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Abstract

This thesis describes hardware for connected speech recognition based on

Hidden Markov Models. It can perform real time speech recognition for vocabularies of

up to 60,000 words using the Viterbi dynamic programming algorithm. It is not

customized to a particular HMM topology, thus supporting multiple recognition

systems. To minimize hardware implementation, the recognition algorithm was

modified to a pruned frame synchronous beam search, a fixed point number

representation using the logarithm of the probability parameters, and a hierarchical

HMM representation which allows the Viterbi algorithm to be processed in parallel on

two hierarchy levels, the phone level and the grammar level. The specific properties of

HMMs on the two hierarchy levels (left-to-right vs. ergodic) motivated different

implementations of the Viterbi algorithm (predecessor processing and successor

processing). The system configuration is based on the VME bus, and uses 3 custom

triple-height boards that include a combination of general purpose hardware and full

custom VLSI hardware (2 sets of 6 custom VLSI processors).
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Introduction

Speech is a natural way of transmitting messages between humans, which is

more efficient than handwriting or typewriting. It is therefore desirable to provide a

speech recognizing man-machine interface that has the ability to listen to a human voice

and to recognize the words spoken.

1.1. Advantages of Speech Recognition

A speech recognition system offers a number of advantages for entering data

into a computer. The average word duration for a continuous speech recognition

database that contains 1,529 sentences was computed, and the result shows that, in this

database, a word has an average length of 0.352 seconds [Lee89], corresponding to a

rate of 170 words per minute. If a speech recognition system were available to keep up

with this rate, speech input would be clearly faster than keyboard entry. Another

advantage is, that controlling equipment or entering data with speech allows hands free

of eyes free operation. For example, a driver would not be distracted if he controlled a

car radio by voice: he does not have to push buttons, nor look at the radio to locate

these buttons. The hands free feature also is desirable for physically handicapped

people to work with a computer or to control equipment.
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Speech recognition can also be used to make future portable products feasible

by reducing their volume and weight. A normal sized keyboard considerably adds to the

bulk of a portable product and could be eliminated if a recognizer were used as the

entry mechanism.

Speech recognition systems can be classified in the following way:

• isolated words or connected words. Isolated speech recognition is less difficult than

connected speech recognition, but, since the user has to pause between each

word, it is not user friendly, and the speech rate is by a factor of 2.5 slower than

connected speech recogmtion [Lee89].

• speaker dependent or speaker independent. Speaker dependent systems have a

higher recognition accuracy than speaker independent systems, but the

recognition accuracy significantly degrades for other users.

• small vocabulary and large vocabulary. As the vocabulary size of a system

increases, the number of confusable words grows substantially. Also, in large

vocabulary systems each word cannot be modelled individually, and this

degrades the recognition accuracy. Large vocabulary typically means a

vocabulary of 1,000 words or more [Lee891.

1.2. Algorithms in Speech Recognition

Speech recognition has been an active area of research over the last 40 years,

and it yielded speech recognition algorithms that roughly can be classified in four

groups: template based systems [Wai90a], knowledge-based systems [Wai90b],

connectionist systems [Wai90c], and stochastic systems [Wai90d]. The most successful

and most widely used speech recognition approach is stochastic modelling, in

particular, stochastic modelling using hidden Markov models (HMM) in conjunction

with the Viterbi algorithm (2. 3. 1.) for recognition [Wai90d]. The hardware described
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in this thesis is used to perform the Viterbi algorithm for HMM based speech

recognition systems.

1.2.1. Template Based Speech Recognition [Wai90a]

Template based speech recognition systems have a database of prototype

speech patterns (templates) that define the vocabulary. The generation of this database

is performed during the training mode. During recognition, the incoming speech is

compared to the templates in the database, and the template that represents the best

match is selected. Since the rate of human speech production varies considerably, it is

necessary to stretch or compress the time axes between the incoming speech and the

reference template. This can be done efficiently using a dynamic programming based

strategy called dynamic time warping (DTW). Template based systems usually are

speaker dependent, so each person who wants to use the system has to generate a

personal template database by uttering each vocabulary word several times. Usually,

each vocabulary word has its own template, and therefore this method becomes

impractical as the vocabulary size is increased (>1,000 words). Template based systems

have been most successful for speaker dependent, isolated word recognition, however,

there are methods to extend these systems to connected speech [Sak79], or towards

speaker independence [Rab79].

1.2.2. Knowledge Based Speech Recognition [Wai90b]

Knowledge based speech recognition systems incorporate expert speech

knowledge that is, for example, derived from spectograms, linguistics, or phonetics.

The "existence proof that speech recognition can be performed using a multitude of

knowledge sources comes from experiments with expert spectogram1 readers. An expert

was able to segment spectograms of discrete and continuous speech into phonetic units

1. Inaspectrogram, the energy ofthe speech signal indifferent frequency bands is graphed against time.
The intensity ofthe image atacertain frequency-time point indicates the eneigy ofthe speech signal corre
sponding to that point.
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(100% correct for isolated speech, 97% correct for connected speech), and label these

units with an error rate of 7% to 19% [Zue85]. The goal of a knowledge based speech

recognition system is to incorporate this knowledge using rules or procedures. The

drawback of these systems is the difficulty of quantifying expert knowledge and to

integrate the multitude of knowledge sources [Wai90b]. This gets increasingly difficult

if the speech is continuous, and the vocabulary size is increased. The knowledge based

speech recognition system, HEARSAY, developed at CMU, is a speaker-dependent

continuous recognition system with a vocabulary of 1011 words. Using a very

restrictive syntax (perplexity2 4.5), it achieved a recognition accuracy of 87% [Les75].

1.2.3. Stochastic Speech Recognition Systems [Wai90d]

The most widely used and most successful speech recognition approach is

stochastic modelling. Here, probabilistic models of speech are used to deal with

incomplete information or uncertainty. The most widely used model is the hidden

Markov model (HMM). It uses states that model generic speech sounds and transitions

between the states with associated transition probabilities to model the temporal

behavior of speech. This model assumes that speech was produced by a hidden Markov

process. At any given time the process occupies one state in the HMM, and this state

outputs a small segment of speech (observation) based on a probability distribution that

gives the likelihood that a certain speech sound could have been produced by that state

{output probability). Then, the speech process makes a state transition based on the

transition probabilities between the states.

To derive these HMM parameters (output and transition probabilities), an

efficient estimate-maximize algorithm, the forward-backward algorithm, is often used

[Wai90d]. Because of it's efficiency, it is possible to derive these parameters from a

2. The perplexity Qisan information theoretic measure ofa tasks difficulty. Itisdefined as Q=2H, where H
is the entropy, or the number of bits necessary to specify the next word using an optimal encoding scheme
[Lee89].
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large body of speech data (for example, several thousand words for any vocabulary

word). Thus, compared to knowledge-based approaches, it is easy to compile

knowledge sources into a compiled architecture [Wai90]. For speech recognition, it is

necessary to find the most likely state transition given the incoming speech. This state

transition can be found using the dynamic programming Viterbi algorithm (see 2. 3. 1.).

A short coming of HMMs is, that speech observations generated by the HMM

are only conditionally independent given the underlying state sequence [Ost90].

Another stochastic modelling approach that attempts to overcome this problem are

stochastic segment models (SSM) [Rou87]. In this approach, there are templates that

model the distributions of entire speech segments consisting of a sequence of

observations, and the incoming speech has to be aligned to these template segments (re

sampling transformation). In [Rou87], it was shown that SSMs achieve - for a 350

connected word, speaker-dependent task - an average word recognition accuracy of

83%, while in the same task, a HMM based recognizer achieved 76%. The drawback of

SSMs is, however, that recognition requires significantly more computation than HMM

based speech recognition [Ost90].

1.2.4. Connectionist Speech Recognition Systems [Wai90c]

Connectionist speech recognition is based on artificial neural networks that use

learning strategies to organize and optimize a network of processing elements

(neurons). These networks are used as classifiers or mapping functions to recognize the

incoming speech. Thus, speech knowledge or constraints used for speech recognition

are distributed among many, but simple processing elements [Wai90c]. This approach to

speech recognition is the youngest, and researchers are investigating a number of

approaches. For example, new physiological-based front end processing, and combined

recognizers, that implement neural net and conventional recognition approaches are

being investigated. Preliminary results look promising, a Time-Delay Neural Network

recognizer was compared to a HMM recognizer in the task to recognize the phones "B",



"D", and "G" out of a database of 5,240 Japanese words. For different speakers, the

HMM had a recognition accuracy of 90.9% to 97.2%, while the neural net achieved

accuracies of 97.5%-99.1% [Wai88].

1.3. Language Processing

The speech recognition described above concentrated on the problem of

recognizing speech given an acoustic representation of the speech patterns. However, a

human uses many other sources of knowledge that are non-acoustic: for example,

knowing the person talking and what he is talking about makes it possible to understand

the person, even if there is noise and not every individual word can be understood.

These non-acoustic sources of information are collectively called language processing,

and modeling these non-acoustical sources is called language modelling [Wai90e].

As an example how language constraints can improve recognition accuracy, let

us consider a car radio control application. After a person said the word "turn", it is

possible to constrain the recognition vocabulary to the words "on" or "off". This

increases recognition accuracy, since this constraint eliminates words that might be

acoustically similar and thus hard to distinguish. On the other hand, this grammar

constrains the recognition system just to car radio control application, other

applications might use a different grammar and the user is constrained to use the

appropriate one. This is termed finite state grammar, since there is only a set of

allowable sentences which are modelled using fixed networks.

Another language modelling technique is to use statistical methods. One

approach is to assume, that the probability of a word depends on the previous N words,

and that the probabilities of different words are independent. The most common

grammars use N=l (bigram grammar) or N=2 (trigram grammar). Using such a

statistical grammar reduces the perplexity, which is a measure of a task's difficulty. It is
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roughly the number of words that can follow a word3. Reducing the perplexity,

however, does not contribute to speech understanding. For that, models for syntax

(which sentences are acceptable), prosody (pitch, loudness, rhythm, stress), and

semantics (the meaning of a sentence) have to be integrated to the acoustic recognizer.

These methods are powerful to increase the usability for speech recognition systems.

For example, SRI has an experimental airline travel information system

(ATIS) that can be used to query a database of flight schedules [Murv91]. The user can

ask questions to the system, and the words of these questions are recognized by an

HMM recognition system. Then, the semantics of the question is extracted, and a

database query generated. The user can speak in a natural way, not constrained to any

grammar or vocabulary. The word recognition accuracy of the speech recognition

system is 86.4%, which corresponds to a sentence error rate of 60%. Despite this large

sentence recognition error, the ATIS system generates a valid database query for 66.2%

of the input sentences, for 7.5% of the sentences it generates a false query, and with

26% it generates no query [Pal91].

1.4. Performance and Limitations of Speech Recognition

Ideally, a speech recognition system should be usable by several people, and

not just dedicated to a certain person. It should have ahigh recognition accuracy, a very

large vocabulary, have the ability to recognize connected words, be task independent,

and operate in real time. Given state-of-the-art speech technology, however, it is

necessary to make some compromises to achieve acceptable recognition accuracies

(>90%). The task of speech recognition gets more complicated as the system moves

from speaker dependence to speaker independence, from discrete words to connected

3. The perplexity Qisan information theoretic measure ofatasks difficulty. It isdefined as Q=2H, where H
isthe entropy, or the number ofbits necessary tospecify the next word using an optimal encoding scheme
[Lee89]. *
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words, from small vocabulary to large vocabulary, and from task dependence to natural

tasks. For example, IBM's Tangora system [Jel85] has a large vocabulary (20,000

words), the grammar is not restricted to a certain task, the recognition accuracy

averages 94.3%, and it operates in real time. However, the system is speaker dependent

and can only recognize discrete words, so the user is confined to speak in an unnatural

way. Another example is SRI's DECYPHER system: It has a 1,000 word vocabulary, is

speaker independent, accepts natural, connected speech and has a recognition accuracy

of 95.6% [Pal90]. However, in order to achieve high recognition accuracy, the

vocabulary and the grammar are restricted to a certain task (resource management,

[Pri88]). In this task, a statistical bigram grammar is used that reduces the perplexity to

60 (without grammar, any word can follow a given word). Using this grammar, the

recogmtion accuracy for DECIPHER improves from 75.7% (no grammar) to 95.6%

[Pal90]. Since DECIPHER is a connected speech recognition system, the recognition

algorithm involves more computation than a discrete recognition system (by a factor of

3 [Lee90], [Bah81]), and real time performance is more difficult to achieve.

Figure 1 shows the influences that speaker independence and grammar has on

recognition accuracy, and it summarizes the progress that has been made in speech

recognition over the last years. In this graph, the word error rates for a specific task

(resource management, [Pri89]) is shown over time. It demonstrates, that speaker

dependent speech recognition that uses a grammar yields the best recognition accuracy,

while speaker independent recognition without grammatical constraints performs worst.

1.5. VLSI for Real Time Speech Recognition

To fully realize the advantage of speech recognition, it is critical that the

recognition system operates in real time. This means, it must continuously process the

speech input so the user does not have to pause in order for the recognition system to

catch up with the computation.
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RESOURCE MANAGEMENT CORPUS, READ SPEECH
1000-WORD VOCABULARY, PERPLEXITY 60

* Speaker-Dependent Word-Pair
Grammar (Perplexity 60)

& Speaker-Dependent No Grammar

*+* Speaker-Independent Word-Pair
Grammar

•o- Speaker-Independent, No Grammar

Oet-87 Jun-88 Feb-89 Oct-89 Jun-90

Figure 1: Recognition Accuracies for the Resource Management Task [Way91]

Speech recognition based on HMMs is computational demanding, particularly

for continuous speech and large vocabulary. A signal processor, the TMS320C30, can

process in real time about 100,000 states of a HMM per second using the Viterbi

recognition algorithm, however, at least 400,000 states per second are required for a

1,000 word continuous speech recognition system [Bis89]. Since real time performance

is an important issue, commercial and experimental real time recognition systems have

been developed, but no system has been reported that can recognize connected speech

in real time for a vocabulary that has significantly more than 1,000 words. A few real

time systems are described in 3.1. and 3.2.
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1.5.1. General vs. Special Purpose Implementation

The question is, should a real time speech recognition system be implemented

using full custom processors that are tailored to the recognition algorithm, or should

systems be used that consist of general purpose processors. The conventional view is,

that general purpose systems can be developed much faster and thus cheaper than

custom VLSI systems, also it is believed that general purpose systems can be

programmed using a high level language which makes them more versatile, since a new

recognition algorithm can be supported just by re-writing the software for the general

purpose processors. Since speech recognition algorithms are still evolving, this feature

is desirable.

However, one of the goals of this thesis is to demonstrate that there is no

reason why VLSI systems cannot be developed as fast as general purpose systems.

Furthermore, the HMM algorithms have stabilized so that an appropriate custom

architecture is able to adapt to new algorithms.

The approach to reduce the time for development of VLSI systems is based on

advances that were made in computer aided design (CAD) tools. In particular, the

LAGER silicon compilation system can be used to compile VLSI chips using either a

hierarchical structural description, or an architectural template in conjunction with

microcode [Shu91]. The LAGER system evolved into the SIERA design environment

for rapid VLSI system prototyping. In SIERA, it is possible to specify an algorithm in a

variety of ways including a high level flowgraph and structural description.Within the

environment are a number of generation and a synthesis tools which produce a complete

structural description using scheduling and re-timing. This structure is then used to

compile the individual VLSI processors and to generate PCB layouts or multichip

modules. The VLSI systems thus obtained effectively have the algorithm coded in the

structure of the datapaths, or in microcode of programmable processors [Rab91].
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General purpose systems, on the other hand, often make use of programmable

hardware. Thus, the task of scheduling or re-timing is moved to the software level. For

the BEAM general purpose real time speech recognition system, 80% of the

development time was spent for software development [Bis89]. This time was almost

equally divided between support software development, algorithm restructuring, and

algorithm coding. 20% of the time was spent for designing and building a custom board

that contains three commercial processors. Designing and building a board, however,

has to be done for both approaches, and there is no fundamental difference in the time

required for the board design. In the system described in the thesis, it took about 5

months to design and simulate the most complex board (Viterbi board), but it took only

2 months to design the full custom processors that already implement the algorithm. If

the time is also considered that it took to structure and modify the algorithm, and to

design the system architecture, the "time to market" for this full custom system is

comparable to the time it takes to design a general purpose system.

Of course, in the same way CAD tools for VLSI systems advanced, there are

synthesis tools for software development, for example [Rab91]. Thus, with the advent

of these design tools, a high level description of the algorithm can either be synthesized

into VLSI, or into code, and the choice between one implementation over the other can

be independent of the "time to market" issue, and only depend on issues like cost,

performance, or quantity.

The advantage of VLSI systems over systems that use general purpose

components is, however, that they can be much more powerful while being small (see

3.2.). The reason for that is, that the architecture of the system and the VLSI chips can

be tailored to the specific needs of the algorithm that is implemented. For example, if

there is a memory bottleneck, it can be eliminated just by implementing parallel

interconnect. Also, VLSI systems only contain the essential hardware needed to

perform a particular algorithm, while general purpose systems include a number of
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unused features. These are advantages that are decisive for competitiveness, be it

production cost or performance.

This thesis describes the algorithm, architecture and implementation of a

VLSI-based connected speech recognition system capable of recognizing words using a

vocabulary of up to 60,000 words. Thus, it can be used for applications such as word

processing where most of the English language is in the recognition vocabulary

(Merriam Webster's Seventh New Collegiate Dictionary has 60,000 words). In this

system, it is necessary to achieve a high performance: in section 4. 2. 2., we will derive

that such a system has to process 20 million states per second (a factor of 50 over what

has been previously reported [Bis89]). Thus, it was implemented in an architecture

based on 6 full custom VLSI processors that directly map the recogmtion algorithm into

hardware.



Algorithm

It is generally accepted that Hidden Markov Models (HMM) are currently the

most accurate technique for modelling speech for use in automatic speech recogmtion

[Rab86],[Lee88],[Schw87]. For large vocabulary speaker independent connected speech

recognition systems it has better recogmtion accuracies than the preciously popular

dynamic time warp algorithm (DTW) [Kav86,St587]. The DTW algorithm was

implemented by a number of researchers in custom hardware, and the basic search

mechanism is similar to the HMM approach. So, it is worthwhile to compare the two

methods [Kav86, St587].

For both techniques, the task is to recognize a sequence of speech utterances

by comparing it to a model that describes speech segments such as phones or words. To

do that efficiently, the incoming speech is first processed to reduce its data rate. This

will be called front end processing in which speech is segmented into frames, which are

time intervals of typically 10-20 msec, and the characteristics of frame / is described

with avector of features, ot= {0/ .. otn). One feature vector, o/, could bethe energy of

the speech signal in different frequency bands, or if this vector is vector quantized

[Gra84], the address of the codebook vector that has the best match to these energies.

The difference between DTW and HMM based speechrecognition is the way in

which a speech segment is modelled. In DTW based systems, the speech representation

13
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is a template, which is the sequence of trained features that describe a certain word.

Thus, to find the unknown word or phrase, it is necessary to find the template that is

most similar to the unknown word. This is done by computing a distance between the

features of the template and the unknown word: the smaller the distance between these

two representations, the more similar the words. To take into account a possible time

distortion between the two representations, the time axis are warped to minimize the

distance using the recursive dynamic time warp algorithm.

In HMM based systems, the speech model is statistical and based on a Hidden

Markov model. The assumption is that the unknown speech was produced by an HMM

speech process that produces speech features based on state transitions. The task in

speech recognition is to recover the state transitions that most likely produced the input

speech features. When the most probable state sequence is determined, it is

straightforward to reconstruct the sequence of words that was spoken. A very efficient

search algorithm for the most likely state sequence is the Viterbi algorithm.

2.1. Front End Processing

Front end processing takes the speech waveform that has to be recognized and

converts it into sets of features. The set of features at time i is an observation, oh and a

whole sentence can be described by a sequence of observations, 0# = oj .. oN. This

observation sequence is then used to find the most probable state sequence in the HMM.

In general, there are two major classes of front end processing algorithms,

parametric and non-parametric. Parametric algorithms extract speech parameters such

as LPC1 coefficients. Thus, the observations are the parameters of the autoregressive

1. Here, the generation of the speech waveform is modeled with an all-pole filter (autoregressive model)
that has two inputs: a stream of pulses to generatevoiced speech, and white noise to generatenon-voiced
speech. Thus, to describe a segment of speech it is only necessary to specify the filter coefficients and the
input. These parameters are estimated using linear predictive coding (LPC, [Rab78]).
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speech model itself or some features that were derived from these parameters (for

example, LPC-based cepstral coefficients). Non-parametric algorithms, on the other

hand, analyze speech data to directly measure certain features such as zero crossings or

the energy of the signal in certain frequency bands.

Both classes are widely used in speech recognition, with active proponents of

both approaches [Lee89, Murv89]. This system uses a general purpose signal processor

for front end processing, so either method (or both) can be implemented. We chose to

implement a non-parametric feature extraction algorithm that is used in DECIPHER

[Murv89j. A block diagram of this algorithm is shown in Figure 2.

M=160,N=512

pre-,
emphasize

yn
Hi
window

hi
256 points

tk
25 BP

mel filters

"j

"j lj Ck cepi

L— logarithm

j

cosine
transform

cepstrum
normal. -

vector
quantization

t
i L

Vk codebook,
256 vectors

Figure 2: Block Diagram of theFront EndAlgorithm

The incoming speech, xn, is sampled at 16KHz and linearly quantized to 16

bits. It then is pre-emphasized using the following equation

yn~Xn~A'Xn_1

A = 0.95
(EQ1)
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The pre-emphasized speech is then blocked into frames of N=512 samples (32

msec) which are spaced M=160 samples (10ms) apart. Thus, consecutive frames overlap

by 352 samples (22ms). Each frame is smoothed by a Hamming window, (EQ 2) shows

the corresponding equation for the £th frame:

hi = mi'ykM-i
2ni

mi =0.54 - 0.46cos (^—r)

i = 0..JV-l

(EQ2)

This resulting windowed frame is then used to compute a 256 point Fast

Fourier Transform (FFT). The FFT spectrum is then integrated into L=25 mel-bandpass

filters2. These filters are shown in Figure 3, and a table of the band edges is shown in

Table 1.

1 FFT point = lower stopband lower passband upper passband upper stopband
31.25 Hz edge, in FFT points edge, in FFT points edge, in FFT points edge, in FFT points

filter 0 0 0 6 11

filter 1 3 6 10 14

filter 2 6 10 13 17

filter 3 10 13 16 20

filter 4 13 16 19 23

filter 5 16 19 22 27

filter 6 19 22 26 30

filter 7 22 26 29 33

filter 8 26 29 32 36

filter 9 29 32 35 41

Table 1:Band Edges of the Mel BP Filter

2. The mel frequency scale is a physiological scalethat takes into account the performance of the human
auditory system to differentiate between frequencies.The differences in frequencies below 1 KHz can be
very well distinguished, while frequencies above lKHz aremore difficult. This behavior roughly translates
into a frequency scale which is linear to the physical frequencybelow 1 KHz, but the logarithm of the fre
quency above. The mel bandpass filters areequally spacedin the mel frequency scale, and they areused to
copy human performance in the perception of frequencies in the hope that information relevant for speech
recognition is extracted from the speech signal.
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FFT sample points

Figure 3: Mel Bandpass Filters

1 FFT point = lower stopband lower passband upper passband upper stopband
31.25 Hz edge, in Fb'l points edge, in FFT points edge, in FFT points edge, in FFT points

filter 10 32 35 40 46

filter 11 35 40 45 52
filter 12 40 45 51 59
filter 13 45 51 58 6&
filter 14 51 58 67 11
filter 15 58 67 76 87
filter 16 67 76 86 98
filter 17 76 86 97 110
filter 18 86 97 109 122
filter 19 97 109 121 136

filter 20 109 121 135 150
filter 21 121 135 149 165
filter 22 135 149 164 181
filter 23 149 164 180 197
filter 24 164 180 255 255

Table 1: Band Edges of the Mel BP Filter

After that, the energy of each bandpass filter gets converted to the logarithm of

the energy, ljt j=0..L-l. These energy values are then used to get the cepstral

coefficient vector C= [c0, .. ,c12] using the cosine transform, which is described in the

following equation (EQ 3):
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The cepstral coefficient vector C is then normalized with respect to its mean

vector M and variance vector it. M and V were computed off-line using a large set of

training speech data (for a continuous digit recognizer, 52,000 words). Thus, the

normalized cepstral coefficient vector c# is given by the vector operation

C-M
CN = V

Table 2 shows t he values of the mean and variance vectors, 34* and V.

vector

element

mean standard deviation

0 291.116 89.5275

1 -5.186 32.925

2 .545 15.855

3 11.278 14.443

4 -1.881 10.535

5 -.388 7.206

6 -2.318 7.237

7 .724 5.851

8 -.465 5.519

9 -.238 4.699

10 0.252 3.847

11 -1.063 3.371

12 .028 2.944

(EQ3)

Table 2:Mean and Standard Deviation for the Cepstrum (IT Digit Database)

Finally, the cepstral vector cV = [cin> •• >c12n] is vector quantized using a

codebook with size 256-12 (note that CN' does not contain c0N, this element is used

later). The result of the vector quantization step is the address o of the codebook vector

3. Thus, the multiplication of the speech components in the frequency domain (the exaltationby the vocal
cords and the vocal tract filter) is replaced by and addition, and the cosine transform yields a time domain
signal that corresponds to the sum of the two contributions.
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with the closest match to the cepstral coefficient vector. It is an 8 bit number that is

computed every 10 msec. The initial codebook was generated using the Lloyd algorithm

on a large amount of speech data (about 9,000 sentences). [Gra84]

The resulting address o is o}, the vector quantized cepstral feature for frame /.

Another feature, of, is the vector quantized difference of cepstral vectors. This

differenced cepstral coefficient is computed by

D{t) = C'N{t + S) -CN{t-S) (EQ4)

Here, CN'(t) is the cepstral vector of the tth frame of the incoming speech, and

5 was chosen to be 2, so the difference between 4 frames (40msec) is computed

[Lee89]. Further features are the quantized energy of the signal (of), which is

represented by the first element of the cepstral vector (c0), and the quantized

differenced energy {of), which is computed in analogous way to (EQ 3). The codebook

that is used to quantize of and of has 256 scalars.

2.2. Hidden Markov Model

In hidden Markov model based speech recognition, we assume that speech was

produced by aHidden Markov (HMM) process. A HMM is described with a finite set of

states and aset oftransitions between these states. Figure 4shows the graph ofatypical
HMM that could model a vocabulary word.

The graph in Figure 4 is called left to right, since the predecessors of a state

are always to the left. If the graph has the property, that every state can be reached from

every other state in a finite number of steps, it is called erogdic [Rab861. Typically,
^'OS.v

?•£*£'.->:•
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A(l, I) A(mjn) A(n,n)

A(l,n)

Figure 4: Graph of a HMM

words are modelled with left to right HMMs, while grammar is modeled with ergodic

HMMs.

A node represents a state in the HMM, and such a state corresponds to a

generic speech sound (e.g. a part of a phoneme). In the same way as speech progresses

from one sound to another, the HMM can make transitions between states using the arcs

in Figure 4. These transitions have associated transition probabilities, A(s,t) for the

transition from state s to state f. Thus, the connectivity of the arcs (topology) defines

the allowable state sequence and determines the predecessors (states that have a

transition to the state) and the successors (states to which this state can transition to) of

every state.

Speech can be considered as being generated during transitions between these

states yielding a state sequence, SN = s2 .. sN, where the likelihood of these transition is

described with the transition probabilities, A(s,t). After entering a state s at time /, the

hidden Markov process emits a small segment of speech (observation), oh with

probability P(ot\s). Thus, every state s in the HMM has an associated probability

distribution P(ot\s) that gives the probability for all possible speech sounds o given the

HMM process is in state s. This distribution can be discrete or continuous, depending

on the random variable ot. In this system, ot has only a finite set of 256 symbols, thus

P(oi\s) is discrete.
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Figure 5 shows the HMM speech production process. At any given time

(frame) the hidden Markov speech process occupies a certain state. Assuming the

process is in state / at frame i-L it will generate the observation o = 0/.j with

probability P(oh]\l) and then progress to the next state based on the transition

probabilities A(l,l), A(l,m) and A(l,n). Assuming state m is the next state, the process

will output feature ot with probability P(oi\m) and so on. The model is hidden since we

can only observe the output sequence 0N = o1 .. oN (speech features), and the

underlying state sequence SN = s2 .. sN of the process is not observable.

A(l, I) A(mjn) A(n,n)

A(l,n)

Figure 5: Hidden Markov Model for Speech Production

2.3. Recognition

The task to be performed during speech recognition is to find, for a given

HMM, the state sequence that most likely produced the speech being recognized. When

the most probable state sequence has been determined, it is straightforward to

reconstruct the sequence of words that was spoken. A very efficient search algorithm
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for the most likely state sequence is the Viterbi algorithm. This algorithm computes the

probability of the most probable state sequence SN = (s1 .. sN} given a set of

observations 0N = {oj .. oN}.

Figure 6 shows a trellis structure that visualizes the state transitions over time:

states in the same column correspond a single frame. The rows in the trellis correspond

to a certain state during a sequence of frames. Transitions between the states are

indicated with arrows. Thus, horizontal arrows correspond to "self loops" which are

transitions into the same state.

• • • • • •

• • •

• • •

frames

Figure 6: Trellis Structure for the Model in Figure 4
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2.3.1. State probabilities, Viterbi algorithm

The joint probability of a sequence of N states, SN = {sj .. sN}, and a sequence

ofN speech features (observations), 0N = {oj .. oNj, is thepath probability and is given

by

N

P(SNi 0N) =n{st) •P{0]\ Sl) •Yl [A {si _vst) •P(o .| st) ] (EQ 5)
is 2

Inthis equation, n(s) is a probability distribution that gives the probabilities of

the states in the first frame (first column). The goal is to find the most likely state

sequence for a given 0N. Therefore, if the path probabilities of all the possible state

sequences SN are known, the sequence with the highest path probability represents the

most likely state sequence. However, the number ofpossible state sequences is {mN)T1,

where N is the number ofstates n the model, mis the average number oftransitions into

a state, and T is the number of frames in a sentence (there are mN state transitions at

every frame). For a 60,000 word speech recognition system, we assume m=3,

#=200,000, and 7=200 (see section 4. 2. 2., two seconds of speech), so there are (6 •

10 )199 possible state sequences, and it is not practical to compute all of them. If we
consider all the possible state sequences that lead to a state s at frame /, we are only
interested in the sequence that yields the highest path probability. The paths that are
less likely will not be part of the overall highest path probability. Thus, all we really
need to know is the highest probable path into each state at each time, and the

probability ofthis path is termed the state probability, P(Oit s) for state s in frame /. If

this probability is known for every state in the HMM for the last frame N, we know that

the most likely state sequence terminates at the state that has the highest state
probability P(0N, s).

Thus, the state probability P(Oh s) is the probability of the most likely state
sequence that ends in s at frame / and generates Ot, a sequence of / features. The
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approach to compute the state probabilities P(0N, s) is to use a dynamic programming

scheme called the Viterbi algorithm [Rab86]:

PiO^) = n{s) P(ot| s) (EQ 6)

P{Oits) = MAXpe {pred} [P(Ot_vp) A{p,s)] P{ot\s)

The maximum operation is performed over all the states, p, in the set {predj

which contains the predecessors of state s, as defined by the topology of the HMM.

Given these equations, P(Oits) can be computed for all states for Oj, then for all states

for 02 and so on until all probabilities P(0N,s) for all states are computed. The state

with the highest probability is the final state of the most likely state sequence.

2.3.2. Backtracking

As discussed above, the state with the highest state probability in the last

frame is the endpoint of the most probable state sequence. After an unknown sentence

ended which is indicated by the energy of the signal (pause), this state sequence

terminating at the state with the highest state probability has to be recovered by

backtracking.

This could be done if there is a list that, for every state and for every frame,

contains a pointer to the most probable preceding state. However, during the generation

of this list the most probable state sequence is not yet known, therefore all state

sequences have to be stored. Since every state in the HMM is the endpoint of a single

state sequence (the most likely state sequence), there are as many state sequences as

there are states in the HMM.
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To identify these state sequences, each state in each frame has a tag that

identifies the predecessor state on the most likely path. To generate the tag, we use the

following equation:

TAG {s, i) = argmax. [TAG(p, i - 1) ] (EQ 7)

TAG(s,i) is the tag associated with state s at frame i. It is the copy of the tag

associated with the predecessor state p of s, TAG(p,i-l), and p is the state that is on the

most likely path to s.

Using these tags, we can recover the most likely state sequence at the end of a

sentence.

2.3.3. Multiple output probabilities

The output probability is the probability that a certain speech segment is

generated given the speech process is in a certain state. This speech segment can be

described using several different speech features, of .. of. In other words, every state

has n probability distributions that give the probabilities that the state can output n

different features of a particular speech segment. Assuming statistical independence,

the joint output probability is given by (EQ 8):

P{0i\s) = P{o]\s) P{o*\s)...P{o?\s) (EQ8)



Previous Work
3

Speech recognition has come to a stage where the recognition accuracies -or at

least the recognition of the meaning of a phrase- is high enough to justify its feasibility

in real, task specific applications (1.3.). For that, it is important that the recognition

system operates in real time. If a user can type faster than the recognition system can

recognize its speech, some advantages of speech recognition are not utilized. It would

be relatively easy to achieve real time performance if the goals for accuracy would be

relaxed. For example, a method called beam search (see chapter 4) gives a strategy to

skip computation. To obtain real time performance for large vocabulary, we could

simply skip a large amount of computation, but at the expense of reduced recognition

accuracy.

This chapter describes previous work on real time connected speech

recognition systems based on HMMs. They can be classified into two groups, depending

on whether they use general purpose or full custom processors. It is demonstrated that

existing general purpose hardware or multiprocessor systems are not powerful enough

to implement a 60,000 word recognition system in real time. Therefore, it is necessary

to use full custom hardware to efficiently implement a real time large vocabulary

speech recognition system that is flexible enough to support common HMMs for speech

recognition.

26
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3.1. Hardware Based on General Purpose Processors

This section describes speech recognition systems that use general purpose

processors to perform the recognition algorithms. The attraction is the belief that

systems with general purpose components can be designed quickly and cheaply, and

that they are programmable using high level languages (e.g., C), thus making the system

versatile so it can be tailored to different recognition systems [Bis89].

3.1.1. The BEAM Hardware Accelerator

BEAM was developed at the Carnegie Mellon University (CMU) to run the

SPHINX speaker-independent, continuous speech recognition system in real time

[Bis89, Lee89]. It is a VME-based multiprocessor system that uses 3 general purpose

Weitek XL-8032 processors, each capable of 10 million instructions per second. The

architecture of the system is shown in Figure 7.

The processors have two local memories each, one with 256Kbytes for data,

and the other with 32Kbytes for program storage (corresponds to 8,000 instructions).

The three processors share a dual-bank global memory. The local memories can be

accessed with a cycle time of 100 nsec, while the global memories have an access time

of 200nsec (if there is no memory contention). To support processor synchronization,

each word in the shared memory is augmented with a bit that is used for special read

and write operations: If the bit is set, write operations are forbidden, if it is zero, read

operations are forbidden. This way, producer-consumer synchronization can be

implemented with a minimum of overhead [Bis89].

BEAM was successfully used for speech recognition using the SPHINX

recognition system in the 1,000 word DARPA resource management task [Pri88].

BEAM is capable of updating 4,000 states within a frame duration of 10msec, or

computing 8,000 transitions per frame (in SPHINX, there are, in average, 2
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Figure 7: The Architecture of BEAM

predecessors for a state). To perform real time recognition for the resource management

task, it would be necessary to update 40,000 states within a frame [Bis89], so the

system uses a pruning algorithm (see 4. 2. 2.) that discards 9/10th of the states and only

updates the most likely 10%. For a grammar with perplexity1 20, the performance of

BEAM was in the average 1.15 times real time (recognition time divided by the length

1. The perplexity Qisan information theoretic measure ofatasks difficulty. It isdefined as Q=2H, where H
is the entropy,or the number of bits necessary to specify the next wordusing an optimalencoding scheme
DLee89].
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of the incoming sentence), and for a perplexity 60 grammar, the real time factor

averaged 1.38.

3.1.2. The AT&T BT-100 ASPEN Parallel Computer

The AT&T BT-100 (ASPEN) is a tree-structured parallel processor which is

targeted for pattern recognition applications such as speech recognition. The system is

partitioned into several boards, 8" x 11" each. One board contains 8 processing

elements, and a processing element consists of an AT&T DSP32 floating point digital

signal processor (8 million floating point operations per second, MFLOPs), 64KBytes

of local memory, and a communication chip [Roe89]. The basic architecture of this

system is shown in Figure 8. The referenced paper [Roe891 investigates a system that

consists of 16 boards (127 PE's), and it is capable of 1000 MFLOPs.

To perform speech recognition on this hardware, the features that were

observed in a frame have to be broadcast to all PE's. Then, the state probabilities of all

states in the system are concurrently computed on the PEs, and with a method called psr

(pipelined sort and report), the K best grammar nodes (see section 4. 3. 1.) are

communicated to the host PC. These K best phone instances are then broadcast to the

PEs, which compute (concurrently) the initial scores for all subsequent phone instances

using the scores of the K best grammar nodes.

The referenced paper [Roe89] estimates the time required for the 1,000 word

vocabulary resource management task [Pri88]. In this estimate, the HMM uses

continuous output probability distributions (tied mixtures, [Bah90]), in which the PEs

compute the output probability (the probability of an observation given the speech

process occupies a certain state, see 2.2.) using 3 gaussian distributions.

For this estimation, it is assumed that the PEs compute, sort and transmit the

K=20 best grammar nodes to the host PC, which collects and broadcasts these nodes

back to the PEs. The authors estimate, that the time spent for communication is just
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Figure 8: Architecture of the AT&T ASPEN Processor

under 5 ms per frame, and the time spent for computation is 12 msec. Thus, it takes

about 17ms to perform the recognition algorithm for an incoming speech segment of

10ms, therefore the real time factor is about 1.7.

3.1.3. The MARS Multiprocessor Pipeline

The MARS hardware is organized using 2 levels of hierarchy. On the lowest

level, there is a 16-bit microprogrammable processing element with special features for

message passing, list and table manipulation, and bit field operations. Each processing

element has it's own local memory, and communication between PE's is performed

entirely by message passing [Chat89]. There is no shared memory. 15 PE's comprise a
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cluster, and the PE's inside a cluster are connected through a crossbar switch that can be

re-configured each clock cycle. Thus, with message passing between PEs using the

crossbar switch, it is possible to form a re-configurable pipeline. The MARS system

consists of 256 clusters, so it has a total of 3840 PEs.

The referenced paper [Chat89] deals with a simulation model for the MARS

hardware. Using this simulation model, the SPHINX speech recognition system [Lee89]

was coded. For that, the algorithm was partitioned on a functional basis, and the

functional modules were implemented on the PEs. The local memories of each PE

contain the data structures required by that module of the algorithm.

Based on the simulation results, it is projected that MARS can process 400,000

states per second, or 4,000 states per frame. The recognition algorithm is time-

synchronous, which means, all processing for a frame is completed before processing

for the next frame can be started. Thus, the MARS pipeline has to be drained after each

frame, and this takes 25|i,sec.

Thus, MARS is capable of processing 4,000 states, so it should perform on the

SPHINX recognition task as well as the BEAM hardware accelerator.

3.1.4. The Dragon Real Time Continuous Speech Recognition System

The commercial Dragon speech recognition system [Bam90] uses the "rapid

match" method to reduce the amount of computation. As a result, real time connected

speech recognition for a 842 word vocabulary can be performed using a 486-based

personal computer (15MIPS) that has a 17MIPS add-on board (AMD27000).

The rapid match algorithm generates a short list of words (typically 100-200

words) that might begin at a particular time, based on the acoustic speech data

beginning at that time [Gil90]. To achieve this, the words in the vocabulary are grouped

into words whose beginnings are acoustically similar (word start groups, WSGs). Each
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WSG has a single, model that consists of an acoustic representation of the word start

typical to that group. This representation is generated using the first 240 msec of speech

of all the words in the WSG.

During recognition, the rapid matcher computes the same acoustic

representation of a 240 ms segment of the incoming speech, and computes a score

(WSG score) that gives the probability that the smoothed representation of the unknown

word matches the smoothed representation of the various WSGs. The rapid matcher

then looks up the words in the highest probable WSGs, removes duplicates and scores

the remaining words using the WSG score and a language model score. The top scoring

words of this list are then passed to the recognition system which executes the

traditional recognition algorithm (Viterbi algorithm).

In the real time Dragon system, the average number of words that are passed to

the Viterbi recognition algorithm is 40. In the 843 word system, this results in a system

speed by a factor of 5 to 10 [Gil90]. The hardware used for this recognition system is a

486-based personal computer (15MIPS) with an add-on board (AT super) that has an

AMD 29000 processor (17MIPS). During recognition, these processors operate in

parallel: The AMD29000 processor performs the rapid match algorithm and the 486

microprocessor the Viterbi algorithm. With this setup, recognition for the 842 word

system is effectively performed in real time (1.1 times real time). The recognition

accuracy is 96.6% (speaker dependent) using a grammar with perplexity 662.

The speedup is of a factor of 5 to 10 over a system without rapid match.

Though impressive, this method introduces errors: in 4% of the frames, the rapid match

algorithm does not pass the correct word to the Viterbi algorithm [Gil90]. However,

some level of recovery is possible since the correct word might be passed in a nearby

2. The perplexity Qisan information theoretic measure ofatasks difficulty. Itisdefined as Q=2H, where H
is the entropy,or the number of bits necessary to specify the next wordusing an optimalencodingscheme
[Lee89].
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frame. Another drawback is, that this method introduces a new set of problems for

speaker adaption in a speaker independent system, and training of the WSGs.

3.2. General Purpose Speech Recognition Hardware.

In this section, we investigate two full custom processors that are used for

HMM-based connected speech recognition. Using full custom processors, it is possible

to customize the datapaths and the instruction set for speech recognition algorithms,

and as a result, small systems that use these special purpose chips can outperform the

large general purpose systems described in the previous section.

3.2.1. The AT&T Graph Search Machine

The Graph Search Machine (GSM) is a VLSI processor that was designed for

graph search operations such as dynamic programming for DTW and HMM based

speech recognition systems, and metric computations for vector quantization and

distance measurement. The processor was designed using a 1.77|im CMOS process. It

has 34,500 transistors, comes in a 68-pin package, and operates on a 8MHz clock. A

typical system architecture that uses multiple GSMs is shown in Figure 9:

A general purpose microprocessor is the host, and it is used to load the system

at start-up, and to run the support software tools. The individual GSMs are connected to

the microprocessor bus with an 8 bit data bus, and each GSM has a local memory with

an address space of 64K for program and data storage.

The GSM has a 6 bit datapath with a minimum unit, an adder, and an address

generation unit. It also has an on-chip program cache memory that can hold 32

instruction words, and a 32-word by 32-bit ROM for utility programs. The datapath and

the instruction set support the performance of the Viterbi algorithm, and the
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Figure 9: System Architecture for the GSM

computation of backtrack pointers that are necessary to recover the most probable

sentence after recognition.

The referenced paper [GLI87] states, that for graph search tasks, this processor

can outperform typical microprocessors (of that time) by a factor of 10, and typical

signal processors by a factor of 5. This processor, however, is not suited for real time

large vocabulary connected speech recognition. This is mainly because of two reasons:

memory bandwidth and the small size of the local memory (64Kxl6).

To obtain all the information necessary to update one state, it is necessary to

access memory 17 times (with the assumptions described in 4.1.). To perform real time

speech recognition, it is necessary to update 200,000 states within 10msec (4. 2. 2.).

Neglecting time that might be used to access instructions from the local memories, or

excess computation that does not overlap with memory operations, it takes 17 - 125nsec

= 2.125p,sec to process a state. Thus, a GSM could update 4,700 state in real time, and
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the combined bandwidth of about 40 GSMs would be required for a 60,000 word real

time speech recognition system.

The more severe restriction of the GSM is the small local memory. In 4. 3. 1.,

it was sown that a: memory with an address space of 82 million words is required to

store the parameters of a hierarchical HMM that uses 4 discrete output distributions per

state, and has 64,000 unique states (no grammar). Neglecting the fact that some of these

structures require more than the 16 bits offered by the GSM's local memory, and

assuming that the HMM could be perfectly partitioned between the local memories of

GSMs (which is not even possible), it would take (82 • 106) / (64 • 103) a 1,300 local

memories of GSM memories to store the parameters. Also, it is not possible to

dynamically swap the parameters into the local memories as they are needed during

recognition: the 8-bit interface to the shared bus of the microprocessor is not nearly fast

enough.

As a result, using the GSM for a 60,000 word vocabulary connected speech

recognition would require an unreasonable number of GSM chips.

3.3. Comparison to other Dynamic Programming Applications

This section relates the Viterbi algorithm for speech recognition to Viterbi

decoding used in communications and to the Dynamic Time Warp algorithm. Various

special purpose VLSI processors for these applications have been designed and will be

reviewed as to their suitability for this task.

3.3.1. Viterbi in Communication Systems

Viterbi decoding is used for error correction in communication systems to

improve bit error rate performance. Here, the signal is encoded using convolutional
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encoding, and Viterbi decoding is used to make a maximum likelihood decision to

recover the signal.

The Markov process that models the generation of a sequence of data in a

communication system [Lin89] usually has not more than 64 states. There are typically

two or four transitions per state. This means, a processor that performs the Viterbi

algorithm for this class of applications can store on chip all the necessary data that

describe the HMM. However, the bottleneck in this application is throughput. The

"frame" durations (called stages) are in the range of 100ns down to 5ns, therefore there

is typically one processing element provided for each state in the HMM. This is clearly

an inadequate architecture, as in speech recognition 200,000 states have to be processed

within 10ms. Another difference is that instead of using pre-compiled, fixed

probabilities to describe transitions between the states, a distance is calculated between

the received signal and the signal represented by the transition. Therefore the hardware

performing the Viterbi algorithm has an arithmetic and an architecture that can not be

used for large vocabulary speech recognition.

3.3.2. Dynamic Time Warp Algorithm

The computations for the Viterbi algorithm are very similar to computations

for the Dynamic Time Warp (DTW) algorithm, another forward programming scheme

that is successfully used for isolated speech recognition. Several special purpose DTW

processors for real time speech recogmtion have been designed, for example [Kav86]

and [Sto87]b but as this section demonstrates, they cannot be used for HMM based

large vocabulary speech recognition.

In DTW systems, a word in the recognition vocabulary is called the template

and its representation is a time ordered sequence of speech feature vectors. Typically, a

feature vector is a spectral representation of the speech waveform. The underlying

computation in the recognition algorithm is a word-to-word distance measure which is
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computed between all template words and the unknown word. This distance between

two words is the sum of the squared Euclidean distances between the feature vectors

and it is used as an error measure: the smaller the distance, the more similar the words.

Since a person might say a particular word faster or slower than the

corresponding word in the template, the word that has to be recognized might have a

different number of feature vectors than the corresponding template word. Therefore,

the time axis must be stretched (warped) to align the two representations and to

minimize the word-to-word distance. This is done using the Dynamic Time Warp

algorithm: it minimizes the word-to-word distance over all possible alignments of the

feature vectors using dynamic programming.

Figure 10 shows how two utterances of the word /six/ have to be aligned to

minimize the word-to-word distance [Kav861. The notation /siiiks/ describes the

sequence of features corresponding to the sounds of the utterance ("s", "i", "i", "i", "k"

and "s").

j= 0 12 3 4 5

template:/siiiks/ s —• —• i i i k -♦ s -*

unknown word: /sssiikkss/ ss s i-*ikkss

/= 0 1 2 3 4 5678

Figure 10: Alignment ofTwo Utterances of /six/
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The DTW algorithm computes the minimum word-to-word distance using the

following recursion:

d{ij) =L2{UitTj)
(EQ9)

D{iJ) = min[D{i-lJ)iD{i-lJ-l)tD{iJ-l)]+d{i,j)

In these equations, i refers to the sequential count of feature vectors of the

unknown utterance (see Figure 10) which is equal to the count of frames, i=0..1-l. The

index j refers to the features of a template word, j=0..J-l. The value d(ij) is the

Euclidean distance (L2 norm) between Ut and Tj, the ith feature vector of the unknown

word and the yth feature vector of the template word. The accumulated distance (the

error measure) D(iJ) is the sum of the Euclidean distances accumulated over a path that

yields the smallest sum. Thus, if the unknown word has / features {i=0..I-l) and the

template word has / features {j=0..J-l), the minimum accumulated distance between the

two words is D(l-1, J-1). This word-to-word distance is computed for all template

words and the template with the smallest D(I-1, J-1) is the recognized word.

To visualize these equations, d(ij) can be displayed as a matrix of Euclidean

distance measures between all features of the template and the unknown word. To

compute the matrix D(iJ), the distance d(ij) at ij is added to the minimum of the

accumulated distances at the upper (D(iJ-l)), upper left {D(i-lj-l)) and left {D(i-lJ))

vicinity of the matrix location ij. The final result is the minimum accumulated distance

at the lower right corner of the matrix.

To find a representation of a template word similar to the HMM, a sequence of

spectral features could be modeled as a sequence of states where transitions between

states correspond to the allowable sequence of spectral features. To model the nonlinear

stretching of the time axes, each state has a self transition, and a null-arc from the

immediate state at its left. The self transitions are used to delay the speech process: it
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can stay longer than one frame in a certain state. On the other side, a null-arc is a

transition that does not consume a frame delay, which means, the speech process can

occupy several states within one frame. In other words, the speech process can skip

through a state using a null-arc transition, and this is the case when the input speech is

spoken faster than the corresponding reference template. This model is shown in Figure

10. There are two transitions from left-to right: the solid arrows refer to state transitions

that consume a frame delay while the striped arrows refer to the null-arcs.

template: /siiiks/

.<** v„...•$• ^....^ >._:*v^ .^*

Figure 11:State Transition Model of the Template Word /siiiks/

The computations in (EQ 9) can be visualized in a trellis similar to Figure 12.

States in a column correspond to the features of a template word while states in a row

correspond to the same feature at different time indexes /. Thus, horizontal arrows

correspond to self loops, vertical arrows to null-arcs and diagonal arrows to a state

transition from the immediate state to the left (Figure 12).

Every i corresponds to a feature of the unknown word, and therefore the /th

column in the trellis visualized the computations for index i. The minimum accumulated

distance of a certain trellis location ij can be thought of as the minimum accumulated

distance associated with state y at frame /. To compute this distance, we have to find the

minimum of the accumulated distances of the predecessor states (states that have a

transition to that state) and add d(ij), the Euclidean distance between the /th feature of

the unknown word and the yth feature of the template word. This computation is done
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unknown word

Figure 12: Trellis Structure for the Dynamic Time Warp Algorithm

sequentially for all the states of the template word at frame /, then for frame i+1 and so

on (time-synchronous streaming algorithm) until frame I-l. The minimum distance is

then the accumulated distance associated with the state J-1 at frame I-l (lower left

state).

The computations of (EQ 10) are very similar to the computations that have to

be performed for the Viterbi algorithm if probabilities are represented using their

negative logarithmic values: Multiplications are implemented using additions and the
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MAX operation becomes a MIN operation. (EQ 10) shows the equation for the Viterbi

algorithm in the logarithmic domain:

¥{OiiS) =MINpf: {pred} [${OtmmVp) +A(p,s)] +${ot\S) (EQ10)

The value of a probability is between 0 and 1, therefore the logarithm of a

probability is negative. Thus, we can ignore the sign and treat the logarithm of a

probability as a positive number. By comparing (EQ 9) and (EQ 10), we notice that the

distance measure d(ij) corresponds to the negative logarithm of the output distribution,

(P(oi\s), while the accumulated distance of a predecessor corresponds to the sum of the

state probability of a predecessor state and the transition probability, {P(Oi.ltp)+A(p,s).

The difference in the Viterbi algorithm is, that the trellis in the DTW algorithm

for speech recognition is regular. That means, every state has predecessor states on the

same relative position. In HMMs, the predecessor states can be on different relative

positions. Also, in DTW the transition from one state to another has no associated

transition probability. Another major difference is that the distance between the features

of the unknown word and a template word is computed using the Euclidean distance

while the Viterbi algorithm uses probability distributions to relate a state to an

observation.

In general, to perform the Viterbi recursion, data have to be accessed that

aren't necessary for the DTW recursion, such as transition probabilities, topology

information and output probabilities. These differences have a significant impact on the

hardware implementation. DTW processors can utilize the regular trellis of the DTW

algorithm and map the access of the accumulated distances directly into hardware.

Instead of addressing predecessors, this allows the output of registers that keep the

accumulated distances to be directly routed to a MIN logic.
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In summary, the computation of the DTW algorithm and the Viterbi algorithm

are very similar, but a processor that implements the Viterbi algorithm requires a higher

external bandwidth than a DTW processor since more data have to be accessed. Also,

additional logic is required to address the predecessors and their corresponding

transition probabilities.

The French LIMSI-CNRS system is an example of exploiting the similarities of

the two recognition algorithms.

3.3.2. a The LIMSI-CNRS Dynamic Programming(DP) Processor

This processor was designed for isolated and connected speech recognition

using the DTW algorithm. It operates on a 20MHz clock, and can execute 10 million

instructions per second. It is capable of real-time recognition of a 1000 isolated words,

or 300 connected words. The chip has of 127,300 transistors, and it comes in a 84-pin

package [Que89].

Figure 9 shows a block diagram of speech recognition system that uses several

of these processors.

The system architecture is almost identical the system architecture for the

GSM, the major difference is, that this processor can accommodate a larger local

memory.

The processor architecture of the DP processor has 3 datapaths: a distance

calculation unit (DCU), a general purpose arithmetic unit (GAU), and a memory

address calculation unit (ACU). These datapaths can operate in parallel, and they all

have access to the local memory bus. The GAU has a 32 word register file, that can be

configured as circular buffers, and the ACU has a register file that can be used to locally

buffer the features observed in the current frame.
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Figure 13: System Architecture forthe Dynamic Programming Processor

LIMSI-CNRS has successfully used this processor for HMM based speech

recognition. For that, the HMM was simplified in two ways: first, the topology of the

HMM of vocabulary words is regular, each state has the same number of predecessors

and the same relative predecessors, and transitions between states have no associated

transition probability. Second, the output probability is computed using an

approximation of tied gaussian mixtures: instead of using gaussian distributions, the

mixtures are modelled as triangular functions. Using this model, the DCU can compute

the output probability using, in the log domain, the sum of differences between the

observed features and the means of the triangular distributions.

To process a state, it is possible to utilize the circular buffer of the GAU: Since

the topology of the HMM is regular, each state has the same relative predecessors. To

update the circular buffer after a state has been processed, the predecessor state that

was the longest time in the buffer gets replaced with the predecessor state that is closest

to the next state processed. Using this scheme, it is possible to cut down the number of
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external memory accesses (14-16, depending on how many mixture vectors have to be

read), and to process one state within 2 to 3 jisec [Que91].

Thus, one DP processor chip can update about 4,000 states within a frame of

10ms, and LIMSI-CNRS implemented a 500 word real-time speaker-dependent

connected speech recognition system using one such processor.

To use this processor in a real time 60,000 vocabulary system, it would be

necessary to process 200,000 states within a frame, therefore 50 DP processors would

have to be used. Also, the restricted topologies of the HMMs would impose severe

restrictions on the usefulness of the system.

3.4. Advantages of a System with Full Custom VLSI Processors

The previous sections showed, that the general purpose systems described

cannot be used for large vocabulary speech recognition, and that a system that employs

the described full custom processors would be large. The computational requirements

for a 1,000 word recognition system are, to update 4,000 states within a frame [Bis89],

while 200,000 states per frame have to be updated in a 60,000 word recognition system

(4. 2. 2.). This corresponds to a factor of 50, and this performance gain can be achieved

with a system that uses dedicated VLSI processors that implement the recognition

algorithm directly in hardware.

While it is necessary to use full custom hardware for large vocabulary systems

it might be advantageous to use a custom hardware implementation even for recognition

systems with a small vocabulary. General purpose systems are often more expensive

and consume more power than what can be achieved with a more optimized

implementation. The reason for the increased power consumption is that these

processors use a fast clock (33MHz and more) and generally have additional circuitry

that is not needed for that specific task. Also, there usually are additional peripheral
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circuits necessary to interface to the general purpose components. A full custom

solution, on the other hand, uses the smallest amount of circuitry and the lowest clock

speed necessary to implement a certain task, and it is possible to implement

architectural decisions and circuit techniques to minimize power consumption [Cha91].

Future portable systems such as notebook and laptop computers or personal

communication services (PCS) will have speech recognition as an alternative to the

keyboard or to replace the keyboard entirely [Bur91]. In these applications, the cost,

size, weight and power consumption of speech recognition hardware is an important

issue. The recognition accuracy of HMMs for specific tasks is acceptable, but the cost

and the power consumption of general purpose solutions is not acceptable for most of

these future products. Special purpose solutions, on the other hand, can be tailored just

for a specific algorithm. Thus, they can be smaller, less expensive, and can be designed

in such a way that they consume less power than general purpose solutions.
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This chapter describes modifications to the speech recognition algorithm which

were necessary to relax the hardware requirements for a real time implementation.

These modifications involve the representation of the HMM speech model and the

implementation of the Viterbi algorithm.

4.1. "Brute Force" Requirements for a 60,000Word System

This thesis describes the implementation of a 60,000 word recognition system.

To evaluate the requirement of the system, we extrapolated from the DECIPHER

systems implementation of a 1,000 word connected speech recognition system

[Murv89]. This section demonstrates the hardware requirements if the recognition

algorithm is implemented without modifications.

On the average, a word is modeled using 17 states, therefore the recognition

system has to storethe model parameters of 60,000 * 17 « 106 states. In the DECIPHER

system, states have an average of 3 predecessor states and they have four associated

discrete output distributions with 256 probabilities P(ot\s) each. Therefore, to store the

model parameters for one state, 4*256 memory locations are needed to store the output

distributions and 6 memory locations to store the transition probabilities and the

pointers to predecessor states. This results in a requirement of (4-256+6)106 » 109

46
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memory locations to store the model parameters. Also, two memories with 106 locations

are needed to store the state probabilities for the 106 states, PfOi.j, s) and P(Oit s).

Since the system computes the Viterbi equation over all the states in real time,

(EQ 6), (EQ 7), and (EQ 8) must be evaluated for 106 states within the frame duration

of 10 msec. (EQ 6) requires 4 memory accesses per predecessor (topology, P(Oi.lt s),

Tag(s,i-1), and transition probability), 4 memory accesses to compute the output S§

probability (EQ 8), and one write access to store the final result P(Ou s). Thus, the |lf^
system would have to keep up with (3-4+5)-106 memory accesses per 10 msec = 1.7-109

memory accesses per second. The performance of the above equations involve 1 MAX

operation, 1 ARGMAX operation, and 7 multiplications per state, so that the

computational throughput ofthat system would be 900 106 operations per second.

Fortunately it is possible to use hierarchy and pruning strategies to

dramatically reduce these memory and computation requirements.

4.2. Changes that Affect the Performance of theAlgorithm

ite-

??--

"IT-^-":*,.

.V-tcv..

4.2.1. Number Representation, Normalization SS

One level offreedom in the design of afull custom hardware implementation is

the number representation for the variables in the algorithm. To achieve the required |§t

dynamic range, a floating point representation could be used, but this would result in il&-
complex floating point datapaths and relatively large storage requirements. l|§t

To avoid this increased complexity, the hardware was implemented using a

fixed point representation, but with re-normalization to retain the desired accuracy.
Since the recursive nature of the Viterbi algorithm results in state probabilities that

become smaller with every recursion (EQ 6), it is necessary to normalize the state ||§
£*&£?•-:.

probability variables after each frame. This not only avoids arithmetic underflow, it also Sill
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makes it possible to represent these variables with a minimal number of bits. The

normalization is done using the following equations:

P{Otis)
P*<°>S) =MAXt[Pn{0i_vt)] (EQ11)

In this equation, MAXt [PJO^j, t)] is the largest (normalized) state probability

that occurred in the previous frame.

The division in (EQ 16), however, is costly to implement as are the

multiplications of the predecessor state probabilities with the transition probabilities in

(EQ 6). A solution to this problem is a logarithmic number representation of all

variables in the recognition system. Multiplications can then be implemented using

additions, and divisions are reduced to subtract operations. Thus, the Viterbi recursion

(EQ 6) is implemented using:

T{Oits) =MINp€ {pred} [fP(0,.Pp) +A(p,J)] +¥(ot\s) (EQ12)
T{OiiS) =-logP{Oits)
Jl{pts) =-logA(p,j)

${0i\s) =-logP(o^)

Since all variables in the system describe probabilities, which have a value in

the range between 0 and 1, the logarithm of these variables will always be non-positive.

Thus, it is possible to ignore the sign and treat the log numbers as positive numbers. As

a result of this, MAX operations are implemented as MIN operations. Probability 0 is

coded using the largest number in the fixed point logarithmic representation. The

logarithmic representation also has the advantage that the range of values for a given

wordlength is much higher than for a linear fixed point representation. The accuracy for
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small values in the logarithmic domain (probabilities close to 1) is reduced, but the

range for small probabilities is larger.

Simulations using the DECIPHER system showed, that recognition accuracies

do not degrade compared to a floating point representation if the variables use the

following wordlengths in the logarithmic domain:

State Probabilities -log \P(Oit sfl 16 bits

Output Probabilities -log [P(ofs)] 10 bits

Transition Probabilities -log [A(s, t)] 4 bits

Table 3: Wordlengths for the Representation of the Probabilities

Table 3 shows that transition probabilities are quantized using only 4 bits.

However, to assure a higher dynamic range than 0 to 15, they are shifted 4 bits to the

left before they are added to the state probabilities. Simulations showed that this

dynamic range and quantization does not degrade recognition accuracy while

minimizing the wordlength. The representation for an output probability is 10 bits,

therefore the wordlength of a joint distribution which is the product (sum in the log

domain) of 4 output probabilities uses 12 bits (EQ 8). Figure 14 graphically shows the

wordlengths and their weights relative to the state probabilities:

4.2.2. Pruning

To reduce the amount of computations that have to be performed, this system

uses a pruning algorithm which discards word models whose states have low state

probabilities. The decision to prune a word is based on a pruning threshold, ©. If every

state in a word has a state probability lower than the pruning threshold, the state
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State Probabilities: 16 bits

MSB LSB

Output Probabilities: 12 bits (4*10 bits)

Transition Probabilities: 4bits

0

Figure 14: Wordlength Representations for Probabilities

probabilities of this word will not be computed in the next frame. The pruning threshold

is computed using the following equation (in the linear domain):

®new=^[®o/^(<V) -«W (EQ 13)

®offset is a fixed probability value that is preset before processing new frame

and it determines the number of states that are evaluated. The threshold, ®new, is

adjusted as new state probabilities are being computed. Thus, the probability, Bnew,

increases as states are processed and have high state probabilities. At the beginning of a

frame it is possible that initial states with low state probabilities are active until ®new

gets adjusted to a higher probability. To avoid that, it is possible to preset ®new before a

frame is processed.

Simulations for the DECIPHER 1,000 word recognition system showed that

recognition accuracies do not degrade if only l/6th of the states are left active. If a

more conservative number is used (l/5th) and extrapolated to the number of active

states of a 60,000 word recognitions system, only » 200,000 active states would have to
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beprocessed, instead of 106 active states for a non-pruned system (see chapter 2). Thus,

the computational throughput for the Viterbi algorithm would drop from 900-106

operations per second to » 180-106; the number of memory accesses, from 1.4-109 to

«0.3-109 per second. The pruning algorithm adds, however additional computations:

one addition and one MIN operation (log domain) for (EQ 13), and one operation to

compare each state probability to the pruning threshold. These operations have to be

performed for 200,000 active states per 10 ms, therefore pruning requires 80 million

operations per second.

4.3. Changes that do not Affect the Performance

4.3.1. Hierarchical HMM

The memory requirement for a system with a vocabulary size of 60,000 words

was derived and requires an address space of about 109 words. Obviously, this

requirement, which is the result of a flat HMM representation, is costly to implement in

a system that uses memory chips for fast access times.

A flat representation of an HMM is also undesirable for training an HMM. As

mentioned above, one needs many utterances of each speech segment to train the

corresponding HMM. In a hierarchical description, there is a small set of basic HMMs

that describe small units of speech (phones). These basic HMMs are then instantiated

and concatenated to build words. Obviously, this representation yields - for a given set

of training utterances - more training data per basic HMM unit than if the system is

described flat. For example, the National Institute of Standards and Technology (NIST)

offers a database to train a speaker independent connected digit recognizer, and this

database has 4331 training utterances for each of the words. This number of training

utterances per word is adequate for training a speaker independent HMM, using less

data for training results in decreased recognition accuracy. Extrapolating this number to
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a 60,000 word recognition system with a flat HMM, we need at least 60,000 • 4331

»260-106 words for training and it is likely that the increased size of the vocabulary

would require an even larger training set.

It is more desirable to find small speech units that are the building blocks for a

complete language model. The English language, for example, has about 30 basic

phones, and using these phones we could describe all possible words. However, the

phones are not always pronounced in the same way, depending on the predecessor or

successor phone (coarticulation). Thus, we need more phone models to take into

account the left and right phonetic context [Lee901. In the worst case, every phone

could be influenced by all the possible neighboring phones, and 303 = 27,000 context

dependent phones would be required. In practice however, much fewer context

dependent phones on the order of (2 .. 10)-103 are required.

The description of a basic speech unit such as context dependent phones will

be called a unique phone. It contains the topology of the model, the transition

probabilities, and the output distributions associated with the states. Many unique

phones share the same topology and it would be redundant to replicate this information

in every unique phone. Thus, this system stores a basic set of phone topologies and the

description of a unique phone references its corresponding topology.

Given a basic set of unique phones, we can describe words or complete

languages in the next level of hierarchy as shown in Figure 15.

Using only one or two basic phone topologies, unique phones are differentiated

by specifying the transition probabilities and the output probability distributions, and

by referring to their phone topologies. To describe a word or a sentence, these unique

phones are instantiated and the instances concatenated using transitions with associated

transition probabilities. These instances of unique phones are called phone instances1.
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^ "phone instance" =instance ofunique phone

Figure 15: hierarchical HMM

In this system, we use two levels of hierarchy: the phone level describes unique

phones while the grammar level describes transitions between phone instances.

Therefore, the basic building blocks of a grammar are phone instances and transitions

between them, and the grammar level of this system describes both, transitions between

phone instances inside a word, and transitions between words.

The hierarchical HMM also allows major reduction in the memory

requirements. Using the same model size assumptions as in section 4.1., we need to

store the model parameters of at most 303 = 27,000 phones. Again, assuming that each

phone has 3 states, that each state has 3 predecessor states and 4 discrete output

distributions with 256 probabilities each (chapter 2), we need 27K * (3*256*4 + 3) s

82-106 memory locations to store the model parameters, a reduction by a factor of 10

over the 900 • 106 locations requirement of 4.1.

1. Phone instances are sometimes called wordarcs in theliterature. Thiscomes from the fact that typical
grammar topologies represent speech units with arcsratherthan nodes.



54

However, the trade off is that accessing the model parameters now involves

address computations. For example, we need 4 pointers to uniquely determine the

predecessor of a particular state: the phone instance, the unique phone, the reference to

the unique topology, and the state.

4.3.2. Grammar Processing and Phone Processing

Despite the hierarchical representation of the output and transition

probabilities, the HMM has to be flat in order to perform the Viterbi algorithm of (EQ

6). If a given unique phone is instantiated twice, the different instances will have

different state probabilities. This means states inside phone instances have to be

represented without hierarchy in order to store their state probabilities.

In this system, the Viterbi recursion (EQ 6) is simultaneously performed on

two levels of the hierarchy. In phone processing, the state probabilities of phone

instances are updated considering only local transitions inside the phone instance.

Using the results of these computations (state probabilities) and transition probabilities

between phone instances, the probabilities of paths to the successor phone instances are

computed in grammar processing.

This scheme has the advantage that the computations on the two hierarchy

levels can be done in parallel, however, there is a considerable amount of data (state

probabilities) that have to be passed between them. In the worst case, every state inside

a phone instance can have a transition to a state in the successor phone instance, and

this successor phone instance (phone instance z in Figure 9) could have several

predecessors. To compute the state probability of the first state s of phone instance z, it

is therefore necessary to access all probabilities P(Oh p) from the states inside the

predecessor phone instances (see Figure 17).

To reduce this data rate between the hierarchies, two "compressed" state

probability are defined. P(S), the source grammar node probability, gives the
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Figure16:Concatenation of Unique Phones in Grammar Processing

probability that the most probable state sequence terminates at the beginning (source)

of a phone instance. This probability corresponds to the result of the inner loop of the

Viterbi recursion, MAXp [P(Oit p) • A(p,s)], for all predecessor states p of all

predecessor phone instances.

Since a unique phone will be instantiated, it will have in every case different

transitions to successor phone instances. The source grammar node probability is

computed in two steps, the first step is on the phone level, in which a a destination

grammar node probability P(D)1 is computed using the following equation:

P{DY = MAXpE {pred} [P{Oitp) A{p,D)] (EQ 14)

P(D)1 is the likelihood that the most probable path at frame / terminates at the

end of a phone instance, and it is computed by finding the most likely transition from

the states inside the phone instance to the end of the phone instance. In (EQ 14), {pred}

is the set of states that have a transition to the destination grammar node. This
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probability gets computed for every phone instance in every frame. The transition

probabilities at the end of a particular phone instance, A(p,D), are defined in the unique

phone that was instantiated by that phone instance. Therefore, every instance of the

same unique phone has the same set of transition probabilities A(p,D) to the outside and

they cannot be used to describe transitions on the grammar level (after all, different

instances of the same unique phone can have different grammar transitions). Therefore,

transitions on the grammar level are described using another set of transition

probabilities between destination and source grammar nodes. For that, the phone

processing system sends P(D)1 to the grammar processing system which computes the

source grammar node probability of a successor phone instance using transitions A(D,S)

between destination and source grammar nodes (or, in other words, between phone

instances):

P(S)' =MAXD e {pred} [P (Z» •A(D, S) ] (EQ 15)

Here, (predj is the set of all destination grammar nodes D that have a

transition to the source grammar node S. This scheme is shown in Figure 17. Every

phone instance has, besides the description of the states and the transitions, two

additional "grammar nodes". These grammar nodes have no associated output

distribution, which means a transition into these nodes does not produce a speech

output (observation). The only information they keep are the grammar node

probabilities that are passed between the hierarchy levels.

The shaded nodes in Figure 17 are the grammar nodes. The source grammar

node keeps the probability that a certain phone instance starts and the destination

grammar node keeps the probability that a phone instance ends. All transitions between

phone instances originate and terminate in grammar nodes only. For example, the

destination grammar node probability for phone instance x in Figure 17 is computed
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Figure 17: Concatenation of Unique Phones (inside dashed ellipses) using Grammar Nodes

using the states in the phone instance and destination grammar node transitions A(p,D).

The source grammar node of phone instance z keeps the maximum of the product of the

destination grammar nodes of phone instances x and y multiplied with the transition

probabilities A(D,S) to this source grammar node.

Thus, to update the first state s of phone instance z there are only two

predecessors: the source grammar node and state s itself. In a more complicated model,

there could be several transitions from the source grammar node to various states in the

phone instance.

Similar to (EQ 16), the grammar node probabilities have to be normalized to

prevent overflow for the fixed point representation. This normalization is performed on

the destination grammar node according to (EQ 16):

rn(D)l =
P(D)'

MAX^Oi.^t)] (EQ 16)
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In this equation, MAXt [Pn(Oi.lt t)] is the highest (normalized) state

probability (of state t) that occurred in the previous frame.

Using this scheme, it is possible to process (EQ 6) in parallel on different

processes, phone processing and grammar processing. This not only yields faster

performance than using just one process, it also allows us to customize the

implementation of these processes for the distinct requirements of the two levels.

Phone processing requires every state in the system that is not pruned to be

processed within a frame duration of 10ms. This involves, for every state, the

computation of the state probability, the backtrack tag, normalization, updating the

pruning threshold, and pruning. The amount of computation in grammar processing is

less, only transitions between non-pruned phone instances have to be processed. Inside

a word, there is only one transition between two phone instances, while in phone

processing, there are 3 transitions for every state. Also, pruning can be used to cut the

number of phone instance transitions that have to be processed at word boundaries (see

below).

On the other hand, the topology (or the trellis structure) of state transitions

inside phones is fairly simple since the transitions strictly go left-to right, and there are

only a few predecessor states for a given state. Most importantly, transitions inside

phones are local, there is no state transition that skips more than a few states. This is

different for transitions between phone instances, since while they are only left-to-right

inside a word, at word boundaries they can go to any other phone instance (ergodic

HMM, see section 2.2.). Thus, they are not local and a given phone instance can have a

large number of predecessor phone instances.

As a result, the difference in the computational requirements between phone

processing and grammar processing requires different strategies for the hardware

architecture of each. The isolation of the computations for these two levels of hierarchy
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using the source and destination grammar nodes makes it possible to do these

optimizations.

4.3.3. Predecessors Processing vs. Successor Processing

This section introduces two implementations of the Viterbi algorithm. One is

based on computing the state probability of a state by accessing all its predecessor

states (predecessor implementation) while the other implementation updates successor

state probabilities (successor implementation). It is shown, that the former is the most

appropriate implementation for phone processing, while the latter is well suited for

grammar processing.

4.3.3. a Predecessor Implementation

Figure 18 shows the flowgraph of the Viterbi recursion described in (EQ 6) .

This equation chooses the maximum of the state probabilities of the predecessors of a

state multiplied with their transition probabilities to that state. In Figure 18 , the state

probabilities of states at frame i-l, PfOi.j, p), are associated with the nodes in the left

column. The task is to compute the state probabilities P(Oit s), which arerepresented by

the nodes in the right column. Nodes on the same row correspond to state probabilities

of the same state at different frames, and the rows are ordered in such a way that

probabilities on neighboring rows correspond to states that are neighbors in the HMM

of Figure 4 . A node above a particular node is associated to a state that is to the left,

and a node below is associated with a state that is to the right of a particular state.

To compute P(Oitn) for state n in Figure 18 , the state probabilities of the

predecessor states, P(Oi.ltl), P(Oi.ltm) and P(Oi.ltn), have to be multiplied with the

transition probabilities to n. The maximum of the resulting three products is then

multiplied with the output probability P(ot Is). Thus, a state probability is computed by

accessing all predecessors of a state, hence the name predecessor implementation.
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Figure 18: Lattice Structure for the Predecessor Implementation

4.3. 3. b Successor Implementation

Another implementation of the Viterbi algorithm is the successor

implementation formalized in the following equation:

PneW <<°i> Z) = MAX \.Pold (°/> *)>P(01_VS)A {S, z) •P (0/, z) ]

z € {successor states of s]

Figure 18 shows the data flow for this implementation.

(EQ 17)

Here, the algorithm accesses all successor states z of a certain state s that has

the state probability P(Oi.]t s) at frame i-l.

There are several states that share the same successor, and the goal is to find

the transition to this successor state that results in the overall highest state probability

Pnew(Oi, z). Therefore, if the successor state z has a state probability P0id(Oit z) that

was computed previously (originating from a different state), it has to be updated if the
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frame i-l frame i

Figure 19: Lattice Structure for the Successor Implementation

transition from another state yields a higher state probability. Before this computation

starts at the beginning of a frame, it is necessary to initialize the state probabilities of

all successor states to probability 0. If (EQ 17) has been performed for all successors of

every state in the vocabulary for a certain frame i, the states will have a new set of state

probabilities Pnew(Oifz) = P(Ot,z) that correspond to the highest probable paths.

4.3.3. c Trade Offs between Successor and Predecessor Implementation

The successor implementation has the advantage that it is straightforward to

save computation using the pruning algorithm described above: states with low state

probabilities have a low likelihood of terminating the most probable path. If the Viterbi

algorithm is implemented using transitions to successors (EQ 17) it is obvious that

states with low state probabilities, P(Ot.lts), cannot contribute towards high state

probabilities Pnew(Oitz) for the successor states z. Therefore, if such a state with low

P(Oi.]ts) is encountered, all computation for it's successors can be dropped.
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The successor implementation, however, results in a higher memory bandwidth

than the predecessor implementation. To update Pnew(Oitz), the memory containing the

state probabilities for time / (state probability memory i) has to be read to get P0id{Ovz)

and then Pnew(Oi,z) has to be updated if it has a higher probability than Pold(Oitz). This

operation has to be repeated for every predecessor of z. In the predecessor

implementation, this memory is only accessed once, when the final result, P(Oitz), is

written.

Thus, to improve the memory bottleneck for the performance of the Viterbi

algorithm, it is better to use the predecessor implementation. Here, the bottleneck is the

state probability memory i-l which has to be accessed once per predecessor, while in

the successor implementation the bottleneck is the state probability memory i which has

to be accessed twice per successor. But the drawback of the predecessor implementation

is that pruning is not straightforward to implement: we can only skip the computation of

a state probability after we processed all predecessor states, because there might be a

predecessor state with a high state probability contributing to a high state probability of

the current state. Thus, we can only prune after doing all the work, and pruning does not

save any computation.

In this system, the computation of the Viterbi algorithm is done on two

hierarchy levels: phone processing and grammar processing (see section 4. 3. 2. ). As

already mentioned, the computational requirements on these two levels are quite

different:

• phone level: high throughput, but left-to right HMM with a few local transitions

• grammar level: less throughput, but ergodic HMM with many irregular global

transitions

Since it is necessary to achieve a high computational throughput in phone

processing, it was implemented using the predecessor implementation because it results
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in a smaller memory bandwidth than the successor implementation. Grammar

processing, on the other hand, is based on the successor implementation for two

reasons. First, the inputs to the grammar processing system are destination grammar

nodes sent from the phone processing system. Implementing the Viterbi recursion based

on successors makes it possible to process these inputs as they arrive. If grammar

processing were implemented based on predecessors, all destination grammar nodes had

to be stored before the source grammar nodes could be processed. Secondly, in

successor processing it is very straightforward and effective to make pruning decisions:

if a destination grammar node has a state probability P(Oi.lt s) that is smaller than the

pruning threshold 0 (see 4. 2. 2.), it is not necessary to update the successor nodes

since the result would also be less than © (probability always decreases). Even further,

if P(Oi.j, s) is slightly above the threshold and the successors are sorted based on the

values of the transition probabilities A(s,z), we can stop processing the successor nodes

(source grammar nodes) as soon as the first P(Oit z) is smaller than 0.

As a result, the pruning algorithm is implemented in the following way: The

grammar processing system maintains a list of active phone instances. Thus, the phone

processing system only processes the states and destination grammar nodes of phone

instances on that list. If a phone instance that had been processed by the phone

processing system has at least one state with a high state probability (>0), the phone

instance is shipped to the grammar processing system which keeps the phone instance

on the list of active phone instances. An active phone instance that was processed but

not returned from the phone processing system is deactivated. On the other hand, if an

active phone instance has, after phone processing, a high destination grammar node

probability (>0), it is also sent to the grammar system. In this case, the phone

processing system gives a request to compute the source grammar node probabilities of

the successor phone instances. Transitions to the successors of a destination grammar

node in the grammar processor model memories are sorted based on their probability,

therefore it is possible to stop processing a destination grammar node as soon as the
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first successor source grammar node has a probability smaller than 0. Only the phone

instances that have a source grammar node higher than the pruning threshold are added

to the list of active phone instances. If the destination grammar node probability is

lower than the pruning threshold, it is not necessary to generate a request to compute

the successor transitions, since a low destination grammar node probability cannot

contribute to high source grammar node probabilities of the successor phone instances.

In this implementation, pruning is done based on phone instances: If a phone

instance has one state with a high state probability, it is activated for the next frame.

Thus, all states in this phone instance will be processed, even those with a low

probability. This results in some computational overhead, but implementing a list of

active phone instances is easier than implementing a list of active states since it

requires less information to be stored as there are fewer active phone instances than

active states.

4.3.4. Backtrack Algorithm

To recover the most likely state sequence after a sentence has been processed,

we traverse a list of backtrack tags that were generated during the performance of the

Viterbi Algorithm (see section 2. 3. 2.). This list contains, for every active state in

every frame, a tag that identifies the state's predecessor on the most likely path.

An implementation of that list would be very costly since a sentence might

have several hundred frames, and for each frame we might have to store 200,000 tags.

Instead, it is possible to implement another scheme in which it is not necessary to

exactly recover the sequence of states, since the important information is the sequence

of phone instances. So all we need to store are tags associated with grammar nodes:

each active source grammar node in each frame has a tag that identifies its predecessor

phone instance. In the succeeding frames, this tag gets copied into the states according

to (EQ 7), and it eventually arrives at the destination grammar node of that phone



65

instance. Thus, the destination grammar node has a tag that points to the predecessor of

that phone instance.

If the destination grammar node has a high probability (>0), it could be part of

the most probable path and therefore it is important to store the tag in a backtrack list

along with the identification of the current phone instance. After that, the memory

address that was used to store the old tag is passed as a new tag to the source grammar

node of the successors of that phone instance, and in the succeeding frames it will

eventually be passed to the destination grammar node (see above) and so on.

Thus, tags are memory pointers that specify the location of a structure in the

backtrack list that contains a phone instance id and a pointer to its predecessor phone

instance. Using this scheme, we generate an array of linked lists where each element

contains the identification of the word and a pointer to the list that contains the

structure associated with a predecessor word (Figure 20).

By storing backtrack tags only at word boundaries, it is possible to reduce the

memory requirement for the backtrack list. At the end of the sentence, this linked list

has to be traversed starting from the tag of the state with the highest state probability in

the last frame.

Using this scheme, the backtrack list has to have a size which is the number of

destination grammar nodes per frame with probability higherthan the pruning threshold

0, times the number of frames in a sentence. Simulations of the DECIPHER system

showed, that about 5% of the active phone instances have a destination grammar node

probability that is higher than the pruning threshold, so in the worst case, if each frame

has 60,000 active phone instances (200,000 active states divided by 3 states per phone

instance), the phone processing system sends about 3,000 phone instances with high

grammar node probabilities to the grammar system. Thus, the grammar system has to

store the phone instance and the backtrack tag of 3,000 grammar nodes per frame, and
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Figure 20: Implementation of the Linked List in the Backtrack Memory

use the address as a new tag for the successor phone instances of that grammar node. In

this system, 1 million addresses are allocated for the backtrack list, so we can generate

a list for 1,000,000 / 3,000 » 333 frames (3.3 seconds of speech), and the backtrack tag

has to be 20 bits wide.



System
Architecture

This chapter describes the system architecture of the speech recognition

hardware. It was implemented as a VME based system, and the basic components were

a VME card cage, a general purpose processing board based on the Motorola 68020

microprocessor (Heuricon board, [Vw90]), an ethernet card that interfaces the Heuricon

board to various workstations, and three custom designed boards that implement the

speech recognition algorithm.

The first section describes the functional blocks of the hardware, which were

implicitly described in chapters 2 and 4. In the second section, we relate the functional

blocks to a general purpose hardware or to a full custom hardware implementation.

5.1. Functional Partition

A high level functional block diagram of the speech recognition system is

shown in Figure 24. The speech recognition functions are front end processing, phone

processing, grammar processing, and backtracking.

The algorithm used for front end processing was described in chapter 3. In

essence, the incoming speech waveform is sampled and processed yielding a stream of
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Figure 21: Functional SystemPartition

vector quantized features at a rate of 4 features every 10 ms. These features are sent to

the phone processing system, and a feature is represented using 8 bits.

5.1.1. Phone Processing

The phone processing system (Figure 23) computes the state probabilities and

the backtrack tags of states in active phone instances, and their destination grammar

node probabilities and backtrack tags (chapter 2). The active phone instances of a

particular frame are stored in a memory called active phone instance memory. This

memory is part of the grammar processing system, and it will be described in more

detail in the following section.

To process active phone instances, the following data are required:
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Figure22: Functional Diagramof the Phone ProcessingSystem

• HMM model parameters of phone instances. These parameters (topology, transition

probabilities and output distributions) are stored locally in the phone processing

system. .

• Pointers to these parameters. These pointers are provided by the active phone

instance memory which stores the unique identification of active phone

instances (phone instance id, unique state id, topology address). To derive the

output probabilities, we also need the feature vectors that come from the front

end processing system.

• State probabilities and backtrack tags of active phone instances that were computed

in the previous frame. These parameters are also stored locally in the phone

processing system. One memory stores these parameters associated with the

previous frame (state probability memory i-l), and another memory stores the

updated parameters (state probability memory i).
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• If a phone instance was active in the previous frame, the active phone instance

memory provides a pointer to the state probabilities and backtrack tags in the

state probability memory i-l. This information is also stored in the active phone

instance memory.

• The source grammar node probabilities and backtrack tags of active phone

instances which are also stored in the active phone instance memory.

After they are computed, the normalized state probabilities and backtrack tags

of active phone instances are locally stored in the state probability memory i. If at least

one of the state probabilities of a phone instance is higher than the pruning threshold,

information associated with that phone instance is sent to the grammar system with a

request to re-activate this phone instance by adding it to the list of active phone

instances for the next frame. This information contains the destination grammar node

probability, the backtrack tag and an address to the state probability memory to locate

the state probabilities of that phone instance. If the destination grammar node has a

high probability (>©), the phone processing system sends a request to the grammar

system to compute the source grammar nodes of the successors of this phone instance,

and to activate these successors by adding them to the list of active phone instances if

the source grammar node probabilities are higher than the pruning threshold.

5.1.2. Grammar Processing

Another process in the recognition system is grammar processing (Figure 24).

In section 4. 3. 2. we specified that it's function is to compute the source grammar node

probabilities of phone instances that are to be activated, and to generate a list of active

phone instances that have to be processed by the phone processing system in the next

frame, phone instances are added to that list as a result of requests from the phone

processing system (see above). For these computations, the following data are used:
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• Information associated with phone instances that have a destination grammar node

probability >0 (who's successors should be activated), or that have at least one

state with a state probability > 0 (who should be re-activated). This information

includes the destination grammar node probability, the backtrack tag, the phone

instance id, the unique state id and the topology address, and it is provided by

the phone processing system along with the corresponding requests.

• The HMM model of the grammar. It defines the phone instances by referring to

their unique phone id and topology address, and it specifies the successors of a

phone instance and the transition probabilities to these successors. This

information is stored locally in the grammar processing system.

If the successors of a phone instance are added to the list of active phone

instances, the source grammar node probabilities of the successor phone instances are

computed using the successor implementation of the Viterbi algorithm (section 4. 3. 3.

). Therefore, the grammar processing system can activate a certain phone instance

several times within a frame, each time with a different source grammar node

probability (contributed from different predecessors). It is important not to replicate

phone instances in the active phone instance memory, but to locate that phone instance

in the memory and to maximize the source grammar node probability. Figure 23 shows a

block diagram of the grammar processing subsystem.

If the phone processing system generates a request to re-activate a certain

phone instance for the next frame, it is not necessary to specify a source grammar node

(probability or backtrack tag). After all, only transitions between phone instances can

generate a source grammar node probability, and the phone processing system does not

deal with that. Therefore, only the phone instance id, the unique phone id, the topology

address and the address that was used to store the state probabilities on the phone

processing system (state probability address) have to be passed to the grammar

processing system. The sourcegrammar node probability is set to 0.
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Figure23: Block Diagramof the Grammar Processing System

A request to activate the successors of a phone instance, on the other hand,

does not require any state probability addresses: such a request activates new phone

instances with state probabilities that are 0. However, the phone instance id and the

destination grammar node (probability and backtrack tag) of the phone instance that

activates its successors has to be specified. For such a request, the grammar system has

to perform the following tasks:

• The successor phone instances (phone instance id, unique state id and topology

address) and the transition probabilities to these successors have to be

determined using the grammar topology, and P(D)1 • A(D,S) has to be computed.

• This result along with the new backtrack tag and the phone instance specification

then has to be added to the list of active phone instances (see Figure 16).
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The ToActiveWord process is responsible for adding a phone instance to the list

of active phone instances or to update the source grammar nodes (probability and

backtrack tags) of phone instances that are already on that list (see Figure 23). This

process determines if a certain phone instance is already on the list of active phone

instances and if so, locates it and determines the maximum of the already existing

source grammar node probability, P(S)oldl (EQ 17) , and the new probability, P(D)1 •

A(D,S). This scheme also works if a phone instance was already re-activated as a result

of a request from the phone processing system: in this case, the source grammar node

probability was set to 0 (see above).

After the grammar system has computed all the requests of the phone

processing system for a certain frame, it has generated a list of active phone instances

that has to be processed by the phone processing system in the next frame. To

completely specify an active phone instance, this list contains, for every active phone

instance, the source grammar node probability, the backtrack tag, the phone instance id,

the unique phone id, the topology address, and an address to locate the state

probabilities on the phone processing system.

There is no frame delay between the input (destination grammar nodes) and the

output (source grammar nodes) of the grammar system. This is because transitions

between grammar nodes are null-arcs: a null-arc transition does not have an associated

frame delay (see section 4. 3. 2.).

5.1.3. Backtracking

The backtracking process is described in section 4. 3. 4. In summary, this

process generates a list of backtrack pointers during recognition, and after the incoming

speech pauses (at the end of a sentence), the backtracking process reads thatlist starting

from the state with a highest state probability.
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To generate this list, the backtrack process writes the tag and the associated

phone instance ids of destination grammar nodes that have a high probability (>Th).

The phone processing system sends these grammar nodes, and they are the same that are

send to the grammar processing system with a request to activate the successors (Figure

24). The backtracking process writes the list, and returns a new tag to the grammar

processing system which gets attached to the source grammar nodes of the successor

phone instances.

5.2. Hardware Partition

In this section, the functional blocks of the speech recognition system are

partitioned into full custom hardware and general purpose hardware. To be able to

relate a function to a specific hardware implementation, we examine the requirements

of that function.

5.2.1. Front End Processing

The first step in front end processing is A/D conversion with anti-alias

filtering. This function was implemented using commercially available hardware.

After A/D conversion, the front end dsp algorithm described in (EQ 1) through

(EQ 4) in chapter 3, has to be performed within a frame of 10 ms. This algorithm is a

typical dsp algorithm, using functions such as the fast fourier transform (FFT) and

vector quantization which are well supported by digital signal processors. Thus, it is

possible to implement the front end algorithm in real time on a single TMS320C30 DSP.

This approach was chosen as a special purpose implementation of these algorithms was

determined not worth the effort and would result in inflexibility of a portion of the

algorithm that is not well defined.
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To ease the task of interfacing the A/D hardware with the DSP, commercial

hardware was used that contains - besides anti aliasing filters and the A/D converter - a

processor to set up a serial protocol so the sampled data can be directly received by the

serial port of the DSP. Furthermore, the hardware can be configured by the DSP for

various sample rates (8kHz to 48kHz) and dynamic ranges (up to 16 bits per sample).

5.2.2. Phone Processing p

In this process, the state probabilities and the backtrack tags, and the ;%

destination grammar nodes of active phone instances are computed. In chapter 4 we ?::

derived that for a 60,000 word recognition system about 200,000 state probabilities i£
i'

have to be computed within 10 msec (20 million states per second). Other operations in

this process include normalization of the state probabilities, comparing the pruning 7

threshold to every state probability, and eventually updating it. Also, the destination ft

grammar node probabilities and backtrack tags of 60,000 active phone instances are ft

computed. For pruning, the phone processing system compares the state probabilities §

and the destination grammar node probabilities to the pruning threshold to decide if a

phone instance should be re-activated for the next frame, or to request activating the -/;•

successors of a phone instance. It is obvious that these computations are the most |

critical "inner loop" of the Viterbi algorithm, they are very demanding in terms of §?

computational throughput and memory bandwidth. §?.•

"*•?*
:S •

To process one state, the phone processing system has to read A(p,s), P(ot\s) $•

and the phone topology. Also, the state probabilities P(Ot.j,s) and the backtrack tags |
Tag(p, i-l) of all the predecessor states have to be read from the state probability §

memory i-l. In addition to that, the source grammar node probabilities and backtrack H

tags of active phone instances have to be read from the active phone instance memory ly
on the grammar processing system, as well as the complete specification of this active |f

phone instance (phone instance id, unique phone id and topology) and a pointer into the If
&r -

state probability memory i-l to locate the state probabilities of its states. ?#
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Clearly, this function has to be implemented using adedicated architecture and

full custom processors. A general purpose system would-not be capable of processing

20 million states per second, even less capable of accessing within 50 nsec all data that

are necessary to process one state. It is because of this critical function that hardware

implementations using general purpose components are limited to a small vocabulary.

5.2.3. Grammar Processing

The inputs to the grammar processing system are requests from the phone

processing system. This can either be a request to re-activate a certain phone instance if

it has at least one high state probability (> ©), or to activate the successors of a phone

instance if the destination grammar node has a high probability, or both. A phone

instances is activated by adding it to a list of active phone instances which gets

processed by the phone processing system in the next frame.

The most demanding computation in grammar processing is the ToActiveWord

process since it is activated each time a phone instance has to be added to the list of

active phone instances (see Figure 23). Simulations showed that about 5% of the phone

instances that are active in a frame cause a request to activate their successors. Thus,

out of 60,000 active phone instances, 3,000 requests to activate successors can be

generated each frame. If each phone instance has an average of S successors that have a

high source grammar node probability, S *3,000 successors have to be added to the list

of active phone instances. Clearly, the ToActiveWord process is definitely very

demanding, especially if S is large which tends to be the case as the perplexity1 of the

grammar gets higher. Therefore, it is desirable to support this function with dedicated

full custom hardware. The multiplications (additions in the log domain) necessary to

compute the source grammar node probabilities P(S)neJ (EQ 17) are less demanding,

1. Theperplexity Q is aninformation theoretic measure ofa tasks difficulty. It isdefined asQ=2H, where H
is the entropy, or thenumber of bitsnecessary to specify thenextwordusing an optimal encoding scheme
[Lee89].
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but if the grammar perplexity is high, they also cannot be implemented on a single

general purpose processor. For each successor, the processor that implements successor

computation has to read memory to identify the successor (phone instance id, unique

state id, topology address), read the transition probability, compute the source grammar

node probability, compare it to the pruning threshold, update the pruning threshold, and

send the structure to the ToActiveWord system. Assuming this takes not more than 500

nsec (optimistic), we can process in real time 20,000 successors per frame. Thus, a

general purpose system is only feasible for small values of S (in this case, S<6.7).

Even though the successor computation process can be very demanding for

grammars with a high perplexity, this was not done because grammar processing

algorithms in which researchers are experimenting with various grammar topologies are

not stable. Also, natural language processing (chapter 1) makes it necessary to

dynamically change transition probabilities between phone instances. For a full custom

implementation it is desirable to customize the architecture to a certain grammar

topology, and since this topology is not determined yet, it is more feasible to use a

general purpose grammar system.

As a result, the ToActiveWord process is implemented using full custom

hardware: it is an operation that is not only the most time critical, it is also common

across various grammar topologies.

5.2.4. Backtracking

The least demanding function in Figure 24 is the backtracking function. To

generate the backtrack list, there are 2 memory accesses per incoming destination

grammar node tag, one to store the old tag and one to store the associated phone

instance. About 3,000 destination grammar nodes have a high probability at the end of a

frame (see above), therefore there are about 6,000 memory accesses in 10 msec. Also

the backtracking function that reads the backtrack list at the end of a sentence is not
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very demanding: there is one memory access per recognized phone instance, thus the

whole operation can easily be performed on general purpose hardware.

5.2.5. Final Hardware Partition

Figure 24 summarizes the partition of the recognition system into full custom

and general purpose boards.
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Figure 24: Hardware Partition

After relating functions to full custom and general purpose hardware

components, we can now define a physical partition of the system. The most natural

way is to separate the full custom functions and the general purpose functions and to

implement them on different boards. Following this strategy, Figure 24 shows the

resulting hardware partition. The computations for the recognition system are
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Figure25: HardwarePartitionof the RecognitionSystem

implemented on 3 custom boards: a grammar board that contains digital signal

processors for the successor computation, backtracking, and front end processing. The

Viterbi board contains full custom hardware for phone processing, and for the

ToActiveWord process. The third board is a memory board that contains the output

distributions of the states of unique phones.

During recognition, speech is A/D converted and frame for frame, the features

ot are computed using a TMS320C30 digital signal processor that resides on the

grammar board. These features are then sent to the output distribution board so that the

output probabilities for the active states in that frame can be accessed.

Given these output probabilities and a list of active phone instances from the

ToActiveWord process, the phone processing system in the Viterbi board updates the

states of the active phone instances. All data needed for these computations (except the

list of active phone instances and the output distributions) reside on local memory

inside the phone processing system. If, after processing the state probabilities of an
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active phone instance, there is at least one state that has a probability higher than the

threshold, the phone processing system sends a request to the ToActiveWord system to

put this phone instance on the active list of phone instances for the next frame. If the

destination grammar node probability is high, the phone processing system sends a

request to the successor computation process on the grammar board. This process is

implemented on TMS320C30 digital signal processors. It generates a backtrack list and

send requests to the ToActiveWord process to add successors to the list of active phone

instances for the next frame.

After the end of a sentence, the backtrack process on the grammar board is

activated which generates a list of words that were recognized. This process runs on one

of the DSPs that implemented successor processing during the sentence. Finally, Figure

24 shows a schematic of the complete speech recognition hardware.

The general purpose microprocessor board (68020 based board by Heuricon)

and the ethernet interface board are used to control the system (see Figure 24) and to

interface it to the computer network. The Heuricon board runs a real time operating

system (VxWorks) and has the driver software necessary to open a process remotely

from a workstation. At system start-up, the microprocessor reads the HMM parameters

via ethernet from a disk and loads them into the recognition hardware. During

recognition and at the end of a sentence, it also has the task to coordinate the data

transfer between the boards and synchronize the boards after every frame.

Communication between the boards is done in two ways: through dedicated

busses that are implemented using ribbon cables and through the standard VME back

plane. Any communication that has a high data rate had to be implemented on dedicated

busses since the VME back plane is very band limited (about one read or write cycle

every 300 nsec, maximal 32 bits data). These high bandwidth communications are

accessing the output distributions from the distribution board, generating requests to

the successor computation process, or generating requests to add successor phone
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Figure 26: The Complete Speech Recognition Hardware

instances to the list of active phone instances. Communications that use the VME bus

are transferring the feature vectors of a frame to the output distribution board, and

loading the recognition hardware at system start-up. Also, the Heuricon board uses the

VME bus to control the boards, to read local memories and registers on the various

boards for debugging purposes, and to load status registers on the boards. For

synchronization, the interrupt lines that are provided by the VME back plane are used.



The Viterbi Board

This chapter describes the architecture and implementation of the full custom

Viterbi board which performs the computations for phone processing and for the

ToActiveWord process (chapter 5). It also contains memories to store HMM parameters

of unique phones, intermediate results, and the list of active phone instances generated

by the ToActiveWord process.

6.1. Phone Processing

The most time critical function in the recognition system is phone processing.

As derived earlier, this process has to compute the state probabilities and backtrack tags

of 20 million states and 6 million destination grammar node probabilities and backtrack

tags per second. Also, it performs normalization and pruning for all states and grammar

nodes processed. We also showed in chapter 4 that due to the properties of HMMs that

describe phones (locality, left to right transitions), the most feasible implementation of

this process is to compute the state probabilities based on predecessor states.

82



83

6.1.1. Data Access

Figure 28 visualizes the data flow for phone processing. If a state has an
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Figure 27: Data Flow Diagramof the Viterbi Process on the Phone Level

average of 3 predecessor states, the following data have to be accessed in order to

update the state probabilities:

• First, the phone process reads information associated with an active phone instance

from the list of active phone instances in the grammar system. This information

contains the probability and backtrack tag of the source grammar node (36 bits),

the phone instance id (20 bits), the unique phone id 16 bits), the topology

address (4 bits) and a pointer to the state probabilities (16 bits, see chapter 5).
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Also, there are flags to indicate if a phone instance has been activated for the

first time, and a flag that is set in the highest valid address location of the active

list memory to indicate the end of the list of active phone instances. This

memory gets accessed sequentially, once per phone instance, yielding 96 bits of

data per phone instance.

• for every state in an active phone instance, P(Oi.Jt p) and Tag(p, i-1) has to be

accessed for all the predecessors p of that state. The backtrack tag is coded using

20 bits and the state probability has 16 bits (section 4.2.). We assume that a state

has 3 predecessors, thus this access yields 3 * 36 bits of data for every state that

has to be updated.

• P(ot I s), the output probability (12 bits)

• A(p,s), the transition probabilities from the 3 predecessors to the state (3 • 4 bits)

• Topology information to identify the 3 predecessors (relative offset, 3 -3 bits)

If we assume that a phone instance has an average of 3 states, about 60,000

active phone instances (200,000 active states) have to be processed per frame. The

phone processing system has to access a total of 145 bits per state and 96 bits per phone

instance. This corresponds to « 34.8 Mbits per frame or 3.48 Gbits per second. In

addition, the results of the phone processing operation have to be stored or passed to the

grammar processing system:

• P(Oit s) and Tag(s, i)t the state probabilities and Tags of the states processed (36

bits). These results are stored in the state probability memory i, even if the

phone instance is not re-activated (pruned).

• P(D)ly Tag(D, i), the state probability and Tag of the destination grammar node (36

bits) and the phone instance id (20 bits). This structure only gets passed after a

phone instance has been processed and if P(D)1 is above the pruning threshold.
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In this case, a request to activate the successors of that phone instance is issued.

In the worst case however, the system must support a long sequence of these

requests.

• If there is a state inside the processed phone instance with a state probability that is

above the pruning threshold, the phone processing system sends a request to the

ToActiveWord system to re-activate this phone instance for the next frame. This

request contains the complete specification of the phone instance (20+16+4 bits)

and a pointer to the state probabilities in the state probability memory (16 bits).

Thus, the results of phone processing that are stored or passed to other

processes, are 36 bits per state and 112 bits per phone instance (worst case). This

corresponds to 14 Mbits per frame or 1.4 Gbits per second.

Clearly, the most severe bottleneck in this process is the access of the

memories that contain information associated with the predecessor states (state

probabilities i-1, transition probabilities and topology). These memories have to be

accessed once for every predecessor of a state. The other memories (output

probabilities and state probabilities i) only get accessed once per state.

The computation of the Viterbi algorithm and the address computation for the

memories are implemented on full custom processors. Therefore, the processor

architecture can be pipelined and customized to the Viterbi algorithm to achieve a very

high computational throughput. This means the real system bottleneck is memory

access.

6.1.2. Parallel Processing of Active States

This section describes an architecture that could reduce the memory

bottleneck, but it is shown that it requires too much hardware and thus is not feasible.

Here, several Viterbi processes operate in parallel and the memories that contain

information about the predecessor states can be partitioned so that each process
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operates on a subset of the active states. This would result in a linear speedup as we

increase the number of Viterbi processes.

Since each Viterbi process can operate on a different state s, the various

Viterbi processes have to access different output probabilities P(ot I s) thus increasing

the bandwidth to that memory. To partition the output probability memory among the

Viterbi processes, it would be necessary to dedicate a certain Viterbi process to only

operate on a subset of unique phones: if only a subset of unique phones is processed by

a single Viterbi process, the output distribution memory accessed by this process only

has to have a subset of the output distributions. To implement this scheme, it is

necessary to distribute active phone instances in such a way that they are processed by

the according Viterbi process.

Also, the hardware for the memories that contain information about the

predecessors (state probability i-1, transition probabilities, topology memory) would

increase even though they can be partitioned. Memories are available with address

spaces of up to 4M, but the recognition system is specified for a maximum number of

256K active states. Thus, it is important to use memories with a large word length, but

64K word memories (that would be used if the system is partitioned into 4 parallel

processes) are not available with wider words than the memories with an address space

of 256K. Therefore, partitioning the address space would result in additional memory

chips, in this case, 4 times as many.

In conclusion, a subsystem architecture that is based on parallel processing

certainly is possible, but it inevitably results in more hardware. It would require too

much hardware to process the active states in parallel. So a time multiplexed approach

was used to process all active states using one custom process. However, a parallel

architecture certainly can be used for an even larger system (multiple person speech

server) where serial processing of active states is not fast enough.
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6.1.3. Serial Processing of Active States

Here, the state probabilities of active phone instances are processed

sequentially and the bandwidth to the memories that have to be accessed for every

predecessor of a state limits the system performance. To speed up this bottleneck the

following techniques were used.

6.1. 3. a Transition Probabilities A(p.s)

The HMMs of unique phones define the predecessors and the transition

probabilities from the predecessors to a certain state. It is possible to arrange the

transition probability memory in such a way that one memory access yields the

transition probabilities from all predecessors of a state. Typical HMMs that describe SS8M^

phones do not have more than 3 predecessor states for any state in the phone. Therefore,

one word in the transition probability memory contains 4 transition probabilities, 3

transitions from predecessor states (here, the source grammar node can be a

predecessor) and one transition probability to the destination grammar node. Since

these probabilities are coded using only 4 bits (see chapter 4), the width of this memory

is 16 bits. Whenever a state has less than 3 predecessors or no destination grammar

node transition, the probability in the memory is 0 (llllbin in the log domain).

6.1.3. b Topology Memory

The topology memory contains the addresses of predecessor states. Again, this

memory can be arranged in such a way that one memory access yields all the necessary

address information to process one state.

-: .iiiv- „•;•

lipipv

Typical phone topologies have only local transitions, strictly left to right. SlR^-?

Usually there is no predecessor state that has an offset of more than 8 states. Therefore,

the most efficient way to store the location of predecessors is using offset addresses

relative to the current state. Again, there are not more than 3 predecessors for a state §ISfe?JK
'!*$M'{ •;'*£'»'• •. i.
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inside a phone, therefore the topology information of a state can be coded in a single 9

bit wide word (3 • 3 bits).

6. 1. 3. c State Probability Memories

To increase the memory bandwidth to the state probability memory i-1, cache

memories were used that store a small subset of the state probabilities, the subset

relevant to process a state.

To describe this method, consider the following architecture: if the state

probability memory i-1 is replicated 3 times we can simultaneously access the

information associated with the 3 predecessors of a state using different addresses for

each of these memories. Thus, each predecessor state probability is accessed from a

different memory and there is no contention. When the result is computed, it has to be

broadcast to the state probability memories that keep the current result (state

probability memory i) and stored using the (sequential) address corresponding to that

state. Figure 28 shows this architecture that assumes that a state has not more than 3

predecessors.

Using this scheme, it is possible to access all information necessary to process

one state probability in one memory cycle. However, the drawback is that the state

probability memories have to be replicated 3 times.

To avoid this, we can exploit the fact that state transitions inside phones are

local and strictly left to right. Thus, it is sufficient to replicate only a small subset of the

state probability memory i-1, the subset that is relevant to update a certain phone.

Assuming that a state has no predecessor that has an offset bigger than 8 (no

predecessor is more than 8 states to the left of that state), it is sufficient to replicate the

subset of 8 states that precede the current state. Since the states are processed and

stored sequentially as they occur in the HMM of phones, only the states probabilities
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Figure 28: Viterbi Processon the Phone Level using Multiple State Probability Memories

(and tags) that are stored on the 8 neighboring lower address locations have to be

replicated. This scheme is shown in Figure 28:

To compute the state probability of state n at frame /, we simultaneously want

to access P(Oi_lt I), P(Oi_j, m) and (Ot.ltn). This can be done by simultaneously

accessing 3 small cache memories that contain these data. Because of the locality of

state transitions inside phones, there are no "misses" when that cache memory is read: it

is guaranteed that the all predecessors of a state are in that small subset of the state

probability memory i-1. As a state is processed and the caches are read, they

simultaneously get updated by transferring the state probabilities (and backtrack tags)

from sequential addresses of the state probability memory i-1, discarding the content

that was longest resident in the caches, which is in effect a circular buffer.
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Figure 29: Replication ofa Local Subset of the State Probability Memory i-1

6.1. 3. d Output Probability Memory

Using the above memory architecture, it is possible to access all information

associated with a state in one memory cycle: the topology information and the transition

probabilities for predecessor states can be accessed using one memory address, while

the state probabilities and backtrack tags of predecessor states can be simultaneously

accessed from 3 small cache memories. Since the hardware has to process 200,000

states within a frame duration of 10msec, it is necessary to implement memory cycles of
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50nsec. In general, there are three ways to achieve a fast memory cycle time: Using a

fast, expensive memory technology (static memories), using interleaved memories, or

using fast page mode in dynamic memories.

In phone processing, the memory that is most critical to implement this fast

access cycle time is the output distribution memory, not only because of its size

(80MBytes), but also because it is accessed almost randomly (see below). This memory

contains 4 output distributions per unique state, and each output distribution has 256

probabilities. When the memory is accessed, the output probability corresponding to a

certain state in a phone instance and a certain set of observations is read. However, the

order in which active states are processed is sequential only within a phone instance,

but the sequence of phone instances (which are instances of unique phones) is random

because of pruning. However, phone instances typically are very small (2-5 states),

therefore there are as many random accesses as there are active phone instances in a

frame, and techniques like memory interleaving or fast page mode access to increase

the memory bandwidth for inexpensive DRAM are not very successful.

Instead, this system uses static memories (SRAM) to achieve the fast cycle

time. Since these memories are not very dense, have a high power consumption (4W for

a 64Kx32 module), and are fairly expensive, only a small subset of the memories is

implemented using this technology. Similar to memory architectures in computer

systems, most data reside on inexpensive (but slow) dynamic memories and only the

subset that is actually required to process a frame with a certain speech observation is

loaded to a fast static memory. This subset is called output probability memory.

The output probability memory contains the output probabilities of all unique

states, but only for the set of speech features that was observed in a frame. Thus,

instead of storing 4 output distributions, each with 256 output probabilities for 256

different features (output distribution memory), the output probability SRAM contains

one probability per unique state. This probability is the product of the 4 probabilities
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that were derived from the output distribution memory for that unique state and for the

set of 4 speech features o{ that were observed in that frame (EQ 8).

The data transfer from the DRAM output distribution memory to the SRAM

output probability memory can be done sequentially. For that, the output distribution

memory is partitioned into 256 blocks for each speech feature, each block corresponds

to a certain speech feature vector (observation) and it contains the output probabilities

of all unique states for this particular observation. Thus, to load the SRAM output

distribution memory, we simultaneously access 4 different blocks corresponding to 4

observations of different speech features and sequentially read the probabilities for all

unique states, add them (log domain) and store the result on the output probability

SRAM. This data transfer has to happen before the frame that corresponds to these

observations is processed.

Using the memory architecture described above, it is possible to access all data

necessary to process an active state within one memory cycle. All memories that are

accessed by the phone processing system are implemented with fast static memories

that allow an access cycle time of 50ns. Using this scheme, it is possible to sequentially

compute 200,000 state probabilities in one frame.

6.2. ToActiveWord Process

The ToActiveWord Process has to generate and maintain a list of active phone

instances for the next frame. For that, it implements the MAX operation for the

successor based Viterbi process on the grammar level by updating the source grammar

node probabilities of successor phone instances (successor implementation).
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6.2.1. Active Phone Instance Memory

The purpose of the active phone instance memory is to store a set of active

phone instances that has to be processed in the next frame by the phone processing

system. This list is necessary because of pruning: only phone instances with a high

source grammar node probability or with at least one state with a high state probability

are processed on the phone level (see section 4. 3. 3.).

The recognition system has two active phone instance memories: one that

contains the active phone instances that have to be processed in the current frame and

another list that is being generated for the next frame. In the next frame, the memories

are swapped: the one that was generated in the previous frame now gets processed while

the other one gets re-built. There are two sources that can add a new active word onto

the active word memory, the phone processing system and the successor computation

process (see section 5. 2. 3.).
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The phone processing system compares the state probabilities of all states in an

active phone instance to the current pruning threshold after the states were processed. If

there is at least one state that has a state probability that is higher than the pruning

threshold, this phone instance has to be processed again in the next frame. In this case,

the phone process generates a request to re-activate this phone instance. The other type

of request comes from the successor computation system if the probability P(S)1 =

P(D)1 •A(D,S) of a successor source grammar node is higher than the pruning threshold.

In this case, the successor phone instance with source grammar node probability P(S)1

has to be added to the active phone instance memory if it is not yet on that list.

However, if this successor phone instance was already added to that list, the source

grammar node probability of that successor has to be updated based on (EQ 18):

P(« neW = MAX [i> (5) ,P(S) lold] (EQ 18)

The active phone instance memory has to store information about each phone

instance so that its states can be updated in phone processing. Figure 31 shows the

content of this memory for a phone instance.

All the necessary information about an active phone instance is contained in a

single address location. P(S)1 and Tag(S, i) are required in phone processing for states

that have a transition from the source grammar node. PI, UniqueAdd and TopoAdd

specify the active phone instance: PI is the phone instance identification, UniqueAdd

specifies the address of the corresponding unique phone, and TopoAdd is required to

specify the topology of the unique phone.

It is also necessary to specify StProbAdd if the phone instance was already

active previously. In this case, the Viterbi process has to access the state probabilities

P(Ot.j,p) that were computed in the previous frame. StProbAdd specifies the address of

the state probability of the first state, and since the state are processed sequentially, the
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Figure 31: Content of the Active Word Memory

other states of that phone instance are in the next higher address locations. The number

of states in this phone instance is specified in the topology memory, and this

information can be accessed using the TopoAdd field. NewFlag specifies if the active

phone instance was already active (NewFlag=0) in the previous frame or if it is active

the first time (NewFlag=I). In the latter case, StProbAdd is meaningless since all the

predecessor state probabilities are assumed to be 0. Therefore, the access of the state

probability memory i-1 is controlled by NewFlag and StProbAdd.

Finally, the active phone instance memory contains a bit that indicates the end

of the list of active phone instances. If the phone processing system reads this bit, it can

initiate process the next frame since all active phone instances in this frame were

processed.

6.2.2. ToActiveWord Process

Figure 30 shows how the ActiveWord Process is embedded into the phone

processing system and the successor computation process. It receives requests to add a
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new active phone instance to the active phone instance memory from both of these

systems and has to update the active phone instance memory accordingly.

However, this operation is not just a memory write operation on successive

write addresses: as described earlier, there might be several requests to add the same

phone instance to the active word memory. For example, a phone instance might have

been already added to the list of active words due to a request from the phone

processing system, when the grammar system requests to activate the same phone

instance because a predecessor contributes to a high source grammar node probability.

Or, a phone instance that has many predecessors which have a high destination grammar

node probability will cause multiple requests to be put on the list of active phone

instances. Since the Viterbi algorithm on the grammar level is based on successor

processing, these requests can arrive at arbitrary times.

To implement the Viterbi algorithm correctly, it is necessary to merge

transitions that terminate in the same phone instance. This means a specific phone

instance can only be on the list of active phone instances once. Therefore, if the

ToActiveWord process gets a request for certain phone instance, it first has to find out if

this phone instance is already on the active phone instance memory. If so, there are

three possible actions:

1. If the NewFlag bit is 0, then the phone instance is on the active phone instance

memory due to a request from the phone processing system. Also, since the

phone processing system generates only one request per phone instance (it only

processes a phone instance once), the current request comes from the successor

computation process. In this case, the ToActiveWord process has to update the

source grammar node probability and backtrack tag according to (EQ 18), but

StProbAdd and NewFlag may not be altered.
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2. If the NewFlag bit is 1, then all previous request came from the successor

computation process. If the current request was originated by the phone

processing system, the NewFlag has to be set to 0 and StProbAdd inserted.

However, the source grammar node probability and backtrack tag may not be

changed since the phone processing system does not contribute to a source

grammar node probability.

3. Finally, if NewFlag is 1 and the current request comes from the successor

computation system, the source grammar node probability and backtrack tag has

to be updated according to (EQ 18), and NewFlag remains 1. In this case, the

StProbAdd field is meaningless.

These actions of the ToActiveWord system are summarized in Figure 32:

new request from
phone processing

system
for the same phone instance

new request from
successor

computation system
for the same phone instance

•hone instance in memory
was requested from
phone processing

system

not

possible

- update prob and tag
of source grammar node

- NewFlag = 0
- don't change StProbAdd

phone instance in memory
was requested only from

successor computation
system

- don't change prob and tag
of source grammar node

- NewFlag = 0
-insert StProbAdd

- update prob and tag
of source grammar node

- NewFlag = 1
- StProbAdd meaningless

Figure 32:Actionsof the ToActiveWord Systemif Phone Instance was AlreadyActivated
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If the ToActiveWord system gets a request for a phone instance that was not

yet activated, it inserts the following structure into the active phone instance memory:

1. If the request came from the phone processing system (re-activate), the phone

instance specification (WA, UniqueAdd and TopoAdd) and StProbAdd are

inserted using the next available successive memory address. NewFlag is set to

0. In this case, the source grammar node probability is set to 0.

2. If the request came from the successor computation system, the ToActiveWord

process inserts the phone instance specification, the source grammar node

probability and backtrack tag, and sets NewFlag to 1. In this case, StProbAdd is

meaningless.

If the ToActiveWord system gets a flag from the successor computation system

that indicates that all requests have been processed, a dummy structure (all ones) is

added to the next available successive memory location in the active phone instance

memory. In this structure, the EndFlag is set to 1.

To determine if a certain phone instance is already on the list of active words,

the ToActiveWord process uses a list that, if accessed using the phone instance

identification as address, yields an address for the active phone instance memory (this

list will be called ActiveList memory). To update the phone instance, the active phone

instance memory gets accessed using this address and the phone instance that was

already active gets updated. If the phone instance is not yet on the list of active words,

the content of the ActiveList memory is 0. In this case the new active phone instance

will be appended to the active phone instance memory and this new address stored in

the ActiveList memory.

For this scheme, it is important that the ActiveList memory is cleared before a

new list of active phone instances gets generated. If the active phone instance memory

is empty, there should only be "0" in every location of this memory. To implement this,
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Figure 33: Generation of the Active Word List

I use two ActiveList memories, i-1 and i: while the ActiveList memory i is used to build

the active phone instance memory i, the ActiveList memory i-1 gets cleared as the

phone processing system sequentially reads phone instances from the active phone

instance memory i-1. Only the memory locations that correspond to the phone instances

read from the active phone instance memory are cleared as they are read from the active

phone instance memory (the other ones don't have to be cleared). After the active phone

instance memory i was generated at the end of a frame, the memories get swapped such

that memories i become memories i-1 and memories i-1 becomes memories i. Figure 30

shows the corresponding block diagram:

6.3. Board Architecture

The Viterbi board contains the two processes and the associated memories that

were discussed above: phone processing and the ToActiveWord process. Figure 35

shows how these processes communicate with each other and the memories.
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Figure 34: Clearing the ActiveList Memory

The phone processing system sequentially reads active phone instances that are

stored on the active phone instance memory i-1 and processes their states. For that, the

state probability memory i-1, the transition probability memory, and the output

probability memory have to be read. The phone processing system also has to read the

topology memory, but since this is a very small memory (128 words), it is implemented

inside the phone processing system. As the active phone instance memory i-1 is read,

the address location in the ActiveList memory that corresponds to the phone instance id

gets cleared. If, after phone processing, a state in a phone instance has a high state

probability, the phone processing system sends a request to the ToActiveWord system to

re-activate that phone instance. If a phone instance has a high destination grammar node

probability, the phone processing system sends a request to the successor computation

process to activate the successors of that phone instance. The successor computation

process is implemented on another board (see 5. 2. 5.).



active

phone instance

memory i-1

active

phone instance

memory i

state

probability
memory i

transition
probability

memory

output
probability
memory i

ActiveList
memory i-1

ppbmejl^

i
ToActiveWord

!Process

i
ActiveList
memory i

output
probability

memory i+1

state

probability
memory i-1

101

successor computation

request

from successor computation

from output distribution board

Figure 35: Processesand Memories that were implemented on the Viterbi Board

The task of the ToActiveWord process is to generate a new list of active phone

instances for the next frame. It receives requests from the phone processing system and

from the successor computation system to add a certain phone instance to that list. To

find out if this phone instance is already on that list, the ToActiveWord process reads

the ActiveList memory using as address the phone instance id. This yields a pointer into

the active phone instance memory. If this pointer is 0, the phone instance is not yet on

the list of active phone instances, and it will be added using the next unused sequential
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address location. This address is then written into the ActiveList memory for further

reference. However, if the pointer that was accessed from the ActiveList memory is not

0, the phone instance is already in the active phone instance memory. In this case, the

phone instance is updated according to Figure 32.

While the phone processing system and the ToActiveWord system are busy, a

new set of output probabilities is loaded into the output probability memory i+1. These

probabilities correspond to the values P(oi+1 I s) for all unique states s and the

observation in the next frame, oi+1.

6.3.1. Switching Processor Architecture

This section describes an architecture that was used for the Viterbi board. It a

redundant set of processors that get activated alternately to eliminate discrete

multiplexors that would have to be used to switch memory busses.

The phone processing system has completely processed a frame if it reads the

EndFlag from the active phone instance memory (see 6. 2. 1.). In this case, no more

requests will be issued to the successor computation system and to the ToActiveWord

system which is indicated with a status bit. Thus, the successor computation system has

finished after it processed all requests and the status bit is set. In this case, the

successor computation system asserts a flag to the ToActiveWord system.

The ToActiveWord system has finished a frame after it received the flag from

the successor computation system and the status bit from the phone processing system.

If, in addition to that, all output probabilities for the next frame have been transferred

to the output probability memory i+1, the system can proceed to the next frame. To be

able to process the next frame, the active phone instance memories and the state

probability memories have to be swapped so that the i-1 memories become the i

memories and vice versa. Also, the output probability memory i+1 now becomes output

probability memory i and vice versa. This means, the address and data busses of the
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active phone instance memories have to be multiplexed so that the memory that was

connected to the ToActiveWord system now is connected to the phone processing

system (and vice versa), and the state probability memory that was read by the phone

processing system now has to be written (and vice versa), and the ActiveList memory

that was used to generate the active phone instance memory now has to be cleared (and

vice versa).

The total number of address and data bits that have to be multiplexed is

(96+16) • 2 (active phone instance memories) + (36+18) • 2 (state probability

memories) + (20+16) • 2 (ActiveList memories) + (12+16) • 2 (output probability

memories) = 460 bits. To multiplex these busses, they have to be duplicated and fed to

the multiplexer input pins. This multiplexing operation requires a total of 460 *2 = 920

multiplexer input pins and 460 output pins. A hardware implementation of this scheme

would consume a lot of board area: if the multiplexers were implemented using TTL

logic (octal 74LS604), there would be 58 chips required.

To avoid the switching of memory busses, I use an architecture that switches

processors (see Figure 36). For that, a second set of processors which implement a

second phone processing system and a second ToActiveWord process is added to the

board. For a certain frame, only one set of processors is active (for example, the shaded

processors in Figure 36). The other set is idle with its output pins floating. After the
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Another advantage of this architecture is that it is symmetric if the transition

probability memory is duplicated (all the other memories already had to be duplicated).

This can be seen in Figure 36: the Viterbi board consists of two identical halves, and

therefore it is less effort to implement that board since the design complexity is roughly

cut in half. The transition probability memory is fairly small (64Kxl6), thus a

duplication of this memory does not add a lot of additional hardware.
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6.3.2. VME Access to Memories

The switching processor architecture eliminated multiplexers which otherwise

would be needed to switch memory busses between processors. However, it is desirable

that the memories on the system can also be accessed by the VME host processor (see 5.

2. 5.)because the memories have to be loaded with initial data at system start-up and the

ability to read and write memories on the Viterbi board it is desirable for debugging and

testing. Thus, the memory busses have to be routed and multiplexed to a VME interface

that handles the communication between the host and the Viterbi board. This again

would result in a large number of multiplexors that would have to be implemented using

discrete components.

To avoid this, I implemented VME interface controllers on the full custom

processors that are already connected to the corresponding memory busses. These

controllers use the VME address bus to decode commands like reading or writing

certain memories or register locations. To access a certain memory, the VME host

processor identifies the full custom processor chip that is connected to that memory and

specifies a memory operation using the lower 6 address bits of the VME address bus.

The VME data bus contains the memory address which is loaded to the address register

of the corresponding memory. If the memory operation is a write operation, a second

VME cycle supplies the data to the corresponding processor which then writes the data

into the memory. If the access was a read operation, the processor reads the memory and

writes the data onto the VME bus.

Figure 37 shows this architecture: the VME bus is only connected to the full

custom processor chips that implement phone processing and the ToActiveWord

process. These processes then use the memory busses to access the various memories.
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Figure 37: VME Host Access to the Viterbi Board Memories

6.3.3. The VLSI Phone Processing System

The phone processing system computes the state probabilities and backtrack

tags of active phone instances. For a 60,000 word recognition system, it is necessary to

process one state every 50 nsec.
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The most critical bottleneck in phone processing is to access the state

probabilities and backtrack tags of predecessor states from the state probability

memory. In section 6. 1.3. c, we derived an architecture that eliminates the bottleneck

using 3 copies of a small local subset of this memory. This subset - consisting of only 8

memory locations - is stored on the VLSI processors that implement phone processing,

and sequentially transferring data from the state probability memory to these local

copies updates this subset. Thus, the bandwidth to the state probability memory i-1 is

36 bits per 50 nsec (16 bit probability and 20 bit backtrack tags). The topology memory

i implemented on the processors because it is sufficiently small (128 words).

6.3. 3. a Processor Partition

The phone processing system has to be implemented on three different VLSI

processors because of the large number of pins necessary to access data. This section

lists the busses at the periphery of the phone processing chips and explains how phone

processing was partitioned into 3 chips.

The total number of bits that have to be accessed from external memory is 36

(state probability memory i-1) + 12 (output probability) + 16 (transition probabilities).

In addition, the result is stored on the state probability memory i. Since these data are

read once every cycle, each of these memories has its own bus to the processors. Also,

to address these memories, we need 18 bits (times 2) for the state probability memories

and 16 bits for the output probability memory. Since the address for the output

probability memory is the unique phone address, it can be shared with the address to the

transition probability memory. In total, the chipset requires 152 pins (not including

control pins) to interface to the memories.

There are also data associated with active phone instances. When the phone

processing system reads the active phone instance memory, it accesses 96 bits (see 6. 2.

1.). These data are used to update the state probabilities (source grammar node
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probability, backtrack tag and state probability address) and to identify the phone

instance (phone instance id, unique phone address and the topology address). If, after

processing that phone instance, the phone processing system generates a request for the

ToActiveWord system or the successor computation system, it again passes data

associated with that phone instance to these systems: 58 bits to the ToActiveWord

process (phone instance id, unique state address, topology address and state probability

address) and 56 bits to the successor computation system (source grammar node

probability and backtrack tag, phone instance id). This adds up to 190 bits (the phone

instance id is send to both, the ToActiveWord process and the successor computation,

therefore it can be shared).

In total, the phone processing system has 342 pins dedicated to data and

address busses for memories and the other processes. Since the packaging technology

that was available for this project supported up to 208 pins per chip, it was necessary to

partition the process into more than one full custom chip. Thus, the partition was done

according to Figure 38.

This partition is based on the various functions of the phone processing

system: the Viterbi processor computes the state probabilities, the destination grammar

node probabilities, and performs normalization and pruning. In addition to that, it

contains the controller for the phone processing system. The backtrack processor

computes the backtrack tags of states and destination grammar nodes and buffers the

phone instance id of the active phone instances that are processed. Finally, the address

processor computes the addresses that are needed to access the various memories on the

phone processing system.

This partition minimizes the number of connections between the chips: the

only signals that have to be distributed among the processors are a few control signals.

There are no data or address busses that have to be fed to more than one processor.
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6.3. 3. b Chip Architecture

The phone processing system uses a pipelined architecture (Figure 39) to

implement a throughput of one state probability computation per clock cycle. The chips

have to process 20 million states per second, therefore it is necessary to compute one

state every 50 nsec, which is the cycle time of the static memories that are accessed by

the phone processing system. To make the design simple, I decided to use the same
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cycle time to clock the processors; this means, we have to process one state per clock

cycle.
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The Viterbi processor sequentially computes the state probabilities and

destination grammar nodes of active phones. For the computation of the inner loop,
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(P(Oi.j>p)*A(p,s)), there are three identical pipelined datapaths that work in parallel (see

Figure 39). Each of these datapaths accesses the predecessors state probability, P(Oj.Jt

p), from a register file that keeps the state probabilities of the 8 states closest to the state

that is currently processed (see section 5. 2. 2.). To identify the predecessors of a state,

the Viterbi processor has an internal topology memory that contains the relative offsets

to the predecessor states. This offset is used to address the register file. The topology

memory also indicates if a state has a transition-from the source grammar node, and in

this case, one datapath accesses the source grammar node probability (which was read

from the active phone instance memory) instead of a state probability from the register

file. The result P(Oi.]tp)*A(p,s), that yields the highest probability is then selected and,

to compute the state probability, the output probability is added. The processor then

normalizes the state probability (EQ 13) and sends it off chip to be stored in the state

probability memory i. The processor also computes destination grammar nodes, the

current pruning threshold, andcompares the stateprobabilities to that threshold to make

pruning decisions (re-activate a phone instance or request to activate successors).

A chip layout of the Viterbi processor is shown in Figure 44. The chip was

implemented using a 23ujn CMOS process (Orbit). It has about 50,000 transistors, 204

pads, and has a chip area of 11.4mm x 12.1 mm.

The task of the backtrack processor is to copy the backtrack tag of the

predecessor that yields the highest state probability. To have these backtrack tags

readily available, the backtrack processor - like the Viterbi processor - has 3 register

files that keep the backtrack tags of the states closest to the current state and acopy of

the topology memory to access the register files. If a state has a transition from the

source grammar node (indicated by the topology memory), the backtrack tag of the

source grammar node probability is fed into one of the datapaths. After the 3 tags of the

predecessors have been accessed, they are delayed in the same way the corresponding

state probabilities are delayed in the pipeline of the Viterbi processor. In the same
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Figure 40: Layout of the Viterbi Processor

pipeline stage where - in the Viterbi chip - a multiplexor selects the best probability, the

backtrack processor selects the associated backtrack tag. For that, the control signals

that control the multiplexor on the Viterbi processor are routed to the backtrack

processors. The same scheme is used to select the backtrack tag for the destination

grammar node: whenever the Viterbi processor selects a transition from a state to the

destination grammar node, the corresponding backtrack tag is selected on the backtrack

processor. Figure 39 shows the datapath and Figure 44 the layout of the backtrack

processor.
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Figure 41: Architecture of the Backtrack Processor

The third chip in the phone processing system is the address processor. This

chip computes all addresses that are needed to access the various memories on the

phone processing system. Figure 39 shows the datapaths and Figure 44 the layout of

this chip.

The address processor generates the addresses for the state probability

memories i-1 and i, the topology and output probability memories, and the active phone

instance memory i-1. The datapaths used for these address computations, however, are

identical: They implement counters that can be set and incremented individually.

Since the phone processing system sequentially computes the phone instances

in the active phone instance memory, the address for the active phone instance memory

is the output of a counter. This counter is incremented each time an active phone
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Figure 42: Layout of the Backtrack Processor

instance has been computed. At the start of a frame, the counter is set to 1 (address 0 is

not used since a 0 in the ActiveList memory corresponds to a nil pointer).

The address to the state probability memory i-1 is set to StProbAdd when a new

phone instance is read from the active phone instance memory (StProbAdd is provided

by the active phone instance memory). This address points to the state probability of the

first state in that phone instance, and the other states are stored in the succeeding

memory locations. Therefore, the addresses corresponding to the states in the phone

instance other than the first state are computed by incrementing StProbAdd once every

clock cycle. Processing the phone instance is finished when the topology memory inside
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Figure 43: Datapaths of the Address Processor

the Viterbi chip yields an EndFlag (section 4. 3. 1.). In this case, the address counter is

set to StProbAdd of the next active phone instance.
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Figure 44: Layout of the Address Processor

The state probabilities that are computed in the current frame, P(0-t,s), are

sequentially stored in the state probability memory i. Thus, the counter that generates

the address to this memory is incremented every clock cycle. At the start of a frame it

gets reset to 0. To be able to locate the state probabilities of a certain phone instance in

the next frame, the address processor stores the address of the first state of a phone

instance and feeds it to the ToActiveWord system if the Viterbi process generates a

request to the ToActiveWord system.

At the start of a new phone instance, the counter that computes the address for

the transition probability and output probability memories gets set to UniqueAdd which
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is read from the active phone instance memory. UniqueAdd points to the first state of a

unique phone, and addresses of the succeeding states of that phone instance are in the

next sequential address locations, so the counter gets incremented every clock cycle.

The end of the phone instance is again indicated by the topology memory, and in this

case a new UniqueAdd is loaded from the active phone instance memory.

6. 3.3. c Control

The phone processing system has 3 independent controllers: the main

controller handles the proper operation of the chipset during phone processing, the

VME controller takes care of the communication with the VME host, and the test

controller is used to put the chipset in scanpath mode and accept scan commands from

the VME host (write, read a scan bit or clock the system for one cycle).

The structure of the main controller is data stationary control: for a set of data,

the controller generates a control word. As the data are processed in the various

pipeline stages, the control word is delayed using the same pipeline delay as the data.

If, in a certain pipeline stage, the datapath requires a control, the necessary control bits

from the same pipeline stage are fed to the datapath.

In the phone processing system, the main controller has to generate control

based on only 2 events: the beginning and the end of a frame. Figure 45 shows a state

transition diagram of the main controller. To specify the start of a frame, the main

controller is interfaced to the VME bus so that the VME host can issue a "StartFrame"

command by writing dummy data to a specific address location. The main controller

decodes the VME address, and, if the address corresponds to the "StartFrame"

command (and the controller is in the idle state), it goes to a state that generates a

"NewFrame" bit. Also, to release the VME bus, an acknowledge signal is generated.

After that, the controller goes to a state which generates an EndOfPhone bit which

causes that the first active phone instance to be read from the active phone instance
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memory. The states in the phone instance are sequentially processed until the

EndOfPhone of the corresponding unique phone topology in the topology memory is

read. This EndOfPhone causes the next active phone instance to be read from the active

phone instance memory: this is done without the interference of the controller. To

control the datapath for all actions that are necessary if a new phone instance gets

processed, the EndOfPhone flag read from the topology memory is logically OR'ed with

the EndOfPhone flag that was generated by the controller and then fed into the control

delay registers. All states in the main controller that are not the idle state also output an

"active** bit that is used to activate the i/o pads for the phone processing system.

idle state

StartFrame

StartFrame = 0

EndFlag'

^-' active

Figure 45: State Transition Diagram of the Main Controller

The end of a frame is encountered if the active phone instance memory yields

the EndFlag. This means all active phone instances for this frame have been processed

and the main controller can go to the idle state, disabling the active flag which causes
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all outputs of the chipset to be disabled. However, this active flag has to be delayed

because, when the EndFlag is read, there are still states in the pipeline that have to be

processed. This delay s implemented in the controller: it goes through a sequence of

states before it enters the idle state and de-asserts the active bit. This delay cannot be

implemented using external pipeline registers (as it is done with NewFrame and

EndOfPhone), because the active flag has to go into effect immediately after the

StartFrame command. If it were delayed using external registers, the io pads would not

be enabled on time.

The VME controller implements an interface to the VME host so it can access

some registers on the processors, and the memories that are connected to the phone

processing system. This interface is implemented using a finite state machine (FSM),

since the VME bus cycles are not synchronous to the clock of the Viterbi board. The

assumption is, however, that the clock of the FSM is faster than the VME cycle time,

otherwise the VME controller would be too slow to react to the VME bus and it would

not go through the correct sequence of states (this would result in VME bus errors).

All VME commands are identified by the VME address. Accessing a register is

implemented in one VME cycle while accessing a memory takes two cycles if the

wordlength of the memory is less than 32 bits (the width of the VME data bus). In this

case, the first VME cycle identifies the memory using the 5 LSBs of the VME address

and supplies the address of the desired memory using the VME data bus. This address

gets latched in the corresponding address register of the address processor (see Figure

43). In the second cycle, the VME host reads or writes the data from or to a VME

register on the Viterbi processor. Since the state probability memories have 32 bits, it

takes 3 VME cycles to transfer data from the host to these memories. The first cycle

identifies the memory and supplies the address, the second cycle gives the probability

which gets latched on the Viterbi processor, and the third cycle gives the backtrack tag

which is latched on the backtrack processor. After these data have been received, the
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Viterbi processor initiates a write operation to the state probability memory using the

supplied address and data. Since a certain phone process has one state probability

memory that is being read only (i-1) and one that is being written to only (i), just the

state probability memory i can be written. To write data to the state probability memory

i-1, the other phone process has to be used (see Figure 37). A read from the state

probability memory i-1 is implemented with 2*2 cycles: 2 cycles (address + data) to

read the probability and 2 cycles (address + data) to read the backtrack tag.

Bit 5 of the VME address is used to differentiate between the phone processing

systems A and B. To identify a certain chipset, The Viterbi processors has a pin that

specifies if the processor is in system A or B. If the pin is 0, the controller reacts for

memory transactions associated with system A, if it is 1, the controller of the B system

reacts.

Finally, the test controller is responsible for system level scanpath testing. A

command from the VME host activates this controller, and it generates a TestMode

signal. Based on this signal, all registers on the entire Viterbi board are no longer

clocked, even the state registers of the other controllers. In testmode, the test controller

accepts 4 commands from the VME host: to write a bit into the scan path, to read a bit

from the scan path, to clock the system for one cycle, or to terminate the test mode.

Using this test feature together with fact that all memories on the system can

be accessed by the VME host, there is no storage node on the entire Viterbi board that is

not observable or controllable by the VME host.

6.3.4. The VLSI ToActiveWord System

The ToActiveWord system generates a new list of active phone instances for

the next frame by adding or updating a phone instance in the active phone instance

memory based on a request. There are two sources for these requests: the phone

processing system and the general purpose successor computation system. When the
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ToActiveWord system processes a phone instance, it has to find out if that phone

instance was already added to the active phone instance memory. In this case, the

corresponding data have to be updated according to Figure 32. If the phone instance

was not yet on that list of active phone instances, it has to be added to the next

successive available memory location.

6.3.4. a Processor partition

Because of the large pin count on the periphery of the ToActiveWord process,

the implementation was partitioned on three full custom chips. Here, the partition was

based on a bitslice architecture: a certain processor operates on a subset of the 96 bit

wide word of the active phone instance memory. Figure 46 shows a block diagram of

the ToActiveWord partition.

The request processor operates on the WA id of a request either from the phone

processing or the successor computation system.. It accesses the ActiveList memory

using the phone instance id as address. The data read from the ActiveList memory is a

pointer into the active phone instance memory. If this pointer is 0, the request processor

uses an address generated by a counter to address the active phone instance memory.

Also, the request processor generates the flags (NewFlag and EndFlag, section 6. 2. 1.)

for the active phone instance memory and contains the controller for the ToActiveWord

system.

The grammar node processor performs the MAX operation for the source

grammar node of the current phone instance. If the phone instance is already in the

active phone instance memory, it reads the grammar node probability associated with

that phone instance and compares it to the grammar node probability of the current

request, The higher of the two probabilities is written back into the active phone

instance memory. If the phone instance was not yet in the memory, it just inserts the

probability associated with the current request. If there is a request from the phone
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Figure 46: Partition of the ToActiveWord System

processing system and the phone instance was not yet in the phone instance memory,

the grammar node probability written into the new location in the active phone instance

memory is 0.

Finally, the data processor writes data associated with the phone instance into

the active phone instance memory. If the request comes from the phone processing

system, the data are the UniqueAdd, the TopoAdd, and the StProbAdd. If the request
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was originated by the successor computation system, the data are the UniqueAdd, the

TopoAdd, and the Tag that is associated with the most probable grammar node.

6.3.4. b Architecture

To process a request to activate a phone instance, the ToActiveWord system

has to perform up to 3 memory accesses: First, it reads the ActiveList memory to find

out if the phone instance was already activated and to get its address in the active phone

instance memory. Then it reads the data associated with that phone instance from the

active phone instance memory and performs the operations shown in Figure 32, and

finally it writes the updated data back into the active phone instance memory. If the

phone instance was not yet activated, the ToActiveWord system only has a write access

to the active phone instance memory, but there are two accesses to the ActiveList

memory: to read the pointer and to update it.

To increase the throughput of the ToActiveWord system, the memory accesses

can be pipelined. However, the pipeline has to allocate all possible memory accesses:

reading and writing both the active phone instance and the ActiveList memories. Figure

47 shows the hardware allocation table for the pipeline of the ToActiveWord system. A

row in that table corresponds to a certain pipeline stage during various clock cycles

while the columns represent the pipeline at a certain clock cycle. Different shadings of

pipeline stages refer to different data.

This table shows that the ToActiveWord system has 7 pipeline stages. The

ActiveList memory is accessed during pipeline stages 2 and 4, and the active phone

instance memory is accessed during pipeline stage 4 and after pipeline stage 6. Using

this scheme, we can enter new data into the pipeline every other cycle. In this case, the

memories are fully utilized and the maximum throughput is achieved.

Since it is possible that there is a request for a phone instance which is

currently being processed in the datapaths of the ToActiveWord system, the processors



time

accesses

to the
ActiveList
memory

accesses

to the
active phone instance

memory

124

V
Figure 47: Hardware Allocation Table for the ToActiveWord system

could potentially access data from memories that are not yet updated (memory

incoherence). To avoid this, there are three memory coherence registers at pipeline
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stage 0. These registers keep the phone instance ids of the phone instances that are

currently in the pipeline. The phone instance ids of these registers are compared and if

there is a match between two registers, the ToActiveWord processors do not accept any

more input until after the pipeline is flushed. Then the memories contain relevant data

and new requests are accepted.

The ToActiveWord system accepts requests from two subsystems: the phone

processing system, which generates requests that are synchronous to the clock of the

ToActiveWord system (since both use the same clock generation circuitry), and the

successor computation system which generates requests that are not synchronous. To

arbitrate between the two requests, there is a multiplexor at the input of the datapaths

which toggles between the two requests every other clock cycle. If there is a request

from the successor computation system, it gets acknowledged after the input

multiplexor accepted the data. Requests from the phone processing system don't get

acknowledged, but if there is a request that cannot be processed right away, the

ToActiveWord system generates a stall signal that halts the pipeline registers of the

phone processing system.

Figure 48 through Figure 50 show the layouts of the 3 ToActiveWord

processors.

6. 3.4. c Control Structure

The control structure for the ToActiveWord system is time stationary. Here, the

controller generates a control word for all the pipeline stages for a certain clock period.

This control structure has the advantage that controller decisions can be applied to the

pipeline stage without delay. This is important in the ToActiveWord system: there are

some decisions that have to take immediately effect in all the pipeline stages. For

example, if there is a match in the memory coherence registers, pipeline stages 0 and 12

have to be stopped while the other stages have to continue in order to flush the pipeline.
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Figure 48: Layout of the Request Processors

The drawback of this implementation is, however, that control decisions for

certain data have to be delayed until this decision can take effect in the corresponding

pipeline stage. Therefore, the controller has to have several state transitions before the

control bit goes into effect.
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Figure 49: Layout of the Data Processors
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Figure 50: Layout of the Grammar Node Processors



129

:.":L;:L:;:;:o::::L:::|:::;L ' :';-':•'

^

.:•;•: LL : . :L ..' > 4m%F
^^V'•' :<o.

- "• % -^@^
•Ill I

Sift **•'•'

•:.'Vi;>,;

•'•';:'-':v-'••';•; ::l;.'-;l^
BP^sbI
BBMb

\ "

JfiF' ^SB ffllii^ii'^•3:

jk^

i"»> '^L%^ ^ ^%
{HHtali Bfc^B

: <S#*L ^c,^^*
•y*- .*. •>••

.. • .-• & ts$sj!*^*^. .^ft WV. • ^-. ^ 2r \- . . - :

\

4 w1

SSL ^

r' -

• •'-*•.

0&\ "* ^: -.; . *

V. v* v.... -v^^

IjL :::::>3S i§i •'""..•-.!-:Sv '̂̂ . ^5S£ol§^. v• L:v "' "•-'" o> ••"

"^

^/'^'^ ;V^

Figure 51: The Viterbi Board



The Distribution

Board

7

The distribution board stores the output probability distributions of unique

states (= states of unique phones). This system can handle a maximum number of

64,000 unique states, and associated with every state are 4 discrete distributions, where

each distribution corresponds to a certain speech feature. A distribution contains 256

probability values, one probability for every possible observation. Thus, a particular

observation for a certain speech feature is represented with an 8 bit feature vector, and

since our front end processing system generates feature vectors for 4 different speech

features, a speech segment is represented with 4 feature vectors. The probabilities in the

distributions are stored with their negative logarithms and quantized to 10 bits (see

4.2.). Thus, the distribution board has to store 64K x 256 x 10 bits = 80MBytes.

7.1. Board Operation

At system start-up, the VME host loads the output distributions of the desired

HMM into the memories of the output distribution board. These distributions were

generated using the forward-backward training algorithm on a large amount of speech

data. They were generated off line and stored on a disk, and the VME host accesses

them via ethernet and transfers them into dynamic memory (DRAM) on the output

distribution board. For that, the distribution board has a VME interface that uses the

130
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lower 26 VME address bits to specify the memory address on the distribution board and

the lower 10 bits of the VME data bus supply the probability values. For testing

purposes, the memory can also be read by the VME host. The distribution board is

organized in 4 DRAM banks. One bank contains, for all unique states, the probability

distributions of a certain speech feature.

During recognition, the VME host reads every 10 msec 4 feature vectors from

the front end processing system. The feature vectors in our system correspond to the

following speech features: the cepstrum, the delta cepstrum, the energy and the delta

energy. The task of the distribution board is, to generate, for all unique states, the

output probability that corresponds to the set of feature vectors for a certain frame.

These probabilities have to be written into one of the output probability memories on

the Viterbi board. For that, the distribution board has two ribbon cables that connect it

to the address and data busses of these memories (see Figure 52). The output

Viterbi board

output
probability
memory A

output
probability
memory B

cepstrum

4Mxl0

\ ' ' '' 5 " '
delta oepstrurrj;: *''
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Figure 52: Basic Function of the Distribution Board

probabilities that get loaded to the output probability memory will be used by the phone

processing system in the next frame. Thus, the speech recognition system has a
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pipelining scheme on the frame level as sown in Figure 53. The feature vectors are

delayed by one frame when the front end processing system computed the feature

vectors. Then, the corresponding output probabilities for all unique states are loaded

into one of the output probability memories on the Viterbi board, and in the next frame,

the phone processing system uses this memory to update the state probabilities of active

phone instances. Thus, during a certain frame, one output probability memory gets

written by the distribution board, while the other memory is read by the phone

processing system.

speech signal

A/D conversion,
store samples

front end
processing

download output
probabilities to
Viterbi board

phone processing and
grammar processing

•witw$

tune

Figure 53: Frame Level Pipeline of the Recognition Hardware

To compute the output probabilities for a certain frame, we assume that the 4

features are statistically independent. Thus, the joint output probability of a unique

state for a set of observations is the product of the 4 output probabilities that

correspond to the observations (EQ 8). Since the probabilities are represented in their
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logarithmic values, the multiplication corresponds to an addition. The VME host writes

the 4 feature vectors into registers on the distribution board and specifies the number of

unique states in the current HMM (this is the number of probabilities that have to be

transferred each frame to the Viterbi board). Then, the VME host specifies which output

probability memory has to be loaded on the Viterbi board, and gives a command to the

distribution board to start downloading output probabilities.

After that command was received, the distribution board reads the 4 output

probabilities associated with the set of 4 feature vectors. These probabilities get added

and written into the specified output probability memory on the Viterbi board. For that,

the distribution board generates the address, data, and the memory control signals (cs,

we) for the output distribution board. The output probability memory gets written

sequentially, starting from the address that corresponds to the number of unique states

down to address 0. The address that is used for the output probability memory is the

address of the unique state.

The distribution board interrupts the VME host after the output probabilities of

all unique states are transferred. Also, the memory busses that were used get disabled so

that the phone processing system can access the memory in the next frame. Thus, the

distribution board is ready to accept a new set of features from the VME host and to

download data for another frame, this time to the other output probability memory.

7.2. Architecture

7.2.1. Memory Organization

The distribution board has 4 identical DRAM banks, 16M x 10 bits each. Each

bank contains the output distributions of unique states for a certain speech feature. In

this system, one bank contains the distributions associated with the cepstral coefficient,

another the distributions associated with the delta cepstrum and so on. The memory
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banks are partitioned into 256 blocks, and each block contains the output probabilities

of up to 64K unique states for a certain 8 bit feature vector. This memory architecture is

shown in Figure 54:

The unique states inside a block are on consecutive memory addresses,

therefore, if the VME host specifies a feature vector, the corresponding output

probabilities can be sequentially accessed. Since our system uses 4 speech features, the

VME host specifies 4 blocks, one block one each memory bank. When the probabilities

are transferred to the Viterbi board, 4 probabilities corresponding to a certain unique

state are simultaneously read from the banks. The sequential ordering of states has the

advantage, that the memories can be read using fast page mode, where only the column

address has to be changed after a read. The DRAM memory banks are implemented with

memories that have an address space of 4M, so one page contains probabilities for 2K

unique states with can be read with a fast access time (80nsec).

7.2.2. Address Generation

All blocks in the memory banks have the unique states on the same relative

address locations. Thus, only one counter is required to address these relative locations

on the four banks. The difference between the addresses on the various memory banks

is a base address that corresponds to the 8 bit feature vectors. This is indicated with the

shaded blocks in Figure 54. Figure 55 shows the architecture of the memory address

unit. The address for a certain memory bank is composed of a feature vector and an

index address. These two addresses are merged in such a way, that the lower 11 bits of

the address are the lower 11 bits of the index counter address. Thus, the address unit

accesses a new row only after 2K columns had been accessed. The index address itself

is the sum of a DRAM base address that can be set by the VME host, and the output of a

decremental counter. Before the transfer of data, this counter is preset by the VME host

to the number of unique states. Then, the VME host issues a "go" command and the

counter starts decremental. The counter generates a flag if all the column addresses of a
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Figure 54: Memory Architecture

page have been accessed, so a controller on the distribution board can take care of the

different timing involved in a new row access.
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Figure 55: Memory Addressing

The transfer of data is finished if the decrement counter has the value 0. In this

case, a done flag is send to the VME interrupt handler which generates an interrupt to

the VME host.

The other address that has to be generated is the address for the output

probability memory on the Viterbi board. This address corresponds to unique states, and

therefore the index address that is used to address the unique states on the distribution

board. To make the distribution board more versatile, this address can have an offset

"SRAMbase" which is provided by the VME host and stored in a register. Thus, the

output probability address is the sum of the index address and SRAMbase.
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For testing purposes, the VME host can read the output probability memories

on the Viterbi board through the distribution board. For that, there is an output

probability address register which can be set using the VME data bus, and a data

register which latches the corresponding data from the output probability memory. This

register can then be read by the VME host.

Table 4 gives a list of the VME registers on the distribution board.

VME address register name size purpose

0x48xx,xxxx VQ register 32 bits keeps 4 feature vectors

0x49xx,xxxx DRAM base register 16 bits offset to index address

0x4Axx,xxxx SRAM base register 16 bits offset to output probability mem
ory address

0x4Bxx,xxxx Index register 16 bits keeps number of unique states

0x4Cxx,xxxx ActiveA/ActiveB*
register

lbit specify which output probability
memory to load

0x4Dxx,xxxx output probability
address register

16 bits store address ifVME host access

to output probability memory

0x4Exx,xxxx go-ahead-signal lbit activates transfer of data

0x4Fxx,xxxx output probability
data register

12 bits store data if VME host access to

output probability memory

Table 4VME Registers on the Distribution Board
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Figure 56: The Distribution Board



The DSP Board
8

The task of the DSP board is to perform successor computation (see 5. 2. 3.)

and front end processing (see 2.1.) Both processes use algorithms that vary among

different recognition systems. Therefore, it is essential to implement these processes

with general purpose hardware (5.2.). Computing the successor grammar node

probabilities in grammar processing is very demanding for complex grammars,

therefore the DSP board described in this chapter uses an architecture that supports

successor computation with multiple digital signal processors. It is even possible to

extend the system and to use multiple DSP boards for the successor computation task.

The outputs of the DSP board are - besides the feature vectors from front end

processing - 94 bit wide data structures associated with phone instances that get

activated, and they have to be passed to the ToActiveWord system on the Viterbi board.

A certain phone instance might be activated several times from different predecessor

phone instances (6.2.), therefore the DSP board has to have a full custom high

bandwidth interface to the Viterbi board.

8.1. The Board Architecture

The architecture of the DSP board is shown in Figure 57. It has 3 TI320C30

digital signal processors (DSPs) with an identical configuration. Each DSP has 2
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external busses, a primary bus and a secondary bus with 32 bits of data each. To store

data and programs, each processor has its own local SRAM that is connected to the

primary bus. The size of this memory can be up to 512Kx32 if 64Kx32 memory modules

are used, or up to 2Mx32 if 256Kx32 memory modules are used. To access this memory,

the DSP uses one wait state, so a memory cycle requires 60nsec. This local memory is

not shared with other processors on the board or with the VME host.

To be able to communicate with the VME host, every DSP has a dual ported

memory (DPRAM)attached to the primary bus. This DPRAM is accessible by the

various DSP processors and by the VME host. To indicate if a certain memory portion is

being used by one of the DSPs or by the VME host, there are several semaphores. The

DPRAM is accessed by the VME host through a VME interface. This interface also has

interrupt registers that can be set by the VME host to interrupt any of the processors. If

one of the processors interrupts the VME host, there is also an interrupt vector register

that identifies the interrupting processor. These interrupt vector registers are accessible

by the VME host processor only. If the interrupting processor has to send information to

the VME host to specify the interrupt, the dual ported memory can be used.

The board architecture also allows inter processor communication (IPC) using

dual ported memories (IPCRAM). The IPC network implements a fully connected ring,

therefore every DSP processor can communicate to any other processor. These dual

ported memories are connected to the primary bus, and each processor has 2 IPCRAMs

to communicate to the left and right neighboring processor. To avoid contention, these

memories also have semaphore banks.

Using this architecture, there are two possible configurations for successor

processing: parallel processing of successors where each processor executes the same

program, of bitsliced processing, where each processor executes a different program

and processes different data structure associated with phone instances.
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8.1.1. Parallel Processing ofSuccessors

In this configuration, each processor on the DSP board implements a successor

computation processes, and these processes work in parallel. For that, each processor

computes the successors of a different phone instance using the same algorithm, and the

requests that come from the phone processing system are distributed among the

processors. Figure 58 shows this configuration:

iljlii111!

from
phone processing ToActiveWord

Figure 58: Parallel Processing of Successors

Each processor receives the complete grammar node structure for a certain

phone instance from the phone processing system (phone instance id, grammar node

probability and backtrack pointer), and sends the complete source grammar node

structure of its successor phone instances (source grammar node probability, backtrack

tag, phone instance id, UniqueAdd, Topology address) back to the Viterbi board to the
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ToActiveWord system. This configuration requires, that data associated with the

grammar have to be replicated in the memories of the individual processors. However,

the processes are completely independent, so there is no need for inter processor

communication.

The interface of a certain processor has to properly select incoming requests

from the phone processing system: a certain request should only be processed by one

processor. Also, requests to the ToActiveWord system have to be synchronized between

the processors to avoid contention at the ToActiveWord system.

Another possibility to partition the successor computation between parallel

processes is, that every processor computes a subset of the successor phone instances of

the same phone instance. This has the advantage, that a certain processor only has to

store a subset of the grammar topology, while still every processor performs the same

algorithm. In this case, a request from the phone processing system has to be accepted

by all processors, and requests to the ToActiveWord system again have to be

synchronized to avoid contention.

8.1.2. Bitsliced Successor Processing

In this configuration, every processor computes the successors of the same

phone instance. However, a certain processor generates different data associated with

the successor phone instances: one processor could, for example, be dedicated to

compute the source grammar node probabilities, another to compute the backtrack tags,

and yet another to generate (read from memory) the phone instance id, UniqueAdd and

topology address (see section 6. 2. 1.). This configuration is shown in Figure 59.

Here, each processor performs a different program, and it is not necessary to

replicate information in the memories of the various processors. However, the

processors have to communicate. For example, the processor that computes the source

grammar node probabilities of successor phone instances has to read the transition
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interfaces

Figure 59: Bitsliced Successor Computation System

probabilities from its memories. For that, it needs the phone instance id of the

predecessor phone instance which has to be read from the IPCRAM that connects to the

DSP that processes the phone instance id.

In this configuration, the interfaces have to be synchronized: a request from the

phone processing system has to be accepted by all interfaces, but only a subset of the

data is relevant. In the other direction, a request to the ToActiveWord system can only

be generated if all processors finished the computation of their contribution to the

successor phone instance structure.
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8.2. Full Custom Interface

This section describes the full custom interface to the Viterbi board. It accepts

requests from the phone processing system to activate the successor phone instances of

a certain phone instance, and it generates requests to the ToActiveWord system to add

these successors to a list of active phone instances. This interface is flexible to support

various processor configurations as discussed in the previous section.

8.2.1. Input Interface

The part of the interface that accepts requests from the phone processing

system (called "input" in Figure 58 and Figure 59) has two possible configurations:

1. incoming requests have to be distributed to the various processors if each

processor computes all the successors of a certain phone instance. For that, one

request is only accepted by one interface.

2. incoming requests have to be broadcast to all interfaces if a certain processor

computes only a subset of the successors or if a certain processor computes only

a subset of the data structure associated with a successor (bitsliced

configuration). Thus, a request is accepted by all interfaces.

These requirements are met by the input interface that has the structure shown

in Figure 60. To implement configuration 1 (see above), an interface only accepts a

request form the phone processing system if there is a token (InToken) at the input. If

the request was accepted, the token is passed to the neighboring interface using the

clock of the Viterbi board. This is possible because requests are always synchronous to

the Viterbi board clock, and it always takes at least two clock cycles between requests

(a phone instance has at least 2 states, and it takes one clock cycle to process a state).

Using this scheme, the interfaces of the individual processors take turns in accepting



request
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Figure 60: Structure of the Input Interface

requests. To be able to configure the interfaces if less than three processors are used for

successor computation, there are jumpers on the board to route the InToken.

To implement configuration 2 (see above), each interface accepts requests

regardless of the position of the InToken.

Since the Viterbi board and the DSP board do not operate synchronously, the

interface has to buffer the data associated with requests. This is done using FIFOs (first

in first out memories). Thus, if a request is accepted by the input interface, the data

associated with that request are pushed onto the input FIFO. To read these data, the DSP

processor pops the FIFO.

If the phone processing system generates more requests than the DSP board

can process, the input FIFOs could overflow and data might be lost. To avoid that, the

phone processing system gets stalled as soon as the input FIFOs are full. This stall

signal is generated by a control block (general control) using the full flags of the
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individual FIFOs. The empty flags of the input FIFOs can be polled by the dsp

processors. If the empty flags indicate that the input FIFO is not empty, the DSP can

read the corresponding input structure (phone instance id, destination grammar node

and tag). Due to the limited wordlength of the DSP bus, one structure has to be read at a

time.

8.2.2. Output Interface

Similar to the input interface, the output interface has two possible

configurations:

1. Requests to the ToActiveWord system have to be serialized between the different

interfaces to avoid contention. This is the case if the successor computation

system is configured with identical parallel processes.

2. In the bitsliced configuration, requests to the ToActiveWord system have to be

synchronized so that data associated with a phone instance that has to be added

to the list of active phone instances, are send simultaneously.

This output interface structure is shown in Figure 60. To serialize requests to

the ToActiveWord system (configuration 1), there is an output token (OutToken) that

gets passed between the individual interfaces. If an output FIFO is not empty and the

OutToken is at the input of that interface, a request (request 0 through 2) is generated.

If, however, the FIFO is empty, no request is generated and OutToken is passed to the

neighboring interface. Passing the OutToken is done using an acknowledge signal (see

Figure 60, OutToken.Ack). The OutToken at the input of an interface is released if that

interface asserts OutToken.Ack. Requests from the individual interfaces are passed to

logic which coordinates requests to the ToActiveWord system. In this case

(configuration 1), a request to the ToActiveWord system is the logic OR of the requests

from the individual interfaces. To implement configuration 2, the individual requests

are generated as soon as the output FIFO is not empty, and a request to the
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DSP 2

Figure 61: Structure of the Output Interface

ToActiveWord system is generated if none of the fifos is empty (logic AND of the

individual empty signals).

Similar to the InToken, the routing of OutToken and the OutToken_Ack can be

configured with jumpers to accommodate different processor configurations.

8.2.3. Interface Implementation

Figure 62 shows both, the output and the input interface which are connected

to the expansion bus of a DSP.

In order to save board area, I designed a full custom FIFO chip that is

customized to the width of the structures that have to be buffered (Figure 63). This chip

was used to implement the input and output FIFOs. The FIFOs are controlled by field

programmable logic devices (FPGAs, Altera EP1810). Thus, they can be re-

programmed to implement different configurations as discussed above. These FPGAs
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Figure 62: Full Custom Interface

also have internal registers, so the token passing scheme could be implemented without

external registers.

The controllers also implements address decoders so that the DSP extension

bus can read (input fifo) and write (output fifo) to the interface.

In addition to the Viterbi board interface, one processor (DSP 0) also has an

interface to the external A/D converter. To initialize this converter, there is a 4 bit
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Figure 63: Chip Layout of the Full Custom Interface FIFO

parallel interface which is connected to the dsp's expansion bus (Figure 57). The

digitized speech data are send to the DSP using one of the serial busses.

8.3. Processor Synchronization

The DSP board has special hardware to synchronize processors at the end of a

frame. This is necessary before an EndFlag can be send to the ToActiveWord system

(see 6. 2. 2.) to indicate that a frame is processed. This EndFlag then causes the

ToActiveWord system to generate an interrupt for the VME host processor.
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To generate this EndFlag, there are two necessary conditions: first, the phone

processing system has to be finished processing phone instances from the active phone

instance memory, so no more requests are issued to the successor computation system.

This is indicated by the Active flag (generated by the main controller of the phone

processing system, see 6. 3. 3. c). Second, each processor on the DSP board has to be

finished processing the successors of the phone instances that were last requested in

that frame. Only then can one processor send a structure to the ToActiveWord system

that has the EndFlag.

Thus, DSP 0 (Figure 57) is dedicated as "master processor" to generate the

EndFlag, and this processor has to have information about the status of the other

processors. This synchronization is implemented as shown in Figure 64.

master dsp
DSPO

int2 XFO

Active
(from

phone processing)

alloutputFIFOs empty |general
mnrioi

Figure 64: Processor Synchronization at the End ofa Frame
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The Active signal from the phone processing system is connected to an

interrupt input of the DSPs (int2). Thus, if Active is de-asserted (phone processing

system has finished processing phone instances), the DSPs get interrupted. Thus, a DSP

has finished a frame if it received the interrupt and processed all the pending requests

from the input FIFOs. In this case, it executes the command SIGI [TI88L an interlocked

operation that uses two external signals, XFO and XF1 to synchronize processors. XFO

is an output signal of the processor which gets asserted as a result of the SIGI

instruction, and its purpose is to request synchronization. The DSP that executes the

SIGI instruction is waiting for XF1, the synchronization acknowledge signal, to be

asserted. On the DSP board, the synchronization can be acknowledged if all DSPs

executed the SIGI command (all DSPs finished processing their pending requests) and

all output fifos are empty.

Thus, the signal XF1 is the logical AND of the three XFO signals and a flag

that indicates that all FIFOs are empty which was generated by the general control

block from the individual empty signals of the output fifos. If the master processor, f.e,

DSP 0, receives the XF1 signal, it can send a structure to the ToActiveWord system that

contains the EndFlag. For this operation, any processor can be the master processor.

8.4. Multi Board Operation

For complex or large grammars it is necessary to use more than 3 processors

for grammar processing. In this case, control signals have to be routed between boards,

and there are two connectors on the DSP board for this purpose. The control signals are

shown in Figure 65.

To synchronize the input and output interfaces across boards, the InToken

(Figure 60), OutToken, and OutToken.Ack signals (Figure 60) have to be routed to the

Viterbi board interfaces on the various boards. These signals can be routed to



153

connectors via jumpers. One connector (gr-conn-in) is used as input for these signals,

while the other one (gr-conn-out) is used as output to other boards.

Also, the signal GrJStall (used to stall the phone processing system if the input

fifos are full) and Gr_Strobe (request signal to the ToActiveWord signal) have to be

distributed across boards. Here, it is necessary that one of the DSP boards coordinates

the generation of these two signals. For that, the global control logic blocks

(pal22vl0_int) of the various boards are connected through the connectors gr-conn-in

and gr-conn-out, and the Gr_Stall and Gr_Strobe output of the last logic block in the

chain (Gr_Stall_sync and Gr_Strobe_or) is connected to the ToActiveWord system via

jumpers.

Finally, XF1 has to be passed between boards. XF1 is the logic AND of the

XFO signals from the individual processors (Figure 64) and the empty signals

(Out_Empty) of the output FIFOs. Thus, to generate the overall XF1 across boards,

XFl_out of the local board is generated as the logic AND of XFl_in, which was

generated on another board, and the local XFO and Out_Empty signals. XFl_out is then

passed to another board. Thus, the last board in that chain generates the overall XF1

signal which is broadcast between the boards, and XFl_out of this board is connected to

the overall XF1 using a jumper (Figure 65).
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Figure 65: Connectors and Junipers for Multi Board Operation
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Figure 66: The DSP Board



System Software
and Recognition
Results

9

To test and demonstrate the speech recognition system, a speaker independent,

connected digit recognition task was implemented. This chapter describes the software

that loads the HMM parameters onto the memories of the hardware and controls the

system during recognition, and it gives the recognition accuracy obtained for the digit

recognition task. For this test, the front end algorithm was not ported onto the DSP

board. Instead, files were read that contained the already processed speech data.

9.1. System Startup

At system startup, the Heuricon board (section 5. 2. 5.) has to load the HMM

parameters onto the corresponding hardware memories. These parameters are the output

probabilities, the transition probabilities, and the topologies of unique states. The

program that controls the transfer of these parameters is called Load_Hmm_File (see

appendix), and it has one argument which is the name of the HMM parameter file,

9.1.1. Format of the HMM Parameter File

The HMM parameter file has two major sections, one section that describes

unique phone topologies, and another section that describes the states of unique phones.

To illustrate this file format, the example phone topology of Figure 67 is used.
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Figure 67: Example Phone Topology

The topology section of the HMM file describes the prototype phone

topologies, and the example in Figure 67 is represented in the following way:

topology 3state 3
state[01 -1 0

state[1] 0 1

state[2] 0 12

Each topology description starts with the keyword "topology", followed by the

name of that topology and the number of states. The following lines describe the

predecessor states of each state in the prototype topology. By default, every state has a

transition to the destination grammar node, therefore this transition is not mentioned. A

transition from the source grammar node is indicated with the value "-1".

The next section of the HMM file describes the states of unique phones. The

unique phone "foo" in Figure 67 uses the topology "3state", and it is be described using

the following syntax:

instance foo 3state

state[0] -1 -log(.4) -log(.l)

OutputPDF 256 4

{
prob0_l prob0_2 ... prob0_256
probl_l probl_2 ... probl_256
prob2_l prob2_2 ... prob2_25 6
prob3_l prob3_2 ... prob3_256
}

stated] -1 -log(.2) -log(.5)
OutputPDF 2 56 4 ...
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The first line defines the unique phone "foo" and references the topology

"3state". Then, the transition probabilities for that state are described. The first

probability value corresponds to the destination grammar node transition, and the value

-1 corresponds to probability 0 (it is necessary to specify a keyword, because the

probabilities are represented using the negative logarithm and probability 0 is +<»). The

probabilities that follow next correspond to transitions from predecessors, and they

occur in the same sequence as in the phone topology section. The next line specifies the

size and the number of probability distributions associated with that unique state. In the

example of Figure 67, we assume that each state has 4 distributions, and each

distribution has 256 probabilities. The probabilities inside the square brackets describe

these distributions, starting from the feature vector values 0 through 255 of observation

0, to feature vector value 0 through 255 of observation 3.

9.1.2. HMM Representation in the Memories of the Speech Recognition Hardware

The program Load_Hmm_File() (see appendix) reads the HMM file and loads

the HMM parameters into the topology memories of the two Viterbi processors, the

transition probabilities of the two subsystems on the Viterbi board, and the memory

banks on the distribution board.

First, the program reads the prototype topologies and loads them onto the

topology memories (64 x 11) on the Viterbi processors of the Viterbi board. In these

memories, the topology information of a state resides in one memory location, and the

description of the first state of a prototype topology has to start at an address location

that is a multiple of 4. This start address is used to reference to this topology, and the

constraint that this address has to be a multiple of 4 makes it possible to use only 4 bits

for that reference. Assuming that the example topology of Figure 67 is loaded starting

at address 0 in the topology memory, it would be represented in the following way:



address

(binary) state EndFlag

grammar

node

transition?

third

transition

offset

second

transition

offset

first

transition

offset

000000 si 0 1 0 0 X

000001 s2 1 0 1 1 0

000010 s3 0 0 2 1 0

000011 unused unused unused unused

000100 tl ••• ... ... ...
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In this description, a transition offset of 0 means that the state has a self loop,

and the maximum offset is 7 (lllbin). Whenever the state has a transition from the

source grammar node, the first transition offset becomes a "don't care". During

recognition, the Viterbi processor sequentially reads the states of the prototype

topology, and the end of a topology is indicated with the EndFlag. Because of

pipelining effects, this endflag is set at the state before the last state. In the above

example, he next starting address that can be used for the description of the next phone

topology is 000100bin.

After all prototype topologies have been loaded, Load_Hmm_File() writes the

transition probability memories and the output distribution memories. In the transition

probability memory, each state occupies one memory location that contains transition

probabilities from all 3 predecessor states and a transition probability to the destination

grammar node. The states of unique phones are in consecutive memory addresses, and

the address of the first state defines the identification of the unique phone. Transition

probabilities are coded by quantizing the negative logarithm to 4 bits (see 4. 2. 1.).

Probability 0 corresponds to 1lllbin- Assuming that the example unique phone "foo"

(Figure 67) has the phone identification 64, the transition probabilities are represented

in the following way in memory:

destination transition transition transition
grammar node probability probability probability
transition from third from second from first

address probability predecessor predecessor predecessor

63

64

65

1111

1111

1111

1111

logCD&fO^

log( 3)&f0hc3l

logW&fO,^

log(^)&f0hex



address

66

67

destination transition transition transition
grammar node probability probability probability
transition from third from second from first
probability predecessor predecessor predecessor

log(.7)&fOhe log(.8)&f0be logC^&fOhe, log(.3)&fOhex
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If a state has a transition from a source grammar node, the transition

probability from that node is coded in the field "transition to first predecessor".

The probability values of the output distributions are loaded onto the 4 banks

of the distribution board. The unique state address, which is a part of the output

distribution memory address (see Figure 55), corresponds to the memory address of the

transition probability memory.

The source code for the loader program (loader.c) is listed in the appendix.

9.1.3. Representation of the Digit Recognition Model

The vocabulary of the connected digit recognition task consists of 13 words,

which are the words zero, oh, oh-oh, one, two,..., nine, and pause. Because of the small

vocabulary, it is not necessary to represent a word using prototype phones that are

shared between the words. There is enough training data to train the words without re

using phonetic units, and it is no problem to store the parameters of such a small

vocabulary without using the hierarchy level of phone instances. Therefore, each word

is modelled as a whole in the hierarchy level of unique phones. These words, however,

share 4 unique topologies:

2-state topology: pause
10-state topology: oh
15-state topology: oh-oh, one, two, three, four, five, six, eight, nine
20-state topology: zero, seven

All prototype topologies have the same structure (Figure 68), and their only

difference is the number of states.
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Figure 68: Topology for the Digit Recognition Task

9.2. System Control During Recognition

During recognition, the Heuricon board controls the three boards of the speech

recognition system using the interrupt lines and the commumcation software shown in

Figure 69.
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Figure69: System Control During Recognition
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The Heuricon board can initiate a transfer of output probabilities from the

distribution board to the Viterbi board using the function outdistjcfer, and it can

activate the Viterbi board using the function startframe (for a listing of these functions,

see appendix). The algorithm for successor processing and backtracking is implemented

on processor 2 on the DSP board, and this processor constantly polls its input FIFO for

active phone instances that are send from the Viterbi board. Since in this digit

recognition task any word can follow a given word, the DSP activates all words of the

vocabulary each time a word was sent from the Viterbi chip, using the received

destination grammar node probability as the source grammar node probability for the

successor words. After the Viterbi board finished processing all words, the DSP that

implements the grammar algorithm gets interrupted and sends an EndFlag to the Viterbi

board. After that, it continues monitoring the input FIFO. Thus, the successor

computation process needs no interaction by the Heuricon board.

After the Viterbi board received the EndFlag from the DSP board, it interrupts

the Heuricon board. Also, the distribution board indicates to the Heuricon board the

completion of a probability transfer with an interrupt. After the Heuricon board

received the two interrupts, it reads the best probability that occurred in that frame from

the Viterbi chip, and initiates the next frame.

After the last frame of a sentence was read (as indicated by end of file) and the

Viterbi board has processed the last frame, the function GetResult is called to initiate

the backtracking routine. This function first reads the active phone instance memory,

gets the backtrack tag of the word with the best source grammar node probability, and

writes it onto the dual ported memory of the grammar DSP. Then, the DSP gets

interrupted and the interrupt service routine of the DSP performs backtracking, writes

the result into the dual ported memory, and interrupts the Heuricon board after

completion. Then, the Heuricon board can read the most likely path and display the

result.
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The source codes for the system control program (system_control.c) and

successor processing and backtracking (grammar.c) are listed in the Appendix.

9.3. Recognition Results

To verify the hardware, 924 sentences with a total of 5,160 words (digits) were

recognized and compared to the recognition results that were obtained on a computer

with double precision arithmetic. The HMM was trained using 55 male and 57 female

speakers, 77 sentences for each speaker. The recognition was performed for 12

randomly selected male speakers that were not in the training set. Table 5 shows the

results that were obtained with the recognition hardware.

speaker ins del sub
sentence

error

word

error

sentence

error

[%]

word

error

[%1

ae 2 0 1 2 3 2.6 .7

aj 0 2 1 3 3 3.9 .7

al 12 0 0 12 12 16 2.8

aw 0 1 2 3 3 3.9 .7

bd 0 0 1 1 1 1.3 .2

cb 0 0 0 0 0 0 0

cf 7 0 1 6 8 10 1.9

cr 1 2 0 3 3 3.9 .7

dl 4 1 0 4 5 6.5 1.2

dn 7 0 1 8 8 10 1.9

eh 2 1 0 3 3 3.9 .7

el 7 0 1 7 8 3.9 .7

total 42 7 8 52 57 5.6 1.1

Table 5: Recognition Results using the Hardware
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The system described in this thesis has been implemented and tested. There are

two working versions of the hardware, one at SRI (Stanford Research Institute, Menlo

Park), and another version at UCB for research purposes. The system at SRI is used for

an interactive database query system where the user can ask questions to get

information about airline travel (ATIS = airline travel information system), for

example, flight schedules or availability. The speech input is recognized by the

recognition hardware, and then passed to a natural language back end. This back end

extracts the meaning of the question and generates a database query for the ATIS

database, which in turn gives the answer. For successor processing, the SRI system uses

a commercial board that has two TMS320C30 processors (SkyBolt). Front-end

processing is done on an add-on board for an IBM PC. The commercial dsp board,

however, has an architecture that does not support successor processing: the interface to

the Viterbi board is not customized, therefore the bandwidth is not high enough to

support complicated grammars or large vocabularies. SRI now plans to build three more

systems (using the custom dsp boards), and these systems will be given to speech

recognition researchers.

The architecture of the speech recognition system is expandable to even larger

tasks (larger vocabularies, multiple users), continuous output probabilities, and a full

custom grammar board.
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Speech recognition systems for larger tasks or multi-user operation can be

necessary in personal communication systems (PCS, [Bur91]). Here, portable hardware

can have a wireless link to a powerful "speech server" that is centrally located and can

serve multiple users simultaneously. For that, the recognition hardware processes

different observations (from multiple users) within each frame. The only change that

might be necessary in the current hardware is, that the output probability memory has to

be expanded because probabilities of several different observations have to be stored.

In the current system, we use discrete output probabilities that are stored on

the distribution board, and the probabilities corresponding to an observation in a frame

are loaded to the SRAM output probability memory on the Viterbi board. However, it

has been shown that recognition accuracies can be improved if the output probability

distributions are continuous (section 2. 3. 3., [Bah90]). For that, the distribution board

can be replaced by a board that can download output probabilities from continuous

distributions: instead of reading probabilities from memory, the board reads parameters

of gaussians and computes the output probabilities using tied mixtures [Bah90]. In fact,

the next board that is being developed for this system is a tied mixture board.
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Appendix

Program to load HMM parameters onto the hardware: loader.c
/*

* File: loader.c

* Author: tony

* Date: Sept. 12, 1991
*

* Description:

* This program loads the speech hardware boards.

* The single optional command-line

* argument to this program is the pathname to

* a file in a Hmm file format to read. Otherwise,

* the default filename, "Hmm.data" is read.

/* Include declarations files. */

♦include <sys/types.h>

♦include "vxWorks.h"

♦include "stdioLib.h"

♦include "ioLib.h"

♦include "../include/background.h"

♦include "../include/grammar.h"

♦include "../include/speech.h"

♦define MIN_TRANS 7000
♦define MAX_TRANS 7077888
♦define MIN_OUTPROB 50237
♦define MAX_OUTPROB 882554

♦define OUTPROBMASK Oxff80000

♦define TRANSPROBMASK 522240 /* Oxff « 11 */

♦define MAX_STRING 80
♦define MAX__NR_OF_UNIQUE_PHONES 200
♦define MAX_NR_OF_TOPOLOGIES 20
♦define abs (A) ((A) > 0 ? (A) : - (A))

♦define BG_PROB_MEM (u_short *) 0x40000000
♦define BgAddress(bank,vector,addr) (u_short *)((BG_PROB_MEM) + \

((bank)«24) + \
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((vector) «11) + \

(((addr) & 0xf800)«8) + \

((addr) & 0x7ff))

typedef struct TOPO_REFERENCE

{

char name[MAX_STRING];

int address;

int number_of_states;
}topo__reference;

typedef struct PHONE_REFERENCE

{

char name[MAX_STRING];

char topo_id[MAX_STRING];
int topo_address;
int phone_address;
int number_of_states;

}phone_reference;

topo_reference *topo_table;
phone_reference *phone_table;

int topo_table_index =0;
int phone_table_index = 0;

int Debug =0;

int TransDebug = 0;

int TopoDebug =0;

int Delay =0;

void

A_write_trans(address, data) /* fun */
unsigned long address, data;

{

unsigned long*vme_address;

}

vme__address = (unsigned long *) A_LOAD_ADDRESS;
*vme_address = address;
{ int i; for (i = 0; i < Delay; i++) ; }
vme_address = (unsigned long *) A_WRITE_TRANSPROB;
*vme_address = data;
{ int i; for (i = 0; i < Delay; i++) ; }

void

B_write_trans(address, data) /* fun */
unsigned long address, data;

{

unsigned long*vme_address;

vme_address = (unsigned long *) B_LOAD_ADDRESS;
*vme_address = address;
{ int i; for (i = 0; i < Delay; i++) ; }

vme_address = (unsigned long *) B_WRITE_TRANSPROB;
*vme_address = data;

{ int i; for (i = 0; i < Delay; i++) ; }
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void

A_write_phone(address, data) /* fun */
unsigned long address, data;

{

unsigned long *vme_address;

vme_address = (unsigned long *) A_LOAD_ADDRESS;

*vme_address = address;
{ int i; for (i = 0; i < Delay; i++) ; }

vme_address = (unsigned long *) A_WRITE_NEWSTATEPROB;
*vme_address = data;
{ int i; for (i = 0; i < Delay; i++) ; }

vme_address = (unsigned long *) A_WRITE_NEWSTATEBACK;
*vme_address = data;
{ int i; for (i = 0; i < Delay; i++) ; }

vme_address = (unsigned long *) A_LOAD_ADDRESS;
*vme_address = address;

{ int i; for (i = 0; i < Delay; i++) ; }

vme_address = (unsigned long *) A_WRITE_PH0NET0P0L0GY;
*vme_address = data;

{ int i; for (i = 0; i < Delay; i++) ; }

}

void

B_write_phone(address, data) /* fun */

unsigned long address, data;

{

unsigned long *vme_address;

vme_address =

*vme_address
{ int i; for

vme_address =

*vme_address
{ int i; for

vme_address =

*vme_address
{ int i; for

vme_address =
*vme_address
{ int i; for

vme_address =

*vme_address
{ int i; for

•• (unsigned long *) B_LOAD_ADDRESS;
= address;

(i = 0; i < Delay; i++) ; }

•• (unsigned long *) B_WRITE_NEWSTATEPROB;
= data;

(i = 0; i < Delay; i++) ; }

« (unsigned long *) B_WRITE_NEWSTATEBACK;
= data;

(i = 0; i < Delay; i++) ; }

• (unsigned long *) B_LOAD_ADDRESS;
= address;

(i = 0; i < Delay; i++) ; }

• (unsigned long *) B_WRITE_PHONETOPOLOGY;
= data;

(i = 0; i < Delay; i++) ; }

void

enter_in_topo_table (name, address, number_of_states)
char * name;

int address;

int number_of_states;
{

strcpy ( (topo_table+topo_table_index) ->name, name) ;
(topo_table+topo_table_index)->address = address;
(topo_table+topo_table_index) ->number_of_states = number_of_states;
topo_table_index++;

175



void

enter_in_phone_table (name, topo_id, topo_address, phone_address,
number_of_states)

char * name;

char * topo_id;
int topo_address;
int phone_address;
int number of states;

{

}

strcpy ((phone_table+phone_table_index) ->name, name);
strcpy ((phone_table+phone_table_index) ->topo_id, topo_id) ;
(phone_table+phone_table_index) ->topo_address = topo_address;
(phone_table+phone_table_index) ->phone_address = phone_address;
(phone_table+phone_table_index) ->number_of_states = number_of_states;
phone_table_index++;

int

get_topo_reference(name)
char * name;

{

int i;

for (i=0; i<topo_table_index;i++) {
if (strcmp((topo_table+i)->name, name) == 0) {

return (i);

}

}

printf(n get_reference: name %s not in topo_tablei\n", name);
return (-1);

}

int

scale_and_pack_transprobs(gndtransprob, firsttransprob, secondtransprob,
thirdtransprob)

int gndtransprob, firsttransprob;

int secondtransprob, thirdtransprob;

{
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int transprob_data =0;

/*

* scale transprobs and mask them.

*/

if (gndtransprob != -1) gndtransprob = ((gndtransprob-MIN_TRANS) * Oxf) / (
MAXJTRANS);

else gndtransprob = Oxf;

if (firsttransprob 1= -1) firsttransprob = ((firsttransprob-MINJTRANS) *
Oxf) / (MAXJTRANS);

else firsttransprob = Oxf;

if (secondtransprob 1= -1) secondtransprob = ((secondtransprob-MIN_TRANS) *
Oxf) / (MAXJTRANS);

else secondtransprob = Oxf;

if (thirdtransprob != -1) thirdtransprob = ((thirdtransprob-MINJTRANS) *
Oxf) / (MAXJTRANS);

else thirdtransprob = Oxf;



}
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/*

*pack these values into one word .. .

* SGndTransProb ThirdTransProb SecondTransProb FirstTransProb

* 0000 0000 0000 0000

*/

transprob_data |= (gndtransprob << 12);

transprob_data |= (thirdtransprob « 8) ;
transprob_data |= (secondtransprob « 4);
transprob_data |= (firsttransprob);

return(transprob_data);

int

setup_topology(fp, topo_address)
FILE *fp;

int topo_address;

{

char *keyword = "topology";

char topo_id[MAX_STRING];
char state_id[MAX_STRING];
int offsetl, offset2, offset3;

char buf[MAX_STRING] ;

int number_of_states;
int i, j;

int topo_data;

/*
* get topo_id and the number of states in this topology

* from the input stream

*/

fscanf(fp, "%s %d\n", topo_id, Snumber_of_states);

/*

* for later reference, let's store this information in a

* table. Later we have to retrieve topo_address and number_of_states
* for a certain topo_id

*/

enter_in_topo_table (topo_id,topo_address,number_of_states);

if (TopoDebug) printf("setup_topology: topology %s, %d states:\n",
topo_id, number_of_states);

/*

* now, let's set up the topology memory for all the states

* in this topology

*/

for(j=0; j<number_of_states; ++j) {

/*

* initialize offsets and topo_data.
* this is important if we have less than 3 offsets in

* the input stream.

*/

offsetl= offset2= offset3= j;
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topo_data =0;

/*

* get the name of the state and the offsets from the input
* stream. I scan in a whole line because I don't know

* how many offsets to expect

*/

fgets(buf,MAX_STRING,fp); /* get a line of input */
sscanf(buf, "%s %d %d %d",state_id, Soffsetl, Soffset2,

&offset3);

/*

* convert to word that actually gets loaded into the topo memory
*

* EndFlag GndTrans 3rd 2nd 1st

* 0 0 000 000 000
*

* take care of the EndFlag, one state before the last state

*/

if(j=(number_of_states - 2)) topo__data |= 0x400;

/*

* see if we have a source grammar node transition

* this is coded with offset = -1 in the input stream
*/

if (offsetl == -1) {

/*

* well, we have a grammar node transition, so let's set
* the GndTrans flag

*/

topo_data |= 0x200;

/*

* offsetl is now meaningless

*/

offsetl = j;

}

/*

* compute the relative distance of the predecessor
* right now we have absolute transitions

*/

offsetl = -(offsetl -= j);

offset2 = -(offset2 -= j);

offset3 = -(offset3 -= j);

/*

* pack the offsets into one word that gets downloaded
* to the topology memories A and B

*/

topo_data |= (((unsigned long)offset3 & 0x7) « 6);
topo_data |= (((unsigned long)offset2 & 0x7) « 3);
topo_data |= ((unsigned long)offsetl & 0x7);

{ int k; for (k = 0; k < Delay; k++) ; }

A_write_phone(topo_address + j, topo_data);
{ int k; for (k = 0; k < Delay; k++) ; }

B_write_phone(topo_address + j, topo_data);

if (TopoDebug) printf("setup_topology:\t\t%2d:\t0x%3x\n",



}

topo_address + j, topo_data);

}

/*

* finished all the states for this topology

* return pointer to next possible location in topo memory (mod 4)

*/

return( (topo_address + j) + ( 4- (topo_address + j) * 4)) ;
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int

load_output_prob (unique_state__address, bank, vector, output_prob)
int unigue_state_address, bank, vector, output_prob;

{

*BgAddress(bank, vector, unique_state_address) = (u_short) output_prob;
return(0);

}

int

read_and_load_opdf (fp, unique_state_address)
FILE *fp;

int unique_state_address;

{

}

char *keyword = "OutputPDF";

char *curly_bracket = "{";
int codebook_size, number_of_codebooks;

unsigned int output_prob;

int i, j;

fscanf(fp, "%s %d %d\n", keyword, &codebook_size, &number_of_codebooks);
fscanf(fp, n%s\n", curly_bracket) ;/* just dummy to advance read-pointer */

for(j=0; j<number_of_codebooks; j++) {
for(i=0; i<codebook_size; i++) {

fscanf(fp, "%d", &output_prob);

/* scale */

output_prob = ((output_prob-MIN_OOTPROB)*0x3fe)
/(MAX_OUTPROB);

load_output_prob(unique_state_address, j, i, output_prob) ;

}

}

fscanf(fp, M%s\n", curly_bracket);/* just dummy to advance read-pointer */

int

setup_unique_states (fp, unique_state_address)
FILE *fp;

int unique_state_address;

{

char *keyword = "instance";

char unique_phone_id[MAX_STRING];
char topo_id[MAX_STRING];
char state[MAXJSTRING];
char buf[MAX_STRING];
unsigned int gndtransprob=-l, firsttransprob=-l;

unsigned int secondtransprob=-l, thirdtransprob=-l;

unsigned int transprob_data =0;
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int topo_address;

int number_of_states, i, j;

/*

* get the unique phone id and the pointer to the unique topology

* from the input stream

*/

fscanf(fp, "%s %s\n", unique_phone_id, topo_id);

/*

* now, using the unique topology pointer, we access the

* topo_table to find out where this topology is stored and

* how many states this unique phones has

*/

number_of_states = (topo__table + get_topo__reference (topo_id))->number_of_states;
topo_address = (topo_table + get_topo_reference (topo_id)) ->address;

/*

* this information gets entered in the phone_table for later reference.

* This table stores all the pointers necessary to completely access

* the structures necessary for that phone

*/

enter_in_phone_table (unique_phone_id, topo_id,
topo_address, unique_state_address,number_of_states) ;

printf("loading unique phone %s:\t",unique_phone_id);

/*

* now, let's take care of all the unique states that

* belong to this unique phone:

*/

for (i=0; i<number_of_states; i++) {

/*

* initialize transprobs to infinity. This is important when

* there are less than 4 transprobs in the input stream

*/

gndtransprob = -1;

firsttransprob = -1;

secondtransprob = -1;

thirdtransprob = -1;

/*

* get the line of input that contains the trans probs

*/

fgets(buf,MAX_STRING,fp) ;
sscanf(buf, "%s %d %d %d %d", state, Sgndtransprob,

Sfirsttransprob, &secondtransprob, &thirdtransprob);

/*

* scale probabilities for maximum dynamic range in HW and

* pack them into one word that gets loaded to the HW

*/

transprob_data = scale_and_pack_transprobs(gndtransprob,
firsttransprob, secondtransprob, thirdtransprob);

printf P.");

/*

* transprob_data is now ready to be downloaded to the
* transition probability memories A and B.

* Address = unique_state_address

*/
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A_write_trans(unique_state_address, transprob_data);
B_write_trans(unique_state_address, transprob_data);

/*

* the next inputs from the file set up the output distributions

* of that state. For that we call a seperate routine ...

*/

read_and_load_opdf (fp, unique_state_address) ;

/* this state is now completely downloaded, increment the

* unique state counter (= unique state address) and go on

* to the next state

*/

unique__state_address++;

}

printf("\n");

return(unique_state_address);

Load_Hmm_File(filename)

char ^filename;

{

char *keyword = "just some crazy caracters";

char *topology = "topology";

char *instance = "instance";

int topo_add =4;
int uniquestate_add =0;

extern topo_reference *topo_table;
extern phone_reference *phone_table;
FILE *fp;

/*

* initialize reference table

*/

if ((topo_table = (topo_reference *)malloc(sizeof(topo_reference)
MAX_NR__OF_TOPOLOGIES) ) == NULL)

{

printf("malloc failed on topo_table!\n");
return;

}

if ((phone_table = (phone_reference *)malloc(sizeof(phone_reference) *
MAX_NR_OF_ONIQUE_PHONES)) ==

NULL) {

printf("malloc failed on phone_table!\n");
return;

}

/*

* Open the Hram file.

*/

if ((fp = fopen(filename, "r")) == NULL) {

printf("Error opening \"%s\"!\n", filename);

return;

}
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while (fscanf(fp, "%8s", keyword) != 0) {

if (strcmp(keyword, topology) == 0) {

topo_add = setup_topology(fp, topo_add);

}

else if (strcmp(keyword, instance) == 0) {

uniquestate_add = setup_unique_states(fp, uniquestate_add);

}

else printf("keyword neither topology nor instance: %s\n",
keyword);

}

*/

}

printf("\n done loading the recognition hardware!\n");

print_topo_table();
print_phone_table() ;

Program for successor processing and backtracking: grammar.c
♦include "grammar.h"

♦include "tms320c30.h"

♦include "vmeipc.h"

♦define MAX__NR_OF_TAGS 0x1000
♦define MAX_NR_OF_WAS 0x1000
♦define MAX_LIST_SIZE 0x8000

volatile unsigned int * fifo = PROBADDRESS;

volatile unsigned int backtrack[MAX_LIST_SIZE];
volatile unsigned int wordarc_topos[MAX_NR_OF_WAS];
volatile unsigned int prob, oldtag, wordarc, tag=0;
volatile unsigned int bestprob = Oxffff;

volatile unsigned int bestwa, besttag;

main()

{

volatile unsigned int * in_flag = INPUTEMPTYFLAGSADDRESS;
volatile unsigned int GndProb = OxfffO;

setup_tms();

setup_wa__topologies () ;

PollForNewFrame_ClearIFreg(in_flag) ; /* poll input fifo */

while (TRUE) {

if ((*in_flag & 0x7) ==0) {

/*

* we can receive a wordarc from the HMM board

*/

ReceiveWordArc();

if (bestprob > prob) {

bestprob = prob;

bestwa = wordarc;

besttag = oldtag;

}

/*



}
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* store the oldtag pointer and get another one.

* I use the 16 lower bits for the tag and the 16 upper

* bits for the WordArc ID.

*/

*(backtrack + tag)= ((wordarc « 16) | (oldtag &

Oxffff));

/*

* send the wordarc we just received, using the same

* GndProb, the same WA, a modified tag and the topology

*/

SendWordArc(tag);

/*

* increment the tag for the next structure received ...

*/

tag++;

else {

/* the input fifo is empty. Is it the end of a frame? */
if ((GetIF() & 0x8) == 0x8) {

/* it's the end of this frame */

SendLastWordarc();

PollForNewFrame_ClearIFreg(in_flag);

}

else; /* not eof, so keep on polling */

}

}

}

void

ReceiveWordArc ()

{

volatile unsigned int * i = 0;

*IN_P0PADDRESS = DUMMY; /* pop input fifo to get the next WA */
prob = *fifo;

oldtag = *(fifo-l);

wordarc = *(fifo-2);

}

void

SendWordArc(tag)

volatile unsigned int tag;

{

unsigned int i;

for (i=0; i< 13; i++) {

*fifo = prob;

*(fifo-l) = tag;

*(fifo-2) = i;

*(fifo-3) = wordarc__topos[i];
}

}

void

SendLastWordarc()

{



*MY_DPRAM_BASE_ADDRESS = bestprob;
*(MY_DPRAM_BASE_ADDRESS+1) = bestwa;
*(MY_DPRAM_BASE_ADDRESS+2) = besttag;

bestprob = Oxffff;

*fifo

*(fifo-l)

*(fifo-2)

*(fifo-3)

-1; /*

-l; /*

-l; /*

Oxlfffff; /'

Gr_Prob */
Gr_Tag */
Gr_WA */
' Gr_Topo + EndFlag*/

void

PollForNewFrame_ClearIFreg(in_flag)
volatile unsigned int * in_flag;

{

unsigned int i=0;

}

/*

* poll input for non-empty status

*/

while((*in_flag & 0x7) != 0) i++;

/*

* ok, input fifo now has some data. In this case,

* Vit_Active is high and we can reset the IF register
* so that Vit_Active (-) generates a new interrupt

*/

ClrCpuRegBits(IF,IF INT3);

void

setup_wa_topologies()

{

extern volatile unsigned int wordarc_topos[MAX_NR_OF_WAS];

/*

* the wordarc topology is set

* topo_address » 2 bits 16.
* unique state address bits 0,

*/

wordarc_topos[0] = 0x20000; /*
wordarc_topos[1] = 0x5000a; /*

wordarc_topos[2] = 0x50019; /*
wordarc_topos[3] = 0x50028; /*
wordarc_topos[4] = 0x50037; /*
wordarc_topos[5] = 0x50046; /*
wordarc_topos[6] = 0x50055; /*
wordarc_topos[7] = 0x90064; /*
wordarc_topos[8] = 0x50078; /*
wordarc_topos[9] = 0x50087; /*
wordarc_topos[10]= 0x90096; /*
wordarc_topos[ll]= OxlOOaa; /*

wordarc_topos[12]= 0x500ac; /*
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* and writes the result into the dual ported memory, starting at 0x1000.
*

* If the backtrack opperation is complete, it interrupts the heuricon board
* to tell it that the results are there.

*/

void c_int01 ()

{

unsigned int i= 0;

unsigned int prev_pointer;
unsigned int * result = MY_DPRAM_BASE_ADDRESS;

/*

* perform a dummy read using IACK to clear external latch

* we pick a location in the internal RAM for this dummy read

*/

asm(" PUSH DP");

asm(" LDI 80h, DP");

asm(" IACK @9800h");

asm(" POP DP");

/*

* clear the internal flag for INTO

*/

ClrCpuRegBits(IF,IF_INT0);

/*

* first, get pointer to the best wordarc at the end of the sentence.

* we assume, this pointer is in the DPRAM at location 0x1000

*/

prev_pointer = *result++;

i = 0;

while ((KOxlOOO) && (prevj>ointer != 0)) {
*result++ = (*(backtrack + prev_pointer) » 16);
prev_pointer = (*(backtrack+prev_pointer) & Oxffff);
i++;

}

*MY_DPRAM_BASE_ADDRESS = i;

/* send an interrupt to vme ... */
p_vmeipc->ireg->v =1;

/* reset tag for the next sentence */
tag =0;

}

void

setup_tms()

{

void c_int01(void);

/*

* note: by default the software waitstate generation is set to 111
* set wait state generation of expansion bus to SWW = 11,
* at least 1 wait state (because of input fifo)
*/



this_cpu. peribus->bus_control.expansion,f.sww = 3;
this_cpu.peribus->bus_control.expansion,f.wtcnt = 1;

/*

* use external wait state generator for primary bus
*/

this_cpu. peribus->bus_control. primary, f .sww = 0;

/*

* start the cache

*/

SetCpuRegBits(ST,ST_CE);

/*

* install the interrupt handler for into

*/

this_cpu.vectortable->intO = (unsigned int)c_int01;

/*

* enable into

*/

SetCpuRegBits(ST,ST_GIE) ;
SetCpuRegBits(IE,IE_EINT0_CPU);

/*

* clear interrupt to vme ...

*/

p_vmeipc->ireg->v =0;

/*

* reset interface fifos

*/

♦RESETADDRESS = DUMMY;

♦RESETADDRESS = DUMMY;

♦RESETADDRESS = DUMMY;

*RESETADDRESS = DUMMY;

*RESETADDRESS = DUMMY;

Program for system control during recognition: systemcontroLc
/******************************************************************

* Speech Recognition control code for the heuricon board
*

* Anton Stolzle, 9-13-91
******************************************************************/

♦include "vxWorks.h"

♦include "stdio.h"

♦include "fioLib.h"

♦include "ioLib.h"

♦include "semLib.h"

♦include "math.h"

♦include "../grammar/grammar.h"
♦include "tmsipc.h"
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♦define OUTDIST_SIZE 256
♦define NUM_OF_UNIQUE_STATES 200
♦define MAX_STRING 80
♦define flip(A) ((A) == 0 ? 1 : 0)

extern SEM_ID dist_board_int_sem, hmm_board_int_sem, dsp_board_back_sem;
extern void outdist_xfer() ;
extern void hmm_reset();

extern unsigned long A_read_framemin (), B_read_framemin();

extern void Clear_ActiveList();
extern void Clear_ActiveWord();
extern void A_aw_newframe(), B_aw_newframe();
extern void A_vit__newframe (), B_vit_newframe () ;
extern void A_load_framemin (), B_load_framemin ();
extern void A_load_normvalue (), B_load_normvalue ();
extern void A_load_prunoffset(), B_load_prunoffset();
extern void A__write_awmem();
extern int setup__hw_int() ;
extern unsigned long Get_Best();
extern unsigned long Print_OutProb() ;
extern unsigned long PrintState();

extern void MpeekProc(), PokeProcO;

extern unsigned int PeekProcO;

/*

extern feature_struct * feature_table;
extern int feature_readidx;
extern int feature_writeidx;

*/

int sent_debug =0;

int

read_framemin(side)

unsigned short side;

{

if (side == 0) return(A_read_framemin());
else if (side == 1) return(B__read_framemin ()) ;
else {

printf("read_framemin: side not binary, %d\n", side);
return(-1);

}

}

void

startframe(side, framemin, norm, offset)
unsigned short side;

int framemin;

int norm;

int offset;

{

if (side == 0) {

if (sent_debug) printf("Starting side A, framemin = %4x, norm
%4x, offset = %4x\n",

framemin,norm,offset);

A_load_framemin(framemin);
A_load_normvalue(norm);
A_load_prunoffset(offset);
B_aw_newframe();



}
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A_vit_newframe () ;
}

else if (side == 1) {

if (sent_debug) printf("Starting side B, framemin = %4x, norm =
%4x, offset = %4x\n",

framemin,norm,offset);

B_load_framemin(framemin);
B_load_normvalue(norm);
B_load_prunoffset(offset);
A_aw_newframe();

B_vit_newframe();

}

int

get_speech_frame(fp, cep_r>tr, dcep_ptr, egy_j?tr, degy_ptr)
FILE *fp;

int *cep_ptr, *dcep_ptr, *egyjptr, *degy__ptr;
{

if ((fscanf(fp, "%d", cep_ptr) > 0) &&
(fscanf(fp, "%d", dcep_ptr) > 0) &&
(fscanf(fp, "%d", egyjptr) > 0) &S
(fscanf(fp, "%d", degy_ptr) > 0)){
return(0);

}

else return (EOF);

void

Get_Result(side)

unsigned short side;

{

unsigned long tag;

unsigned long number_of_wordarcs, wordarc, i;
unsigned int dpram = (unsigned int) MY_DPRAM_BASE_ADDRESS;

/*

* this is the end of a sentence, let's interrupt the grammar dsp and

* get the backtrack pointers. First, find the grammar node with the

* best probability ...

*/

tag = Get_Best(side);

printf("BackTracking, send tag %x to grammar ...\n", tag);

/*

* now, send tag, interrupt and wait *till dsp is finished ...

*/

PokeProc(GRAMMAR_PROC, dpram, tag);
PutIREG(GRAMMAR_PROC, 1) ; /* verify */
semTake(dsp_board_back_sem);

/* void PokeProc

* now, the backtrack info is in the DPRAM, the first location

* is 0x1000 and it contains the number of wordarcs

*/

number_of__wordarcs = PeekProc(GRAMMAR_PROC, dpram) ;
if (number__of_wordarcs == 0x1000) {

printf("backtrack error, no NIL pointer found!\n");

printf("try to recover sentences by setting pointer to 0x30\n");



}

}
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number of wordarcs = 30;

MpeekProc(GRAMMAR_PROC, dpram, number_of_wordarcs);
printf("\n\t");
for(i=dpram+number_of_wordarcs; i>dpram; i—) {

if (PeekProc(GRAMMAR_PROC, i) != Oxb) {
printf("..%d..", PeekProc(GRAMMAR_PROC, i));

}

}

printf("\n");

void

rec_sentence(vq_file, prun_offset)
char *vq_file;
int prun_offset;

{

FILE *fp;

int offset = prun_offset;
int framemin = Oxffff;

unsigned short side =0;

int norm_value =0;

unsigned short count = NUM_OF_UNIQUE_STATES;
int cep, deep, egy, degy;

int i=0;

char buf[MAX_STRING];

/* Open the VQ file. */

if ((fp = fopen(vq_file, "r")) == NULL) {
printf("Error opening \"%s\"!\n", vq_file);
exit (0);

}

/*

* perform a few dummy reads because of the file headers

*/

fgets(buf,MAX_STRING,fp);
fgets(buf,MAX_STRING,fp);
fgets(buf,MAX_STRING,fp);

/*

* start up the pipeline and download first observation to hmm board

*/

get_speech_frame(fp, Seep, Sdcep, &egy, Sdegy);
outdist_xfer(side, cep, deep, egy, degy, count);

/*

* wait until all data are transfered
*/

semTake(dist_board_int_sem);

/*

* put the pause wordarc into the active list memory

A_write_awmem(address, gndprob,gndtag, wordarc,stateprobaddr,topoaddr, flags)
*/

A_write_awmem(l, 0, 0, 11, 0, OxlOOaa, 1) ;
A_write_awmem(2, -1, -1, -1, -1, -1, 3);

/*
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* this is very uneffective since we read a file between

* two frames. But let's just do it this way for a while ...
*/

while (get_speech_frame(fp, &cep, Sdcep, &egy, &degy) != EOF) {

i++;

if (i%50 == 0) printf("frame %4d ...\n", i);

outdist_xfer(flip(side), cep, deep, egy, degy, count);

startframe(side, framemin, norm_value, offset);

semTake(dist_board_int_sem);

/*

Print_OutProb(side, 0, 192);

*/

semTake (hmm_board_int_sem);

/*

PrintState(9, OxdO, 1) ;
*/

norm__value = read_framemin(side);
framemin = framemin;

offset = offset;

hmm_reset(); /* just in case ... */

if(sent_debug) {
printf("finished frame %d: bestprob = %4x, wa= %5x,

tag= %5x\n",i, PeekProc(GRAMMAR_PROC, 0x1000),
PeekProc(GRAMMAR_PROC, 0x1001),
PeekProc(GRAMMAR_PROC, 0x1002));

Print_ActiveWord(flip(side), 0x0, Oxf);

}

/*

if (i%10 == 0) Get_Result(flip(side));

*/

side = flip(side);

}

/*

* now we still have to take care of the last frame

*/

printf("frame %4d, last frame.\n", i) ;

startframe(side, framemin, norm_value, offset);
semTake(hmm_board_int_sem);
hmm_reset () ;

Get_Result (side);

Clear_ActiveList(0, 0, 0x20, 0);
Clear_ActiveList(0, OxffffO, Oxfffff, 0);
Clear_ActiveList(1, 0, 0x20, 0);

Clear_ActiveList(l, OxffffO, Oxfffff, 0) ;
Clear_ActiveWord(0, 0, 0x30, 0);
Clear ActiveWord(l, 0, 0x30, 0);



}

StopAllProc();

StartProc (2) ;

printf("\n");

fclose(fp);
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void

Get_Result_in_char(side, result)
unsigned short side;

char *result;

{

unsigned long tag;

unsigned long number_of_wordarcs, wordarc, i;
unsigned int dpram = (unsigned int) MY_DPRAM_BASE_ADDRESS;

/*

* this is the end of a sentence, let's interrupt the grammar dsp and
* get the backtrack pointers. First, find the grammar node with the
* best probability ...

*/

tag = Get_Best(side);

/*

* now, send tag, interrupt and wait *till dsp is finished ...
*/

PokeProc(GRAMMAR_PROC, dpram, tag);
PutlREG(GRAMMAR_PROC,1) ; /* verify */
semTake(dsp_board_back_sem);

/* void PokeProc

* now, the backtrack info is in the DPRAM, the first location
* is 0x1000 and it contains the number of wordarcs

*/

number_of_wordarcs = PeekProc(GRAMMAR_PROC/ dpram);

if (number_of_wordarcs == 0x1000) {

printf("backtrack error, no NIL pointer found, try again ..\n");
PokeProc(GRAMMAR_PROC, dpram, tag);
PutlREG(GRAMMAR_PR0C,1); /* verify */
semTake(dsp_board_back_sem);
number_of_wordarcs = PeekProc(GRAMMAR_PROC, dpram);
if (number_of_wordarcs == 0x1000) {

printf("again ... try to recover sentences
by setting pointer to 0x30\n");

number_of_wordarcs =30;
}

}

printf("\n\t");

for(i=dpram+number_of_wordarcs; i>dpram; i—) {
if (PeekProc(GRAMMAR__PROC, i) != Oxb) {

printf("..%lx..", PeekProc(GRAMMAR_PROC, i));
sprintf(result++, "%lx", PeekProc(GRAMMAR_PROC, i));

}

}

printf("\n");
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sprintf(result, "\0");

char

*char_rec_sentence (vq_file, prun_offset)
char *vq_file;
int prun offset;

{

FILE *fp;

int offset = prun_offset;
int framemin = Oxffff;

unsigned short side =0;

int norm_value =0;

unsigned short count = NUM_OF_UNIQUE_STATES;
int cep, deep, egy, degy;

int i=0;

char buf[MAX_STRING];
char result[MAX_STRING];

/* Open the VQ file. */

if ((fp = fopen(vq_file, "r")) == NULL) {
printf("Error opening \"%s\"!\n", vq_file);
exit (0);

}

/*

* perform a few dummy reads because of the file headers
*/

fgets(buf,MAX_STRING,fp);
fgets(buf,MAX_STRING,fp);
fgets(buf,MAXJSTRING,fp);

/*

* start up the pipeline and download first observation to hmm board

*/

get_speech_frame(fp, Seep, Sdcep, Segy, Sdegy);

outdist_xfer(side, cep, deep, egy, degy, count);

/*

* wait until all data are transfered

*/

semTake(dist_board_int_sem);

/*

* put the pause wordarc into the active list memory

* A_write_awmem(address,gndprob, gndtag,wordarc, stprobaddr, topoaddr, flags)
*/

A_write_awmem(l, 0, 0, 11, 0, OxlOOaa, 1);
A_write_awmem(2, -1, -1, -1, -1, -1, 3);

/*

* this is very uneffective since we read a file between

* two frames. But let's just do it this way for a while .. .
*/

while (get_speech_frame(fp, Seep, Sdcep, Segy, Sdegy) != EOF) {

i++;

/*

* if (i%50 == 0) printf("frame %4d ...\n", i);

*/



outdist_xfer(flip(side), cep, deep, egy, degy, count);
startframe (side, framemin, norm__value, offset);

semTake(dist_board_int_sem);
semTake(hmm_board_int_sem) ;

norm_value = read_framemin(side);

framemin = framemin;

offset = offset;

hmm__reset (); /* just in case ... */

side = flip(side);

}

/*

* now we still have to take care of the last frame

*/

printf("frame %4d, last frame.\n", i);

startframe(side, framemin, norm_value, offset);
semTake(hmm_board_int_sem);
hmm_reset();

Get_Result_in_char(side, result);

Clear_ActiveList(0, 0, 0x20, 0);
Clear_AetiveList(0, OxffffO, Oxfffff, 0);
Clear_ActiveList(1, 0, 0x20, 0);
Clear_ActiveList(l, OxffffO, Oxfffff, 0);
Clear_AetiveWord(0, 0, 0x30, 0);
Clear_ActiveWord(l, 0, 0x30, 0);

StopAllProc();

StartProc(2);

printf("\n");

fclose(fp);

return(result);

193


	ERL-91-109 (1 of 3)
	ERL-91-109 (2 of 3)
	ERL-91-109 (3 of 3)

