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Abstract

We compare the performance of hierarchical and single-level controllers
in a grasping context, and we conclude that for rapid, planar grasping mo-
tions of heavy objects the performance of a hierarchical control structure is
superior to that of the two single-level controllers tested. For slow move-
ments of lighter objects the performance of the three controllers is similar;
with an increase in movement speed and ob ject mass, however, the hier-
archical structure becomes increasingly important. Although the theory
discussed here applies to grasping problems of arbitrary complexity, we fo-
cus on planar, two-fingered grasping for the sake of clarity and to simplify
implementation and experimental testing of the proposed control algorithms.
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Chapter 1

Introduction

Interest in complex, multi-fingered robotic hands has seen an increase in the
last few years, as advanced designs and a rigorous theory used to describe
them have been developed. Early research on multi-fingered hands tended
to focus on the description of hand kinematics [13] and on the generation of
stable grasps [20]. Later, researchers started to develop simple algorithms
used in grasping control of single hands [4, 12, 15, 16] as well as control of
associated groups of robots, cooperating to perform a single task [1,2,11,19].

Advances in multi-fingered hand design are readily apparent when pe-
rusing the literature: the more well-known designs include the Utah-MIT
hand [8], the Stanford/JPL hand [28], the NYU hand [5]. However, the
problem of overcoming the computational burden associated with control of
some of the more complicated hand designs has not been adequately ad-
dressed. In response to the computational difficulties surrounding control
of complicated robotic hands we seek an approach to multi-fingered hand
control that significantly reduces the computational burden placed on the
controller while improving the grasping performance of the hand, and that
is essentially design-independent. A beginning in the development of such
an approach was made by Deno et al. in [7], and the experimental results
presented here may be considered an implementation of the basic philosophy
of hierarchical robot control as laid out there.

A motivating factor in this study of hierarchical grasping control is
found in the highly effective, adaptable mammalian neuro-muscular control
system and its hierarchy of spinal and cortical neural signals and control
loops [14, 23]. Time delays inherent in biological motor systems indicate
that control is likely to be hierarchical, occurring at many different levels
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6 CHAPTER 1. INTRODUCTION

of the central nervous system. For the same reasons, communication and
computation delays make hierarchical controllers an attractive method for
providing high system bandwidth while coordinating many degrees of free-
dom. These motivations are not limited to robotics: there is a large literature
concerned with the use of the related, though not directly applicable, theory
of decentralized control for general dynamic systems (21, 25];

Centralized control has been defined as a case in which every sensor’s
output influences every actuator [25]. The study of large scale systems led
to a number of results concerning weakly coupled systems, with decentralized
control, and hierarchical systems, with controllers exhibiting a separation of
time-scales. Graph decomposition techniques permitted the isolation of sets
of states, inputs, and outputs that were weakly coupled. This decomposi-
tion simplified stability analyses and controller design. In multi-processor
control systems, decentralized control is often mandated by restrictions on
the communication rates between processors. Hierarchical controllers, as
exemplified by Clark’s HIC 3], limit inter-level communication to communi-
cation between adjacent levels of the hierarchy. HIC is an operating system
intended to manage servo loops found in robot controllers in which Clark
emphasizes distributed processing and interprocessor communication.

In this paper we compare the performance in a planar grasping task of
a hierarchical control algorithm with that of single-level controllers contain-
ing no hierarchical structure. In doing so, we first selectively review the
dynamics and control of robot systems and discuss the natural hierarchical
structure that arises in biological grasping systems and may be created in
robotic multi-fingered hands. We show that in the hierarchy used here, we
have a control scheme that, with fast low-level controllers, induces the track-
ing error to converge to zero. We then proceed to describe the methods and
the hardware used in the experimental comparison of the controllers’ perfor-
mance and subsequently present the experimental evidence demonstrating
the superior performance in rapid, planar movements of heavy objects of
the hierarchical controller. Finally, we discuss the merits of the hierarchical
approach to the control of grasping and draw parallels between grasping in
biological systems and in multi-fingered robotic hands.



Chapter 2

Hierarchical Control of
Grasp Dynamics

In this section we selectively review the dynamics and control of robot sys-
tems. Following the results of [17], we show that there is a natural hieraz-
chical structure of the control system for multi-fingered hands that mirrors
the physical structure of the system.

2.1 Grasp dynamics

The dynamics for an open kinematic chain robot manipulator with joint
angles § € R™ and actuator torques 7 € R" can be derived using Lagrange’s
equations and written in the form

M(0)6 +C(8,6)6 + N(6,6) = (2.1)

where M(0) is a positive definite inertia matrix and C(8,6)d is the Coriolis
and centrifugal force vector. The vector N (6,0) € R contains all friction
- and gravity terms, and the vector 7 ¢ R" represents generalized forces in the
8 coordinate frame. For systems of this type, it can be shown that M — 2C
is a skew symmetric matrix with proper choice of C (see [27]).

When contact constraints are added to a robot system, for example when
a multi-fingered hand grasps an object, the robot dynamics can still be
represented in the same form as equation (2.1). In the case of a multi-
fingered hand grasping a box, we let 8 be the vector of joint angles and z
be the vector describing the position and orientation of the box. With these

7



8 CHAPTER 2. HIERARCHICAL CONTROL OF GRASP DYNAMICS

definitions, the grasping constraint may be written as
J(9)8 = GT(q)s, (2.2)

where ¢ = (9, z) € R™ x R", J is the Jacobian of the finger kinematic
function and G is the “grasp map” for the system. We will assume that
J is bijective in some neighborhood and that G is surjective. This form
of constraint can also be used to describe a wide variety of other systems,
including grasping with rolling contacts, surface following and coordinated
lifting. For ease of exposition, we also assume that there exists a forward
kinematic function between 8 and z; that is, the constraint is holonomic. A
more complete derivation of grasping kinematics can be found in [18].

To include velocity constraints in the dynamics formulation, we again
use Lagrange’s equations. Following the approach in [18], the equations of
motion for the constrained system can be written as

M(q) +C(q,0) + N(q,4) = F, (2.3)
where

M = M+GJTMJ1GT

¢ = c+GJT (CaJ“GT + Modii (J-IGT))

N = GJ TN

F. = GJTr

M,My = inertia matrix for the ob Ject and fingers, respectively
C,Cs = Coriolis and centrifugal terms

Thus, we have an equation with a form similar to that of our “simple” robot.
In the object’s frame of reference, M is the matrix of the effective mass of the
object, and C is the effective Coriolis and centrifugal matrix. These matrices
include the dynamics of the fingers, which are being used to actually control
the motion of the object. However, the details of the finger kinematics and
dynamics are effectively hidden in the definition of M and C. The skew
symmetry of M — 2C is preserved by this transformation.

Although the grasp map G was assumed to be surjective, it need not be
square. From the equations of motion (2.3), we note that if the fingertip
force J=T is in the null space of G, the net force in the object’s frame of
reference is zero and causes no net motion of the object. This type of force
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acts against the constraint and is generally termed an internal or constraint
force. We can use such an internal force to satisfy other conditions, such
as keeping the contact forces inside the friction cone (to avoid slipping) or
varying the load distribution of a set of manipulators rigidly grasping an
object.

2.2 Control

To illustrate the control of robot systems, we look at two controllers which
have appeared in the robotics literature. We start by considering systems of
the form

M(9)é+C(q,d)t+ N(g,§) = F (2.4)
where M(q) is a positive definite inertia matrix, and C(g,§)¢ € R" is the
Coriolis and centrifugal force vector. The vector N (¢,4) € R™ contains all
friction and gravity terms, and the vector F € R® represents generalized
forces in the z coordinate frame.

Computed torque

The computed torque control law is a special case of the more general tech-
nique of feedback linearization. That is, through the use of nonlinear feed-
back, we wish to render the system dynamics linear in some appropriate set
of coordinates. For a robot manipulator, given a desired trajectory, x4, we
use the control

F = M(q) (34 + K.é + Kype) + C(q,8)3 + N(q, d) 25)

where error e = z4 — 2, and K, and K, are constant gain matrices. The
resulting dynamics equations are linear, with exponential rate of convergence
determined by K, and Kp. Since the system is linear, we can use linear
control theory to choose the gains (K, and K p) such that they satisfy some
set of design criteria. In particular, if we choose K. v and K, to be diagonal, we
can analyze the system using the notions of system bandwidth and damping.
We make use of these notions in the analysis of the experiments presented
here, as we shall see later.

PD + feedforward control

PD controllers differ from computed torque controllers in that the desired
stiffness (and potentially damping) of the end effector is specified, rather
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than its position tracking characteristics. Typically, control laws of this
form rely on the skew-symmetric property of robot dynamics, that is to say
af (M - 2C) a = 0 for all @ € R™. Consider the control law

F=M(q)ia+ C(q,9)2a + N(q,9) + Kué + Kpe (2.6)

where both K, and K, are symmetric positive definite. Using a Liapunov
stability argument, it can be shown that the actual trajectory of the robot
converges to the desired trajectory asymptotically [9]. Extensions to the
control law result in exponential rate of convergence (24, 26]. We note here
that for a diagonal mass matrix, M(q), the computed torque controller and
the PD plus feedforward controller, when integrated into the upper level of
the hierarchical structure, reduce to the same control algorithm. We make
use of this fact later in determining the choice of gains by analyzing the
system bandwidth and damping.

2.3 Primitives for robot control

A multi-fingered robot hand can be modeled as a set of robots that are
connected to objects via a set of contact and control constraints. Given a
set of robots and constraints on their interconnections, we can generate a new
dynamic system and model it using the same basic principles that were used
in the generation of the sub-robots. In fact, the procedure in which we use
simple robots and build upon them to generate more multi-fingered robotic
hands is simple enough that we can automate, to some extent, the procedure.
In [6, 17], a system was proposed for building hierarchical control laws for
complex, interconnected robotic systems. We review that formulation here.

The proposed procedure for generating complicated, multi-level robotic
systems-is based upon a set of robot primitives, consisting of objects that pos-
sess certain attributes and are connected via additional primitives. Robots,
or objects, are dynamical systems that are each recursively defined in terms
of the properties of daughter robots. The entire multi-level robot structure
can be envisioned as a tree structure, in which the leaves are robots. Each
robot is defined as an object that possesses attributes such as inertial pa-
rameters and kinematics. Robots also function as devices whose input con-
sists of desired position and force trajectories and whose output consists, in
turn, of the robots’ actual position and force.

Additional primitives serve as branches to connect the various nodes of
the robot tree structure. In particular, the attach and control primitives
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act upon sets of robots to create new robots by linking them together. As one
ascends the robot tree from the leaves to its roots, one encounters robots
with progressively fewer degrees of freedom, indicating a compression of
information that allows for control using increasing levels of abstraction.

The attach primitive reflects geometrical constraints between robots,
creating new robots from sets of daughter robots, while also effecting a
coordinate transformation. The attach primitive simultaneously expands
desired positions and force trajectories as one moves out to the more distal
nodes of the tree and compresses actual position and force information as
one travels in a more proximal direction, thus, creating a bi-directional flow
of information throughout the tree structure.

The second connecting device within the tree structure is the control
primitive. Essentially, the purpose of the control primitive is to make a
robot follow the position and force trajectory specified for it. The primitive
applies a specified control algorithm to the desired and actual robot positions
and forces and, as a result, obtains a set of expected positions and forces
for the daughter robot. The daughter robot, in turn, provides robot objects
located at more proximal nodes of the tree with its actual state information.

The block diagram portion of Figure 2.1 may be viewed as an example of
a robot system comprised of these primitives. The robot system, in turn, is
a model of the human control system depicted in the right half of the figure.
Starting from the bottom: a finger and thumb are defined; each digit is
controlled by muscle tension and stiffness; the muscles and sensory organs of
each form low-level, fast spinal reflex loops that go directly from the digit to
the spinal cord and back to the digit. The two digits are attached to form
a composite hand. Further up the hierarchy, the brainstem and cerebellum
help control and coordinate motor commands and sensory information.
Finally, at the highest level, the sensory motor cortex, where sensory in-
formation is perceived and where conscious motor commands originate, the
fingers are thought of as a pincer which engages in high level tasks such as
picking.

In designing controllers using the primitives described above, a key issue
is how to properly model a robot that has a controller attached to it. In
order to allow the recursive nature of the primitives to operate, we must
describe the new robot as a dynamical system with equations of motion in
the form given by equation (2.3). For controllers that are very fast relative
to higher levels, it is often a good approximation to model the robot as an
ideal force generator, with no mass. This approximation does not imply that
the robot is no longer a dynamic object, but rather that controllers at higher
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Figure 2.1: Model of a hierarchical control scheme of a human finger and
thumb (7]. (Figure courtesy of D. Curtis Deno)

levels can ignore the dynamic properties of the robot, since these properties
are being compensated for at a lower level.

We use the primitives formulation of the robot control structure in mod-
eling the experimental setup used here. In particular, we implement a hier-
archical control scheme in which the lower control levels, analogous to the
spinal reflex model described here, operate at the finger joint levels, leaving
the high level free to operate solely within the level of task coordinates.

2.4 Stability of Hierarchical Control

In order to demonstrate stability of the hierarchical control scheme proposed
here, we model the scheme as a two-step hierarchy: a low level PD at the
motor level and a high level PD-type control for the entire “hand”. If the
low level scheme were infinitely fast, then the scheme would be a “conven-
tional PD” type that is guaranteed to be exponentially convergent, that is,
the tracking error goes to zero exponentially. Standard singular perturbation
arguments [10] may be used to show that the scheme is exponentially conver-
gent, provided that the low level controller is fast enough, or, equivalently,
that the sampling period is small enough.



Chapter 3

Experimental Setup

What follows is a description of the hardware and software used in the con-
trol experiments presented here. First, we describe in some detail the two-
fingered hand as well as the objects that were manipulated by the hand.
Next, we give an overview of the implementation of the hierarchical control
structure and describe its software and hardware components.

3.1 Styx—Hardware

The control algorithms presented here have been implemented on a multi-
fingered hand, known as Styx, that was designed and built to facilitate im-
plementation and testing of control algorithms for multi-fingered hands [15].
Styx is a two-fingered, planar hand, with each finger consisting of two rev-
olute joints and two links. The distal links are capped by small rubber
cylinders that serve as fingertips and as contact “points” between the fin-
gers and the object that is to be manipulated. A diagram of Styx is shown
in Figure 3.1.

The motors used to drive Styx are direct-drive DC motors mounted at the
base of each link and are driven with a pulse-width modulated 20 kHz square
wave. Each motor contains a quadrature encoder used to sense joint position.
The resolution for the proximal motors is 3600 counts per revolution and
for the distal motors 2000 counts per revolution. Styx is connected to an
IBM PC/AT running at 6 MHz with an 8087 floating point coprocessor.
The motors and encoders are interfaced to the AT using a set of four HP
HCTL-1000 motion control chips interfaced to the AT bus. A view of the
interconnection of the hardware supporting the Styx system is shown in

13
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Proximal Motor, M1

Motor Inertia, J1

Left Finger Right Finger

Figure 3.1: Top View of Styx

Figure 3.2.

The parameters associated with Styx kinematics and dynamics are shown
in Table 3.1.

Assumptions made to simplify implementation of the control algorithms
presented here include:

1.

2.

Motor dynamics can be ignored—for small velocities, the torque gen-
erated by each motor is proportional to the input pulse width.

Fingertips can be modeled as fixed point contacts—in order to avoid
the complexity associated with implementing a model of rolling contact
dynamics, the fingertips were modeled as simple point contacts. As a
result, the shifting of the contact points on the object was unmodeled.
However, in the commanded trajectories including zero orientation of
the object, the effect of this shift was minimized.

The Coriolis and frictional forces are ignored—for trajectories resem-
bling the slower movements tested here, these forces have been shown
to be negligible [15). More extensive testing regarding the relative sig-
nificance of the Coriolis and frictional forces in the fast trajectories is
required.
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Link Lengths Ly, Ry 15.3 cm
L, 12.16 cm
Rz 11.8 cm
Fingertip Radius | ry 1.7 cm
Base Separation B 20.0 cm ~
Link Mass Miy, Mg, | 53 g
Mg, 17 g
Mp, 20 g
Distal Motor Mass | M, 328 g “
Fingertip Mass M; 3 g
Motor Inertia A 18 g cm?
J2 1.74 gcm?

Table 3.1: Styx Parameters

3.2 Control Hierarchy

In the discussion of the tracking performance of the hierarchical structure
we assumed the existence of two continuous time controllers, a high level PD
plus feedforward controller in object coordinates as well as a low level PD
controller in joint angle coordinates. Here we describe in more detail the
implementation details of the hierarchical structure, including the points of
departure of the implementation from the theory.

In order to implement the two-level hierarchical structure, we actually
used the three-level structure shown in Figure 3.3. The upper two levels,
consisting of a primary and a secondary control loop, are written in the
C programming language, using the Microsoft 5.1 Optimizing C compiler.
An assembly language scheduler controls the sample rates of the control
loops. In order to more closely relate to each other the hierarchical control
structures shown in Figures 3.3 and 2.1 we chose the sampling periods of the
low-level and high-level control loops to be roughly equivalent to the time
delays present in what are postulated in the biological system to be spinal
reflex loops and cortical feedback loops, respectively.

At the top of the figure we see the highest control level, the secondary
control loop running at 10 Hz. At this level we calculate the inverse kine-
matics of the object’s desired trajectory (X4 in Figure 3.3) and perform the
high level control functions when we put Styx into the hierarchical control
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Figure 3.2: Hardware Supporting Styx

mode. The high level software can be made to implement any desired control
algorithm that is to be superimposed upon the lower levels. Here we present
results of the high level PD + feedforward controller in ob ject coordinates
only.

The lower level of the control hierarchy consists of the low level software
block shown in Figure 3.3 in addition to the hardware block below it. The
lower software level is implemented by the primary control loop. The purpose
of the primary control loop is to write at a frequency of 100 Hz directly to
the motion control hardware the current commanded joint angles received
from the secondary loop. In addition, the low level controller is capable
of joint angle interpolation, calculating a new, updated commanded joint
position by adding incrementally the joint velocity multiplied by a time step
based on the ratio of the primary and secondary control frequencies. This
interpolation allows the low-level controller to gradually command the joint
position to move from the position commanded by the high-level controller
at one time step to the position commanded at the following time step.

At the lowest level of the control hierarchy exists the HP HCTL-1000, a
digitally sampled, general purpose motor controller. Although we assumed
in the stability analysis that the lower control level operated in continuous
time, we used the HCTL-1000 in the implementation, because it had al-
ready been built into the existing hardware. In particular, the HCTL-1000
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Figure 3.3: Control hierarchy for Styx, showing control of the desired and ac-
tual object trajectories, X4 and X,., respectively, and the specified internal
force, fn.

was used in its position control capacity only, because the fast response rel-
ative to the software control loops allowed us to make comparisons with
the human control system and its multi-level structure, In the analysis, our
assumption was that the digital sampling of the controller was fast enough
so that we could approximate it by a continuous time PD controller. The
actual sampling frequency of the HCTL was 1.9 kHz.

Programmable variables in the HCTL’s position control include the sam-
pling time, T, as well as the parameters associated with the digital filter used
to compensate for closed loop system stability:

_ K(z- A/256)

D& =4 B/256)

(3.1)

The position control mode performs point to point position moves. A po-
sition command is specified, which the controller compares with the actual
position, calculating the position error. The full digital compensation is ap-
plied to the position error, and the calculated motor command is output
until the position error changes or a new position command is given.
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Since the HCTL-1000 was used in its position control mode, we did not
directly send desired torque commands to the HCTL controller. Although
the chip’s position control is entirely adequate for specifying a desired tra-
jectory with no high level control, a problem arose when we wished to apply
a certain internal force, as, by definition, the internal force evokes no change
in the system’s position variables. We could not induce the motors to apply
the torques required for the specified internal force by specifying the torques
directly. Instead, we calculated a virtual position error which, when mul-
tiplied by the DC gain of the position controller, yielded the desired joint
torques. The same difficulty arose when we wished to specify additional
torques based on correctional terms calculated by the high level controller.
Instead of adding in the torques directly, we calculated a “correctional” po-
sition error, by assuming that the trajectory was slow enough relative to the
time constants associated with the HCTL controller that we can use the DC
approximation in the torque to position conversion with some reasonable
degree of accuracy.

The control system was tested with each of three different progressively
more complicated control schemes, each building on the one(s) before: set-
point control without joint interpolation, setpoint control with joint inter-
polation, and hierarchical control (including setpoint control with joint in-
terpolation at the lower level).



Chapter 4

Experimental Results

4.1 Presentation of Results

In the experimental results presented here, we used two different objects,
each suited to meet the needs of the particular trajectory being tested. In
the first set of trajectories, we used a metal bar that was loosely attached
to the fingertips via pin joints. Mounted on top of the bar was a heavy
mass, which the fingers were required to move. The “ob ject” thus consisted
of both the beam and the mass attached to it; the parameters associated
with this object are shown in the column labeled “beam” in Table 4.1. The
second object used in the experiments was a cardboard box, the dimensions
of which are also shown in Table 4.1, in the column labeled “box”.

The HCTL-1000 parameters used in the generation of the figures shown
were the chips’ default parameters, listed in Table 4.2.

The commanded trajectories for the ob jects’ centers of mass were circular
trajectories of radius 2.5 cm, centered at z = 1.3 cm, ¥ = 21.2 cm relative
to the midpoint between the two proximal motors, as shown in Figure 3.1,

( Beam Box
Mass 245 33 g
Moment of Inertia [ 1.8 x 10° 1.3x 103 gcm?
Length 12 17 cm

Table 4.1: Object Parameters

19
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Gain, K, 64

Zero, A 229

Pole, B 64
Sample Freq, 1/T | 1.9 kHz

Table 4.2: HCTL-1000 Parameters

with frequencies of 1.0 Hz for the “beam” and 0.25 Hz for the “box”. The
orientation of the objects was to remain at zero throughout each movement.
The tracking performance along these trajectories was tested for consistency
between trials. We determined that collecting data for a period of 20 seconds
was entirely sufficient for our purposes, resulting in series of 5 trials each for
the slow trajectories and 20 trials each for the fast motions. Additional trials
merely served to duplicate the results.

Although we are interested primarily in grasping control rather than
coordinated robot control, we used the beam in the rapid movements because
of hardware limitations: In the slow movements we applied an internal force
of 3 x 10 dyne. The maximum motor torque, however, was limited to the
extent that we were not able to exert the large internal forces required to
grasp and move a heavy object during rapid movement. Thus, we used
an object that we could loosely attach to the fingertips, enabling us to use
smaller internal forces (3 x 10 dyne) without losing contact with the object.

Figures 4.1-4.5 depict the performance of the three different controllers,
the setpoint controller (non-hierarchical), the setpoint controller with low-
level joint velocity interpolation, and the hierarchical controller. The set-
point controller consisted of a high level piece that existed solely to calculate
the inverse kinematics, directing the low-level controller to a new setpoint at
a frequency of 10 Hz. Position control was carried out only at the fast, low
level by the HCTL-1000 and was done strictly in joint angular coordinates.
The rather poor performance of this controller can be judged quickly by
examining Figure 4.1(a), which shows the actual trajectory of the object’s
center of mass. A large overshoot, primarily in the horizontal, z, direction
is evident.

The second controller that was used, the joint interpolation controller,
was non-hierarchical as well, as the high level software, again, existed merely
to solve the inverse kinematics, with the additional control piece, the joint
velocity interpolation, added only at the low level, as described above. Al-
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Figure 4.1: Actual and commanded ob ject trajectories with setpoint con-
troller (a), joint interpolation controller (b), and hierarchical controller (c)
in Cartesian space with weighted beam; commanded trajectories are shown
within each graph (fast circular trajectory).

though the trajectory shown in Figure 4.1(b), was found to be smoothed out
more, we found the same overshooting of the goal trajectory that occurred
in Figure 4.1(a). Further efforts aimed at improving overall performance by
introducing more and more complicated versions of a single-level, fast con-
troller seemed unwarranted. The problem that remained to be addressed was
the object’s mass, a parameter that was not and could not without undue
complications be taken into account at the lower level.

A significant improvement in the trajectory tracking performance was
found when a high-level controller that corrected for the object’s tracking
errors was superimposed upon the existing low-level control structure. By
calculating the torques required to bring the object back to the desired
trajectory, the high-level controller was able to compensate for and minimize
the trajectory errors in the object’s (Cartesian) coordinates, as shown in
Figure 4.1(c). The overshoot that so grossly disfigured the trajectories of
the two non-hierarchical controllers disappeared completely, resulting in a
much better overall tfa.cking performance.

In Figure 4.2 we show the calculated box position error, for the set-
point controller (a), the setpoint controller with interpolation (b), and the
hierarchical controller (c) for the same trajectories that were depicted in
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Figure 4.2: Deviation (in ¢cm) from commanded trajectories of actual ob-
Ject trajectories with setpoint controller, joint-interpolation controller, and
hierarchical controller when using weighted beam (fast circular trajectory).

Figure 4.1. The error is given by V(Xact = Xdes)? + (Yoor — Y4es)? for each
controller. Again, the insignificant improvement afforded by the addition of
the joint interpolation to the setpoint controller, and the marked improve-
ment of the performance of the hierarchical controller over the performance
of both single-level controllers are evident.

In the figures showing data in “box-plot” form (Figures 4.2-4.8), the top
and bottom of the boxes correspond to the twenty-fifth and the seventy-
fifth percentiles of the given variables, while the horizontal lines through the
boxes correspond to the median values of the variables. The vertical lines
have ends that extend beyond the quartiles by a distance equal to one and
one-half times the inter-quartile range. Approximately ninety-nine percent
of normally distributed data are within the range covered by the vertical
lines; outliers are identified by an asterisk, ‘*’.

In order to rule out the possibility that the improvement in performance
of the hierarchical controller when compared with that of the single level
controllers was an anomaly related to the particular circular trajectory cho-
sen, we tested the same controllers on two additional trajectories, a figure-8,
generated by specifying sinusoidal motions of different frequencies in the x
and y directions, and a square “box” trajectory, generated by specifying
equal amplitude, phase shifted square waves in the x and y directions. The
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Figure 4.3: Deviation (in c¢m) from commanded trajectories of actual ob ject
trajectories with setpoint controller, joint-interpolation controller, and hier-
archical controller (figure-8 trajectory); experimental details are summarized
in the appendix.

experimental details of these trajectories are summarized in the appendix.
A brief look at the box plots of the ob ject’s x-y error shown in figure 4.3
provides evidence that it is again the hierarchical controller which minimizes
this error. On the other hand, with the square box trajectory we see in fig-
ure 4.4 a much less desirable level of performance in both the single level
controllers and the hierarchical controller, not a surprising result, consider-
ing the infinitely fast specified tra jectory at each square wave rise and fall.
The relatively significant overshoot and underdamping seen in each trajec-
tory are currently assumed to be more related to sub-optimal choices for the
HCTL-1000 control parameters than to the particular control algorithm. A
conclusive statement about the relative performance of single level and hi-
erarchical controllers in this type of trajectory is, therefore, not possible at
this time. However, the performance of the hierarchical controller appears
to be no worse than that of the simpler algorithms.

The improvement in the object’s position tracking that we found when
using the hierarchical controller was, unfortunately, not mirrored in the ob-
Ject’s orientation, as can be seen in Figure 4.5. A similar result was observed
in the figure-8 trajectory described earlier (results not shown). One possi-
ble cause is a poor approximation of the moment of inertia of the object.
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Figure 4.4: Commanded “square box” object trajectory (a), actual trajec-
tory with setpoint controller (b), with joint interpolation controller (c), and
with hierarchical controller (d); experimental details are summarized in the
appendix

Due to the configuration of the system, a very slight shift in the fingertip
position can cause a relatively large orientation error in the ob ject. Thus,
any error in the calculation of the object’s moment of inertia can cause an
error in the orientation portion of the feedback control, which, in turn, can
cause a significant orientation error in the object. We expect that the same
controller, when furnished with a more accurate measure of the ob ject’s mo-
ment of inertia, will show an improvement in the orientation error similar
to that found in the position error. Further tests with more sophisticated
measurements of the object’s moment of inertia are expected to confirm this
prediction.

In order to gain a better understanding of the modeling errors associated
with the object’s orientation we tested the three controllers on a trajectory
involving only a twisting motion of the ob ject with no translation. That
is, the specified x and y trajectories of the object’s center of mass were
identically equal to zero, while the orientation was varied sinusoidally. The
resulting trajectories for the joint interpolation single-level controller and the
hierarchical controller are shown in figure 4.6. Evidence for modeling errors
is readily apparent in both trajectories: when using the joint interpolz.ztion
controller, the object exhibited a significant overshoot in both directions as
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Figure 4.5: Deviation (in radians) from commanded object orientation of
actual object orientation with setpoint controller, joint interpolation con-
troller, and hierarchical controller from commanded trajectories when using
weighted beam (fast circular trajectory).

well as phase shift and a periodic distortion throughout the trajectory; on
the other hand, while the hierarchical controller caused the object to have
a smaller phase shift and to follow a sinusoidal motion of the appropriate
amplitude, the object trajectory exhibited a 0.2 radian DC phase shift. In
figure 4.7 the relative magnitudes of the total applied forces and the iner-
tial forces on the object may be observed. The data shown in the figure are
calculated using data from the particular experiment using the joint interpo-
lation controller. In this trajectory, the inertial forces only make up a small
portion of the total forces applied to the ob ject; the Coriolis/centrifugal,
frictional, and other unmodeled forces are, therefore, significant and may
be a large contributing factor in the orientation errors. Similar calculations
(not shown) based on trajectories involving time-invariant orientations, such
as the circles and figure-8 trajectories discussed above, show a much smaller,
although not insignificant difference between the inertial forces and the to-
tal applied forces. The same calculations also show, however, a non-zero
orientation component of the applied force. Based on these force calcula-
tions, we can conclude that both the dynamic model of the hand itself and
the controllers still incorporate significant errors with respect to the ob ject’s
orientation calculations, and improved versions of the models will be re-
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Figure 4.6: Commanded object orientation (labeled with circles) and actual
object orientation with joint interpolation controller (squares) and with hi-
erarchical controller (triangles) in the “twisting” trajectory; experimental
details are summarized in the appendix

quired if a significant improvement in the tracking of the specified object
orientation is desired.

As discussed above, the reasons for using the beam in the controller com-
parisons were to enable us to track high-speed trajectories with heavy objects
without saturating the motor output. However, we wish to point out that
the system is, in fact, capable of standard “grasping” manipulation. To this
end, we show in Figure 4.8 the object’s position, the orientation error as a
function of time, and the position error when the three controllers were used
to manipulate the lighter object (“box™) in tracking the slow (0.25 Hz) cir-
cular trajectory. As expected, at slow speeds and when using small object
masses, the differences between the single-level controllers, which did not
take into account the object’s parameters, and the hierarchical controller
became insignificant. The position control used in the setpoint controller
appeared to be entirely adequate when the object was commanded to move
slowly enough for the controller to reach each specified position before re-
ceiving the next position command.

The commanded internal force exerted on the ob ject by the hand was
kept at a constant value, 3 x 10* dyne, in all of the slow trajectory experi-
ments shown here. We currently have not measured the actual internal force
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Figure 4.7: Magnitude of the total force applied to the object at the fingertips
(labeled with triangles) and the inertial forces (squares) as determined by
the joint angle trajectory data in the the “twisting” trajectory; experimental
details are summarized in the appendix

on the object; hence, this quantity is not a controlled variable at this time.
The value of the constant internal force was chosen, because it seemed an
adequate compromise between having enough internal force to hold the ob-
Ject throughout the movement with a minimum of slipping and not having
so much internal force that the grasp became unstable. This potential insta-
bility due to a large “internal force” was a real problem that needed to be
addressed: the grasp and Jacobian matrices, used in the internal force cal-
culation, were updated at the relatively slow speed of the high-level control
loop. The calculated “internal” force, therefore, contained a small, at times
significant portion that lay outside of the grasp matrix’s null space. Simi-
larly, the torque calculated to produce the internal force differed slightly, at
times significantly, from the “true” value of the torque that would have been
required to produce an internal force. A possible cause of this difference may
be traced to differences between the Jacobian matrix that was calculated in
the slow control loop and the “true” current value of the Jacobian. An even
more significant contributing factor, perhaps, was the amplifier gain “drift”
over time, which, when combined with the slight kinematic differences be-
tween the two fingers, made precise calibration of the system an extremely
difficult task, and one that would need to be repeated throughout the life of
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Figure 4.8: Object trajectory, box plot of object position error, and object
orientation error as a function of time for setpoint controller (a), setpoint
controller with joint interpolation (b), and hierarchical controller (c) ( slow
circular trajectory).

the robot components. We stress this difficulty in calibration, because it goes
beyond the need to precisely measure the kinematic parameters associated
with the robotic hand and the object. In general, the higher the desired
internal force, the higher the errors associated with applying the proper
torques. We found that relatively high commanded internal forces interfered
significantly with proper tracking behavior, while even higher forces caused
the grasp to become unstable.

A brief exploration of the effect of different levels of internal force is
shown to furnish the reader with some understanding of the magnitude of
this effect. The commanded trajectory was the slow circle described above.
Figure 4.9 shows the increase in the tracking error accompanying an increase
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Figure 4.9: Effect of increased specified internal force on trajectory errors
using the setpoint controller; trajectories (a) and (b) were followed with a
specified internal force of 3 x 10 and 5 x 10? dyne, respectively; the plus
sign (“+”) marks the center of the commanded circular trajectory.

in the specified internal force from 3 x 10* dyne to 5x 104 dyne. The primary
cause of the shift in the trajectory appears to have been the calibration
difficulty discussed above. While the figure shows the data for the non-
hierarchical setpoint controller only, the results were very similar when the
other controllers were tested.

4.2 Discussion of Results

The data presented here show a noticeable improvement in the performance
of the hierarchical controller as compared with that of the single-level con-
trollers when the controllers were used in fast movements of a heavy object.
The most basic controller tested, the setpoint controller, was a simple, fast,
single-level controller operating only on the joint position variables. The per-
formance of this controller, even when operating at high frequencies relative
to the trajectory frequencies, was clearly inadequate, demonstrating a large
overshoot in the positioning of the object throughout much of the trajectory.
In an attempt to improve the performance of the single-level control scheme,
we introduced an additional level of complexity at the joint level by calcu-
lating the joint angular velocity and implementing an interpolation scheme
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that was designed to smooth the commanded trajectory between adjacent
points as specified by the high level routines calculating the inverse kinemat-
ics. Although some smoothing was observed in the ob ject’s trajectory when
the joint interpolation scheme was used, there was no significant change in
the tracking performance of the system. Evidently, adding some degree of
complexity to the existing single-level controller was not sufficient to over-
come the tracking errors of the setpoint controller. We surmise that the poor
tracking performance was a result of neglecting the object’s dynamics in the
overall control scheme. The speed at which the single-level controllers were
operating, however, placed strict limits on the amount of computation that
could be completed within the control loop, thereby effectively excluding the
possibility of moving the computation of the dynamics of the entire system,
including both the robot hand and the object, into the lower level. We add
here that, in addition to testing the fast, simple single-level controller, we im-
plemented a more complicated single-level controller that incorporated both
the object and the hand dynamics and that was run at the slow speed of the
high level in the hierarchical scheme. The result, when the controller was
tested in the fast movement experiments, was instability to the point where
collecting data became entirely unnecessary. Clearly, a scheme making use
of the best of both controller complexity and controller speed was required.

A solution to the computational problem associated with manipulating
a heavy object at high speeds was the hierarchical control scheme presented
here. The hierarchical scheme allowed us to incorporate in a single control
scheme the advantages of fast control loops as well as the complexity required
to adequately model the system dynamics. As expected, incorporating the
object’s dynamics in the control scheme became more important as both
the object’s mass and its acceleration along the trajectory increased. Qur
conclusion regarding the need for hierarchical control in certain movements
was supported by the relative similarity in the performance of the three
controllers when operating on light moving at slow speeds. With an increase
in mass and movement speed, differences between the controllers became
more apparent.

We exploited the system’s similarity when using the computed torque and
the PD plus feedforward controllers and based the particular choice of the
high-level controller parameters on the second-order linear error dynamics
resulting from applying a computed torque controller. This analysis enabled
us to select the cutoff frequency and the damping factor for the system. In
order to obtain a roll-off above the trajectory frequencies and a damping
ratio of 0.5, we chose the high-level control gains to be K, =2 and K, = 4,
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with acceptable performance.

A subject for further inquiry is the choice of the control parameters at
the low level of the hierarchy. The difficulties encountered in this choice
were the limitations of the existing hardware and a lack of understanding
of how and to what extent, the choices made at one level of the hierarchy
were affected by the choices made at higher or lower levels. At this time,
our choice of the HCTL-1000 parameters was based upon the assumption of
complete separability of the two control levels, which allowed us to analyze
the closed loop performance of only the low level system. The parameter
values resulting from this analysis were then subjected to experimental test-
ing to determine the validity of the assumptions, and a final choice was then
made, based upon the performance of different combinations of parameters.
However, we stress that no extensive testing was performed to determine
the best choice. What is required is a more rigorous approach, including an
analysis of the extent to which the adjacent levels of control interact, leading
to an analytical solution and an experimental confirmation of the results.

In addition, a more detailed exploration of the problems associated with
the object orientation is in order. A possible area for further research may
be the effect of including rolling contact dynamics in the real time model of
the hand-object system. As stated, the model implies fixed point contacts
between the fingertips and the object, not necessarily a valid assumption,
especially for orientation-varying trajectories. The rolling contact dynamics,
however, result in extremely complicated dynamic equations, the derivation
of which is sketched in the appendix. Given the existing hardware available
here at this time, the computation of these complex dynamic relations is not
feasible in the time allowed by the controller frequencies.

The results discussed here represent an experimental confirmation of the
predicted stability of the hierarchical control structure under the conditions
given. In particular, the assumptions regarding the separability of the choice
of control parameters as well as the time scales of adjacent control structures
have been validated experimentally for the planar, two-fingered system used
here. Furthermore, the validity of the assumption that the frequencies in-
herent in the trajectories were low enough to merit the steady-state approx-
imation of the HCTL-1000 gain was confirmed. What remains to be gained
is a better understanding of what constitutes adequate limits on the ratios
of adjacent time scales and how these limits relate to the trajectories of
interest.



32

CHAPTER 4. ' EXPERIMENTAL RESULTS



Chapter 5

Conclusion

Based upon the experiments performed on Styx thus far, the most effec-
tive control scheme in fast movement of heavy objects was the hierarchical
control scheme. Hierarchical control schemes have the advantage of being
able to run simple, lower levels at high speeds, thus rapidly correcting for
tracking errors in fast movements, while running at lower speeds more com-
plicated higher levels that improve the overall performance by incorporating
system dynamics far removed from the low level actuators. Although the
experimental results presented here are based solely upon work done with a
simple, planar system, the advantages of using a hierarchical control scheme
can easily be applied to more complicated system, as we, in the implementa-
tion of the control structure, in no way made use of simplifying assumptions
based upon the simplicity of the system. In fact, the differences between
the performance of the hierarchical and single-level controllers ought to be-
come greater as the system complexity is increased and the computational
complexity of the higher level dynamics becomes greater.

An example of an extraordinarily complicated grasping control system is
the human motor control system and its feedback pathways from the skin
surrounding and the muscles controlling the fingers to the spinal cord and
to various parts of the brain. In a study of two-handed grasping control
in humans Reinkensmeyer [22] suggests the use of a simple control struc-
ture that takes advantage of the spring-like properties of muscle and of the
similarity between the dynamics of the single robot hand (in our case “fin-
ger”) and the robot hand-object system. In the work presented here, there
are no such simplifying properties of the actuators. However, by configur-
ing the system in such a way as to resemble the relative feedback delays

33
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of the human motor control system (20 — 30 ms for the single-reflex spinal
feedback loop and up to 200 ms and more for the highest-level, voluntary
control feedback loops [14, 23]), we were able to examine some connections
between the two systems that merit further exploration. In both systems
the structure of the lower levels enables the control algorithms at the higher
levels to make simplifying assumptions about the systems that lie beneath
them, thereby allowing the higher levels to control on a more abstract level
the entire movement, leaving the lower levels free to implement rapidly the
details of locally interfacing directly with the actuators. We hope to gain
further understanding of possible and plausible control structures in both
systems by exploring the parallels as well as the differences between them.

There are many areas in the design, analysis, and testing of hierarchical
control algorithms pertaining to grasping that need to be investigated more
fully. Lacking at this time is a rigorous theory of the interconnection of the
various levels of grasping control as well as a theory of the conditions under
which we can expect stability of the overall grasping control scheme. The
need for more sophistication in the development of approaches to the choice
of system parameters is clear. With increased sophistication, the potential
for improved performance at a lower computational cost than is associated
with single-level control is, in our opinion, undeniable. On the experimental
side, we would like to see an implementation of other controllers, such as
a computed torque controller, in the higher level of the hierarchical struc-
ture. Furthermore, extensive testing of rapid movements with high, possibly
time-varying, internal forces would afford greater understanding of grasping
control and might enable us to draw more conclusions about the biological as
well as the roboticist’s solution to the problem of controlling rapid grasping
movements. In turn, the introduction of varying internal forces, especially in
rapid movements, may act to compound the problem of the object slipping
within the fingers’ grasp and may, therefore, precipitate the implementation
of models that include the dynamics of rolling contacts.

Our comparison of hierarchical and single-level control schemes has at
once provided an indication of the advantages of using hierarchical control
algorithms in grasping control and introduced a variety of open research
questions relating to the theory and the application of hierarchical control
in multi-fingered grasping situations.
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Appendix A

Summary of STYX
Parameters

Summarized here are the STYX parameters associated with the experiments
described in the text.

Controller K, | K, | K, | Kins 1|
Setpoint o[ o] o 0 |
Joint Interpolation 0 0 0 1
PDFF 41 2| 1 1

Table A.1: Controller Gains (low level controller frequency = 100 Hz; high
level controller frequency = 10 Hz) for the Single-Level and Hierarchical
Controllers. Note that in the hierarchical controller, the PDFF control al-
gorithm operates at the high level, while the joint interpolation algorithm
functions at the low level, as indicated by the non-zero K;,; shown for the
PDFF controller.
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Table A.3: HCTL-1000 Parameters; the parameter values shown here are the
default parameters of the chips and were used throughout the experiments

APPENDIX A.

SUMMARY OF STYX PARAMETERS

Link Lengths L, R, 15.3 cm
Ly 12.16 cm
R, 11.8 cm
Fingertip Radius Ts 1.7 cm
Base Separation B 20.0 cm
Link Mass Mpy, Mp, | 53 g
Mp, 17 g
Mg, 20 g
Distal Motor Mass | M, 328 g
Fingertip Mass M; 3 g
Motor Inertia Ji 18 g cm?
Jo 1.74 g cm?

Gain, K4 64

Zero, A 229

Pole, B 64
Sample Freq, 1/T | 1.9 kHz

described in the text.

Table A.2: Styx Kinematic and Dynamic Parameters

Beam Box
Mass 245 33 g
Moment of Inertia | 1.8 x 103 1.3x 10° gcm?
Length 12 17 cm

Table A.4;

Object Parameters
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( Trajectory | Slow Circle | Fast Circle | Figure 8 | Square | Twist
{ Offset (cm,rad)
X 1.3 1.3 1.3 1.3 1.3
” y 21.2 21.2 21.2 21.2| 21.2
phi 0.0 0.0 0.0 0.0 0.0
| Magnitude (cm,rad)
X 2.5 2.5 2.5 1.0 0.00
y 2.5 2.5 2.5 1.0 | 0.00
phi 0.0 0.0 0.0 0.0] 0.25
Phase (deg)
X 0 0 0 0 0
y 90 90 90 90 90
phi 0 0 0 0 0
Frequency (Hz)
X 0.25 1.0 1.0 0.1 0.25
y 0.25 1.0 0.5 01| o0.25
phi 0.25 1.0 0.0 0.1 0.25

Table A.5: Specified Object Trajectories; note that in all cases, except in
the slow circle, the object used was the so-called “beam”
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Appendix B

STYX Dynamics with
Rolling Contacts

Shown here is a condensed derivation of the rolling contact dynamics. Un-
derlying the derivation are the assumptions (1) that we have point contacts
between circular fingertips and a planar object and (2) that the object is
large enough to prevent each contact point from reaching the edges of the
object’s current contact side. In the interests of brevity, where the derivation
may be broken down into two symmetric halves, only the left half is shown.

B.1 Forward Kinematics

The forward kinematics relating the left fingertip position, (zstipy» YstipL )
to the joint angles of the left finger are

Tftip, = Li*sin(0p1)+ Lo * sin(6ry +012) — B/2
Yftipy = L1+*cos(0r1)+ Lo+ sin(0p1 + 012) — B/2 (B.1)

where Ly and L are the proximal and distal left link lengths, respectively,
B is the distance between the finger bases, and 0;; and 0, are the left
proximal and distal joint angles, respectively.

B.2 Contact Coordinates

The following definitions relating to the contact angles, that is, the angles
defined in the area surrounding the actual contact point on the fingertip and
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Laft contact point
xttipcl, yfipel.

(e)

(®)

Figure B.1: Definitions of angles in area of fingertip-object contact; (a) the
left finger in contact with the left side of the object; (b) enlarged view of the
left fingertip area—shown for clarity in a different position than that shown
in (a).

the object, are made and used below. Figure B.1 depicts the contact point
area. Shown are the contact angles for the left fingertip and the left side of
the object only.

0 = 7w/2—(0r2-6L1)
Y = w/2-6L=(0p2—0L1)
YL = ¢+ 2%60py— 011 — Ora(ref) (B.2)

where ¢ = the object orientation, as shown in Figure B.1, and 8r;(ref) =
the reference position of the left distal joint angle.

The contact positions are now expressed in terms of both the finger
coordinate frame and the object coordinate frame. Accordingly, we have

Tftip, = Zftipy +7f*sin(7L)
Ystin, = Yrtip, — Tf* cos(7L)
(B.3)

the x and y coordinates of the contact point as expressed in finger coordinates



B.3. ELIMINATION OF OBJECT COORDINATE MEASUREMENTS4T

and

Tobjo, = Tobj — Tobj * €08(@) — 1y * sin(@)
Yobjc, = Yobj — Tobj * €OS(®) + 75 * sin(9) (B.4)

the contact coordinates as expressed in object coordinates. Note that 7op;
and 7y are defined as the object and fingertip radii (see Figure B.1).

B.3 Elimination of Object Coordinate Measure-
ments

The difference between the left contact positions when calculated in the
finger coordinates and when calculated in the object coordinates should equal
zero. Thus, we can define Hy, for the left finger

Hy = T ftiper, ~ Tobjer | — (B.5)
Yftipcr — Yobjer

and use the resulting equations to calculate the object position, z.5; and
Yobj, as a function of the joint angles and the object orientation, ¢. After
following a parallel derivation at the right finger and contact location, we
can also calculate the object’s orientation as a function of the joint angles.
We require this elimination of the object’s state in real time control of the
fingers, as the only information available to the controller is the state of the
fingers themselves. Thus, we have

¢ = tan~(a) — cos™(b) (B.6)
where

(Ystipr — Ystips,)

a =
(T stipr — Tstip,)
b = 2+ (7ot + 74) 7 (B.7)
[(ystion — Ystins 2 + (Zstipg — Tstip)?)
B.4 Grasp Map with Rolling Contacts
The grasp map, G, is defined such that
OHL(O, Xob;
G(O, Xopy)r, = 2LO: Xobi) (B.8)

90X ob;
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and
OHR(O, X ;)

BXobj

where G and GR represent the grasp maps of the left and right fingers,
respectively, and © represents the vector of the proximal and distal joint
angles.

By making the appropriate substitutions defined above for the object’s
position and orientation, we obtain left and right rolling contact grasp maps,
GL(©) and Ggr(0), that are dependent only upon knowledge of the finger’s
joint angles.

G(0,Xobj)R = (B.9)

B.5 Jacobian Matrix with Rolling Contacts

Similarly, we define the hand Jacobian matrix by calculating
O0HL(9, Xoj)

J(0, Xob;)L = — 30 (B.10)
and OHR(O, Xop;)
J(0, Xopj)p = ——220bi) (B.11)

00

As with the grasp map, we can then make the appropriate substitutions to
obtain J.(O) and Jr(O).

B.6 Dynamics

The grasp and the jacobian maps defined by

G((‘)) = IG(G)R 0 l

0 G(O)
J(©) = [J(‘g)ﬁ J(g)b] (B.12)

may be used in the dynamic relations described in the main text, thereby
including the rolling contact model in the dynamic description of the system.
As noted in the text, the full rolling contact model has not been implemented
at this time, due to the complicated nature of the grasp and jacobian maps
when expressed in joint angles only.



Appendix C

STYX Source Code

What follows is a listing of the source code for the STYX program. Missing
are some of the low level routines, including assembly language files con-
taining the interrupt service handlers driving the HCTL’s and some of the
library functions for STYX, including primarily the machine-dependent I/0
files. Several of the source files, most notably the input files, “include” files,
and files defining tables of user interface variables (*.def, *.h, and *.tbl) have
been consolidated in the interests of preserving space.

49



[Hrnx

/* File:

Fkkkkkk e 3k ok o e s e o e e o o o ke e e o 3 o o ok ol e e sk ke ok ok ok ok e ko ok ok ook ok */

styz.c

/* main control program for STYX

/*

/* created:

RMM 16 March 1988

/* modified: KHO 8 June 1991

/*

*/
*/
*/
*/
*/
*/

/*****************************#********#*************************** */

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#include
#include
#include
#include
#include
#include

<stdio.h>
<ctype.h>
<math.h>
<signal.h>
<process.h>
<styx/ddisp.h>
<styx/dinit.h>
<styx/hctl.h>
<styx/isr.h>
<styx/graf.h>
"styx.h"

“global.h" J*
"stiff.h" J*
"graph .h" /*
lldmp .hll

“input.h"

"styx.tbl" /*

/* Function declarations */
DD_IDENT
*menuloop();

[+ Variables used in this file only */

char

errbuf[80];

global variables
control module
ulilities

main level tables

/* Error buffer for messages

*/
*/

*/

/****************************************************************** */

main(arge,
int

argv)

argc;

char

*argv(];

FILE
*fp;

DD_IDENT
*option,
*menu = styx_menu,

xcontrol_menu = styx_menu;

motor;

signed

21:18 Dec
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main(styx.c)
pwm{HCTL_ NMOTORS];

char
filename[80];

int
init = 1, 60
status;

/* Turn off the motors =/

hetl_wrreg(0, HCTL_PWM, 0);
hetl_wrreg(1, HCTL_PWM, 0);
hetl_wrreg(2, HCTL_PWM, 0);
hctl_wrreg(3, HCTL_PWM, 0);

/* Initialize parameters (dinit) x/
printf("Reading setup data\n"); 70
if (strcmp(argv(l], "-") != 0)
{
char sfile = argv[l];

if (file == NULL) file = "styx.def";
if ((fp = fopen(file, "r")) == NULL)
{

perror(file);
exit(0);
} 80
}
else
{
fp = stdin;

printf("Enter parameters (’?’ to list, ’'.’ to exit)\n");
dinit(fp, inittbl);

/* Calculate lookup tables %/
printf("Calculating lookup tables\n"); 90
generate_tables();

/* Ignore “C and math errors =/
(void) signal(SIGINT, SIG_IGN);

[* 1 => Initialize the HCTL—~1000 =*/
for (motor = 0; motor < STYX_NMOTORS; ++motor)
hctl_wrreg(motor, HCTL_PC, 1);

/* Start the interrupt routine */ 100
isr_set_cfreq(cfreq);
isr_set_tfreq(tfreq);

isr_set_croutine(NULL); /* don’t actually do anything yet */
isr_set_troutine(NULL); /* just get the intrpt handler going */
[* Initiglize the screen */
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main(styx.c)
ddopen();

while (1)
110
if ((option = menuloop(meny, init)) == NULL)
/* Don’t let anyone out unless they quit %/
continue;

/* Parse the selected option =/
switch ((int) option—>current)

case Quit:
case 17: )
goto done; 120

case Graph:

case 'g’:
graph();
init = 1;
break;

case Capture:
capture();
init = 0; 130
break;

case Dump:
dump();
init = 0;
break;

case Setpoint:
case Circle:
case Box: . 140
case Figure8:
case Periodic:
input_setup((int) option—>current);
init = 0;
break;

case ControlRet:
menu = control_menu;
init = 1;
break; 150

case Stiff:
[* use the hierarchical/hctl position controller x/
hetl_setup();
case StiffRet:
control_menu = menu = stiff menu;
init = 1;
break;
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case Parm:

/* use inpul parameter menu; calculate new trajectory

menu = input_menu;
init = 1;
break;

case Watch:
/* use watch menu (from table) +/
menu = menutbl{Watch);
init = 1;
break;

case InputParm:
case ’i’:
ddread("Filename: ", filename, 80);

if ((fp = fopen(filename, "r")) == NULL)
{

ddprompt("Can’t open file for reading");

init = 0;
}

else

dinit(fp, inittbl);

init = 1;
}
break;
case OnOff:
case ’o’: /* 1loggle the state of the controller
control_on = !control_on;
if (control_on)
hetl_restart(); [* restart the controller
init = 0;
break;
case Cal:
calibrate();
while(kbhit())
getch(); . /* emply keyboard buffer
break;
default:
ddprompt("Unknown option");
init = 0;
break;
} /* end of switch #*/
} [/* end of while */
done:
/* Clean up the display =*/
ddclose();

/* Turn off the interrupt routine (if on)

21:18 Dec 2 1991
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main—menuloop(styx.c)
if (isr_installed) isr_reset();

/* 1 => Reset each HCTL-1000 «/
for (motor = 0; motor < HCTL_NMOTORS; ++motor)
hctl_wrreg(motor, HCTL_PC, 1);

exit(0);
} /* end of main() =/ 220

R e ey
/* Move around in a menu and change values x/
/******************************************* e e ok ok ok E 22222 2 2] */

DD_IDENT *menuloop(d, init) menuloop
DD_IDENT =d;

int init;

if (init)
230
/* clear the screen and initialize the menu */
ddcur = NULL;
ddinit(d);
ddecls();
ddisp(d);
ddselect(d);
}

while (1)
240
DD_IDENT retopt;
int option;

/* update the display continuously  */
while ('kbhit())
ddisp(d);

if ((option = getch()) == 0)
/* Get extended keystroke x/
option = —getch(); 250

/% clear the prompt line x/
ddprompt("");

switch (option)

case '\033’:
ddcls();
return(NULL);
260
case —75: /* Left arrow  x/
ddleft(d);
break;

case —7T: /* Right arrow =x/
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# ifdef UNUSED
if (option > 0 && isprint(option))
sprintf(errbuf, "Unknown option ’%c’", option);
else
sprintf(errbuf, "Unknown keycode <%d>", option);
ddprompt(errbuf);
break;
# endif
} end of switch x/
}
/*NOTREACHED =/
} /* end of DDIDENT function */
#ifndef flag
/********************************‘*vr.‘¥*¥¥¥f47vvvv.v e ok ok 3k e ke o

ddright(d);
break;

case —72:
ddup(d);
break;

case —80:

dddown(d);

_break;

case '=?;

/* Up arrow

*/

/* Down arrow */

if (ddcur != NULL) (vond) ddinput();

ddisp(d);
break;

case ’\r’:

if (ddcur != NULL) return(ddcur);

break;

case 12:

/* Refresh the screen
ddrefresh(d);

break;

default:

retopt.current = (char *) option;
return(&retopt);

/* 'L «/
*/

[+ Write a value directly to the screen; write value to screen
/* position indicated by offset; offset = 0——>

[* col = 0; offset =

[* but now change attributes (e.g. color)
/* rather than writing something to the posataon

/*****************#*******

flag(offset, val)

int

21:18 Dec 2 1991

position = row = 0,
2—-—> position = row = 0, col = 1; offset =
/* odd values——> position = position indicated by offset minus 1,

of that position,

menuloop—-flag(styx.c)

270

280

290

300

310

flag
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flag-matherr(styx.c)

offset, val;

{ 320
static long screen = 0xB8000000;

*(char far *) (screen + offset) = val;

}

#endif

/************************#******¥¥¥¥111 ko kokokok ok ok ok ke */

/* prevenl error messages from screwing up the program x/

J e e xkkx x [

matherr(){ matherr
ddprompt("math error"); 331

/*******************************************#*************#******** */
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/*************************** * kxR EREKE " ke ek ok o ok sk ol ke e e ok */

/* File: stiff.c — for historical reasons ... */

[/* hier.c? — hierarchical control for STYX */
CT (high level) control and hctl—1000 */

/* position control */

/* */

/* created: KHO 31 May 1991 */

/* modified: KHO 14 Seplember 1991 */

I o/

[HREEERRAREEEERERREERERAE *% * *xkRK wxx xf

#include <stdio.h>

#include <ctype.h>

#include <math.h>

#include <styx/hctl.h>

#include <styx/isr.h>

#include "styx.h"

#include "dynamics.h"

#include "hctl_loc.h" /* def’tns for hctl-1000 pos’tn control x/

/* Display tables =*/
#include "stiff.tbl"

/* define to move Jacobian and Internal Force calculations to HCTL
loop; comment out the following line only to keep Jacobian and
Internal Force calculations in the High Level loop */

[+ #define FAST. UPDATE 1 %/

/* define motor gains */

#define KM_MIN 21385 /* gain for minertia motors */
#define KM_HIT 5897 [* gain for hitachi motors x/
extern int
thl_2, /* distal joint angle for R finger; calc’d in kine.c
th2_2; [* distal joint angle for L finger; calc’d in kine.c
extern float far lenR1 sin[], far lenR1_cos[],
far lenR2 sin(j, far lenR2_cos[};
extern float far lenL1 sin[], far lenL1_cos[],
far lenL2 sin(], far lenL2_cos[);
extern double
Force_Expec(3],
Expec_Pos[4]; [* correcting position added 1o Command_Pos */
int
high_control(), /* secondary inlerrupt service routine */
hetl_control(), /* primary interrupt service routine x/
high_freq, /* frequency of high level controller x/
hetl_freq, /* frequency of interrupt service routine */
hctl_sample, /* value in HCTL SAMPLE; set sample period +/
NewtrajFlag, /* for double buffering irajectory «/
Fake_Control, /* using fake test controller? x/
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control_law, /* which high level controller? */
high only; /* HIGH_ONLY controller just turned on */
long
mag force_N, /* magnitude of grasping force (internal) */
next_Pos[4], * Command_Pos at next time interval */
Command _Vel[4], /* commanded finger joint velocity */
Command_Pos[4}; /* commanded finger pos, written to hctl x/
double
ftip[4], /* applied fingertip force x/
Ctorque[4], /* applied joint torques */
b2r_cos_thR2, /* B2Rxcos(distal R joint angle) */
b2l_cos_thL2, /* B2Lxcosxdistal L joint angle) */
last_x, last_y, last_t, /* last actual object position */
IntF_Pos[4], /* pos added to Command_Pos for int force #/
Grasp_Pseudo_Act[4][3], /* pseudo inverse of grasp map */
force_N[4], /* internal force, al fingertips */
torque_N[4], /* torque to produce internal force */
Gammal[4], /* DC gain of hctl controller */
R jac_inv[2][2], [* inverse jacobian matriz of R finger x/
L_jac_inv([2][2], /* inverse jacobian matriz of L finger */
R _jacob([2][2], /* R finger jacobian matriz */
L_jacob(2][2], /* L finger jacobian matriz x/
Box_Act_Veloc[3], /* actual object velocity */
K_v, /* wvel gain; detrmn how much vel interpol x/
Kv_int, * wvelocity interpolation? */
Mass_L(2][2], /* inertia matriz of L finger */
Mass_R[2][2]; /* inertia matriz of R finger */
/************************* k¥ kkk Fkdkkk */
/* Initialize hctl control; funclion called when the user */
/* selects the stiff controller from the menu *f
[ F ok ko kR kR AR ok *kH FREXEEK x/
hetl_setup()
register int
i [* gemeric counter %/
/**+xx  Initialize Variables *xk %/
menutbl[Watch] = stiff_watch; [* Set up menu links =/
for (i=0; i<4; i++)
Gains[i] = 0; /* set current gain lo zero */
Command _Posli] = styx[i].reference;
}
/* constant parls of ‘2z2, symmelric finger inertia mairices x/

/* R finger x/
MR00 = AIR + B1R; MR0l1 = B1R; MR11 = A2R + BI1R;
/* L finger =/
ML00 = Al1L + BI1L; MLO1 = B1L; ML11 = A2L + BIL;

[*xxx Initialize HCTL and HCTL parameters #x* */
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hctl setup-hctl restart(stiff.c)

write_hctl_pc(INIT); /* initialize the hctl-1000

[/* if user selects HIGH_ONLY controller, then leave in idle mode;
do NOT swilch to position conirol mode; wanl to command pw

if(high_only) /* variable high_only set by user in display
control_law = HIGH_ONLY; /* used only in this mode

else /* do only to get into position conirol mode
{
/* cosmetic ... don’t see bogus values in display
Ctorque[0] = 0; Ctorque[l] = 0;
Ctorque[2] = 0; Ctorque[3] = 0;

control_law = SETPOINT; /* default controller

write_gains(Gains); /* set control gains to zero
write_command _position(Command_Pos); /* stretched out

/* leave the poles and zeros at default value, set by init'tn
read_poles(Pole);
read_zeros(Zero);

hctl_sample = 64; /* 64 = default sampling rate
for (i = 0; i<4; i ++)
{

*/

*/
*/
*/
*/

*/

*/
*/

hetl_wrreg(i, HCTLSTATUS, 1); /* set sign reversal inkibit
hctl_wrreg(i, HCTL_ SAMPLE, hctl sample); /x set sample period */

start_hctl_control(); /* put hetl into control mode
} /* end of if(high_only) ... else ...
[**#%x  Set up inlerrupl routines; do for all modes *xw o/

isr_set_cfreq(hctl_freq);
isr_set_tfreq(high_freq);
isr_set_croutine(hctl_control);
isr_set_troutine(high_control);

} /* end of hctl_setup()
T T . ok *% *
/* function to restart the controller after the
/* controller has been toggled to off and then on
/* again;  function called in styz.c
J S S, FEEREEERR AR
hetl_restart()

write_gains(Gains); ° /* back to where they were
J T PP
/* primary (control) interrupt service routine
/* hctl-1000 position control
/* this is the fast, low—level control loop
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[EExreerrenn FREEK AR KKK

hctl restart—hctl control(stiff.c)

hctl_control()

{

static long
het]_Curr_Vel[4],
hetl_Curr_Pos[4];

flag(0, 'c’);

* ¥k k t 133 *kk */

[+ commanded joint velocity +/
[* commanded joint position */

/* write C in row 0, col 0 */

/* Read the current position; use in control and dala output x/
hctl_actual[0] = hetl_rdpos(0, HCTL_ACTUAL);
hctl_actual(l) = hctl_rdpos(1, HCTL_ACTUAL);
hctl_actual[2] = hetl rdpos(2, HCTL_ACTUAL);
hctl_actual(3] = hetl rdpos(3, HCTL_ACTUAL);

/* Read the current applied pulse—width; use in data output x/

hetl_pwm[0] = hctl_rdreg(0,
hctl_ pwm([1] = hctl_rdreg(1,
hetl_ pwm[2] = hctl_rdreg(2,
hetl pwm(3] = hctl_rdreg(3,

HCTL_PWM);
HCTL_PWM);
HCTL_PWM);
HCTL_PWM);

/* do all control in high_control(); write to hctl there x/
if (control law==HIGH_ONLY)

if (control on) flag(1, 0x27);  /x color row 0, col 0 green */

else flag(1,0x47); /* color row 0, col 0 red */
return; ’

}

[**xx  controller is running **x x/

if (control_on)

flag(1, 0x27); /* color row 0, col 0 green
if (NewtrajFlag) /* high_control finished update
{
hetl_Curr_Pos[0] = Command_Pos|0]; /* copy from
hetl_Curr_Pos[l] = Command_Pos[1]; /* intermed buffer
hetl_Curr_Pos[2] = Command_Pos[2);
hetl_Curr_Pos[3] = Command_Pos[3];
hetl_Curr_Vel[0] = Command _Vel[0];
hetl_Curr_Vel[1] = Command _Vel[1];
hctl_Curr_Vel{2] = Command_Vel[2];
hetl_ Curr_Vel[3] = Command _Vel[3];
NewtrajFlag = 0;
} /* end of if(NewtrsjFlag) */
[**xx test controller; don’t write to chips *xxk %/

if (Fake_Control)
{

flag(12, °F?);

/* put an F in row 0, col 6 */

hetl_actual{0] = hctl_Curr_Pos[0];
hetl_actual[l] = hetl_Curr_Pos1);
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hctl control(stiff.c)

hctl_actual[2] = hctl_Curr_Pos[2];
hetl_actual[3] = hctl_Curr_Pos[3];

}

[**%x real controller on *xx x/
else

{
#if defined(FAST_UPDATE) 220
int angle[4];
double det, phi;

/* R and L finger jacobians and their tnverses x/
define rjac R_jacob

define ljac L_jacob

define pos hctl_actual

H= H: H:

[* Calculate the angle offsets for table lookups x/
angle[0] = NUMRI1#(pos[0] — styx[0].reference)/DENRI; 230
angle[1] = NUMR2#(pos[l] — styx[1].reference)/DENR2;
angle[2] = NUML1x(pos[2] — styx[2].reference)/DENLI;
angle[3] = NUML2%(pos[3] — styx[3].reference)/DENL2;

rjac[0][1)
rjac(0][0]
rjac(1](1]
rjac[1][0]

lenR2_cos[angle[0] + angle[l] + TBLOFF);

lenR1 _cos[angle[0] + TBLOFF] + rjac[0][1];
—lenR2 sin[angle[0] + angle[l] + TBLOFF);
~lenR1 sin[angle[0] + TBLOFF] + rjac[1][1);

ljac[0](1]
ljac[0][0]
ljac[1][1]
ljac[1][0]

lenL2 cos[angle[2] + angle[3] + TBLOFF]; 240
lenL1_cos[angle[2] + TBLOFF] + ljac[0][1];

—lenL2 sin[angle[2] + angle[3] +TBLOFF];

—lenL1 sinfangle[2] + TBLOFF] + ljac[1][1];

/* Calculate the inverse jacobian for the right finger x/

# define rjac_inv R_jac_inv
det = rjac[0][0]«rjac[1][1] — rjac[0][1]*rjac[1}{0];
rjac_inv[0][0] = rjac(1][1]/det; rjac_inv(l]1] = rjac[0](0]/det;
rjac_inv[0][1] = —rjac[0][1]/det; rjac_inv[1][0] = —rjac[1][0]/det;

250

/* Calculate the jacobian for the left finger x/

# define ljac_inv L_jac_inv
det = ljac[0]){0)+ljac[1][1] — ljac[0][1]*ljac[1][0);
ljac_inv[0]{0] = ljac[1][1])/det; ljac_inv[1][1] = ljac[0][0]/det;
ljac_inv[0}[1] = —ljac[0][1]/det; ljac_inv(1][0] = —ljac[1][0]/det;

/* Figure out the current angle of the boz x/

/*! For now we will cheat and just assume phi == 0 ! */

force_N[0] = «~(force_N[2] = mag force_Nxcos(t));

force N[1] = —(force_N[3] = mag force_N=sin(t)); 260

/* calculate the torque required to apply internal force */
torque_N[0] = (rjac[0][0]«force_N[0]+rjac[1][0]*force N[1])/KM_MIN;
torque_N[1] = (rjac[0][1]+force N[0]+rjac[1][1]+force N[1])/KM_HIT;
torque_N[2] = (ljac[0][0]#force_N[2]+ljac[1][0]+force_N[3])/KM_MIN;
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hctl control-high_control(stiff.c)

torque N[3] = (ljac[0][1]+force N[2]+ljac[1][1]+force_N[3])/KM_HIT;

/* Calculate the effect of internal force on position */
/* NOTE: need negative sign on joint 1 only */
if (Gammal[0] != 0) hctl Curr_Pos[0] += torque_N[0]/Gammal[0}; 270

if (Gamma][1] != 0) het! Curr_Pos[l] += torque_N[1]/Gammal[l];

if (Gamma[2] != 0) hctl_ Curr_Pos[2] += torque_N[2]/Gammal[2];

if (Gamma(3] != 0) hctl Curr_Pos[3] += torque_N[3]/Gammal3];
#endif

flag(12, * *); /* put a space in row 0, col 6; i.e. no 'F’ x/

/* write the commanded position to chips */
hetl_wrpos(0, HCTL_COMMAND, hctl_Curr_Pos[0]);
hetl_wrpos(1, HCTL_COMMAND, hctl_Curr_Pos[1)); 280
hetl_wrpos(2, HCTL_COMMAND, hctl_Curr_Pos[2]);
hetl_wrpos(3, HCTL_COMMAND, hctl_Curr_Pos[3]);
} /* end of else ... (real controller) */

/* update position for nezt time */

hetl_Curr_Pos[0] += Kv_intxhct] Curr_Vel[0];
hetl_Curr_Pos[1] += Kv_int+hct] Curr_Vel[1];
hetl_Curr_Pos(2] += Kv_int+hctl Curr_Vel[2];
hetl_Curr_Pos(3] += Kv_int*hct] Curr_Vel(3];

290
} /* end of if(conirolon) */
[**xx  controller off *kk %/
else
flag(1,0x47); /* color row 0, col 0 red */
dump_update(); /* for saving and graphing data  */
} /* end of hctl_control() */
300
J e e e ey
/* secondary interrupl service routine slower, update loop; high */
[* level controller for hierarchical cotnrol; calcualies and sends */
[* the desired joint angle location to the primary isr */
[ HEERE R AR AR A AR AR AR AR KRR *enrkn &/
high_control() high control
register int
i; /* generic counter */
310
flag(2, ’'T*); /* Tinrow 0, col 1 =/
[Hxkdrx  Object Posilion — %% */
input_update(1); /* current, next desired obj pos’tn x/
#if !defined(FAST_UPDATE)
last_ x = x; last.y = y; lastt = t; /* last act pos’tn  */
pos_forward(hctl_actual); /* current actual obj pos’in */
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high_control(stiff.c)

F#endif
320
/* current actual boz velocily, boxr coordinates */
Box_Act_Veloc[0] = (x — last_x)*high _freq;
Box_Act_Veloc[l] = (y — last_y)*high freq;
Box_Act_Veloc[2] = (t — last_t)=high freq;
[**xxxx  Conirol Law #»xxx* */
[* current desired boz pos —> current desired joint angles x/
pos_inverse(pid[0].desired,pid(1].desired,pid[2].desired,Command_Pos);
#if !defined(FAST_UPDATE) 330
/* R and L finger jacobian and jacobian inverse matrices */
Jacobian(hctl_actual, R_jacob, L_jacob);
Jac_inverse(R_jacob, R_jac_inv);
Jjac_inverse(L_jacob, L_jac_inv);
#endif
/* calculate DC gain of hctl controller x/
for(i=0; i<4; i++)
Gammali] = (Gains[i]#(256.0 — Zeroli]))/(4.0¢(256.0 + Pole[i]));
340
switch (control_law)
{
case JOINT_INTERPOLATION:
/* add velocity interpolation component calc’d in joint space x/
[+ when in this mode, the Kv_int doesn’t need to ezplicitly be
set = 1; Kv_int is there merely to allow the user to turn on
joint interpolation at the low level when in hierarchical mode */
{
pos_inverse(pid[0].next,pid[1].next,pid[2].next, next_Pos);
for(i=0; i<4; i++) 350
Expec_Pos[i] = 0; f /* no boz error correction */
Command Vel[i] = (next_Pos[i] — Command_Posfi])+
high _freq/hctl_freq;
}
Kp=0 Ka=0; /* not required here x/
flag(380, *J3°); flag(382, ’t°); flag(384, '1°);
break; .
}
case SETPOINT: 360
/* no interpolation; high control is sirictly inverse kinematic */
{
for(i=0; i<4; i++)
{
Command _Velfi] = 0; /* mno interpolation */
Expec_Posli] = 0; /* no error correc’tn  x/
Kv=0 Kp=0;, Ka=0; /* not required here x/
flag(380, ’s’); flag(382, *P?); flag(384, ’t?);
break; 370
}
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case OBJECT_CORRECTION:

/*
/*
{

add correction for pos’tn and veloc errors in boz coord’s
PD plus FeedForward high—level control

pos_inverse(pid[0].next,pid[1].next,pid[2].next, next_Pos);
for(i=0; i<4; i++)

Command_Vel[i] = (next_Pos[i] — Command_Posfi])*

high _freq/hctl_freq;

expected_force();
exp_force_correct();
flag(380, 'P’); flag(382, °D’); flag(384, °F*);
break;

}
case COMP_TORQUE:

{

/* computed torque control x/
/* R finger inertia matriz definitions */
/* B2R * cosine of distal joint angle x/

b2r_cos_thR2 = B2RxlenR2 cos[thl 2 + TBLOFF]/LenR2;
Mass_R[0][0] = MROO + b2r_cos_thR2;
Mass_R[0][1] = MRO1 + b2r_cos_thR2+0.5;

Mass_R[1][0] = Mass_R[0][1]; /* symmelric matriz */
Mass_R[1])[1] = MRI11; /* constant «/
/* L finger inertia matriz definitions */
/* B2L * cosine of distal joint angle */

b2]_cos_thL2 = B2LxlenL2_cos[th2 2 + TBLOFF]/LenL2;
Mass_L[0][0] = MLO0O + b2l cos_thL2;

Mass_L[0][1] = MLO1 + b2l cos_thL2+0.5;

Mass_L[1][0] = Mass_L[0][1]); /* symmeiric matriz */
Mass_L[1][1] = ML11; /* constant */

pos_inverse(pid[0].next,pid[1].next,pid[2].next, next_Pos);
for(i=0; i<4; i++)
Command_Vel[i] = (next_Pos[i] — Command Posl[i])*
high freq/hctl_freq;

/* K.a = 0,1 —— for lesling purposes; see control.c */
expected_force(); /* F = Mhand«xresvd_accel(Xobj) +/
exp_force_correct(); /* Pos = (JacT«G+x*F)/hctl gain */
flag(380, ’C’); flag(382, ’T’); flag(384, * *);
break;

}
case HIGH_ONLY:

{

21:09 Dec

/* do COMPUTED TORQUE conirol at HIGH LEVEL ONLY x/
if(high_only)
{
flag(380, ’H’); flag(382, ’c’); flag(384, 'T’);
/* R finger inertic mairiz definitions */
/* B2R * cosine of distal joint angle */
b2r_cos_thR2 = B2RxlenR2 cos[thl1 2 + TBLOFF]/LenR2;
Mass_R[0][0] = MRO0 + b2r_cos_thR2;
Mass_R[0][1] = MRO1 + b2r_cos_thR2+0.5;
Mass_R[1][0] = Mass_R[0][1]; /* symmetric matriz */
2 1991

high_control(stiff.c)
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}
default:

high _control(stiff.c)

Mass_R[1][1) = MRI11; /* constant */
/* L finger inertia mairiz definitions */
[* B2L x cosine of distal joinl angle =/

b2l_cos_thL2 = B2L=*lenL2_cos[th2 2 + TBLOFF]/LenL?2;
Mass_L[0][0] = MLOO0 + b2l cos_thL2;

Mass_L[0][1] = ML01 + b2]_cos_thL2x0.5; 430
Mass_L[1][0] = Mass_L[0][1]; /* symmetric malriz =/
Mass_L[1](1] = MLI11; /* constant */

/* calculate F = Mhandxresvd_accel(Xobj) in obj coord’s «/
expected_force();

/* calculate applied fingertip force xf
ftip[0] = Force_Expec[0]+Grasp_Pseudo_Act[0][2]«Force_Expec[2];

ftip[1] = Force_Expec[1]+Grasp_Pseudo_Act[1][2]*Force_Expec[2];
ftip(2] = Force_Expec[0]+Grasp_Pseudo_Act[2][2]+Force_Expec[2]; 440
ftip[3] = Force_Expec[1]+Grasp_Pseudo_Act[3][2)*Force_Expec[2];

/* calc applied tau (in pw) = Jh— Transftip_force/ motor gain x/
force2torque(ftip, Ctorque);

/* apply the desired pulse—width to hctl */

write_pwm(Ctorque);

/* end of if(high_only) */

break;

/* end of HIGH.ONLY s/ 450

break;

}

/* end of switch(control law) x/

#if !defined(FAST_UPDATE)

/* calculate
force_N[2] =
force_N[3] =

effect of internal force x/
mag force_Nx*cos(t); force_N[0] = —force_N[2];
mag force_N#sin(t); force_N[1] = —force_N[3];

force2torque(force_N, torque_N);

#endif

460

[***xxx  add in correcting forces xxxkx & f

for(i=0; i<4;

i++)

#if !defined(FAST_UPDATE)

/* cale

effect of internal force on position */

if (Gammal[i] == 0) IntF_Pos[i] = 0;

else

IntF_Pos[i] = torque_N[i]/Gammali];

if (i==1) IntF_Pos[i] = —IntF_Pos[i];

/* add

470
effect of internal force on Command_Pos %/

Command Pos[i] += IntF_Posli};

#endif
/* add

effect of boz error corr’g force on Command_Pos */

Command Pos[i] += Expec_Pos]i];

} /* end

of for() =/
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high control-write_pwm(stiff.c)

[rxxxex  Cleanup s x/

/* tell hetl_control() to grab Command_Pos and Command_Vel +/
NewtrajFlag = 1; 480

} /* end of high_control()  x/

J e e R R Kk Ak * */
/* command the motors to apply a specified torgue; */
/* motor input command is clipped at +~127 to avoid */
/* wrap—around errors */
[HEEREE AR AR R KRR R * sRrrEerrinns x/
int write_pwm(ftau) write_pwm
double 490
ftau(6);
int
itau(6],
L

for (i=0; i<4; i++)

if (ftaufi] > 127) /* limit mazimum motor input */

ftaufi] = 127; 500
else if (ftaufi] < —127)

ftau[i] = —127;

itaufi] = (int)ftau(i; /* convert dbl torque to char  /
Torque[i] = (char)itauli];

hctl_write_pwm_tbl(Torque);
} [+ end of write pwm() function */
510

/********************T:J: o ok ek dkkkkk *kkkkkEkd */
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A e e e e P P x/

/* File:  control.c

/* routines to calculate the conirol algorithms for Styz; i.e.

/* calculate the applied joint torque

[*

/* created: KHO 7 August 1991

/* modified: KHO 14 September 1991

/*

/********************#************************ft* EE2 2 % 2

#include <stdio.h>
#include <ctype.h>
#include <math.h>
#include "styx.h"

/* motor gains */
F#define KM_MIN 21385
#define KM_HIT 5897

extern int
control_law;

extern double
R_jac_inv([2][2],
L_jac_inv[2][2],
Mass_R[2][2],
Mass_L[2](2],
Box_Act_Veloc[3],
Grasp_Pseudo_Act{{][9],
Grasp_Act[3][4],
Gammal[4];

int
K_a,
high freq;

double
box_Perr[3],
box_Verr[3],
resv_box_accel([3],
Expec_Pos[4],
Force_Expec[4],
K_v, Kp,
R _jacob[2][2],
L_jacob[2][2],
Mhand(3][3],
MJiGt[4](3],
JiGt[4)(3);

/*
/*

gain for minertia motors
gain for hitachi motors

which high level controller

inverse of R finger jacob
inverse of L finger jacob
inertia matriz, R finger

tnertia matriz, L finger

actual boz velocity

pseudo inverse of grasp map

actual current grasp map
DC gain of hctl controller

*/

*/

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

"gain"——whether 1o use obj mass;=0,1

frequency of secondary isr

posttion error in boz coord’s
velocity error in box coord’s
resolved boz acceleration
position ”correction”
ezpected force, object coord’s
high level gains

R finger jacobian matriz

L finger jacobian matriz
inertia of fing’s plus object

fing iner«Jac—invkGrasp—iransp

Jac—iny * Grasp—iranspose

/*******************.T

*

/* compute the extra correcting force to get box on to

/* desired trajectory

/*****************************
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expected _force(control.c)

?xpected_force() expected_force
register int
i,),k; /* the usual counter /
/* position error in boz coordinates */
box_Perr{0] = pid[0].desired — x; 60

box_Perr[1] = pid[1].desired — y;
box_Perr[2] = pid[2].desired — t;

/* velocity error in boz coordinates x/
for(i=0; i<3; i++)
box_Verr[i] = pid[i].veloc — Box_Act_Veloc][i;

switch (control_law)

{
case OBJECT_CORRECTION: 70
/* PD plus FeedForward control =/

/* K.a = {0,1} => {without,with} boz mass =/

Force_Expec[0] = K_axMoxpid[0].accel+K_vxbox_Verr[0]+K_p*box_Perr[0);
Force Expec(l] = K_a+Moxpid[1].accel+K_vsbox_Verr[1]+K_p+box_Perr[1];
Force_Expec(2] = K _aslopid[2].accel+K _vsbox_Verr[2]+K_psbox_Perr[2];
} /* end of OBJECT_.CORRECTION =/

case HIGH ONLY: .
case COMP_TORQUE: 80
{
/* “resolved” acceleration in boz coordinates */
for(i=0; i<3; i++)
/* K_a for test purp’s only; K_a=K v=K_p=0——>inverse kine’s x/
resv_box_accel[i] = K a«pid[i].accel + K_vsbox_Verr[i] +

K_p*box_Perr(i];
/* jacobian—invkgrasp—tiransp  */
grasp(); /* calculate Grasp_Act +/
/* R finger part %/
JiGt[0][0] = R_jac_inv[0][0]; JiGt[0][1] = R_jac_inv[0][1]; 90

JiGt[0][2] = Grasp_Act[2][0]*R jac_inv[0][0] +
Grasp_Act[2][1]*R jac_inv[0][1];
JiGt[1][0] = R _jac_inv[1][0]; JiGt[1][1] = Rjac_inv[1][1];
JiGt[1][2] = Grasp_Act[2][0]*R jac_inv[1][0]) +
Grasp_Act[2][1]*R jac_inv[1][1];
/* L finger part  «/
JiGt[2][0] = L_jac_inv[0][0}; JiGt[2)[1] = L_jac_inv([0][1);
JiGt[2][2] = Grasp_Act[2][2]+L jac_inv[0][0] +
Grasp_Act[2][3]*L jac_inv[0][1];
JiGt(3][0] = E_jac_inv([1][0]; JiGt[3][1] = L_jac_inv[1][1); 100
JiGt[3][2] = Grasp_Act[2)[2]+L jac_inv[1][0] +
Grasp_Act[2][3]+L_jac_inv[1][1];
[* Mass_fingxJ_inv«G_trans = {z8 matriz */
/* R finger part =/
MJiGt[0][0] = Mass_R[0][0]+JiGt[0][0] + Mass_R[0][1]+JiGt[1][0];
MJiGt[0])[1] = Mass_R[0][0}+JiGt[0][1] + Mass_R[0][1]«JiGt[1][1];
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}

default:

expected_force—exp_force_correct(control.c)

MIJiGt[0][2] = Mass_R[0][0]*JiGt[0][2] + Mass_R[0](1}+JiGt[1}[2];
MJiGt[1][0] = Mass_R[1][0]+JiGt[0][0] + Mass_R{1])[1]+JiGt[1][0];
MIJiGt[1][1] = Mass_R[1][0)+JiGt[0][1] + Mass_R[1][1]+JiGt[1][1]};
MJiGt(1][2] = Mass_R[1][0}+JiGt[0][2] + Mass_R[1][1}+JiGt[1][2];
/* L finger part =/ .
MJiGt[2][0) = Mass_L[0][0]*+JiGt[2][0] + Mass_L[0][1]+JiGt[3][0];
MJiGt[2][1] = Mass_L[0][0]+JiGt[2][1] + Mass_L[0][1]«JiGt[3][1];
MIJiGt[2][2] = Mass_L[0][0]«JiGt[2][2] + Mass_L[0][1]+JiGt[3][2];
MJiGt[3][0] = Mass_L[1][0]*JiGt[2][0] + Mass_L[1}[1]+JiGt[3][0];
MJiGt[3][1] = Mass_L{1][0]«JiGt[2][1] + Mass_L[1][1]*JiGt[3][1);
MIJiGt[3][2] = Mass_L[1]{0]*JiGt[2][2] + Mass_L[1][1]«JiGt[3][2];
/* Mhand (3z8) = GsJ—inv—trans x MJiGlr + Mobj =/
/* = (J—invxG—trans)—trans + MJiGtr + Mobj =/
for(i=0; i<3; i++) /* matriz multip with L mirz trans’d
for(j=0; j<3; j++)

Mhand([i][j] = 0;
for(k=0; k<4; k++)
Mhand[i][j] += JiGt[k][i]«*MJiGt[k][};
} /* end of for =/
/* add Mobj part; Mobj = diagonal 323 matriz »/
Mhand([0][0] += Mo; Mhand[1][1] += Mo; Mhand[2][2] += Io;

/* calculate the force to be ezerted on the object; ignore
coriolis terms; Force = Mhand(Xob) » res accel(Xob) x/
for(i=0; i<3; i++)
{ /* matriz by vector multip  */
Force_Expec[i] = 0;
for(i=0; j<3; j++)
Force_Expec[i] += Mhand[i]j]+resv_box_accel[j];
} /* end of for()
break;

110

*/ 120

130

*/

/+ end of COMP.TORQUE and HIGH.ONLY +/

/* default case

for(i=0; i<3; i++)

Force_Expecfi] = 0; /* mno high level boz traj correction
break;

} /* end of default */

} /* end of switch(controllaw) x/

} /* end of expected_force() */
/********* ok ok sk ok ok ok kK ¥ k% e ok ok ko ok 3 ko ok ok ok ko *kk * * */
/* given the eztra, ezpecied force, calculate the x/
/* needed to be added to Command_Pos to exerl the ezira */
/* force ’ */
/* pos is calculated in units of encoder counts */
[Erkkn ok R . ok o */

exp_force_correct()

register int

5,
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exp_force_correct—force2torque(control.c)

static double

ftip_force[4], /* fingertip force, as result of force +/
tau[4]; [+ joint torque, as result of force */
/* flip_force = pseudo_inv(G)xobj_force */
/* simplify matriz multiplication, since parts of the x/
/* pseudo—inverse of the grasp map = 1, 0 for all x/
/* object orientations——>don’t need to carry out mult */
/* for all matriz elements *

ftip_force[0) = Force_Expec[0] + Grasp_Pseudo_Act[0][2]+Force Expec{2];
ftip_force[l] = Force_Expec(l] + Grasp_Pseudo_Act[1][2]+Force Expec2];
ftip_force[2] = Force_Expec[0] + Grasp_Pseudo_Act{2]{2]+Force Expec[2];
ftip_force[3] = Force_Expec[l] + Grasp_Pseudo_Act[3][2]+Force Expec(2];

[+ teu (in pw) = Jh—Transxflip_force/motor gain  */
force2torque(ftip_force, tau);

/* position = torque/DC gain of hctl controller */
for(i=0; i<4; i++)
if (Gammali] == 0) /* Gamma = DC gain of hetl */
Expec_Pos[i] = 0; /% no compensation without gain  */
else
Expec_Pos[i] = tau[i]/Gammali];
} [* end of for() x/
[+ sign adjustment for joint #1; else force would LOSE grip */
Expec_Pos[1] = —Expec_Pos(1];
} [+ end of ezp_force_correct() */
[HEE R R R R R R R, EEHHED */
/* function to compute the required joint lorques, tau, in */
[+ order to obtain the specified fingertip force, force */
J B *kk SRRk X7
force2torque(force, tau)
double
force[4],
tauf4];

tau[0] = (R_jacob[0][0]*force[0]+R. jacob[1][0]+force[1])/KM MIN;

tau[l] = (R_jacob[0][1]+force[0]+R. jacob[1][1]+force[1])/KM HIT;

tau[2] = (L_jacob[0][0]+force[2]+L jacob[1][0]sforce[3])/ KM MIN;

tau[3] = (L_jacob[0][1]+force[2]+L jacob[1][1]+force[3])/KM HIT;
} /+ end of forcePlorque()  */

JE e R ra————— e S T T TR PR TR RS L Lol *% * */
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pos_inverse(kine.c)

/****************************************************************** */

/+ File: kine.c */
/* kinematics routines for hierarchical control of STYX x/
I+ */
/* created: KHO 24 July 1991 */
/* modified: KHO 13 Sept 1991 */
/* */

/****************************************************************** */

#include <stdio.h> 10
#include <ctype.h>

#include <math.h>

#include <styx/hctl.h>

#include <styx/isr.h>

#include "styx.h"

#define POS2RAD 1.7453292e—3 /* convert count to radians: 2«+PI /| RES11 =/

extern float far lenR1 sin[], far lenR1 _cos[],

far lenR2sinf], far lenR2_cos[]; 20
extern float far lenL1 sin[], far lenL1_cos[],

far lenL2sin([], far lenL2_cos[];

.

int
thl_2, /* distal joint angle for R finger (without SG) x/
th2_2; /* distal joint angle for L finger (with SG) */
double
Jangle[4], /* joint angles */
Dist, * distance between R,L fingertips x/ 30
Grasp_Pseudo_Act[4][3], /* pseudo inverse of grasp map */
Grasp_Act[3][4]; /* grasp map at actual object pos’in  x/
[Hxx ook * ' Ak ' wkkkkkkk * /[
/* Inverse kinematics:  re—entrant version */
/* compute joint, angles, theta (th), from object position */
/* and orientation, zd, yd, and td x/
/* th{0,1] = joint angles of R finger (with SG) */
/* th{2,3] = joint angles of L finger (without SG) */
/- * %k k ki dkkkkkk */ 40
pos_inverse(xd, yd, td, count) pos_inverse
double
xd, /* object CM z coordinate  */
yd, /* object CM y coordinate, */
td; /* object orientation, rad */
long
count[4]; /* encoder counts */
{ 50
static double /* temporary variables */

th{4),
alpha, beta, xy2,
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x_1d, y_1d, x2d, y_2d,
thi_1d, thl_2d, th2_1d, th2_2d,
temp_a, temp_b, temp_c, temp_d;

# define PI.2 (3.14159265358979/2)

/* Calculate the end effector positions */ 60
alpha = object_radius * cos(td);
beta = object_radius # sin(td);

x2d = (2#xd — alpha + BASELINE) / 2;
y-2d = (2%yd — beta) / 2;
x_1d = (2+#xd + alpha — BASELINE) / 2;
y_1d = (2+«yd + beta) / 2;

/* Calculate the desired joint angles in radians */
/* Choose the signs of the angles based on the usual */ 70
/* configuration to keep the joints from hyperextending */

/* R finger = finger with strain gauges x/

xy2 = x_ld*x_1d + y_ld+y_1d;

/*! Finger 1, joint I encoder spins backwards => negate angle !  x/

temp_a = xy2 — LenRlxLenRl — LenR2xLenR2;

temp b = 2xLenR1*LenR2;

sqrt_87((temp_bxtemp_b — temp_axtemp_a), &temp_c);

atan2 87(temp_c, temp_a, &temp_d);

th{l] = —temp_d; /* distal joint angle */
80

temp_a = xy2 + LenRlx*LenR1 — LenR2xLenR2;

sqrt_87(xy2, &temp_d);

temp_b = 2xLenRl1xtemp_d;

sqrt_87((temp_b*temp_b — temp_atemp_a), &temp_c);

atan2 87(temp_c, temp_a, &temp_d);

atan2_87(y_1d, x_1d, &temp_b);

th{0] = (double) PI.2 — tempb + tempd; /+ prozimal joint angle  +/

/* mnow convert the angles, thfi], from radians to encoder counts */
count[0] = th[0]*DENR1/(POS2RAD*NUMRI1) + styx[0].reference; 90
countl] = th[1]*xDENR2/(POS2RAD*NUMR2) + styx[1].reference;

/* L finger = finger without strain gauges */

xy2 = x 2d*x_2d + y_2d+y_2d;

temp_a = xy2 — LenLlxLenLl — LenL2*LenL2;

temp_b = 2+LenLlxLenL2;

sqrt_87((temp_bxtemp b — temp_axtemp_a), &temp_c);

atan2 87(temp_c, temp_a, &temp_d);

th[3] = temp_d; ‘ [* distal joint angle */
100

temp_a = xy2 4+ LenLlxLenLl — LenL2+LenL2;

sqrt_87(xy2, &temp_d);

temp_b = 2xLenLlxtemp_d;

sqrt_87((temp_bxtemp b — temp_axtemp_a), &temp_c);

atan2_87(temp_c, temp_a, &temp_d);

atan2 87(y_2d, x_2d, &temp_b);
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th[2] = (double) PI.2 — tempb — tempd; /+ prozimal joint angle

count[2] = th[2]«*DENL1/(POS2RAD*NUML1) + styx([2].reference;
= th[3]*DENL2/(POS2RAD*NUML2) + styx(3].reference;

count(3]
/* end of pos_inverse() */

/****************************************************************** */

/*
/*
/*
/*
/*
/*

function to compute the forward kinematics; needed to
update the current object position/orientation for the
graphing package found in graph.c (which plots current
and desired object location

th_count = joint angles (encoder counts)

obj loc =z, y, t = global variables defined in global.h

ok ok k

[ R *okokkok kK ok ok

pos_forward(th_count)

long
th_count(4]; /* joint angles; encoder counts */

/* convert encoder counts to radians */

/* [0,1] = R finger; [2,9] = L finger */

/* R finger = finger with strain gauges xf

thl1 1 = (th_count[0] — styx[0].reference) * NUMR1/DENRI;
thl1 2 = (th_count[l] — styx[1].reference) * NUMR2/DENR2;
Jangle[0] = th1l_1«POS2RAD;

Jangle[l] = thl 2«POS2RAD;

/* L finger = finger without strain gauges */

th2 1 = (th_count[2] — styx[2].reference) * NUML1/DENLI;
th2 2 = (th_count(3] — styx(3].reference) * NUML2/DENL2;
Jangle[2] = th2_1+POS2RAD;

Jangle[3] = th2_2+POS2RAD;

/* Calculate the end effector location */
/* R finger = finger with strain gauges */
lenR1sl = lenR1sin[thl 1 + TBLOFF];

lenR1cl = lenR1 cos[th1 1 + TBLOFF);

th1.12 = thl_1 + thl1 2 + TBLOFF;

lenR2 812 = lenR2 sin[th1_12);

lenR2_c12 = lenR2 cos[th1_12];

/* L finger = finger without strain gauges */
lenL1 sl = lenL1sinfth2_ 1 + TBLOFF];

lenL1 c1 = lenL1 cos[th2_1 + TBLOFF];

th2.12 = th2_1 + th2.2 + TBLOFF;

lenL2 512 = lenL2 sin[th2_12];

lenL2_¢12 = lenL2_cos[th2_12];

x1=
y.l = lenR1l_cl + lenR2 c12; /* y coord of R finger

lenR1sl + lenR2_s12; /* z coord of R finger — B/2

*/
*/

x_2 = lenL1sl + lenL2s12; /¥ z coord of L finger + B/2 x/

¥.2 = lenL1l_cl + lenL2c12; [/* y coord of L finger

17:05 Dec 11 1991

*/

*/
*/
*/
*/
*/
*/
*/

110

120
pos_forward

130

140

150

Page 3 of kine.c



pos_forward—jac_inverse(kine.c)

160
dy

y2 -yl f /* differ between L—R flips  +/
dx

x_2 — x_1 + BASELINE;

/* distance between flips */
sqrt_87((dy*dy + (dx—2+«+BASELINE)*(dx—2+«BASELINE)), &Dist);

x = (x.1 + x2)/2; /* z coord of obj CMass «/
y = (y.1 + y2)/2; [* y coord of obj CMass */

atan2 87(dy, dx, &t); /* obj orientation */ 170
} /* end of pos_forward() x/

L R A T A Kk RRRkRRRE K [
/* function to compute the ]acobum of the R and L ﬁngers, */
/* given the joint angles in units of encoder counts x/
[F ik kR kR R Rk R R KRR KRR KRR KRR AR AR AR [
jacobian(pos, rjac, ljac) jacobia.n
double
rjac[2](2], /* jacobian for R finger  x/
ljac[2](2); /* jacobian for L finger x/ 180
long
pos[4]; /* raw joint angles */

long
angle[4]; /* joint angles, encoder counts */

angle[0]
angle[1]
angle(2]
angle(3]

NUMRI1#(pos[0] — styx[0].reference)/DENRI;
NUMR2+#(pos[l] — styx[1].reference)/DENR2;
NUML1*(pos[2] — styx[2].reference)/DENLI;
NUML2#(pos[3] — styx[3].reference)/DENLZ2; 190

rj ac[0][1]
rjac[0][0]
rjac1](1]
rjac[1](0]

lenR2_cos[angle[0] + angle[l] + TBLOFF};

lenR1 _cos[angle[0] + TBLOFF] + rjac[0]{1];
—lenR2 sin[angle[0] + angle[l] + TBLOFF];
—lenR1 sin[angle[0] + TBLOFF] + rjac[1][1];

ljac[0][1]
ljac[0][0

lenL2_cos[angle[2] + angle[3] + TBLOFF];
] lenL1 _cos[angle[2] + TBLOFF] + ljac[0][1];
ljac[1][1] = —lenL2 sin[angle[2] + angle[3] +TBLOFF];
ljac[1][0] = —lenL1 sin[angle[2] + TBLOFF] + ljac[1][1]; 200
} [* end of jacobian() %/

*kkRAA Ak ’ Ak * ** %/

4* Junction to compute the inverse jacobian of e finger, *f

/* given the jacobian matriz of that finger */

[ A AR ** sk Ao *kkkkkkkkk * [ o

jac_inverse(jac, jac_inv) jac.inverse

double

jac[2][2], /* jacobian matriz of finger */ 210
jac_inv[2][2}; /* inverse jacobian of finger */
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double
det; /* determinant of finger jacob  x/

det = jacl0][0]xjacl1[1] — jaclO[1]«jac[1][0];

jac_inv([0][0] = jac[1][1]/det; jac_inv[1][1] = jac[0][0]/det;

jac_inv[0][1] = —jac[0][1]/det; jac_inv(1][0) = —jac[1][0]/det;
} /* end of jac_inverse() */
[ R R R R KRR KRR KRR AR R ARk % [
/* funclion to compute the grasp map, given the actual object */
[* orientation (global variable, "t”)——> global variable */
/* Grasp_Act[S][4] */

/****************************************************************** */

grasp()

Grasp_Act[0][0] = 1; Grasp_Act[0][1] = 0;
Grasp_Act[0][2] = 1; Grasp_Act[0][3] = 0;
Grasp_Act[1][0] = 0; Grasp_Act[1][1] = 1;
Grasp_Act[1][2] = 0; Grasp_Act[1][3] = 1

Grasp_Act[2][2]
Grasp_Act[2][1]
Grasp_Act[2][0]
Grasp_Act[2][3]

0.5*object_radius*sin(t);

0.5*object_radius*cos(t);
—Grasp_Act(2][2];
—Grasp_Act(2][1];

} /* end of grasp() =/
[ R R Rk R R R R R Rk Rk % [
/* function to compute the pseudo—inverse of the grasp map, x/
/* given the actual object orientation (global variable, "t”) x/
/* ——> global variable Grasp_Act[3][4] */
[+ *AAA kK kkokok sk Rk Rk */
grasp_pseudo()
{
Grasp_Pseudo_Act[0][0] = 0.5; Grasp_Pseudo_Act[0][1] = 0;
Grasp_Pseudo_Act[1][0] = 0; Grasp_Pseudo_Act[1][1] = 0.5;
Grasp_Pseudo_Act[2][0] = 0.5; Grasp_Pseudo_Act[2][1] = 0;
Grasp_Pseudo_Act[3][0] = 0; Grasp_Pseudo_Act[3][1] = 0.5;

/* there is no factor of 0.5 in these terms, since it cancels the
the 0.5 multiplying the object_radius, which is more like an
Yobject_diameter”... x/

Grasp_Pseudo_Act[2][2 sin(t)/object_radius;

Grasp_Pseudo_Act[1][2] cos(t)/object_radius;

Grasp_Pseudo_Act[0][2] = —Grasp_Pseudo_Act[2][2];

Grasp_Pseudo_Act[3][2] = —Grasp_Pseudo_Act[1][2];
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PI(input.c)

[eseenmenn N
/* File: input.c */
5* routines to handle input (create trajectories) */
* *
/* created: RMM 17 March 1988 *5
/* modified: KHO 7 August 1991 */
/* */
[FER R R R R R R R FREERRRERRERERRRRRRE ¥ [
#include <stdio.h> 10
#include <styx/ddisp.h>
#include <styx/isr.h>
#include "styx.h"
#include "input.h"
#define PI (3.1415926535) PI
extern int
high freq;
20
/* Global variables =*/
int
input = Setpoint, /* current input iype */
input_char = ’s’; /* current inpul character */
double
circle_radius, circle_freq, /* circle parameters */
fig8_radius, fig8 freq, [* figure8 parameters x/
box_radius, box_freq, [+ boz parameters */
input_off{3]; /* center for all routines */ 30
/* Local variables */
struct input_data {
double out[3]; /* desired positions */
double acc[3); /* desired acceleration */
} far traj[1024];
char
ityp([3]); /* periodic input type */
40
int
input_count = 0,
input_index = 0;
double
mag(3], phase(3], freq(3], /* circle parameters */
Oﬁ[3]: out[3]; ’
/* Include the option table
#include "input.tbl" 50
J T FA AR AR */
[* calculates current desired object location x/
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PI-input setup(input.c)

/* rate = relative rate of the trajectory */

T * . Rk HERRAERK x/

input_update(rate)
int
rate;
{
register int
axis,
index;

if (control.on && input != Setpoint)
flag(8, input_char); [* put input_char in row 0, col 4§

index = input_index;
for (axis = 0; axis < 3; +-+axis)

{
pid[axis].desired = traj[index].out[axis}; [+ des obj loc
pidfaxis].accel = traj[index].acc[axis]; /* des obj acc
if ((index+rate) >= input_count)
pid[axis].next = traj[0].out[axis]; /* wraperound
else
pid[axis].next = traj[index+rate].out[axis); /* nezt loc

pid[axis].veloc = (pid[axis].next — pid[axis].desired)high freq;

/* change veloc calc when rate != 1 9999¢

if ((input_index += rate) >= input_count)
input_index = 0;
} .
else /* if control off or input = setpoint
flag(8, * *); /* put space in row 0, col 4
/* end of input_update()

T e e
/* Initialize the input module */
[ FEd Rk sk ook sk ko ek ok ko ok ok sk kK AP v %/
input_setup(type)

int type;

int
i;
double
minfreq;

/* Put the controller is Selpoint mode while we work  x/
input = Setpoint;
ddprompt("computing trajectory...");

switch (type) {

case Setpoint:
pid[0].accel = pid[1].accel = pid[2].accel = 0;
input_char = ’s?;
break;
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case Circle:
input_char = ’¢’;
circle_init(0, isr_tfreq);

[*NOTE: should be isr_cfreq for non—hierarchical controllers!!! */ 110
off[0] = input_off{0); /* offset */

off[1] = input_off{1];

off[2] = input_off[2];

mag[0] = mag[l] = circle_radius; /* magnitude x/

mag2] = 0;

phase[0] = 0; /* phase */

phase[l] = 90;

phase[2] = 0; /* frequency =/ v

freq0] = freq[l] = freq[2] = circle_freq; ‘ 120

it'yp[O] = ltyp[l] = ityp[2] = 'S’;

/* Generate all the points */
input_count = isr_cfreq / circle_fregq;
for (input_index = 0; input_index < input_count; ++input_index)

double pos[3], acc[3];
int axis;

circle(input_index, 3, off, mag, phase, freq, pos, acc); 130
for (axis = 0; axis < 3; ++axis)

traj[input_index].out[axis] = pos[axis];
traj[input_index].acc[axis] = acc[axis];

}
break;

case Box:
input_char = ’b?; 140
box_init(0, isr_cfreq);
off{0] = input_off[0]; [* offset */
off{1] = input_off[1};
offf2] = input_off[2);
mag(0] = mag[l] = box_radius; /* magnitude =*/
mag(2] = 0;
phase[0] = 0; /* phase */
phase[l] = —90;
phase[2] = 0; /* frequency x/
freq[0] = freq[l] = box freq; 150
freq(2] = 0;
ityp[0] = ityp[1] = ityp[2] = 'B’;

/* Generate all the points  */
input_count = isr_cfreq / box_freq;
for (input_index = 0; input_index < input_count; ++input_index)
box(input_index, 3, off, mag, phase, freq,
traj[input_index].out);
break;
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160
case Figure8:
input_char = ’8’,
circle_init(0, isr_cfreq);
off{0] = input_off{0]; [* offset x/
off[1] = input_off{1];
off(2] = input_off[2];
mag[0] = fig8_radius; [* magnitude =/
mag[l] = fig8_radius+2;
mag[2] = 0;
phase[0] = 0; /* phase */ 170
phase[l] = 90;
phase[2] = 0;
freq[0) = fig8_freq*2; /* frequency =/
freq[l] = fig8_freq;
freq2] = 0;
ityp[0] = ityp[1] = ityp[2] = ’S*;

/* Generate all the points */
input_count = isr_cfreq / fig8 freq;
for (input_index = 0; input_index < input_count; +-+input_index) 180

double pos[3], acc[3);
int axis;

circle(input_index, 3, off, mag, phase, freq, pos, acc);
for (axis = 0; axis < 3; ++axis)

trajinput_index].outfaxis] = pos[axis];
traj[input_index].acc[axis] = acc[axis];
190

}
break;

case Periodic:
/* Generic input computation; use data from input menu =/
input_char = ’p?;
periodic_init(0, isr_tfreq);

[+ Figure out what frequency to run */

for (minfreq = freq[0), i = 1; i < 3; ++i) 200
if (freq[i] < minfreq) minfreq = freq[i];

if (minfreq <= 0 || (input_count = isr_cfreq / minfreq) > 1024)

ddprompt("too many points");
return -1;

}

/* Generate all the points #/
for (input_index = 0; input_index < input_count; ++input_index)
210
double pos[3], acc[3];
int axis;
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periodic(input_index, 3, off, mag, phase, freq, pos, acc, ityp);
for (axis = 0; axis < 3; ++axis)

{
traj[input_index].out[axis] = pos[axis];
traj{input_index].acc[axis] = acc[axis);
} 220
break;
}
input = type;

input_index = 0;
ddprompt("*");

}

/****************************************************************** */
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J T S Y

* File: graph.c */
/* routines to graph the actual object position and orientation «/
/* in real time (also, the desired object trajectory for */
/* comparison) */
/* */
/% created: RMM 22 March 1988 */
/* modified: KHO June 1991 x/
/ * */
J e T e e e e ey 10

#include <stdio.h>
#include <styx/grafh>
#include <styx/ddisp.h>
#include <styx/isr.h>
#include "styx.h"
#tinclude "graph.h"

/* Graph variables =x/
int g off[9], g_color[9); 20
double g scale[9], g data[9);

/************************************************#****************** */

/* Graph the position x/
/* z = object CM’s z coordinate x/
/* y = object CM’s y coordinate */
/* t = object’s orientation */
/*#**************** kkkkkkkkkk ok ok ok ok ok ok * % *%kk */
graph() graph
{ 30
/* Go into plotting mode =/
ddclose();
plot_open();
while ('kbhit())
g.data[0] = x; g data[3] = pid[0].desired;
gdatall] = y — 21.20; g data[4] = pid[l].desired — 21.20;
g data[2?] = t; g data[5] = pid[2].desired;
plot(9, g off, gscale, g data, g color, isr_count/8 % 640);
40
getch();
plot_close();
ddopen();
}
[HERR R Rk Aok Rk R AR e Y
/x /
/* Graphics routines — use GRAFIX */
/* */
J T S A */ 50
static struct g info inf;
plot_open() plot_ open
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{
g.init(2, 1);
g-open(0);
g_info(&inf);
/* Set up parameters x/
/*! These should be initialized in dinit ! x/
g ofl3] = gofff6] = g off[0];
gofifd] = g of[7] = goff[1];
g.off(5] = goff[8] = goff[2];
gscale[3] = gscale[0];
g scale[d] = g scale[l];
gscale[5] = gscale[2];
/* Make sure the azis lines are on zero  +/
g data[6] = g data[7] = g data[8] = 0;
[+ Plot labels and stuff  */
plot(9, goff, gscale, g data, g _color, 0);
}
[HEE R R AR KRR AR e e Y

plot_close()

g close();

[HFRRA R R R R R R KRR R R R Rk &
/* Plot data on screen */
[ A ARk kR dok ko ok kb R wxx [
plot(N, off, scale, data, color, col)

int N, offf], colorf], col;

double scale[}, data[;

{

register int i;
int start, stop;

if (col == 0) {
g_clearall(0);

/* Draw some labels and stuff =/

g writestr(0, 30, "OBJECT POSITION", 15, —1);

g writech(off{0]/14 — 2, 0, ’x’, 9, —1);

g writech(off{1]/14 — 2, 0, ’y?, 9, —1);

g writech(off[2]/14 — 2, 0, *\351°, 9, —1);
g_writestr(24, 0, "Press any key to return", 7, —1);

[* Legend =*/

g_writestr(24, 59, "zero", color[6], —1);

g _writestr(24, 65, "desired", color[3], —1);
g writestr(24, 74, "actual®, color[0], —1);
return;
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}
/* Plot the data =/

for (i = N-1; i >= 0; ——i) 110
g point(col, (int) (offi] — scale[i]*datali]), color[i));

JARARR AR R KR kA ok ok ok kK ek ok ko *kk %[
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/****************************************************************** */

/* File: dump.c */
/* save and write to o file the actual joint position and applied */
/* pulse width information as well as the desired object position */
/* */
/* created: RMM 22 March 1988 b x/
/% modified: KHO 25 June 1991 x/
/v */
R TS e ey
10
#include <stdio.h>
#include <fentl.h>
#include <styx/ddisp.h>
#include "styx.h"
#include "dump.h"
/* Internal variables */
static int
dump_on = 0,
dump _offset, 20
dump _block;
/* Dump tables x/
#define DUMP_SIZE 0x07ff /* 2K (inlegers) =/
static int far dump_actual DUMP_SIZE][4];
static int far dump_pwm[DUMP_SIZE][4];
static double far dump_desired{[DUMP _SIZE]([3];
[FRRR Rk kR kR R R R KRRk R Rk % [
/* set up for grabbing data so that it can be saved using dump x/ 30
/* routines */
L R T PR e —— sk ook ) ik kK & [
capture() : capture
dump_on = 1;
dump_offset = 0;
dump _block = '07;
}
kAR Ak kK Rk ok sokkck kR ok ok Rk & 40
[* grab the actual data for saving */
2 — e " ook ko ok o o ok ok — I v %/
dump_update() dump_update
{
register i;
if (dump_on)
if (dump_offset % 0x0100 == 0) flag(4, dump_ block++);
50

/* State + output =*/
for (i = 0;i < 4; ++i)
{
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dump_actual{dump offset][i] = hctl_actualli];
dump_pwm([dump offset](i] = hctl_pwmli];

/* Input =/

for (i = 0;i < 3; ++i)
dump_desired[dump offset][i] = pid[i].desired;

if (++dump _offset >= DUMP SIZE)

[* All done */
dump on = 0;
flag(4, * *);

}

/******************************************************************* */

/* write the grabbed data to user—specified file

/******************************************************************* */

dump()

char
filename[80];

register int
i;

int
d,
obs,
block = ’0°,
ival;

float
fval;

/* Get a filename
ddread("Filename:

*/

", filename, 80);

if ((d = open(filename, O_RDWR|O_CREAT|O_TRUNC|O_BINARY)) == —1)
{

ddprompt("Can’t open file for writing");

return(0);

ddprompt("*Dumping");’

/* Our arrays are far pointers so we have to dump a byte at a time
for (obs = 0; obs < DUMP SIZE; ++obs) {
if (obs % 0x0100 == 0) flag(6, block++);

for (i = 0; 1 < 4; ++i)
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dump(dump.c)

ival = dump_actualfobs][i]; write(d, &ival, sizeof(int));
ival = dump_pwm/obs|[i]; write(d, &ival, sizeof(int));

} 110
for (i = 0; 1 < 3; ++i)

fval = dump_desired[obs][i];
write(d, &fval, sizeof(float));
}

}

(void) close(d);

ddprompt("");

ﬂa'g(B, ! ’); 120
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/*
/*
[*
/*
/*

/**#*#******************* *kk

File:  table.c
generate system tables

created: RMM 16 March 1988
modified: KHO 12 August 1991

generate_tables(table.c)

% %/

*/
*/
*/

#include <math.h>
#include <styx/ddisp.h>
#include "styx.h"

/* Sin/cos tables (initialized by generate_tables()

float far lenR1_sin[TBLSIZ], far lenR1_cos[TBLSIZ),
far lenR2 sin[TBLSIZ], far lenR2_cos[TBLSIZ];
float far lenL1_sin[TBLSIZ), far lenL1_cos[TBLSIZ],
far lenL2_sin[TBLSIZ], far lenL2_cos[TBLSIZ];

#define TWOPI 6.2831852

T T n—" T X
/* generate trig function look—up tables to speed up real

/*

Rk RE KRR

*/

{ime roulines

*/

/****************************************************#************* */
generate_tables()

register int
angle;
double

a, s, ¢

for (angle = 0; angle < TBLSIZ; ++angle)
{

a = (angle — TBLOFF) * TWOPI / TBLOFF;
if (angle % 100 == 0) printf("\r¥%d %+1", angle, a);

s = sin(a);

/* R finger = finger with sirain gauges

lenR1 sin[angle] = s * LenRl;
lenR2 sin[angle] = s * LenR2;

/* L finger = finger without strain gauges

lenL1 sin[angle] = s * LenLl;
lenL2 sin[angle] = s * LenL2;

¢ = cos(a);

/* R finger = finger with strain gauges

lenR1 cos[angle] = ¢ * LenRl;
lenR2_cos[angle] = ¢ * LenR2;

/* L finger = finger without strain gauges

lenL1_cos[angle] = ¢ * LenLl;
lenL2_cos[angle] = ¢ * LenL2;

21:18 Dec 2 1991
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printf("\r

generate_tables(table.c)

21:18 Dec 2 1991
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/*************‘ * e ok ke e 3 ke 3k 3 ok sk ok ok e s ke 3 o o o ok ok ke ok o e o e o ke o ke ok ok ok K
/* File: calstyz.c

/* program created to calibrate styz by driving the links to

/* their calibration positions at the calibration post and

[* then zeroing the position registers

/*

/* created: KHO 16 June 1991

/* modified: KHO 8 August 1991

/*

/******************************************************************

#include <stdio.h>
#include <styx/hctl.h>

/******************************************************************
/* function to perform Styz calibration procedure;
/* moves joints to calibration position and zeros the
/* position counters
[HEEE R R AR . Rk Rk kR
calibrate()

long

position[4]; /* value returned by cal read_pos() */

[EFE R AR R R Rk R R R Rk R Rk
/* CALIBRATE FINGER WITH STRAIN GAUGES
/* = R finger
J e e R S e

while(kbhit()) getch(); /* empty keyboard buffer

printf("Calibrate finger WITH STRAIN GAUGES\n");
printf("Make sure ALL CABLES ARE CLEAR of finger path \n");
printf("Done?  (y/n) \n");
if (getch() == 'y’

{

*/
*/
*/

*/

*/
*/
*/
*/

hctl_wrreg(0, HCTL_PWM, —-30); /x apply —30 pw torque

hetl_wrreg(1, HCTL_PWM, -30);

cal_read_pos(position);
printf("%1d %1d\n", position[0], position[1]);
getch();

hctl_wrreg(0, HCTL_ACTUAL-1, 0); /* zero the pos’tn reg’s
hetl_wrreg(l, HCTL_ACTUAL-1, 0);
printf(" (position registers should now be zero) \n");
cal_read_pos(ppsition);
printf("%1d %1d\n", position[0], position[1]);
getch();
} [+ end of if (ch == y) =/
[* apply a zero torque  x/

hetl_wrreg(0, HCTL_PWM, 0);
hetl_wrreg(1l, HCTL_PWM, 0);

16:51 Dec 11 1991
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calibrate—cal read_pos(calstyx.c)

while(kbhit()) getch(); /* empty keyboard buffer =«

printf("Calibrate finger WITHOUT STRAIN GAUGES\n");
printf("Make sure ALL CABLES ARE CLEAR of finger path \n");
printf(*Done?  (y/n) \n");

if (getch() == ’y?)

hetl_wrreg(2, HCTL_PWM, 30); /* apply 30 pw torque =/
hetl_wrreg(3, HCTL_PWM, -30);

cal_read_pos(position);
printf("%1d %1d\n", position[2], position[3]);
getch();

hctl_wrreg(2, HCTL_ACTUAL-1, 0); /* zero the pos’tn reg’s */
hetl_wrreg(3, HCTL_ACTUAL-1, 0);
printf(" (position registers should now be zero) \n");
cal_read_pos(position);
printf("%1d %ld\n", position[2], position[3]);
getch();

} /* end of if (ch ==y) =*/

/* apply a zero torque  x/
hetl_wrreg(2, HCTL_PWM, 0);
hetl_wrreg(3, HCTL_PWM, 0);

while(kbhit()) getch(); /* empty keyboard buffer
} /* end of calibrate()
[FFEEE A AR KK TR TR ook wx * [
/* function to continuously (until a key is pressed) */
[+ read the joint position counters and display the x/
/* wvalues on the screen */
[k ek AR R Rk ook kok ok Aok ok o FRRRk Rk % [

cal_read_pos(pos_count)

long
pos_count[4];
{
while (kbhit()) getch();
while ('kbhit())
{
pos_count[0] = hctl_rdpos(0, HCTL_ACTUAL);
pos_count[l] = hetl rdpos(1, HCTL_ACTUAL);
pos_countf2] = hctl rdpos(2, HCTL_ACTUAL);
pos_count{3] = hctl_rdpos(3, HCTL_ACTUAL);
}
} /* end of cal read_pos()
[HRERE RS *k * T —— kkkkkikk [

16:51 Dec 11 1991
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Jt32(all.h)

/*****‘***¢:77 * Xk kkkk dkkkkkkkkkkRkkkkk L2 2 2
/* The file allh is the concatenation of all the *.h files in
/* the Styz source code.

JETT T TR Ao ke e o ok ook e o o o o Rk sokokok ok
[* dump.h
LT T T R P * *kkk

extern int capture(), dump(), dump_update();

/#******************************************#*******************#** */

/* dynamics.h
/**************************************** *%x%x

x/ 10

#define Ji00
#define Jil0
#define Ji20
#define Ji30

#define Ji01
#define Jill
#define Ji21
#define Ji3l

#define Ji02
F#define Jil2
#define Ji22
#define Ji32

#define Jt00
#define Jt10
#define Jt20
#define Jt30

#tdefine Jt01
#define Jt11
#define Jt21
#define Jt31

F#define Jt02
#define Jt12
#define Jt22
#define Jt32

#define Jt03
#define Jt13
#define Jt23
#define Jt33

-112.s12
x_1
-122.s12
x_2

—112_c12

y.1
-122_c12

y2

(dy_div2 = 112512 — dx_div2 * 112_¢12)
(dx_div2 * y_1 — dy_div2 = x_1)
(dx_div2 * 122.¢12 — dy_div2 = 122.512)
(dy_div2 * x 2 — dx_div2 * y2)

mdiv2 * y_1
mdiv2 * 112_c12
mdiv2 * y_2
mdiv2 * 122_¢c12

—mdiv2 * x_1
—mdiv2 * 112512
—mdiv2 * x_2
-mdiv2 * 122812

(—dyidiv.d2 * y_1 — dxi_div.d2 » x_1)
(—dxidiv.d2 * 112812 ~ dyi_div.d2 * 112.¢12)
(dyidiv.d2 * y 2 + dxidiv.d2 « x2)
(dxi_div_d2 * 122512 + dyi_div.d2 * 122c12)

~(dx=*y_1 — dy*x_1) * pid[3].K
—(dx#112_¢c12 — dy#112512) * pid[3].K
—(dy*x_2 — dxxy_2) * pid[3].K
—(dy+122.812 — dx+122_c12) * pid[3].K

20

Ji02
Jil2
Ji22
Ji32

30

Jt02
Jt12
Jt22
Jt32

41

J T T o . *RkkH
/* globalh

A ZTTITE

*/
*/

227

unsigned int cfreq = 100; /* Control frequency
unsigned int tfreq = 10; /* Trajector frequency

20:44 Dec 2 1991
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double LenR1, LenR2, LenLl, LenL2; [+ Styz link parameters
double BASELINE; [+ distance between fingers
double Mo, Io; /* object mass/inertia

double object_radius; /* object length

double MIN_FACTOR, HIT FACTOR; /* “normalized” motor gains
int RES11, RES12, RES21, RES22; /* encoder resolutions

int NUM11, DEN11, NUM21, DEN2i; /* encoder conversion faclors
int NUM12, DEN12, NUM22, DEN22;

struct styx_parameters styx[4]; /* Styz parameter table

struct pid_structure pid[4]; /* common PID paramelers

/* Variables used by all control algorithms */

long  hctl actual[HCTL NMOTORS];  /* current position

/*  changed hctlpwm on 19 June 91 */

int hctl_ pwm[HCTL_NMOTORS]; [+ output pulse width

int ipwm[STYX_NMOTORS}; /* integer (2 bytes) pulse width
int thi_1, th1_12, th2_1, th2_12; /* finger angles

/* changed on August 12 1991 in R/L finger clarification project...
double lenR1 sl, lenR1_cl, lenR2 s12, lenR2_c12; /* R finger sin/cos
double lenL1 sl, lenL1_cl, lenL2 812, lenL2_c12; /* L finger sin/cos
double x_1, y_ 1, x2, y.2; /* Cartesian positions
double x, y, dx, dy, t, r, d, d_squared; /* object position

/* Control variables */

int control_on = 0; /* controller on

/* Supervisory variables %/

DD_DENT *menutbl[NMENUS];

/*******************ifl' e o ok ke ok e e e 2 * % * k4 3 ok e o ke e ok */
/ * graph.h — definitions and declarations for graphing routines */
/**************’k*******************************Tivr ¥ * ok kK */
extern int g offf], g_colorf];

extern double g scale[], g dataf];

J L kR Rk Rk & [
[* hctl loc.h x/
T *x %/
/* define program counter modes; numbers come from hcil—1000 specs

#define RESET 0
#define INIT 1
#define ALIGN 2
#define CONTROL 3

/* define flags to clear or set conirol mode flags */

#define CLEAR 0

/* define hctl control frequencies */

20:44 Dec 2 1991
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*/

o/

*/
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#define HCTLPRIFREQ 5

[rrrrrnnnx e L e ey
/* inputh x/
J A e e *kExkE g, x/

extern int input, input_char;

extern double input_off[];

extern double circle_radius, circle freq;
extern double fig8 _radius, fig8 freq;
extern double box_radius, box_freq;

extern DD_IDENT input_menul];

/***************************#****************** *kkkkkkkkE */
/ * stifth — definitions and declarations for using hctl control x/
/****************************************************************** */
extern long

Command_Pos[4];
extern int
Fake_Control, /* test controller; no motor output x/
control_law, /* which high level control x/
high freq, /* high level control freq */
hctl freq, /* hetl control frequency */
high_only, /* high level controller only x/
Gainsl[4); /% hctl control gains x/
extern double
K_p, /* position error gain */
K_v; /* vel intrp/vel error gain x/

extern DD_IDENT stiff_menu[];

/****************************************************************** */

/* styz.h — definitions and declarations used by all styz programs */
/*****************":l k¥ %k k 4 K 3k 3ok o o o b 3 o e e e o o o o ok ok ok ok ok ok ok sk ok sk ok ok ok */
/* constant parts of inertia matriz of fingers, M(theta) */
/* NOTE: variable names are chosen to maich those in RMM'’s

MS report ’ x/

/* R finger =/

#define A1R 84565

#define A2R 1.74

#define B1R 1009

#define B2R 4152

/* L finger =/

#tdefine A1L 85300

#define A2L 1.74

7tdefine B1L 1110

#define B2L 4690 .

[* make the following NUM, DEN definitions to avoid fulure
confusion between R and L fingers, finger 1 and finger 2, ... */

20:44 Dec 2 1991
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#define NUMR1 NUM11 /+ numerator for prozimal R finger conversion

#define NUMR2 NUM12

#define NUML1 NUM21 /+ numerator for prozimal L finger conversion
#define NUML2 NUM22

#define DENR1 DEN11 /+ denominator for proz’l R finger conversion
#define DENR2 DEN12
#define DENL1 DEN21 /x denominator for proz’l L finger conversion
#define DENL2 DEN22

/*

#define COMP_TORQUE

control laws for high level controller */
#define SETPOINT
#define JOINT_INTERPOLATION 1
#define OBJECT_CORRECTION 2

#define HIGH_ONLY

#define STYX_ NMOTORS 4 /+ number of motors used

0

3
4

*/

/*! These should be dynamic so that we can change encoder resolution !
#define TBLSIZ 7200

#define TBLOFF 3600

/* 360 degrees in each direction

*/

/* Styz parameler structure «/

[* Parameter table x/

struct styx_parameters {
double gain; /* gain for this motor */
unsigned limit; /* pulse width limit for this motor */
unsigned offset; /* pulse width offset for this motor */
int reference; /* encoder reference point */
int res; [* encoder resolution (RES?%) */
int vmax; /* wvoltage supply x/

k

struct pid_structure { /* PID table */
double K, Kz, Kp; [* high level control gains */
double last_error; /* values from last iteration x/
double desired; /* desired obj position */
double accel; /* desired obj acceler’tn x/
double error; /* current error x/
double output; [* output force x/
double veloc; /* desired object velocity x/
double next; /* next desired object position x/

b

/* Global declarations

/* constant parts of 2z2 finger inertia matrices x/

double MR00, MRO1, MR11;
double ML00, ML01, ML11;

extern unsigned int cfreq;
extern unsigned int tfreq;

20:44 Dec 2 1991
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extern double LenR1, LenR2, LenLl, LenL2, BASELINE;

extern double object_radius;

extern int RES11, RES12, RES21, RES22;

extern int NUM11, DEN11, NUM21, DEN21;

extern int NUM12, DEN12, NUM22, DEN22;

extern double Mo, Io; /* obj mass and inertia
extern double MIN_FACTOR, HIT_FACTOR; /* for motor gains =/
extern struct styx_parameters styx(];

extern struct pid_structure pid];

extern long  hctl_actual]; /* modified 25 June 1991
extern int hetl_pwml[]; /* modified 19 June 1991
extern int ipwm[];

extern int thl_1, th1_12, th2_1, th2_12;

[+ changed 12 August 1991 —— R/L finger ... #/
extern double lenR1sl, lenR1 cl, lenR2512, lenR2_¢c12;
extern double lenL1 sl, lenL1 cl, lenL2.512, lenL2c12;

/* object and fingertip stuff */
extern double x_1, y 1, x 2, y 2;
extern double x, y, dx, dy, t, d, d_squared;

extern int control_on;
/* Menu options =/
enum options {

/* Menus =/
Watch = 256, InputParm, Parm,

/* Actions x/
OnOff, Help, Quit, Graph, Capture, Dump, Cal,

/* Inputs x/
Setpoint, Circle, Box, Demo, Figure8, FigureD, Periodic,

/* Controllers and returns (from sub—menus) +/
Joint, JointRet, Stiff, StiffRet,
Full, FullRet, ControlRet, Opspace, OpspaceRet,

None

b
#include <styx/ddisp.h>

extern DD_IDENT smenutbl(];
#tdefine NMENUS 3 )

/* Redefine the interrupt routine names (Feb 91)  «/

#define isr_set_cfreq isr_pri_freq
#define isr_set_tfreq isr_sec_freq
#define isr_set_croutine isr_pri_routine
#define isr_set_troutine isr_sec_routine

20:44 Dec 2 1991

Jt32(all.h)

*/
220
*/
*/
230
240
250
260

Page 5 of all.h



Jt32(all.h)

/* Define @ macro for displaying a flag */
#define flag(offset, val) *(char far *)((long) 0xB8000000 + offset) = val

** ot ’ ok ok £ x/

/****
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/*******************i************************#**************#*#**** */

/* The file all.tbl is the concatenation of all the *.tbl files */
[* in the Styzr source code. */
JRRRE Rk R R Rk R Rk e Ty
/* input.thl */
[/* some definitions for making display tables */
[ AR R KK kR RRAE KR RKE A xrkkks ¥/

#define ADDR(v) (char *)&v

char input_buffer[512]; /* Temporary buffer for ddisp +/
#define buffer input_buffer

/* Main menu for input.c x/

DD_IDENT input_menu[] = {
DD _Label(0, 30, "INPUT parameters"),
{0, 75, ADDR(isr_count), dd_integer, “%5u", buffer, 1},
{1, 75, ADDR(isr_tack), dd_integer, “%5u", buffer+2, 1},

DD_Label(2, 0, *"===-- circle ----- "),

DD_Label(3, 2, "radius:"),

DD_Label(4, 2, "frequency:"),

{3, 14, ADDR(circle_radius), dd_double, "%8.22", buffer+200, 1},
{4, 14, ADDR(circle freq), dd_double, "%8.2¢", buffer+210, 1},

DD_Label(2, 24, " box ",

DD _Label(3, 26, "radius:"),

DD _Label(4, 26, "frequency:"),

{3, 38, ADDR(box radius), dd_double, "%8.21", buffer+220, 1},
{4, 38, ADDR(box freq), dd_double, "%8.2¢", buffer+230, 1},

DD_Label(2, 48, "---- figure8 ----"),

DD _Label(3, 50, "radius:"),

DD _Label(4, 50, "frequency:"),

{3, 62, ADDR(fig8 radius), dd_double, "%8.2¢", buffer+240, 1},
{4, 62, ADDR(fig8 freq), dd_double, "%8.2¢", buffer+250, 1},

DD _Label(10, 0, "Axis Offset Mag Phase Freq Type"),
DD _Label(11, 0, " —-— "),

DD _Label(12, 2, "x"),

{12, 8, ADDR(off{0]), dd_double, "%6.2¢", buffer+10, 1},
{12, 14, ADDR(mag[0]), dd_double, "%6.2¢", buffer+20, 1},
{12, 22, ADDR(phase[0]), dd_double, "%6.2£", buffer+30, 1},
{12, 30, ADDR(freq[0]), dd_double, "%6.2£", buffer+40, 1},
{12, 42, ADDR(ityp[0]), dd_char, " ¥%c", buffer+48, 1},

DD_Label(13, 2, "y"),

{13, 8, ADDR(off[1]), dd_double, “%6.21", buffer+70, 1},
{13, 14, ADDR(mag][1]), dd_double, "¥%6.2£", buffer+80, 1},
{13, 22, ADDR(phase(1]), dd_double, "¥%6.2¢", buffer+90, 1},
{13, 30, ADDR(freq[1]), dd_double, "%6.2¢", buffer+100, 1},
{13, 42, ADDR(ityp(1]), dd_char, " %c", buffer+108, 1},
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DD_Label(14, 2, "\351"),

{14, 8, ADDR(off[2]), dd_double, "%6.21", buffer-+130, 1},
{14, 14, ADDR(mag(2]), dd_double, "%6.2¢", buffer+140, 1},
{14, 22, ADDR(phase[2]), dd_double, "%6.2¢", buffer+150, 1},
{14, 30, ADDR(freq[2]), dd_double, “%8.2¢", buffer+160, 1},
{14, 42, ADDR(ityp(2]), dd_char, * %c", buffer+168, 1},

DD_Label(16, 0, "Input [ , , 1),

DD _Option(17, 4, "setpoint", Setpoint), DD_Option(18, 4, "circle", Circle),
DD _Option(17, 18, "tigures8", Figure8), DD _Option(18, 18, “figureD", FigureD),
DD Option(19, 4, “box", Box), DD _Option(19, 18, "Periodic", Periodic),

{16, 8, ADDR(pid[0].desired), dd_double, "%5.22", buffer+130, 1},
{16, 15, ADDR(pid[1].desired), dd_double, “%5.22", buffer+140, 1},
{16, 21, ADDR(pid[2].desired), dd_double, "%5.2¢", buffer+150, 1},

DD _Option(21, 0, "ON/OFF", OnOff), DD Option(21, 9, "RETE", ControlRet),
DD _Option(21, 16, “GRAPE", Graph), DD _Option(21, 24, "WATCE", Watch),
DD_Option(21, 32, "INPUT", InputParm), DD_Option(21, 40, “PARM", Parm),
DD_Option(21, 47, "CAPTURE", Capture), DD_Option(21, 57, "DUMP", Dump),
DD _Option(21, 64, “SCRIPT", None),

DD_Label(23, 0, "move cursor: \030\032\031\033"),
DD_Label(23, 26, "select option: <Enter>"),
DD_Label(23, 52, "enter value: ="),

DD_End

k

[REEEEEEE A S AR AR KRR FREEEREREERRK *xkakk %/
[* stiff.1bl */
/* NOTE: the name stiff is a remnant of the old days of Styz and x/
/* is no longer appropriate x/
/* display tables for hierarchical controller */
[RER R A A Aok Ak ARk R Rk Rk ok Rk R * %/

#include <styx/ddisp.h> /* contains display functions */

/* Some definitions for making display tables */
#define ADDR(v) (char *)&v

extern int
control_law, /* high level controller chosen by user x/
high_control(), /* secondary interrupt service routine x/
hctl_control(), /* primary interrupt service routine */
high freq, /* frequency of high level controller */
hetl_freq, /* frequency of interrupt service routine x/
high_only, /* high level CT control only? */
Ka; /% obj_corr "gain"——use obj mass® =0, 1 */

extern long
mag force_N, /* magnitude of grasping force  */
Command Pos[4], /* desired joint angle pos’tn */
Command _Vel[4]; /+ desired joint ang’r velocity */
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extern double

Dist, /* distance between R,L fiips */
force_N[4], /* internal force */
torque_N[4], [* torque for internal force */
Mhand|[3][3], /* inertia matriz of hand */
ftip[4], [/* applied fingertip force x/
Ctorque[4], /* pw writien out to motors (high_only) */
Jangle[4], /* joint angles */
Expec_Pos[4], /* position "correction” */
IntF_Pos[4], /* pos added to C_Pos for int f «/
K_v, /* high level veloc error gain x/
Kv_int, /* add velocity interpolation */
K_p, /* high level posit error gain xf
t; /* object ortentation x/
char
hetl_title] = “HCTL Position Controller",
high title[] = "High Level Controller",
stiff_title] = "Hierarchical Control™;
int
Pole[4], /* HCTL control parameters */
Zero[4],
Gains[4];
static char
buffer[512]; /* Temporary buffer for ddisp */
[REEE R AR AR Rk R AR ERERRRRER * [
/* Main menu */
J T T Kk FEkkkk Rk dkkdk & [

DD_IDENT stiff_ menuf] = {
DD_Label(0, 24, stiff_title),
DD_Label(2, 5, high_title),
DD _Label(2, 43, hctl_title),
{0. 75, ADDR(isr_count), dd_integer, "%5u", buffer, 0},
{1, 75, ADDR(isr_tack), dd_integer, "%5u", buffer+2, 0},

DD Option(21, 0, "ON/OFF", OnOff), DD _Option(21, 9, "QUIT", Quit),
DD Option(21, 16, "GRAPH", Graph), DD_Option(21, 24, "WATCE", Watch),

DD _Option(21, 32, “INPUT", InputParm), DD _Option(21, 40, "PARM", Parm),
DD _Option(21, 47, "CAPTURE", Capture), DD _Option(21, 57, "DUMP", Dump)

DD _Option(21, 64, "SCRIPT", None),

DD _Label(4, 2, "Interrupt frequency"),

DD _Label(5, 2, "High Level"),

{5, 14, ADDR(high freq), dd_integer, "%3u", buffer+4, 1},
DD_Label(5, 40, “HCTL"),

{5, 46, ADDR(hctl freq), dd_integer, "%3u”, buffer+6, 1},

DD_Label(5, 61, "Bigh_CT?"),
{5, 71, ADDR(high_only), dd_integer, "%1u", buffer+400, 1},
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(all.tbl)

DD_Label(7, 2, "Gain--K_v"),

{7, 12, ADDR(K_v), dd_double, "%2.21£", buffer+10, 1},
DD _Label(7, 17, "K_p"),

{7, 21, ADDR(K p), dd_double, “%2.21¢", buffer+20, 1},
DD _Label(7, 26, "K_a"),

{7, 30, ADDR(K a), dd_integer, “%1d", buffer+30, 1},

DD _Label(8, 8, "K_int"),

{8, 14, ADDR(Kv._int), dd_double, "%2.212", buffer+410, 1},

160

DD _Label(9, 2, "High Control"),
{9, 20, ADDR(control_law), dd_integer, “%3d", buffer+34, 1}, 170

DD_Label(10, 2, "Internal Force"),
{10, 20, ADDR(mag force_N), dd_long, "%1d  *, buffer+40, 1},

DD _Label(13, 2, "Pulse-Widths"),
{14, 2, ADDR(Ctorque[0]), dd_double, "%3.21¢ ", buffer+60, 0},
{14, 12, ADDR(Ctorque[1]), dd_double, “%3.21f ", buffer+70, 0},
{14, 22, ADDR(Ctorque[2]), dd_double, "%3.21¢ *, buffer+80, 0},
{14, 32, ADDR(Ctorque(3]), dd_double, "%3.21¢ ", buffer+90, 0},

180
DD_Label(7, 40, "Joint 0 1 2 3"),
DD_Label(8, 40, “Gains"),
{8, 47, (char *)((0 << 8) | HCTL_GAIN), ddhctl_writeonly, “%5u", ADDR(Gains[0]), 1},
{8, 54, (char *)((1 << 8) | HCTL_GAIN), ddhctl_writeonly, "%5u", ADDR(Gains[1]), 1},
{8, 61, (char *)((2 << 8) | HCTL_GAIN), ddhctl_writeonly, "%5u", ADDR(Gains[2]), 1},
{8, 68, (char *)((3 << 8) | HCTL_GAIN), ddhctl_writeonly, "%5u", ADDR(Gains[3]), 1},

DD_Label(9, 40, "Poles"),

{9, 47, (char *)((0 << 8) | HCTL_POLE), ddhctl_writeonly, "%5u", ADDR(Pole[0]), 1},

{9, 54, (char #)((1 << 8) | HCTL_POLE), ddhctl writeonly, "%5u", ADDR(Pole[1]), 1}, 190
{9, 61, (char *)((2 << 8) | HCTL_POLE), ddhct]_writeonly, "%su", ADDR(Pole[2]), 1},

{9, 68, (char *)((3 << 8) | HCTL_POLE), ddhctl_writeonly, "%5u", ADDR(Pole[3]), 1},

DD_Label(10, 40, "Zeros"),

{10, 47, (char *)((0 << 8) | HCTL_ZERO), ddhctl_writeonly, "%6u”, ADDR(Zero[0]), 1},
{10, 54, (char *)((1 << 8) | HCTL_ZERO), ddhctl_writeonly, "%5u", ADDR(Zero(1]), 1},
{10, 61, (char *)((2 << 8) | HCTL_ZERO), ddhctl_writeonly, “%5u", ADDR(Zero[2]), 1},
{10, 68, (char *)((3 << 8) | HCTL_ZERO), ddhctl_writeonly, “%5u", ADDR(Zero[3]), 1},

DD_Label(12, 40, "Ref Pos"), 200
{12, 47, ADDR(Command _Pos[0]), dd_long, "%51d", buffer+180, 1},
{12, 54, ADDR(Command Pos[1]), dd_long, "%51d", buffer+184, 1},
{12, 61, ADDR(Command_Pos[2]), dd_long, "%51d", buffer+188, 1},
{12, 68, ADDR(Command _Pos[3]), dd_long, "%51d", buffer+192, 1},

DD_Label(13, 40, "Act Pos"),

{13, 47, ADDR(hctl_actual[0]), dd_long, "%51d", buffer+196, 1},

{13, 54, ADDR(hctl_actual[l]), dd_long, “%51d", buffer+200, 1},

{13, 61, ADDR(hctl_actual[2]), dd_long, “%514", buffer+204, 1},

{13, 68, ADDR(hctl_actual(3]), dd_long, “%51d", buffer+208, 1}, 210

DD_Label(15, 0, “Input [ , » "),
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DD _Label(17, 0, "Trajectory"),
DD_Option(18, 4, "hold", Setpoint),
DD_Option(19, 4, “circle”, Circle),

{15, 8, ADDR(pid[0].desired), dd_double, “%5.22", buffer+90, 1},
{15, 15, ADDR(pid[1).desired), dd_double, “%5.22", buffer+100, 1},
{15, 22, ADDR(pid[2].desired), dd_double, “%6.22", buffer+110, 1},

DD_Label(17, 40, "Control"),
DD _Option(18, 43, "stitf", Stiff),

DD_Label(17, 55, "Dist"),
{17, 61, ADDR(Dist), dd_double, “%2.31¢ *, buffer+50, 0},

DD _Label(23, 0, "move cursor: \030\032\031\033"),
DD_Label(23, 26, "select option: <Enter>"),
DD _Label(23, 52, "enter value: ="),

DD_End
b
[ R Rk ok ok ARk Rk R ko RkkkkkRERRRRn [
/* Status menu */
JELT T T ——— ok ok ok ok ok ok Rk dkok KRk */

DD_IDENT stiff_watch]] = {

DD _Label(0, 30, "stift status"),
{0, 75, ADDR(isr_count), dd_integer, “%6u”, buffer, 0},

DD_Label(2, 0, "Control frequency:"),
{2, 20, ADDR(hctl freq), dd_integer, "%3u", buffer+6, 0},

DD_Label(4, 0, "Joint angles:"),

{4, 16, ADDR(hctl actual[0]), dd_long, "%51d", buffer+156, 0},
{4, 21, ADDR(hctl actual[1]), dd_long, “%51d", buffer+160, 0},
{4, 26, ADDR(hctl actual[2]), dd_long, "%51d", buffer+164, 0},
{4. 31, ADDR(hctl_actual[3]), dd_long, “%61d", buffer+168, 0},

DD Option(21, 0, “OE/OFF", OnOff), DD _Option(21, 9, "RETH", StiffRet),
DD Option(21, 16, "GRAPE", Graph), DD _Option(21, 24, "WATCH", Watch),
DD Option(21, 32, "INPUT", InputParm), DD _Option(21, 40, "PARM", Parm),
DD _Option(21, 47, "CAPTURE", Capture), DD_Option(21, 57, "DUMP", Dump),
DD Option(21, 64, "“SCRIPT", None),

DD_Label(23, 0, "move cursor: \030\032\031\033"),
DD _Label(23, 26, "select option: <Enter>"),
DD _Label(23, 52, "enter value: ="),

‘ DD _End

&

[k ok A Ak ko okkkk "k ke sk ek % [
/* styz.tbl */
[HRR Rk A *x kR KK Fokkd LEERRRRR * [
/* Initialization table =/
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(all.tbl)

D_IDENT inittbl]] = {
[+ Styz parameters =/
D_Double(BASELINE),
D_Double(LenR1), D_Double(LenR2), D_Double(LenL1), D_Double(LenL2),
D _Integer(RES11), D_Integer(RES12), D_Integer(RES21), D_Integer(RES22), 270
D _Integer(NUM11), D Integer(DEN11), D_Integer(NUM21), D _Integer(DEN21),
D _Integer(NUM12), D_Integer(DEN12), D_Integer(NUM22), D_Integer(DEN22),

D_Double(styx[0].gain), D_Integer(styx{0].limit),
D _Integer(styx[0].reference), D_Integer(styx[0].offset),
D_Integer(styx[0].res), D_Integer(styx[0].vmax),

D_Double(styx[1].gain), D_Integer(styx[1).limit),
D _Integer(styx[1].reference), D_Integer(styx[1].offset),
D_Integer(styx[1].res), D_Integer(styx[1].vmax), 280

D_Double(styx(2].gain), D_Integer(styx[2].limit),
D_Integer(styx[2].reference), D_Integer(styx[2].offset),
D_Integer(styx[2].res), D_Integer(styx[2].vmax),

D_Double(styx([3].gain), D_Integer(styx[3].limit),
D_Integer(styx(3].reference), D_Integer(styx|[3].offset),
D _Integer(styx[3].res), D_Integer(styx[3].vmax),

/* Default location */ 290
D_Double(pid[0].desired), D_Double(pid[1].desired),
D_Double(pid[2].desired), D_Double(pid[3].desired),

/* Graph parameters (grapk.c) =/
D_Integer(g_off[0]), D_Integer(g_off{1)), D_Integer(g_off[2)),
D_Double(g_scale[0]), D_Double(g scale[1]), D_Double(g_scale[2]),
D _Integer(g_color[0]), D_Integer(g_color{1]), D_Integer(g_color[2]),
D_Integer(g_color(3]), D_Integer(g_color[4]), D_Integer(g_color[5]),
D_Integer(g_color(6]), D_Integer(g color(7]), D_Integer(g_color[8]),

: 300
/* Inpul parameters (input.c) =/
D_Double(input_off[0]), D_Double(input_off{1]), D_Double(input_off{2]),
D_Double(circle_radius), D_Double(circle_freq),
D_Double(fig8_radius), D_Double(fig8_freq),
D_Double(box_radius), D_Double(box _freq),

/* Object parameters (object.c)  x/
D_Double(Mo), D_Double(lo), D_Double(object_radius),

/* Motor parameters =x/ 310
D_Double(MIN_FACTOR), D_Double(HIT_FACTOR),

/* hetl-1000 parameters =/

D_Integer(high_only), /* high level CT control only  x/
D_Integer(Fake_Control), /* don’t write to chips */
D_Integer(control_law), /* which high level controller? «/
D_Integer(hctl_freq), D_Integer(high_freq),

D_Double(K_v), D_Double(K _p),
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(all.tbl)

D_End 320

/* Main menu =x/
DD_IDENT styx_menu] = {

DD_Label(0, 30, “#** STYX ##s")
DD_Label(2, 0, “Select option:"),

DD _Option(4, 5, "cal", Cal), DD_Label(4, 18, "~ calibrate STYX"),
DD_Option(5, 5, "stifg", Stiff), DD _Label(5, 18, "- stiffness control law"),
DD_Option(6, 5, "quit”, Quit), DD_Label(6, 18, “~ exit demonstration program"),
330
DD_Label(15, 0, "move cursor: \030\032\031\033"),
DD_Label(15, 26, "select option: <Enter>"),
DD_Label(15, 52, "enter value: ="),
DD _End
b
/*************W;Tvvv e e ok e ok o ok e o e 2 3403 e o e ok o o e ek ook o ok kb ko ke kol ke ok ko ok ok ok */
340
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(all.def)

HHHHHHHHHRR R RBRBH AR R RB BB R BB B BB BB R LR LR R RS R
The file all.def is the concatenation of all the *.def files in the

Styx source code.

HH#HHRRHHRRBBHRRHR B ERRRRHRHRAHR IR H R AR H BB BR BB HRARH
# beam.def file for object = "beam"

Mo 245 # object mass in g
Io 3.0e3 # g—cm"2
object_radius 12 # obj "length"; not really a "radius"
10

H#HR R AR R A RAH R R BB R R R RRRFRFRBH AR RRRRRRH RS R
# kodak.def file for object = inside half of kodak disk box

# object = "box" in papers

Mo 33 # object mass in g
Io 1.36e3 # (Mo/12)+(lenxlen + wid+wid); len = 14.20 cm
object_radius 17.13 # box "width"; not really a "radius"

#HA#H R B ##H# R R R BB R R R R R AR LR AR R B R HHRRRHH AR AR R RR A
# fakeoff.def file for fake controller OFF

Fake_Control 0 20

AR HH B HRHHBHRBH A B H BB BH AR BB R R R R BB B HH AR B HH AR B R AR HH
# fakeon.def file for fake controller ON

Fake_Control 1

H##H# R AR AR AR R R BB BB R AR HHH R AR LR R AR R R LR AR R R RS R RS
# graph.def file for initialization of graphics plot

g off[0] 74 # Axis offsets

g off[1] 180

goff(2] 286 30
g_scale[0] 8 # X, Y axis scaling

g_scale[1] 8

g scale[2] 100 # Theta axis scaling

g_color[0] 15

g_color[1] 15

g_color[2] 15

g_color(3] 12

g_color[4] 12

g_color[5] 12 40
g_color(6] 7

g_color[7] 7

g_color[8] 7

HH#H AR H AR H R BB AR AR BHH R AR BR RSB R R HFH R R AR AR RS-
# input.def for default input parameters

# offsets for object CM position/orientation

input_off[0] 1.30 # x offset from midpt between fingers; cm
input_off{1] 21.20 # y offset from fingertip bases; em
input_off[2) 0 # orientation offset of object 50

# object trajectory defaults
circle_radius 2.5 # cm
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encoders(all.def)
circle_freq 0.25 # Hz

#H#H AR B R RAH AR R AH R A RA AR RA AR AR AR R AR

# stiff.def file for default parameters for hierarchical control
# note that the name "stiff" is a remnant of the old version of
# Styx and has no real meaning currently

hetl_freq 100 # control frequency of hctl position control 60
high _freq 10 # control frequency of high level controller

Kv 0 # no joint velocity interpolation/vel err gain

Kop 0 # no position error gain

Fake_Control 0 # not in fake control mode

control_law 0 # computed torque ,

high_only 0 # start with hierarchical (or low level) control,

# Dot the test case of high level only

#ﬁ####ﬁaif##########################################
# file styx.de

# link lengths

70

LenR1 15.3 # Length of prox’l link of R finger (cm) ﬁnger

LenR2 11.8 # Length of distal link of R finger - to outer screw hole

LenL1 15.3 # Length of prox’l link of L finger (cm) ﬁnger

LenL2 12.16 # Length of distal link of L finger — to outer screw hole

BASELINE 20.0 # Baseline distance (cm) distance
80

# Number of encoder counts per revolution

RES11 3600 # Encoder resolution, link 1, finger 1

RES12 2000 # Encoder resolution, link 2, finger 1

RES21 3600 # Encoder resolution, link 1, finger 2

RES22 2000 # Encoder resolution, link 2, finger 2

# Set up encoders for right—handed coordinate system

# Normalize encoders to proximal link encoders (counts/revolution) encoders

NUMI11 1 # R finger

DEN11 1 80

NUM12 -9

DEN12 5

NUM21 1 # L finger

DEN21 1

NUM22 9

DEN22 5

# Encoder offset counts; reference position = fingers stretched out

# NOTE!!! these numbers, must be the same as those found in the SST

# batch.cmd file computing the forward kinematics! 100

# R finger

styx[0].reference 400 .

styx[1].reference 962

# L finger

styx[2).reference -387
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styx[3].reference

970

# Encoder limits, offsets and gains

styx[0].gain
styx[0].limit
styx[0].offset
styx[1].gain
styx[1].limit
styx[1]).offset
styx[2].gain
styx[2].limit
styx|[2].offset
styx[3].gain
styx(3].limit
styx[3].offset

# default desired position (if no input is used)
pid[0].desired
pid[1].desired
pid[2].desired
pid[3].desired

20:16 Dec 2 1991

5.225e-5
100

0
—2.3856e—-4
100

0
5.225e-5
100

0
2.3856e~4
100

0

0
18
0

13.97 # For joint only

encoders—position(all.def)

110

120

position
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/*

*

* periodic.c — generale a periodic patlern in N dimensions
*

* Richard M. Murray

* October 19, 1987

*

*/

#include <stdio.h>
#include <math.h>

#define TWOPI  (3.1415926535+2)
#define DEG_TO_RAD (3.1415926535/180)

static unsigned int Tstart;
static unsigned int clock;

/* Starting time =/
/* Clock frequecy (hertz)

periodic_init(T, C)
unsigned int T, C;
{

Tstart = T;
clock = C;

} .

periodic(T, N, off, mag, phase, freq, pos, acc, type)
unsigned int T, N;

double offf], mag[], phase[], freq[];

double pos[], acc[];

char type[];

register int i;
double t, s, w;

/* Figure out the current time «/ ’
t = ((double) (T — Tstart) / (double) clock) * TWOPI,

for i = 0; i < N; ++i) {
switch (typefi]) {
/* Figure out the waveform based on the type */

case ’S’: [* sinusoid */
s = sin(freq[ij«t + phase[i]*DEG_TO_RAD);
break;
case ’B’: [* boz =x/
s = sin(freq[i]*t + phase[i]*xDEG.TO_RAD) > 0?1 : —
break; ’
case 'T’: /* triangle — not implemented */
default:
s =0
break;

posfi] = offfi] + mag[i] * s;
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periodic(periodic.c)

w = freq[i] * TWOPI; [* omega — angular frequency x/
accfi] = —magl[i] * ww * s;
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circle(circle.c)

~
*

circle.c — generate a circular pattern in N dimensions

Richard M. Murray
October 19, 1987

*/

#include <stdio.h> 10
#include <math.h>

* * O X H *

#define TWOPI  (3.1415926535x2) TWOPI
#define DEG_TO_RAD (3.1415926535/180) DEG.TO_RAD
static unsigned int Tstart; [* Starting time =/
static unsigned int clock; [* Clock frequecy (hertz)  */
circle_init(T, C) circle init
unsigned int T, C; 20
{

Tstart = T;

clock = C;
}
circle(T, N, off, mag, phase, freq, pos, acc) circle

unsigned int T, N;
double off]], mag[], phase[], freq[;
double pos[], acc];

30
register int i;
double t, s, w;
/* Figure out the current time */
t = ((double) (T — Tstart) / (double) clock) * TWOPI,;
for (i = 0; i < N; ++i) {

s = sin(freq[i]*t + phase[i]*DEG_TO_RAD);

posfi] = offfi] + magli] * s;

40

w = freq[i] * TWOPI; [* omega — angular frequency =/
accfi] = —magli] * wxw * s;

12:58 Dec 12 1991 Page 1 of circle.c



box(box.c)

~
*

circle.c — generate a circular pattern in N dimensions

Richard M. Murray
October 19, 1987

*/

#include <stdio.h> 10
#include <math.h>

* H H * H x

#tdefine TWOPI  (3.1415926535+2) TWOPI
#define DEG_TO_RAD (3.1415926535/180) DEG.TORAD
static unsigned int Tstart; [* Starting time =*/
static unsigned int clock; [* Clock frequecy (hertz)  */
box_init(T, C) box_init
unsigned int T, C; 20
Tstart = T;
clock = G;
}
box(T, N, off, mag, phase, freq, out) box

unsigned int T, N;
double off]], mag|], phase[], freq[], out[];

register int i; 30
double t;
int sign;

/* Figure out the current time */
t = ((double) (T — Tstart) / (double) clock) * 6.1428;

for (i = 0; 1 < N; ++i) {
sign = sin(freq[i]*t + phase[i]*DEG_ TO_RAD) > 0?1 : —1;
out[i] = offfi] + mag[i] * sign;
40
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dinit(dinit.c)

/*

read.c — read parameters from a file

Richard M. Murray
September 1, 1987

*/

#include <stdio.h>
#include <ctype.h> 10
#include <math.h>
#include "dinit.h"

* H X H *

int dinit(fp, list) dinit
FILE *fp;
D_IDENT =list;
{
int n = 0, count, ch;
char name[32], value[80];
enum state_type {Name, Value, Comment} state; 20
int namef, valuef, exitf = 0;
FILE xinclude_fp;

while (lexitf) {
state = Name;
namef = valuef = 0;
count = 0;

/* Read everything a characler at a time */

for (;;) { 30
if ((ch = fgete(fp)) == EOF) {
exitf = 1;
break; .
}

/* Check for comments or end of line first  x/
if (ch == ’\n’) break;

if (ch == ’#’) state = Comment;
switch (state) { 40
case Comment: /* Ignore everything until \n  x/
break;
case Name: [* Store the name in the buffer =/

if (count == 0 && isspace(ch))
/* Skip leading spaces */
break;
else if (isspace(ch)) {
/* Terminator — store the name and switch states */

state = Value; 50
count = 0;
} else {

name[count++] = ch;
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name[count] = *\0’;
namef = count;

}
break;

case Value:
if (count == 0 && isspace(ch))
/* Skip leading spaces x/

break;

else {
value[count++] = ch;
value[count] = ’\0’;

valuef = count;

}
break;

}

/* Truncate trailing spaces from value (if any) x/
if (valuef)
for (; valuef > 0; ——valuef)
if (isspace(value[valuef—1]))
value[valuef—1] = ’\0°’;
else
break;

/* Check to make sure we have a name and a state */
if (namef) {
if ('valuef) {
/* Only a name was present */
/* Check for special characters  */
switch (*name) {

case ’7?7’: /* List all valid identifier and types
list_matches(name+1, list);
break;

case ’.’: /* Ezit dinit */
exitf = 1;
break;

case ’<’: /* Include a file */
include(name+1, list);
break;

default:
fprintf(stderr, "Incomplete line, %s\n", name);
break;

}
} else {

/* Name and value present =*/
/* Check for special names */
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switch (*name) {

dinit-scanv(dinit.c)

case ’7?7’: /* List identifier and type */
list_matches(value, list);
break; 110
case ’<’: /* Include a file
include(value, list);
break;
default: /* Normal value
/* Look for the name in the list
for (count = 0; list{count].name != NULL; ++count)
if (stremp(list{count].name, name) == 0)
break; 120
if (list{count].name == NULL) {
fprintf(stderr,
"Identifier not found, %s\n", name);
} else {
/* Parse the buffer
scanv(value, list{count].type, list{count].addr);
/* c86_sscanf(value, list[count].fmt, list[count] addr); */
++n;
break; 130
}
}
}
}
}
return(n);
/* Read in the value of an element =/
scanv(value, type, addr) scanv
char *value; 141
int type;
char *addr;
{
switch (type) {
case Integer:
*(int %) addr = atoi(value);
break;
case Long:
*(long *) addr = atoi(value); 150
break;
case Byte:
*(char %) addr = atoi(value);
break;
case Float:
*(float *) addr = atof(value);
break;

case String:
strepy(addr, value);

18:14 Dec 11 1991
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break;

160
case Double:
*(double #) addr = atof(value);
break;
}
}
/* Print the value of element x/
fprintv(fp, type, addr) fprintv
FILE «fp;
enum ident_type type; 170
char *addr;
{
switch (type) {
case Byte:
fprintf(fp, "%d", *((unsigned char *)addr));
break;
case Integer:
fprintf(fp, "%d", *((int *)addr));
break;
case Long: 180
fprintf(fp, "%14", *((long #*)addr));
break;
case Float:
fprintf(fp, "%g", *((float *)addr));
break;
case String:
fprintf(fp, "%s", addr);
break;
case Double:
fprintf(fp, "%g", *((double *)addr)); 190
break;
}
}
/* Check for a match (for listings)  x/
match(string, expr) match
char xstring;
char xexpr;
{
return(xexpr == ’\0’ || strncmp(string, expr, strlen(expr)) == 0); 200
}
/* List values =*/
list_matches(s, list) list_ matches
char =*s; .
D_IDENT =list;
{
int count;
[* Look for match in the list */ 210

for (count = 0; list[count].name != NULL; ++count)
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if (match(list[count].name, s)) {
printf("%s\t%s\t", list[count].name,
list[count].fmt);
fprintv(stdout, list[count].type, list[count].addr);

putchar(’\n’);
}
include(s, list)
char x*s;
D_IDENT «list;
{
FILE xfp;
if ((fp = fopen(s, "r")) == NULL)
perror(s);
else {
dinit(fp, list);
fclose(fp);

}

[* Dump a table to disk for later reading =/
didump(fp, list)

FILE =*fp;

D_IDENT list;

{

int count;

/* Look for match in the list +/

for (count = 0; list[count].name != NULL; ++count) {
fprintf(fp, "%s\t", list[count].name);
fprintv(fp, list[count].type, list[count].addr);
fpute(’\n?, fp);

}

18:14 Dec 11 1991

list matches—didump(dinit.c)

include
221

230

didump

240

Page 5 of dinit.c



[*

* dinit.h — Definitions and structures for dynamic initialization package

*
* Richard M. Murray
* September 1, 1987

*
*/
/* Structure to store a dynamic identifier */
typedef struct identifier {
char *name; /* Parameter name x/
char *fmt; /* Format string =/
char *addr; /* Data address x/
enum ident_type {
Unknown = 0, Float, Integer, Long, String, Double, Byte
} type; [* Identifier type =/
} D_IDENT;

/* Define a few macros for easy entry x/
Fifdef MSDOS
/* Use ANSI C operators =/

# define D_Byte(N) {"" #N, "%i", (char x)(&N), Byte}
# define D_Long(N) {"" #N, "%1i", (char #)(&N), Long}
# define D_Integer(N) {"" #N, "%i", (char *)(&N), Integer}
# define D_Float(N)  {"" #N, "%f", (char *)(&N), Float}
# define D_Double(N) {"" #N, "%1£", (char *)(&N), Double}
# define D String(N)  {"" #N, "%s", (char *)(N), String}

# define D_End {NULL, NULL, NULL, Unknown}
F#else

# define D_Integer(N) {"N", "%i", (char *)(&N), Integer}

# define D_Long(N) {"N", "%1i", (char *)(&N), Long}

# define D_Float(N)  {"§", "%t", (char *)(&N), Float}

# define D_Double(N) {"§", "%1f£", (char *)(&N), Double}

# define D _String(N) {"N", "%s", (char *)(N), String}

# define D_End {NULL, NULL, NULL, Unknown}
F#endif
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/*

* ddisp.c — dynamic display package
*

* Richard M. Murray

* November 4, 1987

*

*/

#include <stdio.h>
#include "ddisp.h"
#include "termio.h"

/* Initialize the screen (and a list) */
ddinit(disp)

DD_IDENT disp[];

{

int entry;

for (entry = 0; disp[entry].value != NULL; ++entry) {
disp[entry].initialized = 0;
disp[entry].reverse = Normal;

}
}
ddisp(disp)
DD_IDENT disp[];
{
int row, col;
int entry;
for (entry = 0; disp[entry].value != NULL; ++entry)
(*disp[entry].function)(Update, disp-+entry);
}
ddrefresh(disp)
DD_IDENT xdisp;
{
ddels();
ddinit(disp);
ddisp(disp);
if (ddcur !'= NULL) ddselect(ddcur);
}
/*
* Item selection
* .
* ddselect Select any item
* ddnezt Select the next item
* ddprev Select the previous item
*
*/
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ddrefresh—ddprev(ddisp.c)
DD_IDENT #ddcur = NULL; /* Currently selected item  */

ddselect(dd) ddselect
DD_IDENT xdd;

{
/* Redisplay the old cursor position x/
if (ddeur != NULL) {
ddcur—>reverse = Normal; 60
(*ddcur—>function)(Refresh, ddcur);

}

/* Set up the new cursor position — find first selectable option */
for (ddcur = dd; ddcur—>value != NULL; +-+ddcur)
if (ddcur—>selectable) break; '

if (ddcur—>value != NULL) {
ddcur—>reverse = Reverse;

(#ddcur—>function)(Refresh, ddcur); 70
return(l);
ddcur = NULL;
return(0);
}
int ddnext(tbl) ' ddnext
DD_IDENT =xtbl;
{ 80
DD_IDENT #%dd = ddcur + 1;
if (ddcur == NULL) return(0);
while (dd—>value != NULL) {
if (dd—>selectable) {
ddselect(dd);
return(1);
+-+dd; %0
}
return(0);
}
int ddprev(tbl) ddprev
DD_IDENT =tbl;
{

DD_IDENT xdd = ddcur;
if (ddcur == NULL) return(0); 100

/* Make sure we aren’t at the start of the table */
if (dd—— == tbl) return(0);
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}

while (1) {
if (dd—>selectable) {
ddselect(dd);
return(1);

/* Termination check =x/
if (dd—— == tbl) break;

return(0);

/* Move cursor up =/

int ddup(tbl)
DD_IDENT =tbl;

{

}

DD_IDENT xdd = ddcur, *best_dd;
int row, col, best;

if (ddcur == NULL) return(0);

/* Look for something on the previous row x/

ddprev—-ddright(ddisp.c)

110

ddup

120

for (row = ddcur—>row-1, col = ddcur—>col, best = 80; row >= 0; ——row) {

/* Search the entire table  x/
for (dd = tbl; dd—>value != NULL; ++dd) {
if (dd—>row == row && dd—>selectable &&
abs(dd—>col — col) < best) {
best = abs(dd—>col — col);
best_dd = dd;
}

}
if (best != 80) break;
if (row < 0) return(0);

ddselect(best_dd);
return(1);

/* Move cursor right */

int ddright(tbl)
DD_IDENT =tbl;

{

DD_IDENT #dd = ddcur, *best_dd;
int row, col, best;

if (ddcur == NULL) return(0);

[* Look for something on the this row */
row = ddcur—>row;

col = ddcur—>col;

best = 80;

/* Search the entire table  */
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}

ddright—ddleft(ddisp.c)

for (dd = tbl; dd—>value != NULL; ++dd) {
if (dd—>row == row && dd—>selectable &&

dd—>col > col && dd—>col — col < best) { 160
best = dd—>col — col;
best_dd = dd;

}
}

if (best != 80) {
ddselect(best_dd);
return(1);

return(0); 170

/* Move cursor down =/

int dddown(tbl) dddown
DD_IDENT #tbl;

{

}

DD_IDENT xdd = ddcur, *best_dd;
int row, col, best;

if (ddcur == NULL) return(0); 180

/* Look for something on the previous row */
for (row = ddcur—>row+1, col = ddcur—>col, best = 80; row < 25; ++row) {
/* Search the entire table  +/
for (dd = tbl; dd—>value != NULL; ++dd) {
if (dd—>row == row && dd—>selectable &&
abs(dd—>col — col) < best) {
best = abs(dd—>col — col);
best_dd = dd;
} 190

}
if (best != 80) break;
if (row >= 25) return(0);

ddselect(best_dd);
return(1);

/* Move cursor left */

int ddleft(tbl) ddleft
DD_IDENT #tbl; 201

DD_IDENT *dd = ddcur, *best_dd;
int row, col, best;

if (ddcur == NULL) return(0);
[* Look for something on the this row #/

row = ddcur—>row;
col = ddcur—>col; 210

18:11 Dec 11 1991 Page 4 of ddisp.c



best = 80;

/* Search the entire table  */
for (dd = tbl; dd—>value != NULL; ++dd) {
if (dd—>row == row && dd->selectable &&

dd—>col < col && col — dd—>col < best) {

best = col — dd->col;
best_dd = dd;

}

if (best != 80) {
ddselect(best_dd);
return(1);

return(0);

/*
* Input functions
*

* ddinput Input a new value

* ddread Read a string from the console

*

*/

ddinput()

if (ddcur != NULL) (*ddcur—>function)(Input, ddcur);

}

ddread(prompt, address, length)
char *prompt, *address;

int length;

{

int ch;
ddprompt(prompt);

#if CURSOR
TTcurson();
#endif

while (length > 1) {
*address = ch = TTgetc();
if (ch == ’\n’ |} ch == ’\r?)
break;
++4address;
TTputc(ch); TTfush();
——length;

+address = '\0’;
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ddread—dd integer(ddisp.c)

#if CURSOR

TTcursoff();

#endif

}
/*

TTmove(term.t nrow, 0); TTeeol();

270
Print a string on the prompt line  */

ddprompt(s) ddprompt

char =s;

{

/*

* ¥ * H *

/*

/* Move the the bottom line of the display and clear it */
TTmove(term.t nrow, 0); TTeeol();

while (xs) TTputc(*(s++));

TTfush();

280
Predefined display functins

dd_integer
dd_long

*/

Check and display integers */

dd_integer(action, dd) dd_integer
DD_ACTION action; 291
DD_IDENT xdd;

{

char ibuf[8];
int *value = (int *)dd—>value, *current = (int *)dd—>current;

switch (action) {
case Update:
if (dd—>current != NULL && (!dd—>initialized || *value != *current)) {
sprintf(ibuf, dd—>format, xcurrent = xvalue); 300
ddputs(dd, ibuf);
dd—>initialized = 1;
}
break;

case Refresh:
sprintf(ibuf, dd—>format, *current = *value);
ddputs(dd, ibuf);
dd—>initialized =. 1;
break; 310

case Input:
ddread("Integer: ", ibuf, 8);
sscanf(ibuf, "%d", value);
break;

}
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dd_integer—dd_char(ddisp.c)

}
[* Check and display long integers  x/
dd_long(action, dd) dd_long
DD_ACTION action; 321
DD_IDENT #dd;
{
char ibuf[8];
long *value = (long *)dd—>value, *current = (long *)dd—>current;
switch (action) {
case Update:
if (dd—>current !'= NULL && (!dd—>initialized || *value != xcurrent)) {
sprintf(ibuf, dd—>format, #current = #value); 330
ddputs(dd, ibuf);
dd—>initialized = 1;
}
break;
case Refresh:
sprintf(ibuf, dd—>format, *current = *value);
ddputs(dd, ibuf);
dd—>initialized = 1;
break; 340
case Input:
ddread("Integer: ", ibuf, 8);
sscanf(ibuf, "%1d", value);
break;
}
}
/* Check and display chars =/
dd_char(action, dd) dd_char
DD_ACTION action; 351
DD_IDENT =xdd;
{
char ibuf[8];
char xvalue = (char x)dd—>value, *current = (char x)dd—>current;
char ctmp;

switch (action) {
case Update:
if (dd—>current != NULL && (!dd—>initialized || #value != *current)) { 360
sprintf(ibuf, dd—>format, *current = *value);
ddputs(dd, ibuf);
dd—>initialized = 1;
}
break;

case Refresh:

sprintf(ibuf, dd—>format, *current = *value);
ddputs(dd, ibuf);
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}

dd—>initialized = 1;
break;

case Input:
ddread("Character: ", ibuf, 8);
sscanf(ibuf, "%c", &ctmp);
*value = ctmp;
break;

/* Check and display bytes =*/

dd_byte(action, dd)
DD_ACTION action;
DD_IDENT =xdd;

{

}

char ibuff8];

dd char—dd_ubyte(ddisp.c)

370

380

dd byte

char *value = (char *)dd—>value, *current = (char *)dd—>current;

int itmp;

switch (action) {
case Update:

390

if (dd—>current != NULL && (!dd—>initialized || *value != xcurrent)) {

sprintf(ibuf, dd—>format, *current = #value);
ddputs(dd, ibuf);
dd—>initialized = 1;

}

break;

case Refresh:
sprintf(ibuf, dd—>format, *current = *value);
ddputs(dd, ibuf);
dd—>initialized = 1;
break;

case Input:
ddread("Byte: ", ibuf, 8);
sscanf(ibuf, "%d", &itmp);
*value = itmp;
break;

}

/* Check and display unsigned bytes +/
dd_ubyte(action, dd)

DD_ACTION action;

DD_IDENT xdd;

{

char ibuff8];

unsigned char *value = (unsigned char *)dd—>value;
unsigned char *current = (unsigned char *)dd—>current;
int itmp;
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dd_ubyte—dd_double(ddisp.c)

switch (action) {
case Update:
if (dd—>current != NULL && (!dd—>initialized || *value != xcurrent)) {
sprintf(ibuf, dd—>format, *current = #value);
ddputs(dd, ibuf);
dd—>initialized = 1;
}
break; 430

case Refresh:
sprintf(ibuf, dd—>format, xcurrent = xvalue);
ddputs(dd, ibuf);
dd—>initialized = 1;

break;
case Input:
ddread("Byte: ", ibuf, 8);
sscanf(ibuf, "%d", &itmp); 440
xvalue = itmp;
break;
}
}
/* Check and display floats (single precision) */
dd_float(action, dd) dd float

DD_ACTION action;

DD_IDENT xdd;

{ 450
char ibuf[8];
float *value = (float *x)dd—>value, *current = (float *x)dd—>current;

switch (action) {
case Update:
if (dd—>current != NULL && (!dd—>initialized || *value != #current)) {
sprintf(ibuf, dd—>format, *current = *value);
ddputs(dd, ibuf),;
dd—>initialized = 1;
} 460
break;

case Refresh:
sprintf(ibuf, dd—>format, *current = #value);
ddputs(dd, ibuf);
dd—>initialized = 1;

break;
}
}
470
/* Check and display doubles (double precision) */
dd_double(action, dd) dd_double

DD_ACTION action;
DD_IDENT xdd;

{
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dd_double—dd_label(ddisp.c)

char ibuf[32];
double *value = (double x)dd—>value, *current = (double *)dd—>current;
double dtmp;

switch (action) { 480
case Update:
if (dd—>current !'= NULL && (!dd—>initialized || #value != *current)) {
¢86_sprintf(ibuf, dd—>format, *current = #value);
/* c86_dtos(xcurrent = xvalue, ibuf, 2, ’f’); */
ddputs(dd, ibuf);
dd—>initialized = 1;
}
break;

case Refresh: 490
c86_sprintf(ibuf, dd—>format, *current = #value);
ddputs(dd, ibuf);
dd—>initialized = 1;
break;

case Input:
ddread("Float: ", ibuf, 16);
sscanf(ibuf, "%1£", &dtmp);
*value = dtmp;
break; 500

}

dd_label(action, dd) dd_label
DD_ACTION action;
DD IDENT =xdd;

switch (action) {
case Update:
if (!dd—>initialized) { 510
ddputs(dd, dd—>value);
dd—>initialized = 1;
}
break;

case Refresh:
ddputs(dd, dd—>value);
dd—>initialized = 1;

break;
} 520
}
/*
* Quiput functions
*
* ddopen Open terminal for ddisp
* ddputs Output a string at the item location
* ddcls Clear the screen
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* ddclose Close the terminal
*

*/

/* Open the terminal in raw mode =*/
ddopen()

TTopen();
TTkopen();
TTmove(0, 0);
TTeeop();
#if CURSOR
TTcursoff();
#endif

}

/* Output a string =*/

ddputs(dd, s)

DD_IDENT =*dd;

char xs;

{
TTmove(dd—>row, dd—>col);
if (dd—>reverse) TTrev(1);
while (¥s) TTputc(*(s++));
if (dd—>reverse) TTrev(0);
TTflush();

}

[* Clear the entire string  */
ddels()

TTmove(0, 0);
TTeeop();

/* Close the terminal (cooked mode) */
ddclose()

{

#if CURSOR
TTcurson();

F#endif
TTmove(term.t_nrow, 0);
TTkclose();

TTclose();

}
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DD _Option(ddisp.h)

/*
ddisp.h — DDisp structures and definitions

Richard M. Murray
November 4, 1987

* % * * ¥ *

¥*
~

Fifndef DDISP
#define DDISP

/* Display entry structure */
typedef struct display_entry {
int row, col;
char =*value;
int (s+function)();
char *format;
char *current;
int selectable; [* Allow entry to be selected  */

/* Parameters not normally initialized  */
unsigned initialized: 1;
unsigned reverse: 1;

} DD_IDENT;

/* DDisp actons */
typedef enum {
Update, Refresh, Input

} DD_ACTION;

#define DD _Label(r, c, s) {r, ¢, s, dd_label, NULL, NULL, 0}
#tdefine DD _Option(r, ¢, s, 1) {r, ¢, s, dd_label, NULL, (char &) 1, 1}
#define DD_End {0, 0, NULL, NULL, NULL, NULL, 0}

/* DDisp variables =/
extern DD_IDENT =xddcur;

/* DDisp functions =/

extern int dd_integer(), dd_byte(), dd_float(), dd_label();
extern int dd_double(), dd_ubyte(), dd_long(), dd_char();
[* Screen attributes x/

#define Normal 0x0

#define Reverse 0x1

#endif
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