) can be

handled by encoding elements of D with unique Boolean vectors of at least length k, where

k > flog2 | D \\. Formost applications considered, the choice of encodings and codelengths

are usually pre-determined. For the sake of exposition, it is often convenient to speak in

terms of a binary relation which is a subset of some Cartesian product Br x Bn, denoted

as H C Br x Bn. Henceforth, unless otherwise noted, relation and binary relation axe used

interchangeably. A important special case is the equivalence relation, as defined as follows.

Definition 5.1 A relationH C Bn x Bn is an equivalence relation on Bn provided 1Z

satisfies the following threeproperties:

1. reflexive: (x,x) G ft,Vx€ Bn;

2. symmetric: (x,y) € H => (y,x) GH;

3. transitive: [(x,y) 6 11 and (y,z) 6 H] =>- (x,z) € H;

x is equivalent to y under U, written x ~ y, t/(x,y) 6 H. The set of possible mappings

for an element x, 1Z(x) = {y | (x,y) € 11}, is also called theequivalence class o/x. This

is also denoted as [x].

Anequivalence relationH (~) on Bn induces a partition n on Bn, x(Bn) = {S\, 52,..., Sq}.
i.e.,

i. U.s.= *n;

2. Si n Sj = 0, Vi ^ j.

Each Si is an equivalence class of 1Z.

A function can be expressed in a multi-output form / : Br —*• Bn, or it can be

expressed in a characteristic function form F C Br x Bn. Given a function in multi-output

from, its characteristic function can be derived as follows:

^ = 11 tee/,) (s.i)
«=i

where f\...fn corresponds to the individual output functions of the multi-output function

/. When f\...fn correspond to the next-state functions of a finite state machine, then the

characteristic function F is also referred to as the transition relation (cf. Chapter 4). A

104 CHAPTER 5. IMPLICIT MANIPULATION OF EQUIVALENCE CLASSES

function F C Br x Bn expressed as a characteristic function can be converted to a multi-

output form / : Br —* Bn if and only if Vx 6 Br, \ F(x) |= 1. The conversion can be done

as follows:

fi = (lY)(,F.yi) (5.2)

where Y = {yi, ...,yn} are the variables of the co-domain.

5.3 Efficient Representation of Equivalence Classes

In Chapter 4, efficient algorithms were developed for computing equivalent state

relation E where

ECBnxBn

and Bn represents the state-space. E(x, x') = 1 if and only if the states x and x' axe equiv

alent. It was shown that the set of all equivalent state-pairs for machines with as much as

1050 states can be computed. However, this equivalence relation only provides information

about pairwise relationships. While this is sufficient for the purpose of optimizing the com

binational portions of the sequential circuit, not enough information is available to solve

other problems like state minimization. Efficient machinery for computing and representing

equivalence classes efficiently has not been developed.

Given a set of equivalence classes [Si],. ..,[5P], one possible approach is to rep

resent each of the p equivalence classes explicitly with a separate characteristic function

/[5i]»"«»/[5p]» Although characteristic function f[st] can be represented in compact form
using BDD's, the number of equivalence classes in general can be exponential in the num

ber of variables n (i.e. p = 2n). Instead, a new concept is proposed for representing the

equivalence classes implicitly.

Definition 5.2 Let E C Bn x Bn be an equivalence relation. An equivalence class

characterization function is any (multi-output) junction f : Bn -*• Bm that satisfies the

property f(x) = £{x!) if and only if x ~ x'.

An equivalence class characterization function is effectively an encoding function that en

codes all equivalent vertices to a unique image point in Bm such that two non-equivalent

vertices have different images.

An equivalence class characterization function has the followingobvious properties.

5.4. THE COMPATIBLE PROJECTION OPERATOR 105

Property 5.1 Let E C Bn x Bn be an equivalence relation with p equivalence classes. An

equivalence class characterization junction £ : Bn -* Bm for Bn can be constructed for any

value m > \l0g2p]. In the worst case, m<n. For any such £, \ range(£) |= p.

This is important since p equivalenceclassescan alwaysbe represented with at most flog2 p\

functions, each representable in BDD form, rather than possibly 2n functions. Further, given

£, the number of equivalence classes can be simply determined by computing the size of

the range(£), an easy computation with BDD's. An effective mechanism is now given to

compute an equivalence class characterization function given E.

5.4 The Compatible Projection Operator

5.4.1 Definition and Properties

To derive an equivalence class characterization function that uniquely encodes each

equivalence class, a new Boolean operator called the compatible projection operator is

defined. When applied to an equivalence relation E, it uniquely selects a single element

from each equivalence class to "characterize" the class. This is performed by finding a

compatible function for the relation E with a special property reflecting the requirements

imposed by equivalence relations.

Informally, the compatible projection operator is defined as follows. Given an

equivalence relation EC BnxBn, the compatible projection of E is the compatible function,

written in characteristic function form:

F = {(x,y) I (x,y) 6 E,y = SEL(x)}

where SEL(x) is any selection function that uniquely selects a member from the equivalence

class of x.

One SEL function is obtained by treating each binary vector in the Boolean space

Bn as an integer, encoded in the traditional binary form, and choosing, for each equivalence

class, the vector with the lowest integer value. However, a different ordering of the vectors

in Bn can be defined. This can be achieved by using a geometric distance metric.

Definition 5.3 Let Bn be a n-dimensional Boolean space. The geometric distance (or

simply distance) between two vertices x G Bn and y £ Bn for a given variable ordering is

106 CHAPTER 5. IMPLICIT MANIPULATION OF EQUIVALENCE CLASSES

defined as

$

Lemma 5.1 Given a reference vertex a € Bn and any variable ordering, the geometric
distance metric induces a total ordering on the elements in Bn.

Proof: It is sufficient to prove that x ^ x' implies d(a,x) ^ d(a,x'). Each of the
expressions d(a,x) and d(a,x') can be interpreted as the binary representation of some
integer. Since the binary representation of integers is unique, the integer value for each
minterm x € Bn is also unique. Therefore, the elements in Bn axe ordered by their integer
values. •

Using the distance operator, an ordering on the vertices ofa Boolean space relative to some
reference vertex a can be defined.

Definition 5.4 Given a € Bn, CC Bn, the closest interpretation ofa inCfor a given
variable ordering is definedas

J_(a,C) = axgmin d(a,x)
XcC

Lemma 5.2 The definition ofclosest interpretation, ±, relative to a reference vertex a, is
unique for any given variable ordering.

Proof: Since the distance metric maps each element in Ctoa unique integer, using a as
a reference point, the element in Cwith the lowest integer mapping is also unique. •

The compatible projection operator can now be formally defined.

Definition 5.5 Let E C Bn x Bn be an equivalence relation and a GBn be a reference
vertex. The compatible projection, or simply cprojection, ofE relative to a, denoted
as cprojection(i7,a), is the compatible junction F defined asfollows:

F = cprojection(£,a) = {(x,y) | y = ±(a,E(x))}

Lemma 5.3 Given E C Bn x Bn, a € Bn, and any variable ordering, the compatible
mapping F = cprojection(E, a) is well-defined.

5.4. THE COMPATIBLE PROJECTION OPERATOR 107

Proof: For every x e Bn, ±(a,E(x)) is unique. Therefore, the compatible function F

using the _L operator is well-defined. •

This result says that a unique function F is derived. In fact, it is an equivalence class

characterization function for E.

Theorem 5.4 LetE C Bn XBn bean equivalence relation. Then F = cprojection(£7, a)

with respect to any reference vertex a is an equivalence class characterization function for

E.

Proof: x ~ x' in E implies E(x) = E(x'). Given that X(a, E((x)) = ±(a, E((x')), then

F(x) = F(x'). m

5.4.2 An Efficient Algorithm using BDD's

An efficient recursive algorithm for computing cprojection(2£,a), which exploits

recently developed techniques for efficient BDD implementation, is now given. In the de

scription of the algorithm, E is an equivalence relation with variables x= {a; i,..., a?„} and

y = {yi>« ••*#»»}> and o is the characteristic function for the reference vertex (minterm)

in Bn with variables y = {yi,...,yn}« The algorithm traverses the BDD graph struc

ture directly and uses caching techniques to remember intermediate results. This enables

the algorithm to be performed in a bottom-up fashion on large BDD's. The pseudo code

for the recursive procedure is shown in Figure 5.1. The procedure takes two arguments:

the equivalence relation E and a reference vertex a. In Line 1, if E = 1, it means that

Vx 6 Bn,E(x) = 1. Therefore, the output mapping is simply a. In Lines 2 and 3, if either

a = 0 or E = 0, the relation E is returned. In Line 4, if ayl = 0, it means that the

"reference" literal is ai = y[(recall that a is a minterm). Otherwise, the reference literal is

<*i = Vi' The term Eai is E cofactored withthe reference literal oi. 7 = (3y)jE?0x represent

the set of x's with at least one output choice y where the value of the variable y\ is a\.

For the set of x not in 7, an output mapping with literal a\ at variable yi must be chosen.

This can be computed with the followingexpression:

cprojection(£7, a) = ol\ •cprojection(E0l, aai) +

aT •7 •cprojection(f72?r, aax) (5.3)

108 CHAPTER 5. IMPLICIT MANIPULATION OF EQUIVALENCE CLASSES

Theorem 5.5 Given an equivalence relation E C Bn x Bn, a reference vertex a £ Bn, and

a variable ordering on y, Equation 5.3 computes the cprojection of E with respect to a.

Proof: The prove is by induction. Assume the statement is true for all j up to k.

For the base case, j = 0=^a = 0^ cprojection(23, a) = E. By the induction hy

pothesis, ct\ • cprojection(Eai, aai) returns a unique mapping y closest to a for every

x in E with the variable y\ = ai if such a mapping exists. 7 = (3y)Eai computes ex

actly the set of x where such a mapping exist. 7 is the set of x that does not have an

output mapping with y\ = ct\. Similarly, ar«cprojection(255j-, aai) returns a unique map

ping y closest to a for every x in E with the variable y\ = aT if such a mapping exists.

7 .<5i •cprojection(Ectr,aai) deletes from oTT• cprojection(E^-,attl) exactly those x that

axe already in a\ •cprojection(£Jai,aai). Therefore, the union of these sets will produce

a unique mapping closest to a. •

In the actual implementation, the procedure begins at the root of the BDD. It then recur

sively computes the cprojection of its left branch and its right branch. In the BDD package

developed at Berkeley [72], a unique cache table [11] is used for caching ITE operations. For

the cprojection operation, two additional auxiliary caches axe used. The first one caches

previously computed results for 7 = (3y)Eai at each BDD node. The second auxiliary

cache is used to remember intermediate cprojection results so that previous computations

of the cprojection operator with the same arguments axe not repeated. These caches use

the similar management scheme as the unique cache table for the ITE operation.

5.5 Example Applications

5.5.1 Communication Complexity

In the example in Figure 5.2, a hierarchically-defined combinational network im

plemented in two separate combinational blocks Nl and N2 is shown, x = {xi,X2,-..,xn}

axe the primary inputs to Nl. The signals going from Nl to N2 axe y = {yi, yi,..., yp}.

These signals axe used to encode the patterns of x = {&i,&2>***>&n} for use by N2. N2

additionally has other inputs i = {tlf i2,..., im}. From the point of view of the block JV2,

two vertices (binary patterns) x 6 Bn and xf e Bn over the variables x\x^ *"Xn (the pri

mary inputs of Nl) axe equivalent (x ~ x') at the primary outputs z = {zi,Z2i •••»^} if

Vi,z(i,x) = z(t,x'). The number of equivalence classes is bounded by 2n. The communica-

5.5. EXAMPLE APPLICATIONS 109

function cprojection(JE7,a) {
1. if (E = 1) return Ea;
2. if CE = 0) return E;
3. if (a = 0) return E;
4. if (ayi = 0) let ax = 2?T;
5. else if (a^- = 0) let ai = y\;
6. else assert (failure) ;

7. let 7 = (3y)£ai;
8. if (7 = 1) return ai cprojection(Eai,aai);
9. else if (7 = 0) return a\ cprojection(2?gi-, aai);
10. else return a\ cprojection(i?ai,aai)

+ ot\ 7 cprojectio^Esj-jaaJ;
}

Figure 5.1: A Recursive Algorithm for the Compatible Projection Operator.

tion complexity from Nl to N2 is the minimum number of variables required to encode the

equivalence classes. For this calculation, an equivalence relation

E C Bn x Bn

can be computed. If all the inputs to the block N2 come from Nl (i.e., i = {}), then the

equivalence relation is

E(x,x') = (z1(x)©z{(x,))(2:2(x)©2:2(x,)).-.(^(x)^<(x0) (5.4)

= I[(*;(x)^;(x'))
j-i

Here, x' = {jcJ,x'2,..., x'n} is a set of duplicated variables corresponding to the variables in

x. If the set of variables i is not empty, meaning there are primary inputs that come into

N2 directly, then the expression for computing the equivalence relation can be modified as

follows:

E(x,x') = (^i)(z1(i,x)W1(hx,))...(zq(i,x)Wq(i^)) (5.5)

= (Vi)f[(zj(i,x)®z'j(i,x'))

110 CHAPTER 5. IMPLICIT:MANIPULATI0N OF EQUIVALENCE CLASSES

11 12 im

xl

BLOCK HI

yi

BLOCK N2

X2

xn

yp

w| if
zl x2 sq

Figure 5.2: Calculating Communication Complexity.

Since Boolean AND and universal quantification commute, the (Vi) can be moved inside the

formula for more efficient computation. An equivalence class characterization function £
using any reference vertex aG5"is therefore

£ = cprojection(£7,a:).

The number of equivalence classes from Nl to N2 is simply

classes =| (3x)^(x,x0 | .

The communication complexity is simply

com_complexity = jlog2 C].

(5.6)

(5.7)

(5.8)

5.5.2 Reduction of Finite Automata

In this section, the problem of state minimization for large sequential machines is

considered. Inpractice, large sequential circuits may notbestateminimal. This isespecially

5.5. EXAMPLE APPLICATIONS 111

true when the sequential circuits axe automatically compiled from high-level descriptions.

There axewell known algorithms for state minimization when a state transition graph model

can be extracted, but these axe only feasible for machines with at most a few hundred

states. Using the machinery developed in the previous sections, an exact algorithm has

been devised that can feasibly state minimize finite state machines of practically any size

(e.g., over 1050 states) as long as the equivalent state-pairs can be computed. The outline

of the minimization algorithm is as follows:

1. Given a finite state machine M, construct a transition relation T C Br x Bn x Bn

using BDD's such that T(i,x,y) = 1 if and only if the state y can be reached in

exactly one state transition from state x when input i is applied. Construct also an

output relation O C Br x Bn x Bm such that Q(i,x,o) = 1 if and only if the output

pattern o can be produced when the input i is applied at present-state x.

2. Compute the equivalence relation E C Bn x Bn corresponding to the set of all

equivalent state-pairs. The relation E is computed by building a product machine

M* = Mi 0 M2 and using algorithms described in Chapter 4.

3. Use the compatible projection operator to find an equivalence class characterization

function f : Bn -* Bn, in relation form f(x,y), that maps all equivalent states to the

same state. Modify T(i,x,y) using the characterization function f.

In the second step, the equivalence relation E is represented in BDD form. Although there

may be a very largenumber of equivalent state-pairs, as can be seen in Chapter 4, equivalent

state-pairs can be computed for very large sequential circuits. The efficiency is dependent

on the regularity of the underlying structure. On the third step, £ is computed as

f = cprojection(E,xo), (5.9)

where xo is the reset state, xo is used as the reference vertex to guarantee that the reset

state-code is retained (i.e., all states equivalent to the reset state will be re-assigned the

reset state-code). However, this is not a necessary condition. The reduced set of states can

be computed as

Q = set of reduced states = (3x)£(x,y), (5.10)

112 CHAPTER 5. IMPLICIT MANIPULATION OF EQUIVALENCE CLASSES

It is the range of £. Using £, the transition relation of the finite state machine can be

simplified as follows:

Tm,«(i,x,y) = (3xy)pT(tfx',y') -«x',x) .«y',y)]. (5.11)

Similarly, the state minimized output relation can be obtained as follows:

Omin(h^o) = (3x')[e>(i,x',0).£(x',x)] (5.12)

5.6 Experimental Results

The capabilities of the proposed techniques axe demonstrated by applying the

techniques to the problems of communication complexity analysis for large combinational

circuits and exact state minimization oflarge sequential circuits. The algorithms make use of

the concept of the equivalence class characterization function and the compatible projection

operator described in this chapter, which have been efficiently implemented using BDD's.

All experimental results presented were measured on a DECstation 5000 and the CPU times

presented axe quoted in seconds.

For communication complexity analysis, a number of large MCNC logic bench

marks were used. The experiments were designed to show the limitation of conventional

explicit manipulation methods and expose the need forrepresentingand manipulating equiv

alence classes efficiently. Foreach benchmark, a cut through the network was found starting

at the gate-level description. The set of all equivalent pairs of vector patterns along the

cut was computed using Equation 5.5. This equivalence relation, which corresponds to the

set of equivalent pairs of bit patterns, is represented using a characteristic function in BDD

form. In Table 5.1, some results for the benchmarks axe given. In some examples, the

number of equivalent pairs is quite large (over 1032). An equivalence class chaxacterization

function is then derived implicitly using the compatible projection operator. In Table 5.2,

the number of equivalence classes is reported under the column labeled classes. As can

be seen, the compatible projection operation is extremely fast. Using the compatible pro

jection operator, the number of equivalence classes can be computed for all benchmarks

tested.

For the minimization of state machines, the benchmarks used were obtained from

various sources in the form of gate-level descriptions. The examples s208 and s298 axe

5.6. EXPERIMENTAL RESULTS

Circuit I/O vars elem. pairs size time

alupla 50/5 13 8192 571776 424 51.36

duke2 44/29 11 2048 4096 31 4.46

misex1 16/7 4 16 32 10 0.24

misex2 50/18 13 8192 5.92e+7 16 0.42

misex3 28/14 7 128 5288 249 9.94

misex3c 28/14 7 128 224 28 3.48

sao2-hdl 20/4 5 32 334 22 0.84

seq 82/35 21 2.1e+6 2.0e+12 773 223.01

alu4 28/8 7 128 128 22 3.15

ampbsm 150/66 38 2.75e+ll 1.22e+19 64 9.28

amppint2 170/66 43 8.8e+12 4.5e+15 103 6.31

ampxhdl 124/40 31 2.15e+9 3.52e+13 52 1.64

apex6 270/99 68 2.95e+20 7.76e+32 439 7.25

dflgrcbl 216/65 54 1.80e+16 1.76e+29 3150 5.76

fconrcbl 124/35 31 2.15e+9 1.65e+17 339 1.79

k2 90/45 23 8.39e+6 1.57e+ll 158 31.61

kcctlcb3 162/44 41 2.20e+12 1.44e+20 230 3.22

sbiucbl 80/35 20 1.05e+6 9.52e+8 110 2.72

tfaultcbl 154/35 39 5.50e+ll 1.63e+21 776 2.55

vda 34/39 9 512 1232 49 5.25

Table 5.1: Computing and Representing Equivalent Pairs.

I/O: number of primary inputs and outputs
vars: number of variables along the cut
elem.: number of possible bit patterns along the cut
pairs: number of equivalent pairs of vertices
size: number of nodes in BDD of corresponding equivalence relation
time: CPU time in seconds for computing the set of equivalent pairs

113

from the iscas sequential benchmark set. The example tic is a traffic light controller.

The examples vit3 and viterbi axe control circuits from the viterbi speech recognition

processor chip [86]. The example key is derived from a control circuit that implements the

key encryption algorithm in the data encryption standard (dbs) chip [91]. It contains a large

number of state-bits. The examples mkey and tkey axe derived from key by considering a

subset of outputs (namely the control outputs). These examples vary in complexity with

the laxgest one having 228 latches and over 1068 states. Since BDD's axe used, the number

of state-bits is no longer the bottleneck; the "real" complexity of the circuit is actually

114 CHAPTER 5. IMPLICIT MANIPULATION OF EQUIVALENCE CLASSES

Circuit elem. classes size time

alupla 8192 338 322 0.09

duke2 2048 1024 32 0.01

misexl 16 8 12 0.01

misex2 8192 2 27 0.01

misex3 128 33 98 0.03

misex3c 128 80 29 0.01

sao2-hdl 32 8 30 0.01

seq 2.1e+6 163 498 0.42

alu4 128 128 22 0.01

ampbsm 2.75e+ll 18432 90 0.01

amppint2 8.8e+12 1.72e+10 112 0.01

ampxhdl 2.15e+9 131072 67 0.01

apex6 2.95e+20 1.42e+9 2174 0.60

dflgrcbl 1.80e+16 655360 1490 0.69

fconrcbl 2.15e+9 80 225 0.17

k2 8.39e+6 2664 166 0.03

kcctlcb3 2.20e+12 1.69e+7 296 0.04

sbiucbl 1.05e+6 2560 118 0.02

tfaultcbl 5.50e+ll 2624 634 0.22

vda 512 272 51 0.01

Table 5.2: Computing the Communication Complexity.

elem.: number of possible bit patterns along the cut
classes: number of equivalence classes
size: number of nodes in BDD of corresponding equivalence class characteristic function
time: CPU time in seconds for performing the compatible projection operation

dependent on the structure and regularity of the problem.

The experiment for state minimization was undertaken as follows. For each bench

mark sequential circuit, starting at the gate-level, the set of all equivalent state-pairs is

computed using the algorithms described in Chapter 4. These algorithms find all possible

equivalent state-pairs and represent them as a characteristic function in BDD form.

An implicit encoding function is then derived using the compatible projection

operator. The transition functionsof the reduced machineaxe accordingly constructed. The

number of reduced states after state minimization is usually much less than the number

of states in the initial form. Thus, the reduced states can potentially be re-encoded with

5.6. EXPERIMENTAL RESULTS

Circuit I/0/Lits(fac) states pairs bits CPU1

s208 11/21/166 256 3310 8 0.45

s298 3/6/244 16384 510000 14 35.88

tic 3/5/324 1020 25400 10 5.41

vit3 11/4/880 512 18400 9 5.08

viterbi 11/34/1372 4100 10700 12 17.50

mkey 258/10/3676 4.31e+68 l.lle+130 228 146.16

tkey 258/20/3686 4.31e+68 1.06e+124 228 177.83

key 258/193/3865 4.31e+68 4.31e+68 228 517.85

115

Table 5.3: Computation of Equivalent State Pairs.

number of primary inputs and outputs, and literals of the circuit
number of states in the initial machine

number of equivalent state-pairs
initial number of state-bits

CPU time for computing the set of equivalent state-pairs

I/0/Lits(fac):
states:

pairs:
bits:

CPU1:

states:

classes:

bits:

lower:

CPU2:

Circuit states classes bits lower CPU2

s208 256 40 8 6 0.02

s298 16384 8060 14 13 1.58

tic 1020 254 10 8 0.14

vit3 512 15 9 4 0.01

viterbi 4100 3120 12 12 0.05

mkey 4.31e+68 1.68e+07 228 24 1.72

tkey 4.31e+68 1.76e+13 228 44 2.19

key 4.31e+68 4.31e+68 228 228 2.47

Table 5.4: State Minimization Results.

number of states in the initial machine

number of equivalence classes and states after state minimization
initial number of state-bits

lower bound on minimum code length for re-encoding reduced machine
CPU time for performing state minimization

significantly fewer number of state bits.

Tables 5.3 and 5.4 show the results of the experiment. Table 5.3 shows the results

of computing the equivalent state-pairs. Here, all states, both reachable and unreachable

states axe considered. This is more general but equivalent states analysis for the reachable

subset is a trivial extension. The largest examples axe mkey, tkey, and key, each of which

116 CHAPTER 5. IMPLICIT MANIPULATION OF EQUIVALENCE CLASSES

has 4.31 x 1068 possible states. The example mkey has over 10130 equivalent state-pairs.

The CPU times reported used efficient implementations [62, 89] of the algorithms.

Using the compatible projection operator, it was possible to implicitly compute

the number of equivalence classes corresponding to the equivalence relation and merge all

equivalent states in the finite state machine. The column labeled EQV.classes indicates the

number of equivalence classes for each finite state machine example. This is also the number

of states after state minimization. For example, the machine mkey was state minimized from

4.31 x 1068 states to only 1.68 x 107 states. The results of state minimization axe shown

in Table 5.4. The CPU times for computing the equivalence classes (using compatible

projection) and performing state reduction axe indicated in the column labeled CPU2.

The CPU time required for performing symbolic class manipulation is modest relative to

the equivalent state-pair calculation.

Because the number of state patterns after state minimization may be considerably

less, it is possible to encode the reduced states with fewer state-bits. For example, the

TnininniiTTn code length to re-encode the reduced machine tkey is 44 state-bits, but the

original number of state-bits is 228.

In all cases, the CPU time for computing the equivalence relation, in both "com

munication complexity" analysis and minimization of state machines, strictly dominates the

overall time for computing the characterization function.

5.7 Conclusions

New concepts and machinery for representing and manipulating equivalence classes

efficiently have been presented in this chapter. Specifically, a new representation called an

equivalence class chaxacterization function and a new operator called compatible projection

were presented. The results of this work can be applied towards a number of applications in

synthesis where there is a need to manipulate equivalence classes efficiently. Two example

problems were used to demonstrate the usefulness of this work, namely communication

complexity calculation and finite state machine reduction. The latter problem has direct

application to sequential optimization. On some example circuits, the state-space can be

greatly reduced if state minimization was performed. However, previous techniques for state

minimization axe only applicable to sequential circuits with small state spaces. It should be

possible to apply the concepts described in this chapter to a number of other applications;

5.7. CONCLUSIONS 117

the capabilities of these concepts have just begun to be exploited.

Chapter 6

Minimization of State Latches

6.1 Introduction

In this chapter, another symbolic manipulation technique is presented. Specifically,

the problem of removing redundant state-bits, unnecessary to distinguish the state-codes of

the reachable states, is considered. A sequential circuit description, as an interconnection

of combinational logic gates and synchronous latches, is given. A reset bit-pattern is also

given. This technique can be used to reduce the number of encoding variables in situations

where minimal code length is crucial. It can also be used as an optimization technique for

sequential circuits.

Given a sequential circuit with JV latches, there are 2^ possible state patterns (or

simply states). However, only a subset of these states are reachable from the reset state.

Using recently developed concepts from sequential verification [27, 89,24] that are based on

binary decision diagrams and symbolic execution techniques, the set of reachable sets can

be computed for sequential circuits with extremely large state-spaces. The main limitation

is the ability of BDD's to implicitly represent the set of reachable states as a characteristic

function. Note that the realbottleneck is the irregularity of the state-spacerather than its

size.

In many sequential circuits, especially those with a large number of latches, the

subset of states that axe reachable is often significantly smaller then 2^ (where N is the

number of latches). This is the case with many of the circuit examples from the ISCAS-89

sequential test benchmark set. Therefore, it is possible to re-encode the set of reachable

stateswith fewer state-bits. Surprisingly, this property is not uncommon in realistic designs.

118

6.1. INTRODUCTION 119

Sequential logic optimization algorithms for area and performance optimization, such as

retiming [57] and retiming-and-resynthesis [66], are known to increase the number of state-

bits dramatically. Too many state-bits can be quite costly in terms of area.

One powerful strategy for reducing the number of latches (code length) is to remove

state-bits that axe not necessary to distinguish the different state-codes. These are called

redundant state-bits. Consider the following trivial example. Suppose Q = {001,100,111}

is the set of reachable states. The first state-bit is redundant since the remaining state-bits

can uniquely determine the state-codes: Q = {01,00,11}. In effect, the states have been

re-encoded using a subset of their bit patterns. This kind of re-encoding will almost always

lead to a more efficient representation or implementation of the sequential circuit. The

problem is to find a maximum (or maximal) subset of these state-bits to eliminate such

that the state-codes induced by the remaining state-bits axe unique. Berthet et al [9]

give conditions for detecting and removingthese redundant state-bits, but no algorithmsor

results axe given.

A straightforward, but naive, approach is to test and remove one state-bit at a time.

Unfortunately, this is suboptimal. The problem is that the removal of one redundant state-

bit may preclude the removal of other state-bits. In this chapter, a new BDD-based branch

and bound algorithm for finding the maximum set of redundant state-bits is presented. The

algorithm is guaranteed to produce an exact solution upon completion. As with most branch

and bound algorithms, effective heuristics for branching and bounding axe crucial. Here, a

branching heuristic, the selection of the most unate (the least binate) redundant state-bit

for removal, is used. This heuristic is based on the observation that the most unate state-bit

is least effectivein distinguishing state pairs. An effectivebounding technique based on the

concept of maximal removable set has also been developed. Empirically, it has been found

that this bounding technique is extremely effective in pruning the search space. Because

the proposed algorithm is based on the use of BDD's, and it examines implicitly the states

rather than explicitly, it is applicable to any set of reachable states that can be computed

and represented using BDD's. Hence, it is applicable to a very broad class of sequential

The algorithms have been applied to a variety of sequential benchmark circuits.

After the maximum set of redundant state-bits for removal is computed, the information

can be used to reduce both the BDD representation of the transition relation for verification

and the gate-level representation of the circuit for implementation. For design verification,

120 CHAPTER 6. MINIMIZATION OF STATE LATCHES

a reduction in the BDD representation of the transition relation can significantly reduce

the verification time when checking for multiple design properties. This is important since

many design properties may be checked during a verification session. Removal of redundant

state-bits can also lead to much more efficient implementations. This is partly due to the

savings in latches. However, since a subset of state bits axe no longer needed, the hardware

of the corresponding next state functions can be also discarded. This represents a more

significant savings in area. Although some additional logic may be incurred for adapting

to the new state-codes, the overall area is almost always reduced. Also, with a significant

reduction in latch count, the resulting sequential designs tend to be more easily testable.

The remainder of the chapter is organized as follows. In Section 6.2, the redundant

state-bit removal problem is analyzed. In Section 6.3, an exact algorithm for finding the

maximum removable set of state-bits is presented. In Section 6.4, experimental results are

presented on a variety of sequential benchmark circuits using the described techniques. In

a surprising number of cases, the number of state-bits is significantly reduced. Results axe

also given on the effects of latch removal on reducing the size of transition relations in BDD

form and the area of the circuit-level implementation.

6.2 Redundant Encoding Variable Removal

For greater generality, the set of elements under consideration need not be states.

Instead, any generic set of encoded elements A over some finite Boolean domain Bn can

be handled. The lower bound on the number of variables required to re-encode A with a

unique code, flog2 #A], is often less than n. One technique for reducing the number of

encoding variables is to eliminate variables that axe not necessary to distinguish the codes

given to the elements. These variables are called redundant variables.

Definition 6.1 Let A C Bn be a set of binary patterns over the Boolean space Bn and

a\...an be the corresponding encoding variables. A variable a,- is said to be redundant if

each element after its removal is still unique. It is also called a free variable.

Definition 6.2 Let A C Bn be a set of binary patterns over the Boolean space Bn and

a\...an be the corresponding variables. A permissible removal set is a set of redundant

variables {ai, aj,..., a*} such that their removal does not affect the uniqueness of each code.

6.2. REDUNDANT ENCODING VARIABLE REMOVAL 121

Definition 6.3 A permissible removal set {a,-,ay,.. .,ajb} is said to be maximal if it is

not fully contained in any other permissible removal set. A permissible removal set is said

to be the maximum if it is the largest permissible removal set.

Example 6.1 Let A be {0011,1100,0000,1001} and let <Zi, a2, a3 and a4 be the encoding

variables. Then a\ can be eliminated since the resulting set of codes axe still unique: A =

{Oil, 100,000,001}. Sinceno remaining variablescan be eliminated, {a i} is also a maximal

removal set. However, {a\} is not a maximum set since {a2, a^} is also a permissible, but

larger, removal set. n

The goal is to remove the laxgest set of variables. The maximum variable elimination

problem is stated as follows:

Problem 6.1 (Maximum Variable Removal Problem) Given a set of binary patterns

AC Bn, find the maximum removal set such that the resulting set of codes induced by the

remaining encoding variables remain unique. •

To handle redundant variable removal for very large sets of elements (e.g., 1050

elements and beyond), the set must be represented symbolically as a characteristic function

in BDD form. Depending on the regularity of the elements, BDD's can represent very

large sets. Once captured in BDD form, redundant variables can be detected very easily as

follows:

Lemma 6.1 A variable a,* is redundant if and only if

(Vat)A = 0. (6.1)

Proof: Suppose a,- is irredundant. This is equivalent to the existence of two elements, Aj

and A*, in A such that they axe only distinguishable by a,-, meaning the value is identical

for both elements in all other variables . This requires either a,- = 0 for Aj and a,- = 1 for

Afc, or a,- = 1 for Aj and a,- = 0 for A*. In either case, VaiA will be non-empty. •

The new set of codes after removing the redundant variable a,- can be derived as follows:

A = (3a,)A. (6.2)

The problem of finding the maximum removal set is NP-complete so that any algorithm

which solves this problem exactly can be expected to have exponential worst-case complexity

122 CHAPTER 6. MINIMIZATION OF STATE LATCHES

in the number of variables even if BDD operations axe used. In practice, significantly larger

removal sets than obtained by a greedy solution can often be found if more intelligent

algorithms axe devised.

Example 6.2 Consider the following set of elements:

ax 02 «3 <&4 «5

«1 0 0 0 1 1

Q2 0 1 0 0 1

93 1 1 1 0 1

94 1 0 0 0 0

The characteristic function for the above set can be expressed as

0102030405 + 0102030405 -f- 0102030405 + 0102030405

In this example, the greedy solution obtained by removing variables in order is {01,02}.

However, {03,04,05} is a larger permissible removable set. O

6.3 BDD-Based Branch-and-Bound Algorithm

A basic branch-and-bound algorithm for finding the maximum removal set involves

the following steps:

1. Determine an upper bound on the number of variables that can still be eliminated.

If the size of the current selected set plus the upper bound is less than or equal to

a bound (e.g., the size of the best solution seen so far), return from this level of

recursion. If there axe no more free variables, declare the current solution as the best

solution recorded so fax.

2. Select a free variable to eliminate. The test for a free variable is given by Equation

6.1.

3. Add the variable to the selected set and solve the subproblem by obtaining the new

set of patterns using Equation 6.2. Then, solve the subproblem by not selecting this

variable.

Constant Variables: If the value of the variable a,- is always 0 or always 1 in every

element of A, then at- is said to be a constant variable. A constant variable can be removed

unconditionally since it cannot distinguish any pairs of codes in A.

6.3. BDD-BASED BRANCH-AND-BOUND ALGORITHM 123

Choice of Redundant Variable: At each level of recursion, there may be many redun

dant variables. Good heuristics for choosing the branching redundant variable are crucial

in speeding up the branch and bound algorithm. One effective heuristic is to choose the

most unate variable. The most unate variable is determined as follows:

weight(a,) = absolute(|Aa.| - \Asr\) (6.3)

select(at-) = argmax (weight(ai)) (6.4)

Here, \Aa-\ is the number of elements where a,- is 1, and |Asr| is the number of elements

where Oj is 0. The weight(at) is the absolute difference. For example, if |Aa.| = 2 and

l^orl = 5» then weight(o,) = absolute(2 - 5) = absolute(-3) = 3. The reason for removing

the most unate variables first is because they axe the least effective in distinguishing pairs
of codes.

Maximal Removable Set: An important feature of the proposed branch and bound

algorithm is the use of maximal removable set. This routine is used to compute a simple

upper bound that corresponds to the maximum numberof removable variables. Here, the

number of remaining free variables is used as a heuristic upper bound. A simple bounded

look-ahead scheme can be applied for greater accuracy. The purpose of this upper bound
is to bound the recursion early so that inferior parts of the search space may be discarded
as early as possible.

When the above branchandboundprocedure terminates, it is guaranteedto return
the maximum removal set of variables that can be eliminated.

The search space is pruned significantly using the described bounding technique.

All operations axe performed using BDD's so that the set of elements is never explicitly

enumerated. A fast heuristic algorithm can be derived from the above procedure by ter

minating the recursion early. Experiments show that the first leaf solution is usually quite

good. A number of test cases have been found where greedy method (removal in the order
of occurrence) is considerably less effective than the procedures proposed here. The effec

tiveness of the proposed BDD-based algorithms axe dependent on the regularity of the set
considered. Using the heuristics described, substantial reduction in the number ofencoding
variables has been found for many cases.

124 CHAPTER 6. MINIMIZATION OF STATE LATCHES

circuit states bits exact reduction minimum CPU

s208 17 8 5 37.5 5 0.01

s298 218 14 12 14.3 8 3.40

s344 2625 15 15 0.0 12 0.85

s349 2625 15 15 0.0 12 0.84

s382 8865 21 18 14.3 14 29.44

s386 13 6 6 0.0 4 0.01

S400 8865 21 18 14.3 14 29.45

s444 8865 21 17 19.0 14 34.38

S510 47 6 6 0.0 6 0.01

s526 8868 21 19 9.5 14 30.31

s641 1544 19 14 26.3 11 0.83

s713 1544 19 14 26.3 11 0.84

s820 25 5 5 0.0 5 0.01

s832 25 5 5 0.0 5 0.01

Table 6.1: Exact Redundant State Register Removal Results.

states number of reachable states

bits number of state-bits in original circuit
exact number of state-bits after exact removal

reduction percentage reduction in the number of state variables
minimum lower bound on the number of state variables

CPU CPU times in seconds for exact redundant state-bit removal

6.4 Experimental Results

The techniques described in the previous sections have been implemented using

Berkeley's implementation of a BDD package originally described in [11]. In this section,

results axe presented on experiments based on exact redundant state-bit removal. All exper

imental results presented were measured on a DECstation 3100 workstation. The primary

set of test cases used were obtained form the ISCAS-89 sequential test benchmark set.

The results of exact redundant state-bit removal axe presented in Table 6.1. The

set of reachable states is computed using BDD-based implicit enumeration techniques [26].

In particular Berkeley's implicit enumeration routines [89] and some auxiliary routines from

[62] wereused. In most cases,the number of reachable states is muchless than 2^, where N

is the number of state-bits. In performing exact redundant state-bit removal, the maximal

removal set bounding heuristic was found to be very powerful in reducing the depth of

6.4. EXPERIMENTAL RESULTS

circuit original
relation

reduced

relation

reduction

s208 51 35 31.4

s298 461 413 10.4

s344 377 377 0.0

s349 377 377 0.0

s382 4129 3890 5.8

s386 140 140 0.0

s400 4129 3890 5.8

s444 654 557 14.8

s510 287 287 0.0

s526 462 414 10.4

s641 3280 2917 11.1

s713 3280 2917 11.1

s820 217 217 0.0

s832 217 217 0.0

Table 6.2: Comparisons of Transition Relation Sizes.

original relation BDD size of original transition relation
reduced relation BDD size of transition relation after state-bit removal
reduction percentage reduction in the BDD size of the

transition relations

125

recursion. The heuristics for choosing the branching variables were also quite important.

Surprisingly, the circuits from the ISCAS-89 benchmaxk set contain a very large number

of redundant state-bits. The percentage reduction is shown in column reduction. Using

the exact BDD-based algorithms, it was possible to obtain exact results in all cases with

modest CPU times.

In the second experiment, the effects of redundant state-bit removal on the size

of the BDD representation of the transition relation were examined. Reducing the size

of the transition relation can have a dramatic impact on the verification, especially design

verification, since properties may be checkedon the transition relation repeatedly. Table 6.2

shows the BDD size of the transition relations before and after redundant state-bit removal.

For cases where no redundant state-bits were identified, the size of the transition relation

remained the same. However, in a significant number of examples tested, the size of the

transition relation reduced by a significant amount. For example, the transition relation of

126 CHAPTER 6. MINIMIZATION OF STATE LATCHES

circuit literals only with bits

areal area2 ratio areal area2 ratio

s208 76 47 0.62 132 82 0.62

s298 112 85 0.76 210 169 0.80

s344 141 141 1.00 246 246 1.00

8349 146 146 1.00 251 251 1.00

s382 152 135 0.89 299 261 0.87

s386 132 132 1.00 174 174 1.00

s400 156 135 0.87 303 261 0.86

s444 150 136 0.91 297 255 0.86

s510 247 247 1.00 289 289 1.00

s526 190 146 0.77 337 279 0.83

s641 189 219 1.16 322 317 0.98

s713 198 219 1.11 331 317 0.96

s820 252 252 1.00 287 287 1.00

s832 258 258 1.00 293 293 1.00

Table 6.3: Comparisons of Gate-Level Implementations.

literals only literals in factored form using MIS-II and standard script
with bits literals plus latch costs (7 literals per state-bit)
areal optimized area cost for original sequential circuit
area2 optimized area cost of sequential circuit after state-bit

removal and simplification
ratio area cost ratio between modified and original circuit

s208 was reduced by over 31%.

In the third experiment, the effects of redundant state-bit removal on the size of the

gate level implementation were analyzed. The multi-level logic optimization system Mis-il

Version 2.2 [13] is used with the standard script to obtain an optimized result. Under the

section labeled literals only, the area measured in terms of literal counts in factored form

foreach test case is reported, areal is the areaof the optimized original circuit,and area2

is the area of the optimized modified circuit. The area results reported axe in terms of the

total area, including both the next-state and output functions. The area of the original

circuit was obtained by running the standard script. The area of the modified circuit was

obtained in three steps: first attach necessary re-encoding circuitry to the original circuit;
then perform some partial collapsing; then optimize using the standard script.

Depending on the example, significant reduction in area canbe achieved (between

6.4. EXPERIMENTAL RESULTS

circuit latch-removal script .rugged
lits. bits lits. bits

s208 47 5 46 8

s298 85 8 97 14

s382 135 18 151 21

s400 135 18 144 21

s444 136 17 140 21

s526 146 19 156 21

s641 219 14 185 17

s713 219 14 186 17

Table 6.4: Comparisons of State-Bit Removal with script, rugged.

lits. number of literals

bits number of state-bits

127

20—38% on several examples). Note that much of the reduction comes about because the

next-state functions corresponding to removed state variables did not need to be imple
mented. However, the procedure cannot guarantee that the area will be reduced since the

circuit structure itselfmust be modified. In examples s641 and s713, the area actually in
creased if the cost of state-bits is not considered. Since some state-bits have been removed,
it would be more accurate to compare areawith the costs of state-bits accounted. Under the

section labeled with bits, the area results axe reported in terms of literal count by giving
each state-bit the cost of 7 literals. This corresponds to the relative size of a standard cell

implementation versus a similar 7literal logic gate. With the state-bit cost considered, the
total areaactually decreased for the examples s641 and s713.

State-bits may also be removed implicitly by using the unreachable states as ex

ternal don't cares. If an intense optimization script is applied with these don't cares, some
next-state functions can be simplified to a constant 1 or 0. To determine the effective

ness of this method, the optimization script script.rugged was applied to the benchmarks

with the unreachable states as external don't cares, script.rugged contains the command

full-simplify that has been shown to be quite effective in exploiting unreachable states

don't care. This script in general produces much more area efficient implementations than
the standard script of MIS-II. These results axe shown in Table 6.4. Only benchmarks
where state-bits can be removed by the state-bit removal procedure axe included. For the

128 CHAPTER 6. MINIMIZATION OF STATE LATCHES

benchmarks s641 and s832, the number of state-bits did indeed reduce from 19 bits to 17

bits by applying script,rugged. The number of literals is also less. However, this is not

always effective.

6.5 Conclusions

In this chapter, the problem of removing redundant state-bits that axe not needed

to differentiate the state-codes was addressed. A new BDD-based algorithm was then

presented for this problem that is guaranteed to return the maximum set of removable

state-bits. It makes use of new branching heuristics and a new bounding technique called

maximal removable set. The size of sequential circuits that can be handled using the

techniques described here is limited by the size of the BDD representation of the reachable

states, which can be very large dependingly on the regularity of the state-space. For the

examples tested, the exact solutionswere found in all cases with modest CPU times. It has

been shown how the technique of redundant state-bit removal can be used to simplify both

the BDD representation of the transition relation for verification as well as the size of the

gate-level implementation for synthesis. For the examples tested, significant reduction in

both the BDD size as well as implementation area were achieved.

Chapter 7

Conclusions

The goal of this dissertation has been to develop new synthesis algorithms for

automating the design process from a symbolic specification of hardware to an optimized

VLSI design. Specifically, the synthesis of sequential designs was considered. The starting

point of synthesis can be a textual description written in a hardware description language

(e.g., VHDL [50] and ELLA [71]) and using symbolic data abstraction. Towards this end,

techniques for symbolic encoding and optimization of sequential circuits were explored in

this dissertation.

The main contributions from this research are as follows. The first paxt of this

dissertation was concerned with the problem of encoding symbolic specifications. In par

ticular, encoding techniques targeting both two-level and multi-level logic implementations

were developed. The second paxt of this dissertation was concerned with the problem of

optimizing sequential circuits encoded from symbolic hardware descriptions. The goal was

to develop efficient techniques that can be used to optimize large sequential circuits that

may contain both control and data-path circuitry.

In Chapter 2, the concept of symbolic relation was introduced. Symbolic relation

is a generalization of traditional symbolic specification with the added freedom of having

multiple output choices. The minimization problem is more difficult since the selection of

encodings as well as the output mappings must both be optimally determined. A unified

framework for finding exact solutions for two-level minimization has been developed. The

approach is based on a novel binate covering formulation that combines the processes of

prime selection and constrained encoding into a single optimization step. It was shown that

the binate covering problem can be solved using binary decision diagrams in linear time if

129

130 CHAPTER 7. CONCLUSIONS

the corresponding BDD for the covering constraints can be built. The same technique can

be used to solve the minimum cost satisfiabiUty problem in the same way. The symbolic

relation concept has been further generalized to solve the problems of state minimization

and state assignment problems simultaneously. An exact formulation of the problem has

been developed for finding optimum merging and encoding of states such that the resulting

two-level implementation has minimum area.

Although a theoretical framework for exact minimization of symbolic relations has

been developed, the algorithms in the framework axe not practical for real-life examples.

However experience has shown that effective heuristic algorithms can be developed based

on an incremental improvement strategy. The basic heuristic minimization strategy of

espresso [12] seems like the most likely candidate. Recent work in this direction has

already seen some progress [94]. Also, the state-of-the-art in binate covering must also be

advanced significantly before practical solutions can be achieved for large problem instances.

In Chapter 3, new algorithms for multi-level encoding were presented. An impor

tant goal of this research was to develop fast, but effective, algorithms for this problem so

that they can be used to encode large symbolic descriptions compiled from hardware de

scription languages. A general symbolic encoding program called jedi has been developed

for this purpose based on an estimation approach. The main optimization problem to be

solved is the minimum cost graph embedding problem. A spectrum of new algorithms, both

heuristic and exact procedures, have been developed for solving this problem. The most

significant developments here are the generalization of the encoding problem to general

symbolic specifications, improved estimation models, and new graph embedding strategies.

While the overall results are very good, more insights axe required as to why

estimation-based techniques, like the ones described here, work as effectively as they do

in practice. Some theoretical and intuitive justifications have been given in [33, 39], but

much mystery still remains. An important open problem that must be addressed is the

issue of code length. All current multi-level encoding tools require the user to specify a

desired code length. It is fair to say that there is no known technique for exploring different

code lengths optimally, at least not for the multi-level case. In practice, real-life complex

controller designs by humans often make use of many more latches than minimum code

length. However, when these designs are re-extracted to the state transition graph level

and re-encoded with the state-of-the-art symbolicencoding tools, the re-encoded results axe

often two or three times larger than the original implementations. This is partly because

131

current symbolic encoding tools do not explore different code lengths effectively and do not

work well with long code lengths even when given. Effective techniques for solving this

problem can potentially give substantial gains over current symbolic encoding approaches.

One of the main sources of optimization is the use of sequential don't-care condi

tions in logic optimization. These don't-care conditions can be derived by examining the

underlying global state-space of the corresponding sequential circuit. It has been shown that

these sequential don't-care conditions are very important for reducing area and improving

testability. The main issue is the enicient derivation of these sequential don't-care sets

starting from a multi-level sequential logic representation. In Chapter 4, new algorithms

for deriving these sequential don't-care sets efficiently were described. These algorithms are

based on the use of binary decision diagrams and implicit analysis techniques. Using these

techniques, sequential don't-care sets for very large sequential circuits have been computed

exactly. In particular, the complete set of invalid and equivalent states can be computed

directly from a gate-level description.

Additional work needs to be done in two areas. First, much more efficient state-

space traversal algorithms must be developed to increase practical applicability of the de

veloped techniques. Many practical test cases still cannot be traversed by state-of-the-art

implicit enumeration techniques. For example, several of the large iscas sequential bench

maxk examples currently cannot be handled by any known techniques. Some of these

examples contain over sixteen thousand state latches. The main limitation appears to be

the memory requirement for storing the intermediate computations. The second is to ap

ply the invalid states and equivalent states computation algorithms to other problem areas

other than sequential optimization. For example, equivalent state informationmay be used

to improve the performance of sequential test pattern generation algorithms or to extend

the practicality of synthesis-for-testability methods.

The last two chapters of this dissertation were concerned with basic symbolic

computation techniques based on binary decision diagrams for manipulating sequentialcir

cuits. New methods for representing and manipulating equivalence classes efficiently were

proposed in Chapter 5. These techniques make it possible to develop an exact implicit

state minimization algorithm for large sequential circuits. In Chapter 6, another symbolic

technique was proposed. The problem addressed was the removal of redundant encoding

variables that axe not necessary to distinguish pairs of codes. This can be viewed as a

restricted form of re-encoding. An exact algorithm based on binary decision diagrams has

132 CHAPTER 7. CONCLUSIONS

been developed. One application of this technique is in the optimization of sequential cir

cuits. Although some applications have been described using the basic core computation

techniques described in Chapter 5 and Chapter 6, more work should to be done to determine

the capabilities and applicability of these concepts in other problem areas.

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.

Addison Wesley, 1986.

[2] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers, pages 509-

516, June 1978.

[3] D. B. Armstrong. A programmed algorithm for assigning internal codes to sequential

machines. IRE Transactions on Electron Computers, EC-ll:466-472, August 1962.

[4] P. Ashax, S. Devadas, and A. R. Newton. Irredundant interacting sequential machines

via optimal logic synthesis. IEEE Transactions on Computer-Aided Design, 10:311-

325, March 1991.

[5] P. Ashax, S. Devadas, and A.R. Newton. A unified approach to the decomposition and

re-decomposition of sequential machines. In Proceedings of the ACM/IEEE Design

Automation Conference, pages 601-606, June 1990.

[6] M.R. Baxbacd. Instruction set processor spedfications (ISPS): The notation and its

applications. IEEE Transactions on Computers, C-30(l):24-40, January 1981.

[7] K. Bartlett,R. Brayton, G.Hachtel, R. Jacoby, C.Morrison, R. Rudell, A. Sangiovanni-

Vincentelli, and A. Wang. Multi-level logic minimization using implicit don't cares.

IEEE Transactions on Computer-Aided Design, CAD-7(6):723-740, June 1988.

[8] M. Beardslee. Private communications. 1990.

[9] C. Berthet, O. Coudert, and J.C. Madre. New ideas on symbolic manipulations of finite

state machines. In Proceedings of the IEEE International Conference on Computer

Design, October 1990.

133

134 BIBLIOGRAPHY

[10] D. Bostick, G. D. Hachtel, R. Jacoby, M. R. Lightner, P. Moceyunas, C. R. Morrison,

and D. Ravenscroft. The Boulder Optimal Logic Design system. In Proceedings of the

IEEE International Conference on Computer-Aided Design, pages 62-65,1987.

[11] K.L. Brace, R.L. Rudell, and R.E. Bryant. Efficientimplementation of a BDD package.

In Proceedings of the ACM/IEEE Design Automation Conference, pages 9-16, June

1990.

[12] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. Sangiovanni-Vincentelli. Logic

Minimization Algorithms for VLSI Synthesis. Kluwer Publisher, 1984.

[13] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang. MIS: A

multiple-level logic optimization system. IEEE Transactions on Computer-Aided De

sign, CAD-6(6):1062-1081, November 1987.

[14] R. K. Brayton and F. Somenzi. An exact minimizer for Boolean relations. In Proceed

ings of the IEEE International Conference on Computer-Aided Design, pages 316-319,

November 1989.

[15] R.K. Brayton, G.D. Hachtel, and A. Sangiovanni-Vincentelli. Multi-level logic synthe

sis. Proceedings of the IEEE, 72(2):264-300, February 1990.

[16] R.K. Brayton and F. Somenzi. Boolean relations and the incomplete spedfication of

logic networks. In IFIP International Conference on Very Large Scale Integration,

pages 231-240, August 1989.

[17] R.K. Brayton and F. Somenzi. Minimization of Boolean relations. In Proceedings of

the IEEE International Symposium on Circuits and Systems, pages 739-743, May 1989.

[18] M. A. Breuer and A. D. Friedman. Diagnosis and Reliable Design of Digital Systems.

Computer Sdence Press, Woodland Hills, CA, 1976.

[19] F.M. Brown. Boolean Reasoning: The Logic of Boolean Equations. Kluwer Publisher,

1990.

[20] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE

Transactions on Computers, C-35(8):677-691, August 1986.

BIBLIOGRAPHY 135

[21] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L Dill, and L.J. Hwang. Symbolic model

checking: 102° states and beyond. In Logic in Computer Science, June 1990.

[22] Raul Camposano and Wayne Wolf. High-level Synthesis. Kluwer Publisher, 1991.

[23] E. Cemy and M. A. Marin. An approach to unified methodology of combinational

switching drcuits. IEEE Transactions on Computers, C-26(8):745-756, August 1977.

[24] H. Cho, G.D. Hachtel, S.W. Jeong, B. Plessier, E. Schwaxz, and F. Somenzi. ATPG

aspects of FSM verification. In Proceedings of the IEEE International Conference on

Computer-Aided Design, pages 134-137, November 1990.

[25] O. Coudert, C. Berthet, and J.C. Madre. Verification of sequential machines using

Boolean function vectors. In L.J.M. Claesen, editor, Formal VLSI Correctness Verifi

cation, pages 111-128. Elsevier Sdence Publishers B.V., North Holland Press, 1990.

[26] O. Coudert, C. Berthet, and J.C. Madre. Verification of synchronous sequential ma

chines based on symbolic execution. In J. Sifakis, editor, Automatic Verification Meth

ods for Finite State Systems. Springer-Verlag, June 1990.

[27] O. Coudert and J.C. Madre. A unified framework for the formal verification of sequen

tial circuits. In Proceedings of the IEEE International Conference on Computer-Aided

Design, pages 126-129, November 1990.

[28] M. Damiani and G. De Micheli. Synchronous logic synthesis: Circuit spedfications

and optimization algorithms. In Proceedings of the Synthesis and Simulation Meeting

and International Interchange, May 1990.

[29] J. Daxringer, D. Brand, J. Gerbi, W. Joyner, and L.Trevillyan. LSS: A system for

production logic synthesis. IBM Journal of Research and Development, 28(5):326-328,
September 1984.

[30] H. de Man, F. Catthoor, G. Goossens, J. Vanhoof, J.L. Van Meerbergen, S. Note, and

J.A. Huisken. Architecture-driven synthesis techniques for VLSI implementation of

DSP algorithms. Proceedings of the IEEE, 72(2):319-335, February 1990.

[31] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. Tech

nology mapping in MIS. In Proceedings of the IEEE International Conference on

Computer-Aided Design, pages 116-119, November 1987.

136 BIBLIOGRAPHY

[32] S. Devadas. Approaches to multi-levelsequential logic synthesis. In Proceedings of the

ACM/IEEE Design Automation Conference, pages 270-276, June 1989.

[33] S. Devadas, H.-K. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli. MUSTANG:

State assignment of finite state machines targeting multi-level logic implementa

tions. IEEE Transactions on Computer-Aided Design, CAD-7(12):1290-1300, Decem

ber 1988.

[34] S. Devadas, H-K. T. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli. Irredundant

sequential machines via optimal logic synthesis. IEEE Transactions on Computer-

Aided Design, CAD-9(1):8-18, January 1990.

[35] S. Devadas and A. R. Newton. Exact algorithms for output encoding, state assignment

and four-level Boolean minimization. IEEE Transactions on Computer-Aided Design,

January 1991.

[36] S. Devadas and A.R. Newton. Decomposition and factorization of sequential finite state

machines. IEEE Transactions on Computer-Aided Design, 8:1206-1217, November

1989.

[37] Srinivas Devadas and A. Richard Newton. Topological optimization of multiple-level

array logic. IEEE Transactions on Computer-Aided Design, pages 915-942, November

1987.

[38] T A. Dolotta and A.J. McCluskey. The codingof internal states of sequentialmachines.

IEEE Transactions on Electronic Computers, EC-13:549-562, October 1964.

[39] X. Du, G. Hachtel, B. Lin, and A.R. Newton. MUSE: A multi-level state encoding

algorithm for state assignment. IEEE Transactions on Computer-Aided Design, 10:28-

38, January 1991.

[40] M. Fujita, Y. Tamiya, Y. Matsunaga, and K.C. Chen. Multi-level logic synthesis for

boolean relations. In Submitted to VLSI'91, August 1991.

[41] A. Ghosh, S. Devadas, and A.R. Newton. Heuristic minimization of Boolean relations

using testing techniques. In Proceedings of the IEEE International Conference on

Computer Design, pages 277-281, October 1990.

BIBLIOGRAPHY 137

[42] A. Ghosh, S. Devadas, and A.R. Newton. Verification of interacting sequential circuits.

In Proceedings of the ACM/IEEE Design Automation Conference, pages 213-219, June

1990.

[43] R.L. Graham and H.O. PoUak. On embedding graphs in squashed cubes. In Graph

Theory and Applications 303. Springer Verlag, 1972.

[44] A. Grasselli and F. Lucdo. A method for minimizing the number of internal states in

incompletely specified sequential networks. IEEE Trans. Elec. Comp., EC-14:350-359,

June 1965.

[45] D. Gregory, K. Baxtlett, A. DeGeus, and G. Hachtel. SOCRATES: A system for

automatically synthesizing and optimizing combinational logic. In Proceedings of the

ACM/IEEE Design Automation Conference, pages 79-85, June 1986.

[46] J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of Sequential Machines.

Prentice-Hall, Englewood Cliffs, NJ, 1966.

[47] J. Hartmanis and R.E. Stearns. Some dangers in the state reduction of sequential

machines. In Information and Control, pages 252-260, September 1962.

[48] R. W. House and D. W. Stevens. A new rule for redudng CC tables. IEEE Transac

tions on Computers, C-19:1108-llll, November 1970.

[49] T. Hwang, R.M. Owens, and M.J. Irwin. Exploiting communication complexity for

multi-level logic synthesis. IEEE Transactions on Computer-Aided Design, 9(10):1017-

1027, October 1990.

[50] IEEE Inc., 345 East 47th Street, New York, NY, 10017. IEEE Standard 1076-1987.

IEEE Standard VHDL Language Reference Manual, March 1982.

[51] R.M. Kaxp. Function decomposition and switching drcuit design. Journal of Society
of Industrial Applied Mathematics, 11(2), June 1963.

[52] K. Keutzer. DAGON: Technology binding and local optimization. In Proceedings of
the ACM/IEEEDesign Automation Conference, pages 341-347, June 1987.

[53] S. Kirkpatrick, C. Gelatt, Jr., and M. vecchi. Optimization by simulated annealing.
Science, 220:671-680, May 1983.

138 BIBLIOGRAPHY

[54] Z. Kohavi. Switching and Finite Automata Theory. McGraw Hill, 1978.

[55] E.S. Kuh and.T. Ohtsuki. Recent advances in vlsi layout. Proceedings of the IEEE,

72(2):237-263, February 1990.

[56] L. Lavagno, S. Malik, R. K. Brayton, and A. Sangiovanni-Vincentelli. MIS-MV: Opti

mization of multi-level logic with multiple-valued inputs. In Proceedings of the IEEE

International Conference on Computer-Aided Design, pages 560-563, November 1990.

[57] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing synchronous circuitry by

retiming. In R. E. Bryant, editor, Advanced Research in VLSI: Proceedings of the

Third Caltech Conference, pages 86-116. Computer Sdence Press, 1983.

[58] B. Lin. Synthesis of finite state machines by combined machine restructuring and state

assignment. In Ph.D Qualifying Examination Proposal, April 1989.

[59] B. Lin and A. R. Newton. Synthesis of multiple level logic from symbolic high-level de

scription languages. In IFIP International Conferenceon Very Large Scale Integration,

pages 187-196, August 1989.

[60] B. Lin and A.R. Newton. Restructuring state machines and state assignment: Re

lationship to minimizing logic across latch boundaries. In Proceedings of the MCNC

International Workshop on Logic Synthesis, May 1989.

[61] B. Lin and F. Somenzi. Minimization of symbolic relations. In Proceedings of the IEEE

International Conference on Computer-Aided Design, pages 88-91, November 1990.

[62] B. Lin, H. J. Touati, and A. R. Newton. Don't careminimization of multi-level sequen

tial logic networks. In Proceedings of the IEEE International Conference on Computer-

Aided Design, pages 414-417, November 1990.

[63] B. Lin, G. S. Whitcomb, and A. R. Newton. Symbolic don't cares and equivalence in

high-level synthesis. In IFIP International Working Conference on Logic and Archi

tecture Synthesis, May 1990.

[64] R. Lisanke. Logic synthesis and optimization benchmarks user guide bersion 2.0. In

Technical Report, MCNC, P.O Box 12889, Research Triangle Park, North Carolina

27709, December 1988.

BIBLIOGRAPHY 139

[65] S. Malik. Combinational Logic Optimization Techniuques in SequentialLogicSynthesis.

PhD thesis, University of California, Berkeley, November 1990.

[66] S. Malik, E.M Sentovich, R.K. Brayton, and A. Sangiovanni-Vincentelli. Retiming

and resynthesis: Optimizing sequential circuits using combinational techniques. IEEE

Transactions on Computer-Aided Design, 10(l):74-84, January 1991.

[67] E. J. McCluskey. Minimization of Boolean functions. Bell LaboratorySystem Technical

Journal, 35:1417-1444, April 1956.

[68] G. De Micheli. Symbolic design of combinational and sequential logic drcuits imple

mented by two-levd logic macros. IEEE Transactions on Computer-Aided Design,

CAD-5(4):597-616, October 1986.

[69] G. De Micheli. Synchronous logic synthesis: Algorithms for cyde-time minimization.

IEEE Transactions on Computer-Aided Design, 10(l):63-73, January 1991.

[70] G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli. Optimal state as

signment for finite state machines. IEEE Transactions on Computer-Aided Design,

CAD-4(3):269-285, July 1985.

[71] J.D. Morrison. ELLA: Hardware description or specification. In Proceedings of the

IEEE International Conference on Computer-Aided Design, November 1984.

[72] Berkeley's BDD Package. MIS-II logic synthesis system. 1990.

[73] C. Pixley. A computational theory and implementation of sequential hardware equiv

alence. In Proc. of CAV Workshop, Rutgers University, June 1990.

[74] W. Quine. The problem of simplifying truth functions. American Math. Monthly,
59:521-531,1952.

[75] J. Rho, G. Hachtd, F. Somenzi, and R. Jacoby. Exact and heuristic minimization

of incompletely spedfied finite state machines. In Proceedings of the IEEE European

Design Automation Conference, February 1990.

[76] Fabio Romeo and Alberto Sangiovanni-Vincentelli. Probabilistic hill-climbing algo

rithms: Properties and applications. In Chapel Hill Conference on Very Large Scale
Integration, 1985.

140 BIBLIOGRAPHY

[77] R. Rudell. Logic synthesis for VLSI Design. PhD thesis, University of California,

Berkdey, April 1989.

[78] R. L. Rudell and A. Sangiovanni-VincenteUi. Multiple-valued minimization for PLA

optimization. IEEE Transactions on Computer-Aided Design, CAD-6(5):727-750,

September 1987.

[79] T. Sasao. Multiple-valued decomposition of generalized boolean functions and the

complexity of programmable logic arrays. IEEE Transactions on Computers, C-30:635-

643, September 1981.

[80] H. Savoj and R. K. Brayton. Observability functions and observability don't cares. In

Proceedings of the IEEE International Conference on Computer-Aided Design, Novem

ber 1991.

[81] H. Savoj, H. J. Touati, and R. K. Brayton. Extracting local don't cares for network

optimization. In Proceedings of the IEEE International Conference on Computer-Aided

Design, November 1991.

[82] Carl Sechen and Alberto Sangiovanni-Vincentelli. The TimberWolf placement and

routing package. In Proceedings of the Custom Integrated Circuit Conference, May

1984.

[83] Russell B. Segal. BDSYN: Logic description translator; BDSIM: Switch-level simu

lator. In Research Report, Electronics Research Laboratory, University of California,

Berkeley, May 1987.

[84] M. C. McFaxland S.J., A. C. Parker, and R. Camposano. The high-levd synthesis of

digital systems. Proceedings of the IEEE, 72(2):301-318, February 1990.

[85] G. Sorkin. Combinatorial optimization, simulated annealing, and fractals. IBM Jour

nal of Research and Development, April 1988.

[86] A. Stolzle. A VLSI wordprocessing subsystem for a real time large vocabulary contin-

uois speech recognition system. In MS Thesis, September 1989.

[87] H. J. Touati. Performance Oriented Technology Mapping. PhD thesis, University of

California, Berkdey, November 1990.

BIBLIOGRAPHY 141

[88] H. J. Touati, R. K. Brayton, and R. Kurshan. Testing language containment for u>-

Automata using BDD's. In Formal Methods in VLSI, Miami, January 1991.

[89] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-VincenteUi. ImpUdt

state enumeration of finite state machines using BDD's. In Proceedings of the IEEE

International Conference on Computer-Aided Design, pages 130-133, November 1990.

[90] S. H. Unger. Asynchronous SequentialSwitching Circuits. WUey Interscience, 1969.

[91] National Bureau of Standards U.S. Department of Commerce. Data encryption stan

dard. In Federal Information Processing Standards Publication (FIPS PUB ^6), Jan

uary 1977.

[92] T. ViUa and A. Sangiovanni-VincenteUi. NOVA: State assignment of finite state ma

chines for optimal two-levd logic implementations. In Proceedings of the ACM/IEEE

Design Automation Conference, pages 327-332, June 1989.

[93] Y. Watanabe and R.K. Brayton. Heuristic minimization of Boolean relations. In

Proceedings of the MCNC International Workshop on Logic Synthesis, May 1991.

[94] Y. Watanabe and R.K. Brayton. Minimization of multiple-valued rdations. In Re

search Report, Electronics Research Laboratory, University of California, Berkeley,

May 1991.

[95] S. Yangand M. J. Ciesidski. Optimumandsuboptimum algorithms for input encoding

and its rdationship to logic minimization. IEEE Transactions on Computer-Aided

Design, 10(1):4-12, January 1991.

	ERL-91-105 (1 of 2)
	ERL-91-105 (2 of 2)

