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Abstract

We present a new theoretical framework for analyzing simulated annealing. The
behavior of simulated annealing depends crucially on the "energy landscape" associated
with the optimization problem: the landscape must have special properties if annealing is
to be efficient.

We prove that certain fractal or linearly-separable properties of the energy land
scape are sufficient for simulated annealing to be efficient in the following sense: A solution
of relative energy no more than e - that is, a solution whose expected energy differs from
the minimum by no more than e times the full energy range of the problem - can be found
in time polynomial in 1/e, where the exponent of the polynomial depends on certain param
eters of the fractal. Higher-dimensional versions of the problem can be solved with almost
identical efficiency.

The cooling schedule used to achieve this result is the familiar geometric schedule
of annealing practice, rather than the logarithmic schedule of previous theory. Our analysis
is more realistic than those of previous studies of annealing in the constraints we place on
the problem space and the conclusions we draw about annealing's performance.

The techniques used are also new in this field. Annealing is modeled as a ran
dom walk on a graph, and recent theorems relating the "conductance" of a graph to the
mixing rate of its associated Markov chain generate both a new conceptual approach to
annealing and new analytical, quantitative methods. Another component in the analysis is
an original and fundamental result: the expected energy cannot increase during annealing
with monotonically decreasing temperatures. Surprisingly, with arbitrarily low but non
monotonic temperatures, the expected energy can be made arbitrarily high. An original
analysis of annealing with any monotonically decreasing cooling schedule provides a strong,
fundamental result which is one key component in our analysis of annealing on special
landscapes.

The efficiency of annealing is compared with that of random sampling and descent
algorithms. While these algorithms are more efficient for some cases, their run times increase
exponentially with the number of dimensions, making annealing better for problems of high
dimensionality.

We find that a number of circuit placement problems have energy landscapes with
fractal properties, thus giving for the first time a reasonable explanation of the successful
application of simulated annealing to problems in the VLSI domain.

Key words: Simulated annealing; Combinatorial optimization; Fractals; Rapidly-mixing
Markov chains.
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Chapter 1

Introduction

Simulated annealing is a general algorithm for finding good solutions to a wide

variety of combinatorial optimization problems [13]. A finite graph G = (V,E) and a

function / : V —> 1R are given. The goal is to find a vertex v £ V such that f(v) is small.

Without loss of generality, for convenience we assume / is scaled so that miiiv^v f(v) =

0 and maxvgv* f(v) = 1. V is called the set of "states" of the problem, E the set of

"moves" between states, and f(v) the "energy" of state v. Thinking of the graph as being

drawn on the plane and the energies represented as elevations, we refer to the graph and

energy function together as the "energy landscape". The annealing algorithm is shown in

Figure 1.1.

What is meant by setting i toi' "with probability pn is this: A sequence of

independent, uniformly distributed random real numbers between 0 and 1 is given. Each

time an update decision is to be made, the next number in the sequence is compared with

p. If the number is smaller than p then the update is made ("accepted").

K is the number of generations used for annealing, 2*. is the number of attempts

("time") spent in generation k, and T* is the temperature used in that generation. The

sequence {(Tk,tk)}$=i and the value K are referred to as the "cooling schedule". The

choices of these parameters, and a corresponding estimate of the final energy f(x), are the

outstanding open problems in the practice and theory of simulated annealing.

Previous theoretical results describing the behavior of simulated annealing are few.

For convenience we describe a cooling schedule by the set of pairs (T*,^).

In 1982it was independently shown by two groups [21, 16] that for "infinite-time"

cooling schedules i* = oo and Tk —* 0, annealing "reaches equilibrium" at each temperature,

1



CHAPTER 1. INTRODUCTION

choose a sequence (Tk,tk) and value K
x <— random state

for "generation*' k = 1 to K {

for t = 1 to tk {
x' <— random neighbor of x
if f(x') < f(x) then x <-x'
else

a: «- x' ("accept") with probability e-M*')-^*))/3*
otherwise x unchanged ("reject")

}

}
output re

Figure 1.1: Annealing algorithm. (Tk,tk) is a sequence of pairs representing respectively

the fcth temperature to be used for annealing, and the number of moves to be attempted

at that temperature. We say t is the "time" within the fcth "generation" of annealing.

and therefore as T -* 0 annealing finds a global minimum with probability 1. The proof is

simple, and relies only on the most elementary theory of Markov chains.

A stronger result, proved in various forms by several groups including [6, 19, 7],

is that for "logarithmic" cooling schedules tk = 1 and Tk = a/ In&, with a sufficiently

large, annealing approaches equilibrium ever more closely as time goes on and temperature

decreases, and so again finds a global minimum with probability approaching 1.

While the latter theories give a sound basis for simulated annealing, their short

comings are significant. The theorems as stated presume infinite time1 and slow cooling

schedules2. There is no hope of being able to weaken these suppositions significantly, since

in general finding a global minimum with high probability requires that each state be exam

ined and therefore that the time spent be at least the number of states. This is unrealistic,

both because the number of states is typically exponential in the size of the problem, and

because if each state is to be explored anyway we may as well use a simpler technique such

1The finite-time results of [19] are an exception.
2Practical cooling schedules are either geometric by construction or are "automatic", which come out to

be approximately geometric anyway [22]. Any decreasing geometric sequence asymptotically approaches 0
faster than any logarithmic one.
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as exhaustive enumeration or random sampling.

We seek a theory which applies to a restricted class of problems and which in

exchange for this restriction allows a realistic cooling schedule (fast and perhaps geometric),

yields strong finite-time results, and provides a mathematical description of the tradeoff

between the time spent annealing and the expected energy of the solution produced. That

is, we want a theory which explains why, for many practical problems such as those of VLSI

layout, simulated annealing produces good results with fast cooling schedules. Previous

theories do not explain this.

In this paper, we explore the relationship between energy landscapes and simu

lated annealing's performance. We begin in Chapter 2 with an intuitive argument that

landscapes which are susceptible to annealing are self-similar, or fractal. In Chapter 3 we

show that some practical landscapes - in particular those for circuit placement - do have

random self-similarity properties. In Chapter 4 we derive some basic mathematical results

concerning annealing, focusing on stationary properties and on the quality-time tradeoff

for annealing at a constant temperature. The efficiency results for annealing in this gen

eral setting are poor, as expected. (Appendix A uses these tools to rederive the standard

theoretical, asymptotic results for annealing with a "logarithmic" cooling schedule.) Chap

ter 5 shows that annealing with a cooling schedule whose temperatures do not decrease

monotonically can produce surprising and undesirable results; it then gives a general and

mathematically elegant description of the behavior of annealing with monotonically de

creasing schedules. The conclusions of these two chapters are applied in Chapters 6 and 7

to show that annealing is comparatively efficient on a class of linearly separable functions.

Similarly, Chapter 8 shows annealing to be efficient on a carefully constructed class of de

terministic fractals. The efficiency of annealing on these fractals is compared with that of

other similarly general algorithms in Chapter 9. We think the basis of these analyses is

applicable to more realistic function models, and we hope to be able to extend it formally

to landscapes including fractional Brownian motions.

Ideally we would like to identify a set of properties - perhaps fractal properties

- satisfied by all practical problems on which annealing has been found successful, and

then to prove that annealing works efficiently on any function possessing these properties.

Unfortunately, such a result is some way off.

To keep them from interrupting the flow of the paper, most of the proofs have been
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in the text. Wedeferred to appendices; they are indicated by the symbol pf —»• appendix

will be using throughout some notation that is not completely standard. By f(x) ~ g(x)

(read "f{x) asymptotically equal to g{x)n) we mean that under a limit to be inferred from

the context, ]imf(x)/g(x) = 1. By f(x) & g(x), uf(x) asymptotically less than or equal

to g(x)", we mean limsup/(a;)/5f(a;) < 1; of course f(x) j£ g(x) is to be interpreted sym

metrically. The appearance of "const" in an equation indicates that the equation holds for

some constant undeserving of a name of its own. Similarly "poly(aj)" indicates a polynomial

function.



Chapter 2

Dependence of Simulated

Annealing on the Energy

Landscape

In this chapter we wish to introduce the underlying ideas informally, showing why

the performance of simulated annealing is strongly dependent on the "energy landscape" of

the problem, and suggesting the properties the landscape must have in order for annealing

to be efficient. In Chapters 3 and 8 respectively we will exhibit fractal properties observed

in some real problems, and formally prove the efficient performance of annealing on a class

of problems with qualitatively similar but more restrictive properties.

Suppose that the energy landscape is as sketched in the "bad" landscape of Fig

ure 2.1(a). States are represented along the x axis, with adjacent states being neighbors.

On this landscape, the energy differences between the low-energy states (the valley bot

toms) are fairly small,while the energy barriers separating them (the mountains) are large.

It is well known that the time required to cross a barrier of height h at temperature T is

exponential in h/T, while the probability of a state of energy / is exponential in -fIT.

So crossing the high barriers in reasonable time demands T large, while favoring the better

valleys over the less good ones requires T small, implying that annealing cannot work both

well and quickly on this space.

On the other hand, annealing should work well on a function like that of the

"good" landscape of Figure 2.1(b). In this case, annealing can work hierarchically. Initially,
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W (b)

Figure 2.1: Sketch of landscapes which are bad (a) and good (b) for annealing.

the goal can be just to choose the better (left) of the two valleys separated by the tallest

barrier B\. While Bi is large, the overall energy difference A/a of the two valleys is also

fairly large, so with a comparably sized value of T\ we can be in the lower-energy value with

high probability in short time.

Next we can aim to settle in the better (right) of the two valleys separated by the

smaller barrier 2?2- While the energy difference A/2 between these valleys is smaller than

A/a was, 2?2 is also smaller than B\, and so using T2 similarly smallerthan Ti again allows

us to be in the lower-energy valley with high probability in reasonable time. This process

is repeated for smaller and smaller energy scales.

The success of annealing relies on the overall energy difference of collections of

states being large compared with the barriers dividing these collections. So we would argue

that either all the energy barriers and energy differences are of the same scale (which does

not seem to be the case in practice), or else in smaller and smaller areas of the landscape

the energy barriers must scale down along with the energy differences, giving a general

"self-similarity"or "fractalness" like that of the "good" landscape of Figure 2.1(b).



Chapter 3

Fractalness of Circuit Placement

Problem Landscapes

To support the relevance of the paper, we wish to show that some problems on

which annealing works well are fractal.

We take the following as our basic definition of fractalness (see [24]):

Definition 3.0.1 A random function f : IRn —» Et is a fractional Brownian motion

(fBm) if the distribution of f(X') conditional on f(X), X, and X', is normal with mean

0 and variance proportional to \\X' —X\\2H, where H is a parameter in (0,1).

As noted in [32], such functions have the statistical scaling property that for any r, f(rX)

is statistically indistinguishable from rHf(X). This may be thought of as the intuition

underlying the definition. Figure 3.1 shows an example of this rescaling for Brownian

motion. Brownian motion is the special case of fBm with H = 1/2, for which reducing

the x scale by any factor r and the y scale by the factor r1/2 yields a function statistically

similar to the original one. Note that the rescaling X i-> rX can be done in IRn but not in a

general combinatorial setting, where X is just the vertex of a graph. However, in the latter

setting the distance between two points can be defined as the length of a shortest path

between them. So allowing distance functions d(X,X') other than the Euclidean norm, we

can naturally generalize Definition 3.0.1:

Definition 3.0.2 A random function f on a metric space is fractal if the distribution of

f{X') conditional on f(X), X, and X', is normal with mean 0 and variance proportional

to d(X'iX)2H, where H is a parameter in (0,1).
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x

Figure 3.1: A sample of Brownian motion, a special case of fractional Brownian motion.

When the portion of the graph in either small rectangle is expanded by 4X along the x

axis and 2X along the y axis (to make it the same size as the whole figure), the resulting

functions are statistically similar to the original one.

The distribution in Definition 3.0.2 (like that in Definition 3.0.1) is over the prob

ability space from which / is drawn, but experimentally we will be sampling over random

values of X and X' for a given sample function /. The equivalence of these two procedures

is referred to as "ergodicity", and we take it for granted.

Analysis of the energy landscapes of a number of placement problems shows that

they do indeed have fractal properties, and we believe these problems to be representative

of VLSI layout problems.

We experimented on three placement problems. One was a real-world example

with 87 objects; one was a random graph with 225 objects; and the last was also random

with 225 objects, but was hierarchically constructed in conformance with Rent's Rule [9]

with an exponent of 2/3. In each case placements in both one- and two-dimensional arrays

were performed.

A state in any of these problems is given by an ordering of the objects, i.e. by

a permutation of the numbers 1,..., N. The moves used were swaps of pairs of objects,

making the distance between two states the minimum number of swaps required to turn

one permutation into the other.
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Because Definition 3.0.2 involves a set of the distributions (one for each value

of distance), it is difficult to check. It is much simpler to measure the expectation of

lf{X') - f(X)]2, whose behavior is described by the following lemma:

Lemma 3.0.3 If f(X) is a fractal (per Definition 3.0.2), then

E[(/(*') - /(*))2] « <KX', X)™. (3.1)

We refer to any relationship of this form as a power-law relation.

Although as a condition on / equation (3.1) is weaker than Definition 3.0.2, we take

satisfaction of (3.1) to be preliminary evidence of fractalness; we will discuss satisfaction of

Definition 3.0.2 itself in a moment.

To check whether (3.1) is satisfied, random point pairs at various distances apart

are generated, and the average squared energy difference of pairs a given distance apart is

plotted against that distance. A typical experimental result is shown in Figure 3.2, derived

from the real netlist placed in one dimension.

To check Definition 3.0.2 fully we need to verify that the distribution of energies

for each distance is actually normal, in addition to having the predicted mean and variance.

To do so, for each distance we constructed a quantile-quantile plot of the sampled energy

differences against a normal distribution. In such a plot, normally-distributed data would

show up as a straight line, excepting sampling deviations. A typical result is shown in

Figure 3.3.

Instead of sampling random point pairs, fractal properties can also be inferred by

taking random walks on the energy landscape. A random walkis a sequence of points X(t)

(t = 0,1,2,...) where X(t + 1) is generated by a random move from X(t). We study the

energy timeseries f(X(t)).

This technique offers a number of advantages over the mean square energy differ

ence versus distance method just discussed. First, the practical difficulty of finding point

pairs separated by small distances is obviated. Second, interpretation of the energy versus

distance data required parameter estimation (to fit a power-law function), and it is unclear

what constitutes a statistically sensible estimation procedure in this context. By contrast,

the energy versus time timeseries produced by the random walk can be subjected to es

tablished timeseries analysis techniques, including methods for estimating parameters and

confidence intervals.
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Figure 3.2: Mean squared energy differences of point pairs against the distances separating

them. The good fit of the straight line to the small-distance portion of the data indicates

that mean squared energy is approximately proportional to distance in this realm, and

supports the interpretation that / is fractal in the sense of Definition 3.0.2.

The theoretical basis for the random walk method is contained in the following

two lemmas.

Lemma 3.0.4 pf —• appendix Given any space where a random walk X(t) satisfies

d(X(t),X(0)) = ct, for some constant c. Let f be a fractal (per Definition 3.0.2) with
parameter H on this space. Then f(X(t)) is a fBm (on M}) and has parameter H.

Lemma 3.0.5 pf —> appendix Given a fBm f on IRn with parameter H. Make a ran

dom walk X(t) on Rn. Then f{t) = f{X(t)) satisfies equation (3.1) with parameter \H.
Furthermore, for n large, f(t) is approximately a fBm (on Wl}) with parameter \H.

Here the "random walk" we make on IRn must be a Brownian motion - the limiting case of

a random walk taking a large number of small steps - but this is a minor technicality.

Analysis of the combinatorial structure of permutation spaces with pairwise inter

change moves shows that in such spaces, the expected distance d(X(t)tX(0)) traversed by a
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Quantile-Quantile

Figure 3.3: Quantile-Quantile plot of energy differences against normal distribution. These

energy differences were obtained from pairs of points 25 moves apart. A straight line would

indicate normally-distributed data. Together with Figure 3.2 where the mean and variance

of the data were compared with a linear predictor, this figure confirms that Definition 3.0.2

is statistically satisfied by the observed data.

random walk of length t is almost exactly equal to t, for t significantly smaller than the diam

eter of the space (sayfor t < i). In this case the fBm scaling law E[(/(i')-/(t))2] oc \t'-t\2H

applies only for \t' - t\ < i.

It can be shown that the spectral density of a fBm has spectral energy which is

power-law in frequency [32]. If the scaling of the fBm breaks downfor large times (|<'-*| > i

in the case just described) then the spectral energy is power-law in frequency only down to

corresponding frequencies (frequencies above lit).

Figure 3.4 shows f(X(t))t the energy timeseries for a random walk of 15,000

steps on the "real" netlist, along with its spectral density. Using the statistics package

S-Plus (a Statistical Sciences, Inc. enhancement of Bell Telephone Laboratories' "S", [1])

the spectrum was computed by applying a cosine-bell taper to the first and last 10% of the

data, computing the periodogram, and smoothing with a moving-average filter of length 20

[3]. Power-law behavior is observed to hold down to frequencies of about .01 - which, as
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Figure 3.4: (a) Energy versus time during a random walk on the state space, (b) Spec

trum, with a fitted power law (the straight line), and the spectrum of a fitted first-order

autoregressive process.

the reciprocal of the diameter of the space, is what we would expect.

The superposed dashed curve is the spectrum of a first-order autoregressive (AR(1))

process fitted to the energy timeseries. A stationary AR(1) process is one in which E[/(t +

l)l/(*)>/(*-!)>•••] = «/(*) + (l-a)co where a is a constant with \a\ < 1, and c0 = E[/(0)]

is the mean of the process. The excellent fit between the fitted and observed spectra suggests

that the AR(1) model is a good one for annealing.

An AR(1) process is locally fractal (t.e. approximately satisfies Definition 3.0.1

for small time periods) with parameter H = 1/2. A fBm with H = 1/2 is called simple

Brownian motion (Bm), and arises when f(t + 1) is f(t) plus a random increment. True

Brownian motion is nonstationary, but the factor a in the AR(l) process adds a "pull"

towardsc0 which gives stationarity. So the combinatorial landscapesofinterest mayactually

be relatively simple, the energy of a state being given by that of a neighbor plus a random

quantity. While the case H = 1/2 may be unworthy of the name "fractal", it is just as

easy to treat the general case, with an arbitrary fractal parameter; we address this in the

following chapters.

The landscape analysis techniques described here are widely applicable and may

be useful in other contexts, including the study of optimization techniques other than an

nealing. Other landscape analysis tools and details of the experiments summarized above
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are presented in [14, 28, 29, 30].



Chapter 4

Mathematics of Annealing

4.1 Annealing as a Markov Chain

Because the next state in simulated annealing depends probabilistically only on

the current state and not on previous states (see Figure 1.1), simulated annealing is a

Markov chain. If the temperature is kept fixed, the transition rule is time invariant, and

the chain is said to be homogeneous. We now summarize and apply a few standard facts

about homogeneous Markov chains (see for example [23]).

The state space of the chain corresponding to annealing is V, the same as the set

of states of the optimization problem. Let the Markov chain itself be the sequence (vt)^0,

with transition matrix M = (muw) where muv = P[*yt+i = v\vt = u]. Denote by Pt the

probability distribution (state probability vector) of vu so Pt(v) = P[vt = v]. By standard

Markov chain theory, Pt = PqM1.

A stationary vector or equilibrium distribution is a distribution 7r such that irM =

7r; this is equivalent to saying that if Pt = tt then Pt+1 = 7r. A Markov chain is called

ergodic if for all state pairs (u, v), lim^a, P[vt = v \v0 = u] > 0. For any ergodic Markov

chain, there exists a unique stationary distribution 7r, and it has the property that for any

initial distribution P0, Pt ^? 7r. The Markov chain is said to be stationary at time t if

Pt = 7r, because then for all t' > *, Pt, = tt as well. Consistent with the notation Pt(v), by
tt(v) we mean the stationary probability of the state v.

In any practical application of annealing to combinatorial optimization, the state

space is finite and is connected by the move set. As long as this is so and not all states have

equal energies, the Markov chain isergodic. (In [22] this is proved for a class ofhill-climbing

14
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algorithms which includes annealing.)

One can also look at the reversed chain, i.e. the sequence vt,vt-i,Vt-2, If

the chain is stationary it turns out that the reversed chain is also a Markov chain. A

Markov chain is said to be time-reversible if the transition probabilities of the reversed

chain areidentical to those ofthe original chain. Again, [22] proves that annealing (at fixed
temperature) is reversible.

4.2 Graph Model for Markov Chains

In recent work of Sinclair and Jerrum [26], a homogeneous time-reversible Markov

chain is identified with a weighted undirected graph containingself-loops, and the rate of

convergence of Pt to tt is bounded via the "conductance" of this "underlying graph".1 We

now set forth this technique and apply it to simulated annealing.

For a general time-reversible Markov chain on state space V, the underlying graph

G also has vertex set V and has edge weights

w(u, v) = const •ir(u)muv = const •ir(v)mvu (4.1)

where "const" is an arbitrary positive constant. If the constant is 1 then Eu^K^K11) =
1. Allowing other constants means we do not have to have this normalization, which is

sometimes convenient (for example in Lemma 4.2.2). Reversibility for a Markov chain

is equivalent to the condition that, in stationarity, P[vt+i = vandvt = u] = P[v*+i =

uandvt = «]. This condition is known as detailed balance because for each edge {u,v}

the "probability flux" from u to v is equal to that from v to u. Since in stationarity

ir(u)muv = P[vt+i = vaiidvt = it], the detailed balance condition for time-reversible

Markov chains means that the definition of w(u,v) in equation (4.1) is consistent. Zero-

weight edges may be thought of as being eliminated from the graph, though this is of no

mathematical consequence.

A random walk on a graph G with nonnegative edge weights is a sequence (vt)fl0,

where

?[vt+i =v\vt =u}= W(U^ (4.2)
lThe Sinclair and Jerrum paper has a much broader scope, using this convergence rate to show that

solutions to a class of combinatorial counting problems can be approximated in polynomial time.
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That is, from the vertex vt7 vt+i is determined by randomly choosing an edge incident to

vt in proportion to its weight. (In equation (4.2), nonexistent edges are simply considered

to have weight 0.)

It is straightforward to verify that the transition probabilities of a time-reversible

Markov chain and those of the random walk on the corresponding underlying graph are

equal, and so these two random processes are equivalent. The stationary properties of

random walks are given by the following lemma:

Lemma 4.2.1 7r(u)rauv oc w(u,v) and^u) oc J2vev w(tt,v).

That is, the stationary probability of traversing an edge in a given direction is proportional

to the weight of the edge, and the stationary probability of a vertex is proportional to the

sum of the weights of the incident edges. The lemma follows from equation (4.1).

For simulated annealing, the edge weights for the underlying graph are given by

the following lemma.

Lemma 4.2.2 pf —» appendix Let an annealing problem be given by the undirected un

weighted graph Ga and the energy function f on its vertices. Then the underlying edge-

weighted graph G corresponding to annealing on Ga oi temperature T has the same structure

(vertices and edges) as Ga> tott/i the addition of self-loops at each vertex. It has edgeweights

given by

w(v, u) = e~ ™«(/(t,),/(u))/T (4.3)

for edges {v,u} present in Ga> orid

w{v, v) = e-fW7 J2 I1 - e-(/(u)-/(v))/T] (4.4)

for the added self-loops {v, v}, with the sum taken overpairs {u, v} which are edges of G.

This lemma and Corollary 4.2.4 are proved together in the appendix. The proofs

consist of straightforward verification that the transition probabilities for the random walk

on G are the same as the transition probabilities for annealing on G^ at temperature T.

Definition 4.2.3 Given an annealing graph, the partition function is Z(T) =
Zvdeg(v)e-nv)/T

Corollary 4.2.4 |pf -> appenduc At temperature T, the stationary probability ttt{v) of
state v is deg(v)e-KvVT/Z{T).
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We define 7To = limy^o ^r-

Definition 4.2.5 A graph G is regular with degree d if all its vertices have degree d.

Corollary 4.2.6 For a regular annealing graph Ga, ^t{v) oc e~^v^T.

By analogy with statistical physics this is often referred to as "Boltzmann's law".2

Note that in taking a random walk on a graph, edges are randomly selected in

proportion to their weights, but there are no "rejected moves". Rather, the "move edges"
referred toinequation (4.3) represent the generation and acceptanceoia simulated annealing
move, while the "reject loops" of (4.4) represent the rejection of an annealing move.

4.3 Observations on the Stationary Distributions for An

nealing

For intuitive purposes we present a few observations on the nature of the sta

tionary distributions at various temperatures, and the associated partition functions. Only

Corollary 4.3.3 and Theorem 4.3.6 are referred to in the sequel.

Proposition 4.3.1 pf -♦ appendix Z(T) = £v deg(v)e~^v^T is monotonically increas

ing. For f ranging from 0 to 1 and T > 0, Z(T) > 1, and for regular graphs of degree d,

Z{T) > d.

Theorem 4.3.2 pf —• appendix 7rr(v) is a bitonic functionofT: there is a value TCIit(v)

(the critical temperature for v) such that xr(v) increases with increasing T for T <

TcritM and decreases with increasing T for T > Tcrit(i>)- Further, TCIit(v) is the value of

temperature at which f(v) —E^T[/], i.e. at which the expected energy equals the energy of

Corollary 4.3.3 For states v where f(v) is minimal, tt{v) decreases monotonically as T

increases; and for states where f(v) is maximal, ttt(v) increases monotonically.

Proof ETT . [/] = f(v) gives critical temperatures of 0 and oo respectively for these two

types of vertices. •

2The "partition function" Z(T) is also found in the physics literature. There the deg(t>) term does not
appear, presumably because the physical systems studied always have associated graphs which are regular.
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Proposition 4.3.4 pf -»• appendix For f ranging from 0 to 1, and T > 0,7rr(v) > 7r0(v)

if and only if f(v) > 0

While this follows from Corollary 4.3.3, a direct proof is provided in the appendix.

Definition 4.3.5 For a given annealing problem, the critical temperature T^it is the

largest value such that for T < Tait, for each state v, vt{v) is monotonic in T.

Theorem 4.3.6 pf -» appendix For any finite annealingproblem, Tent > 0.

4.4 Graph Conductance and Mixing of Markov Chains

For a general Markov chain, the rate at which the chain converges to the station

ary distribution is related to the dominant eigenvalue of the transition matrix M, and a

major contribution of [26] is to relate the dominant eigenvalue to a structural property, the

"conductance", of the underlying graph.

Definition 4.4.1 The conductance of an ordered partitioning (S,S) (0 < \S\ < \V\) of

an edge-weighted undirected graph G, is

This value is equal to the stationary probability of making a transition out of 5, conditional

upon starting in 5.

Definition 4.4.2 The (global) conductance of an edge-weighted undirected graph G is

#(<?) = min §S{G) (4.6)

where the minimum is taken over subsets S C V with 0 < \S\ < \V\ and Ewes^M < 1/2.

Roughly speaking, the conductance is a measure of the probability of escaping in one step

from any "small" subset.

Proposition 4.4.3 If G is a connected unweighted graph (equivalently if all edge weights
are 1), $(G) > l/n2.

This follows directly from the definition.

Tostudy the convergence ofa probability distributionto equilibrium, we also need

a measure of the distance of one distribution from another.
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Definition 4.4.4 For a probability distribution P onV with nonzero mass on every point,
the relative pointwise distance (rpd) of another distribution P' from P is

lip' pii -mw£i!!LM tA-,\\\P - Pllrpd - max — . (4.7)

Notice that the rpd is not symmetric. It willsometimesbe more convenient to use a different

measure:

Definition 4.4.5 For probability distributions P and P' on the set V, the total variation
distance (tvd) between P' and P is

ll^--P|ltvd =5Eli"(")--PWI- (4-8)
vev

We note that tvd is symmetric in its arguments, and is bounded by 0 and 1. In addition,
the following two propositions hold. First,

Proposition 4.4.6

II J" - P\U = £ lP'(v)-PW] (4.9)
v: P'(v)>P(v)

We will sometimes use this in lieu of the definition. Also,

Proposition 4.4.7 For any P' and P,

ll^-Plltvd^illP'-PHrpd. (4.10)
Proof Any weighted average of a set of values is less than the maximum, so

El'M-WI = l^Minv)P~M{v)l (4.U)
„ 1 \P'(v)-P(v)\
S 2miU[ P(v) • <4-12>

Definition 4.4.8 A strongly aperiodic Markov chain is one in which the probability of

each self-transition is at least 1/2.

Theorem 4.4.9 (conductance and mixing) LetPt represent the probability distribution

at time t of a strongly aperiodic Markov chain with underlying graph G and stationary

distribution n. Then

llfi-T|Ud< . 1 , . •(1 - $(G)2/2)' (4.13)
minu7r(u)
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The theorem is due to Sinclair and Jerrum [26]. Related inequalities can be found in [5].

Annealing does not itself give rise to strongly aperiodic Markov chains, but a

variant does: At each step, toss a fair coin. If the outcome is heads, make a standard

annealing move (generate a neighboring state and accept or reject it). If the outcome is

tails, simply remain in the current state.

This modified process has an underlying graph whose conductance is exactly half

that for normal annealing, corresponding to the need to spend twice as much time if half

the moves are nullified.3 Because the idea of discarding half the moves is plainly ridiculous

in practice, we will work with the unmodified annealing process. While this comes at the

expense of mathematical rigor, multiplying by 4 all time bounds derived in this paper gives

rigorously justified results for the modified annealing process.

Rigor could also be achieved in two other ways. One comes from noting that

the "coin-tossing" version of annealing just described can be simulated more efficiently: If

a large number t of coin-tossing moves are to be attempted at temperature T, then the

number of actual annealing moves attempted is a binomially distributed random number,

t' ~ B(t, 1/2). We could simply directly generate such a number (in lieu of the coin tossing)

and then attempt that many moves.

The second way is to go to a continuous-time annealing. Where t moves would be

made at temperature T in standard simulated annealing, we now make a Poisson-distributed

number of moves t' ~ Pois(t). This may be thought of as waiting an infinitesimally small

time dt, tossing a coin which comes up heads with probability dt} and making a move if the

coin comes up heads. This is just an extreme case of the coin-tossing version of annealing.

By Theorem 4.4.9, \\Pt - TrUrpd approaches 0 exponentially in t. The "time con

stant" - the time required for decay by a factor of e - is no more than 2/$2. [26] also

states that this time constant is at least 1/2$.

'While Theorem 4.4.9 requires spending four times as much time if $ is halved, this can be attributed
to a weakness of the bound; a corresponding lower bound in [26] is linear rather than quadratic in $. Also,
under the intuitive view that discarding half the moves requires trying twice as many, if we measure time in
the number of moves actually attempted, the expected time required for the modified annealing is exactly
equal to the time required for normal annealing.
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4.5 Rapid Mixing

Of particular interest to us is under what conditions simulated annealing ap

proaches its stationary distribution quickly. We will begin with a simpler question, namely

under what conditions annealing at infinite temperature quickly approaches stationarity.

In our standard paradigm, where we are given a graph whose vertices correspond to some

combinatorial configurations and whose edges denote some method of moving from one

configuration to another, weare simply asking about the mixing rate for a random walk on

this graph.

In the combinatorial problems of interest, the description of a problem instance

("theinput to a program for solving theoptimization problem") has size which ispolynomial

in a natural parameter N, while the size of the annealing graph ("the number of potential

solutions") is exponential in N. For example, an N-object placement problem can be

described by the set of pairs of objects which need to be connected (no more than N2 of

them), and so can be described in space proportional to N2lnN. However, this placement
problem has N\ possible solutions.

In general, suppose that there is a family {G(N)}J$=1 of (possibly edge-weighted)

graphs such that G(N) has a number of verticeswhichis exponential in N and such that the

convergence to equilibrium of a random walk on G(N) has characteristic time no more than

poly(JV). The random walks are then said to be "rapidly mixing". A sufficient condition

for this to be true is that G(N) has "large" conductance, i.e. $(G) > l/poly( TV), for then

the characteristic convergence time is no more than poly(JV)2.

In [4, 5, 10, 11], random walks on a number of combinatorially motivated graphs

are shown to be rapidly mixing, using a variety of techniques.

The studies of Chapter 3 focused on circuit placement problems, where a vertex of

the state graph is a permutation of {1,..., N} and an edge connects two vertices if the two

permutations differ only by the interchange of two numbers. Theorem 4.5.1 shows that such

a graph has large conductance. Since this is the underlying graph for annealing at temper

ature T = oo (where all edges have equal weight), annealing at T = oo is rapidly mixing for

placement problems. The consequence for finite temperatures is given by Theorem 4.5.2.

Theorem 4.5.1 pf —• appendix Let G be the graph whose vertex set V consists of per

mutations of the objects 1,... ,7V, and in which two vertices (permutations) are connected

by an edge if some single pairwise exchange of two objects takes one permutation to the
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other. Then G has conductance > 1/2N2.

The proof, contained in Appendix C, is of independent interest. It relies on the

construction of "canonical paths" between vertices in the two partitions, with the property

that a given edge is used in a few paths at most. Since there are many paths, there are

also many cut edges, and the conductance is large. This style of proof is most elegant and

is applicable to a variety of other combinatorial problems: see for example [10, 11], and a

random-path variant in [4].

Henceforth we will assume that we are given an annealing problem whose energies

range from 0 to 1, as mentioned in the introduction. Let G(T) denote the corresponding

underlying graph, whose edge weights depend on T, but whose structure is invariant over

temperature.

Theorem 4.5.2 Let a graph G(T) as above be given. Abbreviating $(G(T)) as $(T),

*{T) > e"1/T$(oo). (4.14)

Proof The theorem follows directly from the edge weights for annealing (equations (4.3)

and (4.4)), and the definition of conductance (definitions 4.4.1 and 4.4.2). •

4.6 Asymptotic Convergence to Global Minima

To date the only formally justifiable theories of simulated annealing have pertained

to convergence to a global minimum with probability approaching 1. We do not feel that this

is the best approach to understanding why annealing works in practice, but the result can be

duplicated using the tools presented here. The full derivation is contained in Appendix A.

The basic result is that for the "logarithmic" cooling schedule Tt = 1/alnt with a < 1, for

any Pq, \\Pt - 7rrt|| —• 0. That is, the actual probability distribution at time t approaches

the equilibrium distribution at the corresponding temperature T.

The result is similar to those of [6, 7,19], which represent the strongest asymptotic

theory of annealing. Our proof has a very simple intuitive basis, though unfortunately

the calculations become tedious. The underlying notion is this: we wish to show that

l|-P*+i ~ ^Tt+x || < \\Pt - TTTtll- In principle we use the two inequalities ||Pf+i - 7rTt+l|| <
(1-$(Tt+1))||Pt-xTt+J| and ||Pt - xTt+l|| < ||P« - *T,|| + ||*t,-*Tt+1||. Then we need
only ensure that for the logarithmic cooling schedule the reduction by the factor 1 - $ in
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the first inequality sufficiently outweighs the additive \\TTTt - ^Tt+i II in the second to force

||P4 —TTTt II to 0 eventually. The difficulty is that the first inequality requires the use of

an ^2-like distance function [18] while the second only applies for total variation distance,

and so must be replaced with a more complex inequality. Appendix A presents the details,

constructing a valid triangle inequality and bounds for the quantities involved to prove that

for the logarithmic cooling schedule there is indeed convergence of \\Pt —fl"Tt|| to 0.

4.7 Annealing at Constant Temperature

How long does it suffice to run annealing to produce a solution whose expected

energy is no more than a given value? The remainder of this section is devoted to the proof

and discussion of Theorem 4.7.6.

Without loss of generality, throughout most of this paper we assume that G has n

vertices and that / ranges from 0 to 1. (The notable exceptions to this rule are Chapters 6

and 7.) For all cases of interest to us, G will also be regular, but all derivations will be for

the general case.

Lemma 4.7.1 pf —> appendix For a function f on V ranging from /mm to /max with

/range = /max —/min/ an arbitrary distribution Pt on V; and n? and tcq the stationary

distributions at temperatures T and 0:

EPt[f{v)} < E^[/(«)] + \\Pt - TTTlltvd/range. (4.15)

As suggested by the notation, what we have in mind is that Pt be the distribution

after annealing for t steps starting from an arbitrary initial distribution Pq.

Reasoning from inequality (4.15), to force Ept small we will need to make both

EwT[/(v)l small and ||Pt - 7TT||tvd small - say less than a given amount e. We begin with

the first term.

Definition 4.7.2 For an annealing graph G with n vertices let f(e,A,n) = A/ln(n2/e).
If G is regular, use n in lieu of n2.

Lemma 4.7.3 pf-» appendix Given A, let T < T(e,A,n). If A < e or A <

min{/(i;): f(v) > e} then

EWT[/]<2£, (4.16)



CHAPTER 4. MATHEMATICS OF ANNEALING 24

and if A < Af then

EWT[/]<||7rT-7ro||tvd<£. (4.17)

This bound is tight in the sense that there is a class of annealing problems for which

E„T[/]~e.

We also wish to make the second term of inequality (4.15), \\Pt —7rr||tvd> less than

e.

Definition 4.7.4 For an annealing graph G with n vertices and for a given temperature T,

let

<-(r,£l„) =2(ln(^)+Ij¥J-5?e^ (4.18)
If G is regular, use n in lieu of n2. Following Proposition 4-4-3 we may also use 1/n2 in

lieu o/$(oo).

Lemma 4.7.5 pf —> appendix Ift > t(T,e,n) then beginning from any distribution Pq

and annealing at temperature T for time t, the final distribution satisfies

\\Pt-*T\\tvd<e. (4.19)

The inequalities in the following theorem are immediate consequences of Lem

mas 4.7.3, 4.7.5, and 4.7.1 respectively.

Theorem 4.7.6 Let a graph G with n vertices, an energy function f from GtoJR. having

minimum 0 and maximum 1, and a small value e be given. Let A be any of Af, e, or

min{/(v): f(v) > e). With the functions T and i as defined above, begin from an arbitrary

initial distribution Pq and anneal at temperature T < T(e, A,n) for t > i(T,e,n) steps. If

the final distribution is denoted Pt, we have:

EWT [/(*)] < It (4.20)

H-Pt - 7rT||tvd < e (4.21)

EpJ/(t>)] < 3£. (4.22)

If A = Af the bounds in (4-20) and (4-22) can be improved to e and 2e respectively.

Remark 4.7.7 If we use T = f and t = i, the value oft in Theorem 4-7.6 comes to

i=2(1 +I)ln(n7£)¥^(»2/£)2/A. (4.23)
If G is regular then each n2 may be replaced by n.
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Due to its central role in our analysis of annealing, some commentary on Theo

rem 4.7.6 and Remark 4.7.7 is in order.

Taking A = A/ in Remark 4.7.7 indicates that having a smaller A/ could make

annealing more time-consuming. While it might seem that lowering the energy of any state

should only help annealing, so that in particular a small A/ should be no worse than a

large one, that intuition is flawed. First, we would think that raising the energy of a state

would necessarily raise the equilibrium energy of the system, but this is not so:

Remark 4.7.8 For a system in equilibrium at temperature T, raising the energy of a given

state may lower the expected energy of the system.

Example A small counterexample is given in the appendix. •

But the real reason the 2/A/ appears is this. At low temperatures a state of

energy A/ contributes an amount proportional to Af -e~A^T to the expected energy. The

first term, the linear A/, would indeed make this contribution smaller if A/ is smaller.

But for small temperatures that effect is more than offset by the second, exponential, term

e-A//T} which is larger if A/ is smaller. Asymptotically, then, having a large minimum

nonzero energy (a large A/) is indeed advantageous for achieving a lower expected energy

at a given temperature.

4.8 Energy vs. Time

Because it is the measure of the efficiency of annealing, it is important to think

about the relationship between the time f(T(£, A,n)) and the corresponding upper bound

E = 3e (or 2e) on expected energy.

Roughly speaking, the final (n/e)2/A in i comes from the "time constant" for

the process: the time t required to make (1 - $(T)2/2)' < 1/e. The leading terms

2f1+ ^-J ln(n/e) just represent the additional time factor required to raise this 1/e to
a sufficiently large power to overwhelm the value l/^^n, and to bring ETT[/] to e rather

than just 1/e. The fact that the leading terms are only logarithmic in (n/e)2/A means that

the primary difficulty is to bring the process anywhere near equilibrium; after that, bringing

it extremely close to equilibrium takes only a few (logarithmically many) times as long.

The remaining factor, l/$(oo)2, can be thought of as a scaling factor for time.

Since it may take this long to approach equilibrium in a random walk on G even at infinite
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temperature, it is reasonable to compare all other times to this value. This l/§(oo)2 is

generally not a problem. We have already pointed out that for combinatorial problems of

"size" N (with a number of states n which is exponential in N), the conductance $(oo)

is generally inverse polynomial in JV, and l/$(oo) is not too large even in practice. By

Proposition 4.4.3, l/$(oo) is at worst 1/n2, whichlike the leading terms is only logarithmic

in (n/e)2^.
What does this say about the running time t sufficient to generate a solution of

given "quality" - a solution whose expected energy is less than 3e?

The time is dominated by the final (n/e)2^. Here n is large, we are interested in

e small, and we would expect A to be small, making the time i of Theorem 4.7.6 extremely

large. In particular, both e and A are less than 1, giving i > (n/e)2^ > n.

This should not be any surprise. We have already argued that, in general, finding

a state of low energy requires searching all the states. Since the analysis above is completely

general, the run times it requires must be at least n.

The asymptotic dependence of run time on "quality" q depends on precisely what

question one is asking.

A first formulation would be the nature of the function i(q) sufficient to guarantee

E[/] < 1/q, assuming A/ is known. Asymptotically for q —• oo with q = l/2e, letting

A = A/ in Theorem 4.7.6 and Remark 4.7.7 gives

Int frln(»/«)+- _2_
lng-ln(l/e) + ln(l/3) A/ K }

Equivalently,

j=q2/Af+w{q) (425)

where w is some function approaching 0 as q —• oo. That is, the sufficient running time i is

a "power-law" function of the "quality".

While we will refer to this as a "polynomial" time-quality tradeoff, we do so with

the caveat that the algorithm is not itself "polynomial-time" in the standard sense. An

algorithm is polynomial-time if the run time is bounded by a polynomial function of the

input size. The present case fails to conform for several reasons:

• The degree of the polynomial depends on A/, and therefore varies with the problem

instance.
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• Typically the number of states n is exponential in the "problem size". Since the run

time includes a factor of n2/A^, it is exponential in problem size.

• For algorithms with a quality-time tradeoff, the input to the algorithm includes the

desired quality q. The size of this input is naturally log2 g, and for the algorithm to

be "polynomial-time" it should be polynomial in log2 q rather than in q itself.

A second view of the run time versus quality tradeoff would be the amount of time

Theorem 4.7.6 and Remark 4.7.7 dictate if A/ is unknown, as is likely in practice. In that

case we must use A = e and g = 1/ 3e, for

: = 6g (4.26)
lng £ v '

and in analogy to (4.25),

i(q) = g*rMg) (4.27)

So if A/ is unknown the time used to guarantee a solution of given quality increases expo

nentially.

There is a third, intermediate, view: we could spend time t(q) for which E[/] < 1/q

is guaranteed only for q sufficiently large. Again taking q —1/ 3e we could use

t = q9^ (4.28)

for any function g(q) —• oo, since then for q sufficiently large g(q) > 2/A/ + w(q) and the

desired expected energy is assured by (4.25). For example, t = g(q) = qhxq will do. Thus t

can be made "quasi-polynomial" in g, where f(n) is quasi-polynomial if f(n) = 0(2log n).

It is worth noting that if we have a bound of the form E[/] < 1/q = ce after time

i(q), it is only in the strict, second view that the constant c plays a role in the asymptotics

of i(q), i.e. in the asymptotic dependence off on the bound for E[/].

Theorem 4.7.6 and Remark 4.7.7 express the tradeoff between the expected energy

produced by annealing at fixed temperature and the run time required. We have made two

basic observations: time is roughly polynomial in inverse expected energy, with dominant

power 2/A; and in practical cases where n is large and A small, both the multiplicative

constant and the exponent of the polynomial make the time prohibitively large.

Could we do better with a time-varying cooling schedule, i.e. by true annealing

rather than annealing at fixed temperature? We do not know. For the logarithmic cooling
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schedule common to theoretical studies of annealing the expected energy approaches 0

over time, but there is no reason to believe that a given expected energy is achieved more

rapidly this way than by annealing at a fixed, appropriately-chosen temperature. In fact

a comparison of Theorem 4.7.6 with the logarithmic cooling schedule results derived here

in Appendix A indicates that the two methods have the same asymptotic behavior; the

constants are difficult to compare.

In Chapters 7 and 8 we shall see how for some classes of problems the relationship

of Theorem 4.7.6 can be "bootstrapped" to give an efficient annealing algorithm, by applying

Theorem 4.7.6 to pieces of the problem (where n is smaller and A/ is larger) rather than

to the whole problem at once. This will be done by exploiting the linear separability of the

energy functions of Chapter 7, and the self-similarity, or "fractal", properties of the energy

landscapes of Chapter 8.

In future, our analysis of the dependence of run time on solution quality will for

the most part be limited to computation of the ratio In t/ In g; that ratio can always be

interpreted in any of the three fashions discussed above.



Chapter 5

Annealing at Non-Constant

Temperature

In the previous chapter we analyzed the behavior of simulated annealing being run

at a fixed temperature, and in the following chapters we will be exploiting these results.

Essentially, we will attack the problem in various "generations", during each of which the

temperature is kept fixed.

While we will not try to take advantageof the fact that temperature is decreasing,

it will be necessary to show that decreasing the temperature cannot make matters worse -

for example, that the expected energy cannot increase. This is not so simple a matter as it

appears, as shown by the following remark.

Remark 5.0.1 pf —»appendix Begin in equilibrium at To. Apply the schedule

?\j72> • • ->Tn, where each Ti < To. Then the probability distribution following this schedule

may give less weight to the global minimum than it had in the initial equilibrium distribution:

in fact, may give it arbitrarily small weight.

The "probability pump" example in the appendix is particularly amusing.

Despite this demonstration of how bad matters can be in general, for monotonic

cooling schedules the situation is much better. Theorem 5.1.16 shows that for monotonic

cooling schedules starting in equilibrium, the expected energy cannot increase. That theo

rem, the cornerstone of section 5.1, is based on entropy arguments from statistical physics.

Theorem 5.2.3 further shows that for such schedules which begin well below the

critical temperature, the system always remains near equilibrium. This stronger result (re-

29
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quiring stronger hypotheses) is needed in section 8.4. It is proved by elementary probabilistic

arguments in section 5.2.

5.1 Monotonic Cooling: Entropy-Based Approach

Borrowingfrom statistical physics (see for example [27]), we define:

Definition 5.1.1 The inverse temperature P is 1/T.

All expressions of interest involve 1/T rather than T itself, and using f3 is not only a

notational convenience but also has the advantage of preserving continuity when negative

temperatures are allowed.

Whenever /3 is used as a function argument we will interpret it to refer to the

corresponding temperature, for instance by irp we mean *t with T = 1//3. We will also

assume a correspondence between various /3's and T's, so @t will mean Tt and so on.

It appears impossible to prove directly that expected energy decreases with time

for monotonic cooling schedules, because energy is not a very well-behaved quantity. For

instance, even if the expected energy is larger than its T-equilibrium value, a move at

temperature T can increase it. The quantity which is well behaved (is a Liapunov function

for annealing at fixed temperature) is the relative entropy.

As usual, let the state probability vector at a given time be P, with probabilities

P(v) on the individual states.

Definition 5.1.2 Let tt be a probability measure on V such that for all v € V, tt(v) > 0.

If P is any probability distribution on V, the entropy of P relative to ir is

H{P,,) = £pWl„(£g) (5.1)

where <p(x) = x\nx for x > 0 and y(0) = 0. When tt is clear from context we may write

H(P) inlieuofH(P,Tr).

This definition and Theorem 5.1.4 and its proofare taken directly from [15].

Lemma 5.1.3 pf -» appendix H(P) > 0, with equality iffP = 7r.
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Theorem 5.1.4 pf —* appendix Let M be the transition matrix for a Markov chain on

V. Suppose it is a strictly positive measure on V and is stationary for M, i.e. ttM = it or

equivalently, for all u, Y^v ^{v)M(v, u) = 7r(ii). Thenfor any distribution P on V,

H{P-M)<H{P). (5.3)

Corollary 5.1.5 If Pt is the state probability vector at time t for annealing at fixed tem

perature T with equilibrium distribution ttt> the relative entropies Ht = H(Pt) with respect

to tt are monotonically nonincreasing.

Proof Immediate from 5.1.4 with M equal to the transition matrix for annealing at tem

perature T. •

Definition 5.1.6 The Gibbs entropy or simply the entropy1 of the distribution P on

the finite set V is

S(P) = - E rt«). (5-4)
v€V

While we will not be using it, for the reader's intuition we note that:

Lemma 5.1.7 For distributions P on state space V with \V\ = n, 0 < S(P) < Inn, with

S(P) = 0 iffP{v) = 1 for some v, and S(P) = Inn iffP{v) = 1/n for all v.

The proof is simple and may be found in [17].

Lemma 5.1.8 pf —» appendix The entropy of P relative to wp may be written

H{P,*Kp) = -S{P) - L{P) + In Z{0) + 0F(P) (5.5)

where the entropy S(P) andpartition function Z((3) areper definitions 5.1.6 and 4-2.3, and

we define F(P) = EP[f(v)], and L(P) = EP[lndeg(v)].

The derivatives of Z> F, and H + L with respect to (3 will be important, and are

particularly simple:

Lemma 5.1.9 pf —» appendix The derivative of the partition function with respect to

inverse temperature ft is

^ =-Z(/3)E„,[/]. (5.6)
Statistical physics [20] uses the term "Gibbs entropy" and the symbol S, while information theory [17]

uses the term "entropy" and the symbol H. Since we are using H for relative entropy, to minimize confusion
we will use S for Gibbs entropy.
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Lemma 5.1.10 pf —• appendix The derivative of the expected energy in equilibrium at

dF{*0)
inverse temperature (3 is

= -Var^I/].
dp " ^'

Corollary 5.1.11 F(irp) is a monotonically decreasing function of p.

(5.7)

Lemma 5.1.12 pf —• appendix The derivative of the Gibbs entropy plus the expected log

of the degree in equilibrium at inverse temperature P is

d(S + L)(*0) _
- -/3Var^[/].

Corollary 5.1.13 (5 + Lftvp) is increasing for P < 0 and decreasing for p > 0.

(5.8)

This means that both F and S + L are monotonically increasing functions of T in the

"physical" regime T > 0.

Lemma 5.1.14 pf— appendix If F(P) = F(-Kp) then (5 + L)(P) < (S + L)(-Kp).

That is, for a given value of expected energy, entropy plus expected degree is maximized by

the Gibbs distribution.

Lemma 5.1.15 pf —» appendix Let Pq = ir{Po) urith Po > 0. For any distribution P, if

(5 + L){P) - (S + L){P0) > 0 (5.9)

then

-±-[(5 + L)(P) - (5 + £)(P0)] < F(P) - F(P0).
Po

(5.10)

Theorem 5.1.16 pf —♦ appendix Beginning from the distribution Pq = 7Tt0, annealwith

cooling schedule Ti,T2,... where T0 > Ti > T2 • • •. // the intermediate distributions are

Pit Pit"-> then at any time t, Ept[/] < Ep0[/].

This is the main result of this chapter. The following corollaries simply cast it into

a form which is more convenient in the later chapters.

Corollary 5.1.17 (monotonic cooling) pf —» appendix Begin from a distribution Pq :

\\Po - ^Tolltvd < £ and anneal with cooling schedule Ti, T2,... where Tq>Ti > T2 ••. Then

at any time t, EpJ/] < E*^[/] + £.
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Definition 5.1.18 The cooling schedule Ti,.. .,T« is a subschedule of cooling schedule

T{,T^... with offset c if for all r 6 {1,.. .,*}, TT = Tc'+T. The schedule T' is a super-

schedule of the schedule T.

Corollary 5.1.19 (monotonic superschedule) pf —• appendix Let the temperatureT

and the cooling schedule {T(t)}$.=1 be such that for any Pq, thefinal distribution Pt satisfies

||Pt - TTTtlltvd < £• If T(t) is a subschedule of a monotonically nonincreasing schedule

{T'(t)Y;=v then EP„[/] <E^,[/] +t.

If the subsequence is good enough to achieve some desired result, why bother with

higher and lower temperatures at all? In Chapters 7 and 8 we will consider model problems

which can be decomposed in some way into subproblems of varying energy scales. The

early, high temperatures in the cooling schedule will "solve" the subproblems with large

energy scales, and the later, lower temperatures will solve the smaller-scale subproblems. It

is crucial that the work done at the later low temperatures not harm the results obtained

at the earlier higher temperatures.

5.2 Monotonic Cooling at Low Temperatures: Probabilistic

Approach

Starting from equilibrium at a lowtemperature To and annealing at non-increasing

temperatures less than or equal to To, it is not only true that the expected energy does not

increase (as was proved in the previous section), but in fact the distribution remains near

stationarity. This stronger result will be needed in Section 8.4, and relies on two hypotheses.

First, that To is so low that tttq « tt0: that is, the equilibrium distribution at To is close to

the temperature-0 equilibrium. And second, that To < Tcrjt, so that for any state v, ttt{v)

is monotonic in T for the values To > T > 0 of interest.

We already showed (Theorem 4.3.6) that Tcrit > 0. The first hypothesis above is

also satisfiable:

Proposition 5.2.1 pf —* appendix For any 6 there exists 0 < Ts < TCJa such that for

allT <TS, ||7rT-7r0||tvd<<S.

Theorem 5.2.2 pf —» appendix Let the n-vector Pt be the state probability vector at time

t of a time-variant Markov random process, starting at time 0 with state probability vector
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Po- Let Mt be the transition matrix applied before time t (t = 1,2,...), so Pt = Pt-\Mt.

Let Tt be the stationary distribution corresponding to Mt, so TtMt = Tt- Then for any

distribution Tq,

\\Pt - tftlltvd < ll^o - tfolltvd + Iko - TlHtvd + •••+ Ike-i - 7rt||tvd. (5.11)

In practice 7r0 will be taken to be the equilibrium distribution corresponding to another

transition matrix Mo, and Pq will be near Tq-

Corollary 5.2.3 pf —> appendix Let an annealing problem with critical temperature Tdt

and a sequence of temperatures {Tt} satisfying T^t > To > Ti > T2 > ••• be given. From

an initial state probability vector Po anneal at temperatures T\t T2, Then the distribution

Pt at any time t satisfies

\\Pt ~ ^Ttlltvd < \\Po ~ ^Tolltvd + IKt0 - *Ttlltvd (5.12)

and

\\Pt - *o||tvd < H-Po - tttolltvd + lkr0 - *o||tvd. (5.13)



Chapter 6

Annealing on Functions of

Unknown Energy Range

Until now it has been assumed that the functions of interest have energies ranging

from 0 to 1. In generalizing this to energies ranging from /min to /max there are two distinct

issues. First, the matter of rescaling - which heretofore we have taken for granted - will

be addressed explicitly. Second, we will consider the case where the energy range is known

only approximately, and then extend this to the case where only very crude bounds on the

range are known.

6.1 Arbitrary but Known Energy Range

Definition 6.1.1 Let G and G' be graphs with functions f and f respectively mapping

their vertices to the reals. We say (G} f) and (C?', /') are similar energy graphs if there is

an isomorphism cr : G —• G', and an affine transform T on the reals (T(y) = ay + b with

a ^ 0), such that for all vertices v £ G, T(f(v)) = f'(o(v)).

Lemma 6.1.2 pf —• appendix If{G, f) and (G\ /') are similar with scalefactor a, then

annealing on G at temperatureT is equivalent to annealing on G' at temperature aT. That

is, ifv'0 = a(vo), the Markov chain v[ defined by annealing on G' is identical to cr(vt) - the

image in G' of the Markov chain defined by annealing on G.
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6.2 Unknown Energy Range

Throughout this chapter and Chapter 7 the arguments e and n of T and i will

be implicit when not written explicitly. In particular, by f(e) or f(e,n) we shall mean

T(e,£,7i); and by i(T) we shall mean {(T,e,rc). We will also be assuming the worst-case

conductance * = 1/n2, giving i{e) =2(1 + \)^{n2/e)-^^{n2le)2le.

Lemma 6.2.1 pf —» appendix Let an annealing graph G with n vertices and energy func

tion f : G -> IR be given. If f ranges from exactly /m^ to /„„«, let /range = /max - /min-

Let a value 0 < e < 1 be given, as well as values 0 < r < 1, c > 0, and k € 2Z satisfying

crk < /range < crfc_1. Anneal at temperature T = crkf{e) = crfc£/ln(n2/e) /or time

t = *(rf) (6.1)

= 2(lii{n2/e) +-4) n4e2/(rt>. (6.2)
T/ien E„T[/] < /min + 2e /range; and regardless of the initial state probability vector Po the

final distribution Pt satisfies \\Pt - VTWtvd < £- It follows that Ept[/] < /min + 3c /range-

Theorem 4.7.6 gave us a way of setting temperature and time to guarantee a

low expected energy, given energy ranging from exactly 0 to exactly 1. Rescaling, it can

be applied to functions with any energy scale, but the scale must still be known exactly.

Lemma 6.2.1 above allows a similar result if the maximum energy is known to lie in some

interval: it simply chooses a temperature small enough to guarantee low T-equilibrium

energy even if the energy range is at the low end of this interval, and a time long enough

to adequately approximate equilibrium even if the energy range is at the high end of the

interval.

Combining Lemma 6.2.1 and Corollary 5.1.19 (cooling with a monotonic super-

schedule), we can bracket the energy into intervals (cr,c]i(cr2icr},(cr3tcr2]i..., solve the

annealing sufficiently well in each interval, and so guarantee a solution to the problem as a

whole:

Theorem 6.2.2 pf —♦ appendix Let us be given a value 0 < e < 1, and an annealing

graph G which is known to have no more than n vertices and whose energy function f is

known to have range ci < /range ^ c-i- Let r < 1 and K G TL be such that rKC2 < C\. For

k = 1,..., K in turn, anneal at temperature Tk = C2rkT(e,n) for time t = i(rT). Then the
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distribution Pk after the K 'th "generation" of annealing satisfies

Ejfc[/]< /min + 3£ /range- (6.3)

6.3 Efficiency

Corollary 6.3.1 pf-* appendix Under the conditions of Theorem 6.2.2, let r = 1 -

f(e)/2 and K=[In (|2-i)/ln(l/r)*|. Then the cooling schedule specified by Theorem 6.2.2
uses total running time asymptotically equal to

Ki(rt(e)) £^ln2(l/*)t(f(«)). (6.4)
to yield its solution of "quality" (relative expected energy) no more than 3e.

Recall that

t{f(e)) = 2(1 + -)ln{n2/e)n4(n2/e)2^e. (6.5)
£

Focusing on the expression \(n2/e)2^e , we see that

t(f(e)) ~n4 [(n2/e)2'*} In [(n2/e)2'<] (6.6)

while

Kt(rf(e)) £ en4 [(n2/e)2/<] ln3( [(n2/e)2'e] )• (6.7)
The principal term l(n2/e)2/e is the same in both cases, and the factor increase in time for

annealing a function whose energy range is known only loosely compared with annealing a

function whose range is known exactly is only logarithmic in this dominant term.

Taking the ratio of the logarithms of run time and "quality" q = 1/ 3e,

lnttot _ In Ki(rt(e))
"h^" - In 1/3* ~2/£ =69, (68)

which is precisely the same result as given by equation (4.26) for functions with energy

range equal to 1.

In contrast to the specification of Corollary 6.3.1, the following remark describes

an inefficient choice of r and K.

Remark 6.3.2 Under the conditions of Theorem 6.2.2, it suffices to use K = 1 and r =

ci/c2. However, the total running time specified in that theorem would then be ttot = e2^ =
(n2/£)2/".
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In this case the ratio of the logarithms would be

lnttot _ lnl(rf(e)) _ , _ , .
InT " In 1/3* " 2/r£ " (C2/Cl)' 6q- (6-9)

Since there is no a priori bound on C2/C1, this is considerably worse than the ratio achieved

by Corollary 6.3.1 (equation (6.8)).

The key Theorem 6.2.2 and Corollary 6.3.1 relied only on achieving relative ex

pected energies less than 3£ in each generation. As in Theorems 4.7.6, etc, this can be done

with i and T dependent on any of a number of values of A. While the presentation above

has used A = e, this is not the only possibility. If we generalize our definition of A/ to be

the gap between the smallest and second-smallest energies relative to the energy range, it

is clear that this too will suffice.

With that choice, the total time required for annealing on functions of unknown

energy range is polynomial in the solution quality desired, ttot = qf2/A/+ti,(9)j just as for

the known-range case (equation (4.25)). Even if A/ is not known, time tiot which is quasi-

polynomial in q suffices to guarantee that quality for q sufficiently large, again just as for

the known-range case (equation (4.28)).



Chapter 7

Application of Annealing to

Linearly Separable Functions

The results of the previous chapter may be applied to "linearly separable" func

tions: many-argument functions expressible as a sum of functions of single arguments,

f(v) = fi(xi) + h fd{xd). We now make this more precise.

7.1 Linearly Separable Energy Functions

Definition 7.1.1 Given graphs G{ with vertex sets V; and edge sets E{, the product graph

G = YliGi is the graph with vertex set V = fit Vi and edge set E consisting of all pairs

(v,v') such that v and v' differ in a single coordinate i and (vj,v{) € Ei.

Definition 7.1.2 The energy product graph (G,/) = U{Gi,fi) has G = YliGi and

f{vi,---,vd) - /i(i>i)+ ••• + fd{Vd)-

For example, Figure 7.1 shows the product of a 3-chain and a 4-chain, each having

self-loops on its endpoints; the energies (not shown) would simply be formed as an addition

table of the energies of the vertices of the chains.

Definition 7.1.3 The function f : G —> JR. is linearly separable into /i,..., fd if (G, /)

is the product of (Gi, /i) through (Gd, fd)-

Equivalently to Definition 7.1.3, any linearly separable function can be expressed

as f(v) = X)f=i Tifi(vi), where the /^'s have minimum 0 and maximum 1, and the r '̂s are

nonnegative scale factors. Without loss of generality we will suppose that r i > r2 > • • • > rj.
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4-chain

<=o—o—o—o=>

19 C=Q—9—6—Q=>

Jirrt*
Figure 7.1: Product of 3-chain and 4-chain.

40

7.2 Annealing on Separable Functions

Simulated annealing can be applied efficiently to linearly separable functions, even

though the annealing algorithm has no explicit knowledge of the separability.

Lemma 7.2.1 On an annealing graph G = Yli=iGii anneal with schedule {(Tk,tk)}k=i

with total number of moves s = £ tk- Let Pt denote the distribution of the state x of G

after t moves, and Pk the corresponding marginal distribution of Xk- Then P, is equal
to the distribution of Xk that would result from annealing on Gk with initial distribution

Pfi and cooling schedule {(Tk,t'k)}, where t'k ~ B(tk,l/d) (i.e. t'k is random with binomial
distribution B(tk, 1/d)).

Proof Each move has probability 1/d of being applied to coordinate k. Only then can

Xk change, and then (by Definition 7.1.2) the move generation and acceptance laws are

just those for annealing on Gk- This theorem could also be considered a special case of

Theorem 8.4.4, which is proved in gory detail. •

Definition 7.2.2 LetT(n,p,£) be the smallest integer n' such that for the random variable

X chosenfrom B(n',p), P[X < np] < e.

In the cases of interest we will find T(n,p, e) ~ n.
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Lemma 7.2.3 pf—• appendix Let (G,f) = n?=i(Gt,r»/j) where without loss of gener
ality each fi ranges from exactly 0 to 1 and each r» > 0. Let n be an upper bound on the

order of each Gi.

Let 0 < r < 1, c > 0, and k 6 TL satisfy rkc < r» < r^^-c.

Given e>0,letf = f(e) and T = rkct.
Let i = i(rf) and t = T(di, l/d,e).

From any initial distribution anneal on G at temperature T for time t. Let the

final distribution have corresponding i-marginal distribution P. Then EWT[/j] < 2e and

\\P - Tlltvd < 2e. Consequently Ep[rj/»] < 4£r».

Proposition 7.2.4 pf-» appendix Let t(e) > (l/e)2. Then for any fixed d,

?(dt(e),l/d,e)~dt(e).

Since i(e) > (1/e)2, a consequence of Proposition 7.2.4 is that in Lemma 7.2.3, t ~ di as

£ -• 0.

Theorem 7.2.5 pf -♦ appendix Let (G, f) = Yli=i(Gi, Tifi) with fi ranging from exactly

0 to 1 and rt > 0. Let n be a known upper bound on the order of each Gi, and let ci and ci

be known lower and upper boundsfor the largest rj.

Given e > 0, let 0 < r < 1 and K 6 TL satisfy rKc2 < cie/d.

Let t = f(e) and Tk = rkc2f. Let i = i(rf) and t = 1{di, l/d,e).
From any initial distribution anneal onG with cooling schedule {(Tk, 0}jkLo- Then

the final distribution P gives relative expected energy

F _ MM] ^ ... ,71sE8ep= jj-t < be, (7.1)
max,, f[v)

that is, the expected final cost relative to the full range of the cost function is no more than

be.

7.3 Efficiency

An assessment of the efficiency of annealing for linearly separable functions follows

the line of the discussion for functions of unknown range in Chapter 6.3.
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Corollary 7.3.1 | pf —» appendix Under the conditions of Theorem 7.2.5, let r = 1 -

f(e)/2 and K= [In (g-j)/ln(l/r)]. Since T(di, l/d,e) ~di, the cooling schedule specified
by that theorem uses total running time

t8cp - dKt(rf(e)) £ dj\n2(l/e)t(f(e)). (7.2)

to yield its solution of "quality" (relative expected energy) E8ep < be.

Again we focus on (n2/£)2/e|, the principal term in i(f(e)). The time given
in (7.2) for annealing a "d-dimensional" linearly separable function whose energy range

is known only loosely, compared with annealing a single function whose range is known

exactly, is increased by a factors only logarithmic in \(n2/e)2^e and linear in d. With
q = 1/ be, our standard measure of efficiency is

Int*. ="*gfrf(«)> „2/£ =!„,, (7.3)
In q lnl/be

only a constant factor worse than the results for one-dimensional functions of known or

unknown energy range ((4.26) and (6.8)).

By contrast, annealing this in a single shot (in parallel to Remark 6.3.2 and equa

tion (6.9)) would mean using K = 1 and r = c\ / c2d, for the poor result

lnttot ln{(rf(c))
lng lnl/5£

= 2/r£ = (c2/ci) •10g. (7.4)

Again, the values of i and f could be based on values of A other than e. In this

case we would have to use A = min, A/j, the worst-case relative second-smallest energy

of any dimension. This results in the same conclusion as in Chapter 6.3, i.e. that ttot is

polynomial in solution quality if A is known, or quasi-polynomial (for q sufficiently large)

if A is unknown.

7.4 Hypercube Model

A special case of possible interest is linearly separable functions / defined on

"hypercubes". The domain of such a function (the annealing state space) will be the space

{0,. ..,6- 1}**, that is, a 6x •• •x 6hypercube. A state is a vector x = (a?i,.. .,Xd)- Of
course, the separability of / means that we may express / as f(x) = £?=i fi(xi)-
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To introduce the move set it is simplest to first consider just the space {0,..., b —1}

itself. A move from x G {0,. ..,6— 1} consists of changing x by plus or minus 1. The

terminal values, x = 0 and x = 6-1, can be handled in either of two ways. One is to

consider x as in integer modulo 6, and treat the terminal values just like the others; in this

case the graph of the states and moves is a 6-cycle. The other way is to let the graph be a

6-chain with self-loops at the endpoints; so from x = 0 there is a moveto 1 and also a (null)

move to 0, and from x = 6 —1 the moves are to 6 —2 and to 6 —1. Figure 7.2 illustrates

the two move sets for 6 = 4.

c=®—© ©—©c=>

Figure 7.2: Move sets for the space {0,1,2,3}.

A move on the rf-dimensional hypercube {0,.. .,6— 1} will consist simply of a

move on any one of the x,'s. That is, whichever move graph is chosen for a single coordinate,

the overall move graph is the product graph. All results from the general case carry over

with n = 6. They may be improved trivially by replacing the worst-case conductance of

1/n2 with the actual 1/6 true for this case.

7.5 Discussion

An advantage of Corollary 7.3.1 is that it may be a practical basis for constructing

a cooling schedule, as the construction it presents relies only on loose bounds on relatively

few parameters. The bound 5£ on the "relative quality" of the solution produced is a natural

parameter for a user to specify. The number of dimensions d of the problem may well be

known, and otherwise it is likely that an upper bound is; similarly for the maximum order n

of the dimensions. The most difficult parameters to estimate may be the bounds ci and c2

on the range rj of the most-variable component function. The range of / itself could serve
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as an upper bound for ri, and a crude estimate of it obtained by subtracting the minimum

of / from the maximum of /, as obtained by any quick optimization method. Similarly the

range of / divided by d is a lower bound for r\. We speculate that a random walk of length

dn on G might also suffice for estimating T\.

We should also point out that the cooling schedules specified by Theorem 7.2.5 and

its Corollary 7.3.1 are simple, but at the price of being strongly constrained and not quite

optimal. The constraint imposed by the theorem is that the schedule is exactly geometric:

the temperature is reduced by the same factor r each time and the same amount of time i

is spent in each generation. We would expect that it would be better to spend more time

on the more significant components of /, i.e. more time at higher temperatures, resulting

in a cooling schedule in which temperature decreases faster than geometrically.

Also, for the geometric schedule the optimization of r was done only in the asymp

totic limit as e —• 0, and even then we rounded the resulting expression for r.

In [31] we expect to take up these issues again. Keeping the linearly separable

model, we hope to construct an adaptive cooling schedule which is as efficient as possible

(as opposed to the asymptotically efficient schedules of this chapter); relies as little as

possible on detailed formulas such as i(T(e))\ and is not limited to cooling schedules which

are geometric.

Meanwhile in Chapter 8 we discuss a fractal energy function model which resem

bles the hypercube model. The primary difference is that the rather than combining the

arguments Xi into a vector argument x, the values xi,.. . ,Ed's are (roughly speaking) in

terpreted as the digits of a single value x\ and the move set is modified correspondingly. At

the same time, we simplify matters by setting fi = F and rj = rl for a fixed function F and

fixed value r.



Chapter 8

Application of Annealing to a

Class of Deterministic Fractals

We will define a class of "fractal" energy functions on the "state space" [0,1], and

show that for any function / in this class, a variant of simulated annealing finds a solution

of low energy quite rapidly.

Definition 8.0.1 We are given an integer6 > 0, a real number r € (0,1), and a function

f:{0,...,6-l}->E Write x base 6 as .xix2 (If b~k\x, so that x has two base 6

representations, use the terminating one.) Then the deterministic fractal f(x) based on

b, r, and F, is given by f(l) = /(0) and otherwise

f(x) = F(xi) + r/(compXl (.x2x3...)) (8.1)

where "comp" is the complement function defined as

\ x if a is even,comp0(x) = { (8.2)
{ 1-x if a is odd.

The discontinuities of / will not be an issue. Without loss of generality we will assume F

ranges from 0 to 1, so that / ranges from 0 to l/(l-r).

8.1 Properties of the Fractal Functions

Before proceeding to a formal analysis we will give an intuitive description of /

and some of its properties.
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Generations 1, 2, and 6 of an iterative construction of the fractal energy function /

are illustrated in Figure 8.1. In this and all our examples we take 6=3, F(0) = 5/7, F(l) =

0,f(2) = l, andr= .3.

V
J

V

l_

Figure 8.1: Fractal generations 1, 2, and 6.

The "generation 0" approximation of / is just the function 0 on the interval [0,1].

In "generation 1", the line segment from 0 to 1 is broken into 6 pieces and each

piece is raised by some amount (here 5/7, 0, and 1 from left to right).

In generation 2 each 1-piece is itself split into 6 "2-pieces", which are raised by

r times the values used in generation 1. There is an additional twist though: every other

1-piece (here just the middle one) is "mirrored" so that all the operations are now done

from right to left rather than left to right.

A similar process is performed for generation 3, mirroring every other 2-piece. The

infinite-generation limit of the process is the graph of the function / from states (x axis)

to energies (y axis). Note that the 1-piece of / circled in the last frame of Figure 8.1 is

"similar" to / itself: if its domain and codomain axes are expanded by 6 and 1/r, the result

is a translation of / on [0,1]. Any other &-piece of / is also similar to the whole, which is

the essential "self-similarity" property of /.

What does this have to do with the random fractals (fractional Brownian motions)

of Chapter 3? A characteristic property of fBm is that taking a "piece" of the fractal (a

subset of the domain and its image in the codomain) and expanding its horizontal and

vertical axes by factors rhoriz and rvert yields a function "statistically similar" to the original

one. Here rhoriz and rvert are arbitrary, subject to the constraint rveTt2 = rhoriz2H where H is
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the parameter of the fBm. Where fBm's had a statistical scaling property, the deterministic

fractals we are now considering scale exactly.

Some notation will be useful. Label the 6 "1-pieces" 0,..., 6 —1, from left to right.

(See Figure 8.2. Since the 1-piece numbered "1" is mirrored, we have depicted it as a vector

pointing backwards.) Let the state space Si consist of the midpoints of these 1-pieces, i.e.

the 3 points evenly spaced in [0,1].

0

13 5
6 6 6

Figure 8.2: The three 1-intervals with their orientations and labels, and the points of Si

with their coordinates.

The fc-labels for the fc-pieces can be extended to (k+ l)-labels for the (k+ l)-pieces:

Any A:-piece contains 6 (k + l)-pieces. The first k digits of their labels match the label of

the fc-piece, and the last digits run from 0 to 6 —1, in the direction the A:-piece is oriented.

In our example (Figure 8.3), the 2-pieces are labeled (0,0), (0,1), (0,2), (1,2), (1,1), (1,0),

and(2,0),(2,l),(2,2).

00 01 02 12 11 10 20 21 22

JL£.±.JLJLH111*11
18 18 18 18 18 18 18 18 18

Figure 8.3: The nine 2-intervals with their orientations and labels, and the points of 52

with their coordinates.

In general, let state space Sk consist of the midpoints of the A;-pieces. With any

value x associate a k-code sjt(x) which is the label of the fc-piece containing x (this is unique

except at /'s points of discontinuity). There is a natural four-way correspondence between

the fc-pieces, their fc-labels, the states of 5^, and their &-codes. Because the (A: + l)-code

of a point is an extension of its fc-code, we can define the infinite-length code s(x) which

is the "limit" of the fc-codes. Note that the codes resemble the base 6 representation of x
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but incorporate the mirroring used in defining /, which will make the expression of f(x)

in terms of s(ar) particularly simple. We will return to this point in the formal treatment

of the state spaces 5*, the fc-codes s(x), and their properties in relation to /, to which we

now proceed.

Definition 8.1.1 A A;-piece of the interval [0,1] is an open interval (pr>^r), for j 6
{0 6*-l.

Note that we can also make an iterative construction: the 1-pieces are (0,1/6), (1/6,2/6),

..., ((6 - l)/6,1). (Roughly, each piece contains all numbers which agree in the first digit

of their base-6 representations.) Any A;-piece is (xi + S) -r 6 where 5 is a (A; —l)-piece

and xi € {0,..., 6 —1}. (xi is the first digit in the base-6 representation of any x in that

fc-piece.)

Definition 8.1.2 The fcth state space Sk is {x :x € [0,1] and bkx - \ 6 TL}.

Definition 8.1.3 The (infinite) code s(x) is a sequence (si,s2,...) given by s(l) = s(0)

and otherwise

s(.ii:E2 ...) = (xi, s(compXl (.x2x3 ...))), (8.3)

where the comma denotes concatenation. The fc-code s(x) is the vector {si,s2i... ,sjt), the

first k components ofs(x).

The following set of lemmas describes some salient properties of the codes and their

relationship with the A;-pieces and the function /. The proofs are all relatively uninteresting

proofs by induction.

Lemma 8.1.4 pf -+ appendix Forx,x' not divisible by b~k, s(x) and s(x') agree in com

ponents 1 through k if and only if x and x' lie in a common k-piece.

Lemma 8.1.5 (Gray code property) As a function on Sk, the k-code is a generalized

Gray code: it is invertible, and has the property that the codes for geometrically adjacent

x 's differ in only one component, and differ by 1 there.1 Specifically, the component is the

ith if x and x' lie in a common (i - l)-piece but in different i-pieces.

lWhen 6= 2 the fc-codes form the standard length-/: binary Gray codes. See [8] for a description of Gray
codes.
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Proof May be done by induction, or by applying Lemmas 8.1.4 and 8.1.6. •

Lemma 8.1.6 (Additional Gray code property) pf -* appendix For any vectors =

(si,s2,...), let kis = {sk+i, -Sfc+2> ••.)• Then for any integers k > 0 and j G{0,..., 6fc - 1},

for all x e (0,1),

Us (j^r) =s(compi(a:)). (8.4)
This means that if we imagine scanning through the values x' = (j + x)/bk in the

jth A:-piece and reading off their codes s(xf) from component A: +1 onwards, this "sequence"

of codes is the same as that obtained by scanning along (0,1) (scanning from right to left

if j is odd) and reading off the codes from component 1 onwards.

Lemma 8.1.7 pf —• appendix For s(x) = {si,s2,...),

f(x) = F(si) -r rF(s2) + r2F(s3) +---. (8.5)

Lemma 8.1.8 Going from left to right through the values x 6 Sk in a given (k —1)-piece

(or right to left if the piece is negatively oriented), the value f(x) of the ith point x is

const -f rfc_1.F(i).

Proof Follows immediately from Lemmas 8.1.6 and 8.1.7. •

Lemma 8.1.9 For any (k - l)-piece of Sk, define a graph whose vertices are the 6 points

of Sk within this (k— 1)-piece; whose edges connectgeometrically adjacent points, with self-

loops added at the two endpoints; and whose energies are given by the deterministic fractal

f(x). Any such graph is similar (per Definition 6.1.1) to the one for the single 0-piece of

Si, with energies scaled down by r*-1.

Proof Both graphs are chains on 6 vertices, with self-loops added at the endpoints. The

isomorphism maps the ith smallest point in one chain to that in the other, or else the ith

smallest point in one chain to the ith largest point in the other. As i goes from 0 to 6 —1

the energy values in Si are F(i) 4- const, while (by Lemma 8.1.8) those in the (A: - l)-piece

of Sk are rk~1F(i) + const. •
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8.2 Annealing on Fractals

The sequence of state spaces Sk gives us a way to anneal on the infinite state space

[0,1]: we begin by annealing on 5i, then map its final state to an initial state in S2; anneal

on S2 and map that final state to an initial state in 53; and so forth.

A "move" in state space Sk goes from one state to a geometrically adjacent one.

So that the two end states will have degree 2 like the others, we add moves from each end

state to itself. We note that by the Gray code property of the /c-codes (Lemma 8.1.5), in

moving from one point in Sk to an adjacent one, exactly one element of the A;-code changes,

and it changes by 1.

The idea of changing the move set as the algorithm proceeds is well established

in the literature [25], and changing the state space is a natural way to allow an infinite

state space, making the theoretical analysis more interesting by removing any minimum

granularity (e.g. a minimum nonzero energy).

The modified annealing algorithm for the changing state spaces and move sets is

given in Figure 8.4. Identifying an x in Sk-i with a (A: - l)-interval, the function ufudge "

choose a sequence (T&,t*) and value K

x0'to = random state in So

for k = 1 to K {

xkk'° = fudge(xk-_Yk'X)
From xk' anneal on Sk at temperature Tk for time tk, ending at

state z£,tfc.

}

Figure 8.4: Algorithm for annealing on fractals with changing state space and move set.

maps x e Sk-i to an arbitrary2 x' 6 Sk such that x "contains" x'. We might think oi fudge

as simply being the identity map, but unfortunately if 6 is even then the values in Sk-i are

2In Chapter 8.4, we will have to restrict fudge a bit. But even there, allowing fudge to be random over
the values in its codomain is perfectly acceptable.
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not in Ski so fudge allows assignment of "nearby" values instead.

Roughly speaking, the algorithm first anneals on Si. Beginning from that final

state (modulo fudge ), it anneals on 52, and so forth. We expect the generation-1 annealing

to pick a good (low-energy) 1-pieceof the unit interval, the generation-2 annealing to home

in on a good 2-piece within that 1-piece, and so forth. Figure 8.5 illustrates the change

from generation 1 to generation 2.

•Kidfltf/

Figure 8.5: Unconfined annealing: generations 1 and 2. Initially we anneal on S\, at

temperature T\. States are indicated by bullets, and legal moves by lines and loops. In this

case, the final state in generation 1 happens to be the center one. The function fudge maps

it to any of the 3 center states of 52, in this case the left one. This is the initial state for

annealing on 52, at temperature T2.

In analogy with the notation A/, we define AF to be the smallest nonzero value

of AF. Assuming that 6 is small and that AF is not too small, Theorem 4.7.6 shows that

annealing on Si is efficient - after annealing for a short time, the current state has low

expected energy. In particular:

Theorem 8.2.1 Given any e > 0, starting from an arbitrary initial distribution and an

nealing on Si at temperature

f(e) = AF/\n(b2/e) (8.6)

for time

t( j)=2(in (£) +i) 6V^ (8.7)
the final distribution satisfies

E[F(x)] < 2e. (8.8)
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This theorem is simply an application of Theorem 4.7.6. In analogy with equation (4.25)

which followed from Theorem 4.7.6, Theorem 8.2.1 means that a solution of quality q = 1/ 2e

can befound in time ti = (l/q)2^F+w(^) where w is some function approaching 0asq —• oo.

To analyze the behavior of simulated annealing in the later generations, we will

temporarily switch to a "confined" version of the annealing algorithm which is easier to

analyze; we will then go back and complete the analysis for the "unconfined" annealing as

already defined.

8.3 Confined Annealing

In "confined" annealing, during generation A; we insist that the state remain within

the (A; —l)-piece in which it started. Thus, the fcth-generation state space is made up of

bk~l disconnected pieces, each having 6 states. So that all vertices will still have degree 2,

wherever we disallowed a move between two states we now add self loops to each of them.

That is, the graph of a component of Sk is a chain on A: points, with self-loops on

the endpoints, just as Si is. By Lemma 8.1.9 any such component with the energy function

/ on it is similar to / on 5i, so by Lemma 6.1.2, annealing at temperature rfc_1Ti on a

component of Sk is equivalent to annealing at temperature Ti on Si.

Another way to view this is to identify the state x during annealing with its infinite

code s(x) = (si,s2l...). In confined annealing during generation A:, only Sk may change. If

temperature Tk = rk-1Ti is used during generation A:, the transition rule acting on Sk in

generation A; is the same as the transition rule acting on s i in generation 1.

Let sj.'* be the value of Sk after t moves during generation i. Let tk be the total
number of moves attempted in generation k.

Proposition 8.3.1 Ifconfined annealing is run for K generations, sk'tlc = s*,tfc.

Proof After generation A;, fudge (by its definition) never changes Sk, nor, by the "confine

ment" premise, does the annealing itself. •

Theorem 8.3.2 Let a value e and a deterministic fractal with energy scale parameterr be

given. Let f = f(e) and i = i(t). Apply confined annealing with cooling schedule (Tk, tk) =
(r*"1!*,*), fork = 1,...,K, with K = [ln(l/e)/ln(l/r)l. Then the state returned has
relative expected energy

ECOn=-^- <3e (8.9)
/range
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and the algorithm consumes run time

tcon=\\n(l/e)/\n(l/ry\-i(e). (8.10)

Just as Theorem 8.2.1 showed that for generation 1, ti was roughly polynomial in

quality q = 1/ 2e with exponent 2/AF, Theorem 8.3.2 shows that over the entire annealing

run, the total running time tcon is still polynomial in the relative quality q = 1/ 3e with

the same exponent 2/AF, and with constants not much worse. (As usual the logarithmic

terms can be hidden in a vanishingly small addition to the exponent.)

Noting that the deterministic fractal f(x) can be thought of as a linearly separable

function f(x) = Y,rkF(sk), confined annealing can be thought of as almost a special case

of annealing for linearly separable functions (Chapter 7). In fact, the results for the two

cases, represented by Theorem 8.3.2 and Corollary 7.3.1, are very similar.

One difference between the two cases is that for the confined annealing we have

presumed that both r and AF are known, saving a factor of poly(l/£) in Theorem 8.3.2

compared with Corollary 7.3.1.

The second difference is that in confined annealing, during generation k we al

ways make a move to Sk, the coordinate of interest. For a linearly separable function in d

dimensions, we had to make d moves to assure that one move was made to relevant coordi

nate. This explains why in Theorem 8.3.2 there is no parallel to the factor of d present in

Corollary 7.3.1.

8.4 Unconfined Annealing

The "confined" annealing algorithm just discussed is most tractable but is not real

istic. In practice there is no easy way to describe the "location" of a point in a combinatorial

space, and restricting oneself to points in some region appears impossible.

However, the "confinement" rule may be dropped with only minor effects on the

process of annealing on the fractal. Lemma 8.1.5 shows that during generation A;, an "un

confined" move changes exactly one element of the A;-code and changes it by exactly 1.

Because of this it will be possible to treat the components of the A;-code independently: the

A:th component will behave exactly as it did in confined annealing, and the other compo

nents (treated all together) will behave like an annealing problem where the temperature

is reduced monotonically starting from low-temperature near-equilibrium.
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The definition of the unconfined algorithm is again that given in Figure 8.4, but

now we must restrict the function fudge . Representing x by its code s(x), one satisfactory

definition is

fudge({si,s2l...,Sk)) = {(si,s2).. .,sk) , srand) (8.11)

where srand is a random variable over {0,... ,6 —1}, and at each application of fudge an

independent sTand is chosen. Some natural cases of this definition are the following:

• If 6 is odd, let srand = (6 - l)/2 (deterministically), meaning fudge(x) = x.

• If 6 is even, let srand = (6/2) —1 or 6/2, meaning fudge(x) = x ± l/2bk+1 (randomly).

• For any 6, let srand be uniform over {0,..., 6 - 1}, so fudge maps x uniformly randomly

to one of the 6 points in Sk+i in the same A;-interval as x.

Intuitively, we focus on annealing on the A:th component, and imagine the other

A: —1 components as defining 6fc_1 "copies" of this process. A move which changes Sk

is a move in the basic process; a move changing any other component is a switch from

one "copy" to another. The following definition formalizes the idea of "copies" of a basic

structure, and the succeeding theorems show how annealing on such a structure can be

analyzed. (Viewing Figure 8.6 may be helpful.)

Definition 8.4.1 An energy graph G with vertex set V, edge set E, and energy function

f is a replica with index set I and energy scale factor c of the basic graph G with vertex

set V, edge set E, and energy function f if there is a function a from V to I xV with the

following properties:

1. o :V -* I xV is a bijection.

2. Let {v,v'} e E be an edge in G, and let (i,v) = a(v) and (i',v') = a(v'). Then either
i = i' or v = v', or both.

3. Define a "neighborhood" in G by N(v) = {v' : {v',v} 6 E}. Consider this to be

a multiset, with v' appearing as many times as there are edges between v and v'.

Similarly let N(v) = {v' : {v',v} € E}.

Define 07 and ay by a(v) —(oi(v),oy(v)).

Ifv = oy(v) then oy is a bijection between N(v) and N(v).
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4- There is a function fi on I such that for all v £ V, taking (i, v) = v(v), f(v) =

fl(i) + cf(v).

Intuitively, a replica G can be formed from a graph G as follows: Make a number of copies

of G, indexing copies with values i, and using the same vertex labels v within each copy.

If a vertex v has a self-loop, the self-loops on (i,v) and (V,v) can be replaced by an edge

from (i,v) to (i',v). The energy of a vertex (i,v) in G is the sum of the energy of v in G

and the arbitrary function // of i. Note that the degree of (i, v) in G is equal to the degree

of v in G.

We often omit mention of the function a and simply think of a vertex of G as a

pair (i,v).

Theorem 8.4.2 pf—• appendix For i,k > 1, 5j+fc with the unconfined move set and

deterministic fractal energyfunction f is a replica of Sk (also with unconfined move set and

energy f). The index set is {0,..., 6 —l}1 and the energy scale factor is r*.

Figure 8.6 provides an illustration.

Theorem 8.4.3 pf -» appendix (product density on replica graphs) Let G be a

replica of G with scale factor c. Let Pt be an arbitrary probability distribution on the states

V of G, and ttt 6e the "equilibrium" distribution on I given by irj^t) oc e~^^T. Let Pt

be the distribution on states of G given by Pt = ttct x Pt, i.e. Pt(i,v) = fl"cT(0 *Pt(v)-

Let Pt+i(i,v) be the distribution on G after a single annealing move at temperature cT

startingfrom Pt, and let Pt+i(v) be the distribution on G after a single annealing move at

temperature T starting from distribution Pt. Then Pt+1 = ttct x Pt+i-

Roughly speaking, the theorem says that if the distribution on a replica graph 7 x V is a

product distribution which is the equilibrium distribution on J and arbitrary on V, then

after an annealing move i is still in equilibrium, and the change to v is just as it would be

for annealing on V itself.

Theorem 8.4.4 pf—• appendix (marginal density on replica graphs) Let G be a

replica of G with scale factor c. Let Pt(i,v) be an arbitrary probability distribution on the

states I x V of G, and let Pt(v) = EjP«(*»v) be the corresponding marginal distribution

of v. Let Pt+i(i,v) be the distribution after a single annealing move on G at temperature
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Figure 8.6: With unconfined move set, 52 is a replica of Si. S2 is shown at top, with the

energy function / expressed in terms of coordinates si and 52 of the 2-codes of its points. Si

is shown at bottom, with / expressed in terms of the sole code coordinate s\. "Folding" 52

and shrinking Si provides an obvious correspondence between the points of 52 and Si: The

points of Si are labeled v = 3j. The 1-pieces of 52 become the "copies", labeled i = 0,1,2

(i is the value of si in the 2-code), while the individual points are labeled v = 0,1,2 (v is

cT starting from Pt(i,v); and let Pt+i(v) be the distribution after a single annealing move

on G at temperature T starting from Pt(v). Then Pt+i(v) is the marginal distribution of v

corresponding to Pt+i(i,v).

The theorem means that regardless of the nature of the distribution on J x V, the evolution

of v is just as it would be for annealing on V itself.

Theorem 8.4.3 allows us to treat the distribution of si during generations after the
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first. Theorem 8.4.4 is used to show that the behavior of the component Sk in generation

k + i is identical to that of the component Si in generation 1 + i. Together they describe

the distribution of each code component.

Theorem 8.4.3 may be thought of as saying that for annealing on a replica graph

at a fixed temperature, if the value of i is in exact equilibrium for that temperature then it

remains in equilibrium. We now prove a slightly stronger result to the effect that if i is near

equilibrium at a low temperature T, then it remains near equilibrium, even as temperature

is lowered. The statement for replica graphs is given by Theorem 8.4.5, and is an extension

of Corollary 5.2.3.

Theorem 8.4.5 pf —» appendix Let G be a replica graph with vertices I x V, and let the

distributions ttt on I be as per Theorem 8.4-3. Let T^a be the critical temperature for I,

and {Tt} be a sequence of temperatures satisfying T^t > To > Ti > T2 > •••. Anneal on G

at temperatures Ti,T2,... beginning from the distribution P0. If there exists a distribution

Po on V such that the initial distribution Pq on I xV satisfies

\\Po - (ttTo x P0)||tvd < e, (8.12)

then the distribution at time t satisfies

\\Pt - (irTt x Pt)\\tvd < e + ||7rTo - 7rTt||tvd. (8.13)

In the current application we extend this slightly:

Corollary 8.4.6 pf —* appendix Let n? be the equilibrium distribution of Si for anneal

ing on Si at temperature T, and let Tent 6e the associated critical temperature. Run the

unconfined annealing algorithm with cooling schedule {(Tk,tk)}k=i> where Tk is monotoni

cally nonincreasing in k and TCIit > T\. Ifs\tl and 51,4fc are the values ofsi at the end of
generation 1 and at the end of generation k respectively, then

hk,th - ^rjltvd < II*}* - 7TT! Iltvd + ||7rTl - 7rTJ|tvd. (8.14)

(This is a slight abuse of notation in the use of the random variables s themselves rather

than their distributions.)

Corollary 8.4.7 Let a value e > 0 be given. Run unconfined annealing with cooling sched

ule (Tk,tk), with Ti = T(e) and ti = i(T(e)) as in Theorem 8.2.1, and Tk monotonically

nonincreasing. Assume e is small enough that Ti < Tcrit- Then at any generation k,

\\Si,tk ~ *Tjtvd < E+ ||7TTl - 7TTJ|tvd. (8.15)
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Proof Direct application ofCorollary 8.4.6, using the fact ||s \'tl —ir-Tx ||tvd < e (which was

the basis of Theorem 8.2.1). •

This corollary allows us to "limit the damage" done by lowering the temperature

below the value of interest, i.e. to ignore the effect on the variable $i of annealing in

generations * > 1. We now develop a complementary result which will allow us to treat

each variable like si.

Theorem 8.4.8 pf -+ appendix Consider two different unconfined annealing processes.

The first uses cooling schedule (Ti+»,ti+i), runs for generations with i > 0, and at time t

into generation 1 + i has distribution P1+%,t({siis2,...,si+i)) on state space 5i+». For

a fixed integer k > 0, the second uses cooling schedule (Tfc+»>?fc+*) = (r*_12i+i»*i+i)i

again runs for generations with i > 0, and at time t into generation k + i has distribu

tion Pk+t,t((si,s2,...,Sk+i)) on state space Sk+i, with corresponding marginal distribution

^bi*jb+»((3*» ••• >5*+«))- #the "initial" distributions satisfy P£'° = Plfi, then for all i,t
representing positive time,

flKi'+i = P1+itt- (8.16)
It follows that P^ = Pl+itt.

Proof The proof is given in the appendix, but is a straightforward application of Theo

rems 8.4.2 and 8.4.4. •

Thus, for a geometric cooling schedule, the (marginal) distribution of Sk once

generation A; has started follows precisely the same law as the (marginal) distribution of 51

from the start of generation 1.

This leads us to the following theorem:

Theorem 8.4.9 pf —• appendix Let a value 0 < e < 1 and a fractal with energy scale

parameter r be given. Let f = f(e) and i = i(e). Assume e is sufficiently small that
T < Tcrit> the critical temperature for annealing on S\. Apply unconfined annealing with

cooling schedule (Tk,tk) = (r^f,i), andk = l,...,K with K = (ln(l/e)/ln(l/r)l. The
state returned has relative expected energy satisfying

Eu„Co„=-^- <3e (8.17)
/range

and the algorithm has run time

*uncon = [ln(l/e)/ln(l/r)] • t. (8.18)
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The theorem is identical to Theorem 8.3.2, but applies to unconfined annealing rather than

confined annealing.

To sum up, we have now shown the efficiency of a fairly natural model of an

nealing on a deterministic fractal (per definition 8.0.1). The intuitive basis of the proof,

corresponding to the analysis for confined annealing (Theorem 8.3.2), is to apply in a hier

archical manner the energy-time tradeoff for annealing on arbitrary landscapes.

What makes the proof difficult for the more realistic "unconfined" model of an

nealing is that the levels of the hierarchy (the various components st) cannot be separated

entirely: in generation k we may make a change to a component s, with i < k. We can think

of this as having "global" consequences (the effecton the distribution of s») and "local" con

sequences (the effect on the distribution of Sk)- By Theorem 8.4.5 and its Corollary 8.4.6,

assuming that si starts near temperature-0 equilibrium, the effect on the global distribution

is minor. And because of the mirror symmetry between adjacent pieces of /, changing a

component other than Sk is no different from traversing a self-loop on Sk in the confined

case (Lemma 8.4.4), the local distribution evolves exactly as it does for confined annealing.

That we can prove annealing is efficient on these deterministic fractals raises the

hope that we can do the same for random fractals more closely resembling the problems

encountered in practice. We touch on this again in the Chapter 10.

8.5 Efficiency

In both confined and unconfined annealing we treat the state variables Sk much as

we treated the independent variables of a linearly separable function in Chapter 7, albeit

with much additional labor for the unconfined annealing. It is then natural that the effi

ciency results for annealing on fractals should parallel those for linearly separable functions.

The essential measure of the efficiency of annealing on fractals comes from Theorem 8.4.9.

Euncon, the expected energy of the solution returned by unconfined annealing di

vided by the full range of the fractal /, is no more than 3e, which we have been considering

a solution of "quality" q = 1/ 3e. Since

i=i{t(e)) =2(ln^+iW* (8.19)
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and the total time <uncon = Ki with K = fln(l/e)/ ln(l/r)"|, the ratio of the logarithms of

run time and quality is

In Won jfcln(6/e) +0(lnln(l/e))

~ 2/AF. (8.22)

While the results for confined annealing (Theorem 8.3.2) generalize to A = e (and

the other values suggested in Section 4.7), those for unconfined annealing do not. This is

because Theorem 8.4.9 requires that H^ - flolltvd < e, which is guaranteed by A = AF

but not by A = e.



Chapter 9

Annealing Compared with Other

Algorithms

While it is valuable to know about the time versus quality tradeoff of anneal

ing itself, knowing whether annealing is a good algorithm to use depends on its relative

performance compared with other algorithms.

The most significant set of experimental comparisons is that of [12], where for each

of a number of problems annealing was compared against the best algorithm known for that

problem. Generally speaking the specialized algorithms tailored to the particular problem

at hand ran far faster than annealing, but annealing's results were often as good or better.

Over all, if annealing was not always the best algorithm, it was at least competitive.

Our perspective is somewhat different. We are studying annealing in a fairly

general context, and would therefore like to compare it with a similarly general algorithm.

There are few candidates: random search, descent, and steepest descent are the only ones

that come to mind. In all cases we consider the running time of the algorithm to be

the number of states searched. Random search (or "random sampling") consists simply

of generating states at random and keeping track of the one with the best energy so far.

Descent is most easily described as annealing at temperature 0, so that uphill moves are

never accepted. Steepest descent is similar, but instead of moving to any neighbor of lower

or equal energy, the move is to a neighbor of lowest energy. Because descent and steepest

descent may get stuck quickly, we will actually consider "repeated" variants of them, where

after getting stuck the algorithm is restarted from a random initial state.
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All these algorithms are easy to evaluate. In making a comparison with annealing

on the fractal functions of Chapter 8 the real difficulty is in deciding on what makes for a

fair comparison.

Specifically, a great deal of regularity has been built into the fractal energy func

tion. While our analysis of annealing depends on this regularity, the algorithm itself does

not.1 A version of random sampling which was allowed to use the regularity explicitly could

be extremely efficient: like confined annealing, such a sampling algorithm could locate a

good point in Si, then search only in the corresponding interval to find a good point in S2,

and so forth. Just as we did not propose confined annealing as a serious algorithm (it was

merely a stepping stone to unconfined annealing), we do not allow this version of random

sampling.

9.1 Random Sampling

We begin with analysis of random sampling because the descent algorithms can

then be viewed in the same framework.

Theorem 9.1.1 For a deterministic fractal f with Co zeros, iftraad —(b/co)K points are

randomly chosen from [0,1], the relative expected energy of the lowest-energy point is

Erand[/N^- Z(l/e)rKAF(l - r). (9.1)
/range

Proof Choosing x uniformly at random in [0,1] is equivalent to choosing each component

Sk of its state code uniformly at random from {0,.. .,6 —1}. Then f(x) < rKAF only if

F(si) = ••• = F(sk) = 0; call such an x "iT-good". If i*1 has cq zeros, this happens with

probability (co/b)K. Consequently, if (b/co)K x's are chosen, the probability that none is

if-good is [1 - (co/6*)](b/c°) ~ 1/e, in which case the cost is at least rKAF. Thus for

run time trand = (b/co)K, the absolute expected cost is E[/] £ (l/e)rKAF. Recalling that

the range of the deterministic fractal is /range = 1/(1 —r) gives the relative expected cost

stated. •

For the same trand it is possible to derive a similar upper bound for the expected

energy, proving that Erand[/] = 0 (rKJ- The proof comes from looking at A;-goodness for
all values k < K.

xThis is not entirely true. In constructing the state spaces 5, we are using knowledge of 6, and in reducing
the temperature we are using r. But these objections do not apply to the very similar process of annealing
on linearly separable functions.
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This energy-time relationship is similar in form to that for unconfined annealing, as

given by Theorem 8.4.9. But in the case of unconfined annealing, lntuncon/ln(l/Euncon) ^

2/AF; in this case lntrand/ln(l/Erand) ~ ln(6/c0)/ln(l/r).

Thus for both annealing and random sampling, run time is roughly polynomial in

inverse expected energy. Unfortunately, the exponents for the two cases are not comparable,

as they depend on different parameters. However, a much more dramatic contrast exists

for an interesting generalization of the class of fractals we have been discussing so far, and

we take this up in Section 9.2.

Meanwhile it is interesting to note that even though annealing and random sam

pling both require run time which is power-law in inverse expected energy, the reasons

are quite different. We know that if f(x) is small then the early components of its code

{si,s2,...) must all be zeros of F. Consider the search through e's as a search through

codes.

For simplicity suppose F has a unique zero. In expected time only 6, random

sampling finds an x with F(si) = 0. But it takes time 62 to find an x where both si and s2

are zeros of F, and in general requires time bK to find an x with {s\,..., sk) all zeros of F.

In short, the later "generations" of random sampling take much longer than the early ones.

But for annealing, si is a random variable. Getting a small expected energy

requires making Si a zero of F with high probability, and making that probability less than

e takes time something like (l/e)2^F. The same probability is adequate for the other s '̂s,

which is to say that the later generations of annealing take the same amount of time.

9.2 Multidimensional Fractals

For a given value d and one-dimensional fractal / satisfying Definition 8.0.1, define

a d-dimensional fractal / : [0, l]d -*• JR. by /((si,... ,Xd)) = £?-i /(«»)• Annealing on /
is defined as an extension of unconfined annealing on /: Define a sequence of state spaces

Sk = Skd- Moves in Sk can be defined as follows: given two vertices x = (xi,.. .,Xd)
and x' = (x'i,.. .,x'd) in S*, they are connected by an edge if they differ in only a single

component (say the ith), and if sc» and xj are connected by an edge in Sk

in other words, annealing on / is like annealing independently on d copies of /

and adding the results together. At each time step, the copy on which a move is to be made

(the value "i" of the previous paragraph) is selected at random. In fact, these functions are
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a special case of the linearly separable functions considered in Chapter 7.

Compared with annealing on the fractal /, spending d times as long in each gen

eration yields a final result of the same relative expected energy:

Theorem 9.2.1 Let a value e and d-dimensional fractal f based on a deterministic fractal

f with energy scale parameter r be given. Let T —T(e) and i = i(t), and assume that
e is sufficiently small that f < Tent- l>^> t = T(di,l/d,e) (T is defined in 7.2.2 and
its use illustrated by Theorem 7.2.5). Apply unconfined annealing with cooling schedule

i(Tk,t)}k=o> where (Tk,tk) = (r^f^) andK= [ln(l/e)/ln(l/r)l. This algorithm returns
a state whose relative expected energy is Euncon < 4e and it consumes run time tuncon ~

& ' 'uncon*

Proof That tuncon ~ d' *uncon follows from Proposition 7.2.4; this property was exploited

in the analysis of linearly separable functions (Theorem 7.2.5). By definition of T, with

probability at least 1 - e, for any i, at least t moves are made on fi. Conditional upon this,

by Theorem 8.4.9, E[/»] < 3e/range- Taking into account the possibility that fewer than i

moves are made, E[/»] < (1 - £)(3e/rangc) + (e)(/range) < 4e/range, giving total expected

energy E[/] < d•4efTange. Since the range of /is d•/range, Euncon < 4e. •
Noting that <uncon = d ' *uncon and E^on = Euncon,

•in tuncon Ina -j- In tuncon In tuncon /Q „\

Ml/Euncon) " MVEuncon) " ln(l/Euncon) ' {'}
It follows that tuncon *&& Euncon nave tne same asymptotic power-law relationship as did

tuncon and Euncon, t.C. Tuncon is TOUghly (l/Euncon)2/AF-

What about the performance of random sampling on the same d-dimensional prob

lem?

Theorem 9.2.2 In time tra„d = (b/co)Kd, random sampling on a d-dimensional fractal

produces a solution whose relative expected energy is Erand £ (l/e)rKAF(l —r)/d.

Proof Consider searchingfor a point of absolute energy no more than rKAF. For a point

x = (xi,.. .,!<£>, if f(x) < e then certainly each f(xi) < e. In particular, if x is "iT-good"

in the same sense as before (having energy no more than rKAF), then each Xi must be

if-good. A single Xi is good only if the first K components of its code are all zeros of F,

which has probability (co/b)K. Then a random x is good only if each Xi is good, which

has probability (c0/b)K'd. Sampling (b/c0)Kd points, the probability that none is good is
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asymptotically1/e, in whichcase the energy is at least rKAF. Therefore the relativeenergy

is at least (1/e) •rKAF •(1 - r)/d. •

It follows that for d-dimensional random sampling,

Inland Kd\n(b/c0) _ dln(6/c0)
ln(l/Erand) ~ Jnn(l/r) " ln(l/r) ' ^

which is d times what it is for the one-dimensional case. Thus time is once again power-law

in energy, but the exponent is increased d-fold.

These comparative results for annealing and random sampling in d-dimensional

cases can be explained in an intuitive manner. For annealing, the dimensions can be treated

separately, leading to a factor d increase in both time and (absolute) energy. Another way

to view this case is that when the number of dimensions increases, the conductance of the

underlying graph does not change significantly, and it is the conductance that dominates

how long annealing takes.

For random sampling the situation is entirely different. Suppose for convenience

that F has a unique zero. To produce a good solution, random sampling must happen upon

the best of bK bins. In the d-dimensional case, there is still only one good bin, but the total

number of bins is (bK)d, requiring time bKd.

The upshot is that annealing is relatively insensitive to the dimensionality, while

random sampling is very sensitive to it. In particular, for both algorithms the run time

and quality are characterized by the ratio Int/ ln(l/E[/]). For annealing this ratio is 2/AF

regardless of the dimension d, while for random sampling it is dln(co/6)/ln(l/r). Even if

for d = 1 random sampling is asymptotically more efficient (i.e. its ratio is smaller), as

d grows the ratio for random sampling must become larger than that for annealing. For

high-dimensional problems, annealing will be more efficient.

9.3 Descent Algorithms

It might appear that in comparing annealing to random sampling, we have pitted

it against a straw man: even the name "random sampling" does not conjure up images of a

powerful algorithm. But as we said, there are not many algorithms as general as annealing

to which we can compare it, and we will now argue that in general, neither repeated descent

nor repeated steepest descent is significantly better than random sampling. In fact, both

behave quite similarly to random sampling.
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Like annealing (but unlike random search) the descent algorithms depend on a

move set: we move from a state a? to a neighboring state x' of lower energy. For annealing,

the move set we used varied with the generation number. If we are looking for solutions

of expected energy rKAF, the natural choices of move set for descent algorithms are: (1)

always move on 5x, or (2) move on Si until stuck (until all neighboring states have higher

energy), then on 5*2, and so on.

A quickglance at Figure 8.1 should make it clear that moveset (1) is doomed: the

energy function is jagged, and any descent algorithm cannot go long before being trapped

in a local minimum. While we do not present a rigorous analysis of this case, it can be

performed in the same manner as the analysis of move set (2) which follows now.

Theorem 9.3.1 Let cr be the number ofstates in Si which are "zero-reachable" - reachable

from a zero of F by uphill moves only. Assume cr^ b. If repeated descent or repeated steep

est descent is applied for tdesc = (1>/cr)k restarts, implying run time (number of samples)

at least this large, the relative expected energy is Edesc k, (l/e)rKAF(l —r).

Proof For the final state to have energy less than rKAF, each component Sk (k < K)

must be a zero of F. Thus each component must end up at a zero, having started at a

random value in {0,..., 6 - 1} and gone through a sequence of downhill moves. For this to

be possible, the initial value of Sk must be reachable by a sequence of uphill moves from a

zero of F; the number of such values was defined as cr.

The probability that the random initial value of a single s k is zero-reachable is cjj/6,

so the probability that all K of them are zero-reachable is (cr/o)k . Since this is a necessary

condition for the descent algorithm to reach a Jf-good state, the probability that a run of

the algorithm reaches a iT-good state is no more than (cr/o)k. Thus, repeated descent run

(b/cR)K times fails to reach a AT-good state with probability [1 - (cR/b)K](b/CR) ~ 1/e.
•

In short, except for the improvement of the constant cq to cr, the performance of

descent algorithms is no better than that of random sampling. In particular, Theorem 9.2.1

(which describes the performance of random sampling on d-dimensional fractals) alsoholds

for descent algorithms, with cq replaced by cr.



Chapter 10

Conclusions

10.1 Summary and Overview

In the Introduction we argued that, despite its proven success on a range of practi

cal problems, annealing cannot be particularly efficient for arbitrary problems. Specifically,

annealing's behavior depends on the energies of the states and on the edges connecting these

states. Regardless of the edge structure, if the energies are assigned randomly, annealing

can do no better than random sampling. Similarly, for any energy assignment, if the edges

are those of the complete graph, annealing is worse than random sampling. Thus, if an

nealing is to work well the energy function and move set must be well-matched, in some

undetermined sense. We gave an intuitive argument that "fractalness" (self-similarity of

the energy function with respect to the move set) was the required property.

In Chapter 3 we gave experimental evidence of the fractalness of the energy land

scapes of a number of realistic problems. Complementary experiments, to see if problems

on which annealing performs poorly have landscapes which fail these fractalness tests, have

not yet been performed.

In Chapter 4 we presented a "random walk on a graph" model of simulated anneal

ing. It is well-known that a (time-reversible) Markov chain can be modeled as a random

walk on an (undirected) graph, but to the best of our knowledge this technique has not

previously been applied to simulated annealing. The underlying graph for annealing corre

sponds to the move set, and inevitably has a natural structure.

The real power of the graph model comes from a recent theorem of Jerrum and

Sinclair (and extensions by Mihail) which relate the "mixing" time of the Markov chain
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(the time required to approach stationarity) to the "conductance" of the underlying graph.

Because of their regular structures, it is often possible to calculate a useful bound on the

conductance of the underlying graphs for annealing.

Even before using the conductance quantitatively, the definition is helpful from

an intuitive standpoint. It is natural to think of annealing as being essentially a descent

algorithm, with the added power to escape from energy "valleys": most previous studies of

annealing, including those proving its asymptotic properties, have focused on such valleys.

The usual definition of an energy valley is a set of points the escape from which requires

crossing some energy threshold. While this definition is sufficient for asymptotic arguments,

it is not intuitively satisfying. For example, even if there was a single low-energy path leading

out of a set of points, for all practical purposes it would still be an isolated energy valley:

the probability of happening upon just the right path is negligible. In statistical physics

there is a definition of "free energy", which combines the notions of energy and the number

of elements having that energy. While statistical physics is sometimes invoked in the study

of simulated annealing, apart from some arguments by analogy the free energy concept does

not seem applicable.

What we really have in mind by an energy valley is a set of states from which it

takes a long time to escape, either because there are few edges out of it or because those

edges have high energy (low probability). The conductance of the partitioning of a graph

measures precisely the summed probability of these edges, and the Jerrum and Sinclair

result relates it to the escape time from the corresponding "valley". The conductance of

the graph itself is that corresponding to the valley from which it is hardest to escape, which

is the valley of interest for annealing. In short, conductance leads to a definition of energy

valleys that seems to conform precisely to our intuition.

In annealing, the temperature is gradually lowered as time goes on. The asymp

totic success of annealing requires convergence of the actual state probability vector to the

stationary vector at the current temperature. When the temperature is lowered, the sta

tionary vector changes, potentially getting farther from the actual vector. But when an

annealing move is made, the actual vector gets closer to the stationary vector by an amount

which can be bounded in terms of the conductance. Annealing asymptotically converges to

a global minimum, for temperature sequences with the property that the movement towards

stationarity exceeds the movement away from it. Quick "back of the envelope" estimates

of the conductance and the change in the stationary vectors lead to the logarithmic cooling
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schedule well known to give asymptotic convergence; Appendix 4.6 presents the detailed

calculations to derive that result rigorously.

It is simpler to analyze the case where a fixed temperature is used, and Chap

ter 4.7 showed that in the general case, achieving a low final expected energy with constant-

temperature annealing takes running time which is very long - the governing parameters

are the total number of states and the inverse of the minimum nonzero energy, both of

which are huge.

In Chapters 5 and 6 we extended these basic results, respectively to annealing

schedules where the temperature is lowered after some desirable distribution has already

been reached, and to functions whose energy range is not known.

In Chapter 7 these tools were applied to "linearly separable" functions, and it

was shown that these multi-variable functions can be minimized in time comparable to

that for single-variable functions. In this sense annealing is an efficient algorithm for high-

dimensional linearly separable functions.

In Chapter 8 we introduced a class of tame fractals. On these, the arguments

of Chapter 4.7 were applied in a hierarchical manner, again showing annealing to be a

comparatively efficient algorithm.

In all cases - the general case of Chapter 4, the separable functions of Chapter 7,

or the fractals of Chapter 8, the cooling schedules we construct require run time which is

a power of the solution quality desired. The constants in this relationship make annealing

feasible in the special cases but not in the general case. In particular, the power does not

change, and the constants do not become much worse, for separable functions with more

variables.

Chapter 9 showed the same constancy for the efficiency of annealing on a higher-

dimensional version of the deterministic fractals. In the same chapter it was shown that

for random search, descent, and steepest descent time also increases as a power of solution

quality, but that as the number of dimensions increases the power increases linearly, making

these algorithms inefficient for high-dimensional problems. While not explicitly considered,

the run time for the sampling and descent algorithms on separable functions parallels that

on multi-dimensional fractals, so the same conclusion applies: these algorithms are inferior

to annealing for linearly separable functions of many variables.

In conclusion, we have presented a new framework for simulated annealing, in two

senses. First, we have considered restricted problem domains (linearly separable functions



CHAPTER 10. CONCLUSIONS 70

and a class of fractals) for which annealing is efficient,which it is not for arbitrary problems.

Second, we have modeled annealing as a random walk on a graph and used knowledge about

the conductance of these underlying graphs, to provide both a useful conceptual framework

and powerful quantitative methods. The formal results are so far confined to quite simple

models, but even this is well beyond what has been done before.

10.2 Future Goals

Of course, we would like to extend our theoretical analysis to where it comes closer

to describing real problems. The framework in which we have set annealing is extremely

general, and we can imagine generalizing the approaches of Chapters 7 and 8 to graphs and

energy functions with weaker properties. We would presumably partition the graph G into

two pieces giving minimum conductance, partition each of those, and so forth. Then we

could follow the same approach as before, annealing to get into the better top-level cluster,

lowering the temperature to get into the better sub-cluster, and so on. However, in this

more general setting, substantial (if not insurmountable) new difficulties arise for each step

of the analysis.

Some natural cases to try first would be extending the fractal model to fractional

Brownian motions, and extending the linearly separable function model to functions where

there are interactions between the variables but the interactions are either weak or rare.

Another candidate would be a graph partitioning or Ising model problem, where it might

be possible to directly analyze the temperature-dependent conductance of the graph repre

senting the full state space and the subgraphs representing the valleys in which one may be

"stuck" at lower temperatures.

In addition to these goals in the theoretical domain, experimental work remains

as well. The same landscape analysis experiments performed on problems where annealing

works well should be performed on some where annealing works poorly (or where simple

descent methods work better) and the results compared. Simple simulations of unconfined

annealing on the regular fractals should be performed: the bounds dictated by theory may

be overly conservative, or the simulations may simply suggest something new. Simulations

with relaxed rules - say changing the temperature by a factor other than the energy scale

parameter of the fractal, and making moves of random lengths - should also be performed to

see if the algorithm is robust. Experimental comparisons of annealing on the deterministic
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fractals with annealing on fractional Brownian motions could indicate which properties

carry over, and could be used to guide the theoretical analysis.

Finally, the important matter of constructing efficient cooling schedules is now

poorly understood in practice as well as being an open theoretical problem. It might be

possible to address this issue by applying to actual problems the techniques developed for

the simple models, even though these techniques will no longer be formally justified. For

example, an JV-object circuit placement problem resembles the linearly separable function

model of Chapter 7, albeit with occasional interactions between the variables. The similarity

suggests checking for a polynomial relationship between solution quality and run time for

annealing on this problem; if such a relationship is found it could be useful for specifying in

advance the run time and the cooling schedule required to get a solution of given quality.

Also, while for simplicity we have only considered geometric cooling schedules, the energy

bound we derive as a function of run time could be improved by spending less time in the

later generations, where the energy variations are smaller. Exploiting this observation could

lead to a new class of more efficient, hyper-geometric, cooling schedules.



Appendix A

Asymptotic Convergence to
Global Minima

As mentioned in Section 4.6, while we do not feel that analysis of the logarithmic
cooling is the most useful view of annealing, duplication of those standard results using the
tools we rely upon seems worthwhile both as a vindication of the method and as independent
derivation of the result.

We are given an annealing problem, where without loss of generality we assume
the energy / is scaled to have minimum 0 and maximum 1. Let a < 1 be any constant near
1.

We define the metric ||-||2 and show that for the cooling schedule Tt = 1/alnt, for
any Po, \\Pt - KTtlU —* 0- It follows that for any state u, Pt(u) -* tto(u); this also implies
convergence of the expected energy to 0.

Definition A.0.1 For a probability vector ttt on state space V, with ttt nowhere 0,

\\Pt - ^tI 2 - 2^ Z1Z\ ' 'A-1)

This may be thought of as a squared L2 norm, with axes rescaled by factors tt(u). This
norm allows the following theorem.

Theorem A.0.2 Let a strongly aperiodic Markov chain with stationary distribution ir and
underlying graph of conductance $ 6e given. Let the probability distribution Pt+i be that
after a single step, starting from distribution Pt. Then

llft+i-*l|2<(l-*)||i\-ir||2. (A.2)

This version of Sinclair and Jerrum's result [26] is given by Mihail [18].
To show that dt = \\Pt - nth ~* 0> we wiU bound \\Pt+i - tft+ilh m terms of

\\Pt - ^lb-

Lemma A.0.3 Let Mt+i 6e an upper bound for |7rt(u) - 7rt+i(u)| / 7rt+1(ii). Then

dt+i < (l-$(Tt+i))[(l + Mt+i)dt + 3n-Mt+i]. (A.3)
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Proof From Theorem A.0.2,

||P*+i " *t+i||2 < (1 - *(Tt+l))\\Pt - 7rt+i||2. (A.4)

The second factor may be expanded:

HPt-tft+ilh = E IP<^) " *w(tt)l2 (now drop the u's for clarity) (A.5)
£y *«+l(«)
y [(Pt - *t) +(Tt ~*t+i)]2 /A6v

*t+i

< y. (A - *«)2 Jt_ +gy. |p( _Jt| K- »H-ll (A7)

+£|„-.w|JSzJS±ll.
7Tt+l

As differences of probabilities, \irt+i(u) - ^(it)! and |Pt(u) - 7rt(ti)| are no more than 1, so

||Pt-irt+i||2 < E (P< ~^^(X +M'+i) +2E *•M<+* +E *•M*+i (A.8)
= (l + Mt+1).||Pt-7rt||2 + 3n-Mm. (A.9)

Combining inequalities (A.4) and (A.9) yields the lemma. •
It remains to construct the bound Mt+i and a bound for $(T). To do so we now

assume a cooling schedule of the form Tt = 1/alnt for some constant a. Equivalently, the
inverse temperature is f3t = a Int.

For $ we simply apply Theorem 4.5.2: annealing at inverse temperature (3 on a
problem with n states,

HP) >\e-t, (A.10)
n£

which for the cooling schedule /3t = a In t means

1- *(A+1) >l - I* +l- ~ l - -IrQ. (A.ll)
n* n£

Lemma A.0.4 For any c2 > a,
Mt+i=c2r\ (A.12)

is an upper bound for |7rt(u)/7rt+i(u) —1|.

Proof Express 7rt(ii) as
*,(«) = deg(u)e-MM/Z((3t), (A.13)

for
Tt(u) deg(u)e~M») Z(fit+1)

^+1(«) deg(«)e-A+i/(«) Z(A) "
(A.14)
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Beginning with the first term,

deg(u)e-MM
deg(ti)e-&+i/(u)

_ JA+i -&)/(«)= e

't + i\«/(«)

< (i+i/*)a.
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(A.15)

(A.16)

(A.17)

Fort large,to first order this is l + a/t sofor any constant Ci > a (we will also make Ci < c2)
and t sufficiently large,

deg(u)e-&'(tt)
< Cit-l

deg(u)e-&+i/(w)

To bound the second term, sort the values of / in increasing order, so 0 = /o <
fi < ••-< fl = 1- For each index i < I, let ki = Eu:/(u)=/t deg(ti). Then

Z(Pt+i) k0 + ifcje-AA+i + •••+ Jkie-fc+i

3(A) fc0 + *ie-/iA + ... + &|e-A

(A.18)

(A.19)

For t, and therefore Pt, sufficiently large, the term kie~^l+l dominates all other kie~^^+l
in the numerator; similarly kie~^1^* dominates the denominator. Both tend to 0, so

Substituting Pt = alnt,

z(A+i)

Z(A+i) _ i ^ b.e-hfit+1 _ he-hfit
Z(Pt) fc0 fc0

*i

~ £'"
It follows from (A.18) and (A.22) that

Trt(u)
*t+i(u)

Since c2 > ci, for t sufficiently large

-1 -l1 + Cit 1+ *iri-«/i -l— 1 ~ Cit

ff«M
7Tf+1(u)

-1 < C2t -1

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

Lemma A.0.5 For some constant cz, for all t sufficiently large, if dt < cz(t)a~l then
dt+i^^t+l)*-1.
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Proof Substituting (A.ll) and (A.12) into (A.3),

dt+i &U- •n\t~a) [(l +c2<-1) <k +3nc2t"1] (A.25)
By the mean value theorem, there is some t; € [t, t + 1] such that

= (o - l)(t')a-2 > (a - l)(t)°-2, (A.26)(t+irMtr1^"-1)
so

(t + l)0"1 > (t)0"1 + (a - l)(t)a"2. (A.27)

It is clear that the larger dt is, the larger the bound on dt+i given by (A.25).
Therefore we can assume dt is as large as possible, i.e. dt = C3(t)a_1. Under this assump
tion,

dt+i-dt <> (-^"° +cat"1 - ^cat"""-1) ^(t)0"1 (A.28)
I

+3nc2t~1 -—3nc2t-°-1
n2

~ —Tt~a erf*-1 + Znc2t~l (A.29)
n2

= (~ +Znc?\t-1. (A.30)

Choose any C3 > 3n3C2, so that -c3/n2 + 3nc2 < 0. Since t_1 dominates t°~2, for
t sufficiently large

(~ +3nc2J t"1 <c3(a - l)ta~2, (A.31)
and it follows from (A.30) that

dt+i < czffi-1 + c3(a - l)t°"2. (A.32)

But (A.27) means
c3(t + I)0"1 > caW0"1 + c3(a - l)ta"2, (A.33)

so together these two imply that

dt+i <c3(< + l)0_1. (A.34)

While Lemma A.0.5 provides an inductive step on t, we have not shown that for
an initial t, dt < c3(t + 1)°_1. But by inspection of (A.25), if dt < f(t) implies dt+i < f(t),
then for any constant c4 > 1, dt < cAf(t) implies dt+i < c4f(t). Whatever initial value of t
we wish to work with, simply choose c4 large enough that dt < c4c3(t + 1)°_1 and then use
the inductive step indicated above.

Pulling all this together, the proof that dt —* 0 is as follows. Choose any constants
0 < a < c2 < 1. Choose any C3 > 0 such that -c3/n2 + Znc2 < 0. Choose a r such that
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all the "for t sufficiently large" conditions (specifically the inequalities (A.25) and (A.31))
hold for any t > t. Finally choose a C4 > 1 large enough that dr < C4C3(r)a-1. Inductive
application of (A.34) shows that dt < C4C3(t)a_1 for all t > r. It follows that dt —> 0.

We have now shown that for any positive constant a less than 1, letting Tt =
1/alnt, if 7rt is the stationary distribution at Tt and Pt is the actual probabiUty distribution
after annealing for one move at each temperature Ti,...,Tt, then regardless of the initial
distribution Pq, \\Pt - itt\\2 —» 0 as t -+ 00.

Immediately, for any u, [Pt(u) - irt(u)]2/irt(u) -*• 0, whence Pt(u) - Trt(v>) -*• 0.
Since 7rt(u) = 71^(11) —> *o(u), the actual time-t state distributions satisfy Pt(ii) -» flor
in particular, the probability of being in some global minimum at time t approaches 1 as t
approaches 00, and the expected energy approaches 0.



Appendix B

Proofs for Chapter 3

Lemma 3.0.4 Given any space where a random walk X(t) satisfies d(X(t),X(0)) = ct,
for some constant c. Let f be a fractal (per Definition 3.0.2) with parameter H on this
space. Then f(X(t)) is a fBm (on TR}) and has parameter H.
Proof We need to show that f(X(t2)) - f(X(ti)) is normally distributed with variance
proportional to |t2 —ti|:

f(X(,t2))-f(X(h)) ~ NMXM.Xfa))2") (B.l)
= JVCO.c^-M2"). (B.2)

Lemma 3.0.5 Given a fBm f on Hn with parameter H. Make a random walk X(t) on
ffi.n. Then f(t) = f(X(t)) satisfies equation (3.1) with parameter \H. Furthermore, for n
large, f(t) is approximately a fBm (on "EL1) with parameter \H.
Proof Without loss of generality assume that X(0) = 0 and f(X(0)) = 0. Write X(t) =
{Xi(t),...,Xn(t))- The "random walk" here consists of taking t/62 steps of size ±6 on
randomly-chosen coordinates Xi, in the limit 6 —* 0. Any Xi may be thought of as a sum of
t/62 independent random variables, which take the values 0 (if the step is to a coordinate
other than the ith), +6 (if the step is in the positive direction on the ith coordinate), or
—6 (if the step is in the negative direction); these values occur with probabilities 1 - 1/n,
l/2n, and l/2n respectively. As the sum of a large number (t/6) of i.i.d. random variables
Xi is normally distributed with mean 0 and variance t/n.

Let Ni be the number of steps composing Xi(t). Each Ni has distribution
B(t/62,l/n). For 6 -> 0 this is almost exactly (t/62)/n, with probability approaching
1. Since the Ni are almost deterministic, they are also almost independent. Each Xi is the
sum of Ni random variables which take the values 6 and -6 with probability 1/2. Then the
X»'s are also almost independent, and have distributions N(0,t/n).

Let Zi = Xi/%/t/n, so the Zi are independent standard normal variables.

||X(t)||2 = ±[Zi(t)2 +•.. +Zn(t)2} (B.3)

- ^Xl (B.4)

77
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where x2 denotes a chi-square distribution with n degrees of freedom.
Immediately,

Wf(X(t)f] = E[||X(i)m (B.5)

= E[(i^)w] (B.6)
n

oc tH, (B.7)

confirming equation (3.1).
Also, this chi-square distribution has mean n and variance 2n, so for n large it

approaches a point mass at n. In that case, with probability approaching 1 as n —> oo,
||X(t)|| is almost exactly (t/n) - n = t, and ||X(t)||2H is almost exactly tH. It follows
that f(X(t))2, whose exact distribution is N(0, \\X(t)\\2H), is almost exactly distributed as
N(Q,tH). It is in this sense that for n large, f(X(t)) is a fBm on IR1 with parameter H.



Appendix C

Proofs for Chapter 4

Lemma 4.2.2 Let an annealing problem be given by the undirected unweighted graph
Ga and the energy function f on its vertices. Then the underlying edge-weighted graph G
corresponding to annealing on Ga oi temperature T has the same structure (vertices and
edges) as Ga, with the addition of self-hops at each vertex. It has edge weights given by

w(v,u) = e-m«(/(f),/(ti))/T (C>1)

for edges {v,u} present in Ga, and

w(v,v) = e-fWT E I1 ~ e-(/(u)-/(v))/T] (C.2)

for the added self-loops {v, v}, with the sum taken over pairs {u,v} which are edges ofG.
Corollary 4.2.4 At temperature T, the stationary probability ttt(^) of state v is
deg(v)e-HvVT/Z(T).
Proof (Lemma 4.2.2 and Corollary 4.2.4) The corollary follows from application of
Lemma 4.2.1 to the edge weights defined by the lemma in equations (4.3) and (4.4):

*(v) « ^w(v,u) (C-3)
u

= f(v,v)+ E w(v,«)+ E w(v*u) (C4)
/(«)>/(v) /(u)</(«)

= £ e-f(v)/T{l _ e-(/(u)-/(v))/T] + £ e-/(«)/T (C 5)
/(u)>/(v) /(u)>/(v)

+ £ ^/(V)/T

= E [(e-f{v)/T - e-!WT) +e-fW*)] + E e"/(u)/T
/(«)>/(") L/(«)</(»)

= Ee"/(V)/T (C7)

(C.6)

= deg(v)e-^lT. (a8)

79
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(Allsums are restricted to edges (v, u) in Ga-) Sincethe tt(v)must sum to 1, the normalizing
constant is clearly 1/Z(T).

To prove Lemma 4.2.2 we apply equation (4.2). In this case, for edges (v,u) in
Ga%

~r i i W(U,V) .„ .P[vt+i=v\vt = u] = v '/ C.9
c-max(/(«),/(«))/T

= deg(u)e-f(u)/T (C-10)
_ i Ji tf/W</W /rin
- dS),{e-(/(«WM)/r if/(«)>/(«) ' lC'U)

This is precisely the probability ofgenerating v (1/ deg(u)) times the probability of accepting
v (1 or exponentially small in the energy increase) specified for simulated annealing. Since
the "accepted" move probabilities in the random walk model match those of annealing,
the probability of staying in u (walking the added self-loop on u) must be equal to the
probability that annealing stays in u by rejecting a move. •
Proposition 4.3.1 Z(T) = £v deg(v)e~^v^T is monotonically increasing. For f ranging
from 0 to 1 and T > 0, Z(T) > 1, and for regular graphs of degree d, Z(T) > d.
Proof Each summand of Z(T) is increasing. For the second part,

Edeg(V)e-><v>/T> E degM> (C12)
v t/:/(t>)=0

which is always at least 1, and is at least d if the graph is regular. •
Theorem 4.3.2 ict{v) is a bitonic function ofT: there is a value TCnt('y) (the critical
temperature for v) such that 7rr(v) increases with increasing T for T < TCIn(v) and
decreases with increasing T for T > Tcrit(v). Further, Tcnt(v) is the value of temperature at
which f(v) = E,rT[/], i.e. at which the expected energy equals the energy of v.
Proof

= -fj 'deg(V)e-^") +i deg(v)e-W(-f(v)) (C.14)
ZE^lf]

Z2

= ^[/J-ZW]^). (C.16)
Note that 7173(1;) > 0and that ^ and t5 have opposite sign, so the sign of ^ is the same
as that of f(v) - E,rT[/]. Clearly EWT[/] is monotonically increasing in T (this is formally
proved later as Corollary 5.1.11). Thus for T < TCIit(v), gf is positive and itt(v) is an
increasing function of T; similarly for T < TCIit(v), ttt(v) is an increasing function of T.
•

Proposition 4.3.4 For f ranging from 0 to 1, and T > 0, vt(v) > iro(v) if and only if
f(v) > 0

Ztt0(v) - ir0(v)f(v) (C.15)
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Proof For f(v) > 0 and T > 0,7rr(v) = deg(v)e-^lT/Z > 0, while tt0(v) = 0.
For f(v) = 0, tct(v) —deg(v)/Z(T). This is decreasingwith T since Z is increasing

with T. •

Theorem 4.3.6 For any finite annealing problem, Tent > 0.
Proof The critical temperature is simply the minimum of the critical temperatures of all
states other then global minima. In our usual scaling where the minimum nonzero energy
is Af, Tent is the critical temperature of a state v of energy Af. •
Theorem 4.5.1 Let G be the graph whose vertex set V consists of permutations of the
objects 1,...,N, and in which two vertices (permutations) are connected by an edge if some
single pairwise exchange of two objects takes one permutation to the other. Then G has
conductance > 1/2N2.
Proof Despite the fact that the proof is somewhat involved, we present it in full because
we think it is of significant interest. The "canonical path" style of argument is most elegant,
and is applicable to a variety of other graphs of interest.

Let (5,5) be a partition defining the conductance. We will exhibit a set of \S\\S\
paths between S and 5 with the property that the paths are "almost independent" - i.e.
any edge is used in at most 2 \V\ paths; this will act as a bound on the multiple-counting
of edges when paths are counted. In particular, each path going from 5 to S must contain
at least one cut edge, so

# cut path edges > # paths / (2 \V\) (C.17)

= \S\\S\ / (2 \V\). (C.18)

Since each vertex has degree N(N - l)/2,

2 • # edges within S < \S\ [N(N - l)/2]. (C.19)

Then the conductance is

$(G) = # edges from 5 to S ( .
K ' 2 # edges within S + # edges from 5 to 5 '

1

, , 2 # edges within s
# edges from 5 to 5

1

\S\ N(N-l)/2
\s\\Sf(2\v\)

(C.21)

- i+w.yty-1)/2 ^c*22^

> "^ (C23)
using the fact that \S\ > \V\/2 per the definition of conductance.

We now proceed to construct the set of paths described above. There will be one
path defined between each permutation A in S and each permutation B in S. Defining the
canonical path from any permutation A to any B requires some review of permutations.

Let o —(oi,..., aft) be a permutation of the numbers 1,..., N. Another way to
express a is as a set of cycles,

a = (ol,...,oll)---(a^,...,crZl), (C.24)
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meaning that if we begin with the identity permutation (1,..., N) and move a J to position
a\, u\ to position u\, etc., completing thefirst cycle by moving cr^ to position a\, and then
repeat this process for all the other cycles, the result is the permutation a. For instance, the
permutation (2,5,4,3,1) is expressible as (1,5,2)(3,4). The cyclic form is unique except
for rotation of the elements within a cycle and changes in the order of the cycles. We will
assume a canonical cyclic form where each cycle begins with its smallest value and the cycles
themselves are sorted by their first (smallest) values. The example just given is canonical
because 1 is the smallest and first element of one cycle, 3 is the smallest and first element
of the other, and the cycle containing 1 precedes that containing 3.

Nowlet a be the permutation mapping A into B. For example if A = (2,5,4,3,1)
and B = (4,3,1,5,2), to map A to B we must move A's 1 to slot 3, which is occupied
by A's 4; A's 4 must move to slot 1, which is occupied by A's 2; and A's 2 moves to the
original position of A's 1. Thus the first cycle in cr is (1,4,2). Similarly A's 3 must move
to the position occupied by A's 5 and vice-versa, so the second cycle in a is (3,5), and
a = (1,4,2)(3,5). We will write B = a(A).

Let the points Aj of the canonical path be generated by applying in turn the cycles
of a, creating each cycle from pairwise interchanges. We demonstrate with the same A and
B (and therefore the same a = (1,4,2)(3,5)) as above. After each step, the objects shown
in boldface are those which were just exchanged.

A = A0 = (2,5,4,3,1) (C.25)
Ai = (2,5,1,3,4) (C.26)
A2 = (4,5,1,3,2) (completing cycle 1) (C.27)

B = A3 = (4,3,1,5,2) (completing cycle 2). (C.28)

That is, A is turned into B by applying the cycles of a in turn, where a cycle of length k
is executed as A; - 1 pairwise interchanges of successive pairs of elements in the cycle.

Given the vertex Aj (but not the value of j itself), define Bj = a(Aj). Then
if we are given Aj and the extra information Bj, we can determine a, and therefore the
sequence of object interchanges used in the canonical path from A to B. If in addition
we are given the extra information Aj+i, the next vertex along the path from A to B, the
difference between Aj and Aj+i tells us which pair of objects was just swapped, allowing
determination of where we are in the sequence of moves, and thus j itself. By reversing the
moves already performed we can recover A, and by performing the remaining moves we can
construct B. In short, from the directed edge (Aj,Aj+i) and extra information Bj we can
determine A, B, and the canonical path between them.

Suppose we are only given the edge {Aj, Aj+i}. How many canonical paths could
it belong to? There are 2 possible orientations of the edge, and |V| possible values of extra
information Bj (Bj is just a permutation - i.e. a vertex of G), and each choice determines
a full canonical path, including A and B themselves. Thus each edge belongs to no more
than 2\V\ canonical paths. •
Lemma 4.7.1 For a function f onV ranging from /min to f^* with /range = /max - /min/
an arbitrary distribution Pt on V; and 7Tj and 7To the stationary distributions at temperatures
T and 0:

Ept[/M] < E^t/W] + ||Pt - *T||tvd/range. (C.29)
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Proof For any two distributions P and P' on V,

Ep,[/W) = /min+Ep,W(/W-/nun) (C.30)
vev

= /min + E lP'(V) ~ WK/M " /min) + E ^(*)(/M " /min)(C3l)
v£V t»6V

< /min + E [^W-^Wl/range + EpI/W-/^] (C.32)
v:P'(v)>P(v)

= EP[/] + ||P' - PHtvd/range. (C.33)

•

Lemma 4.7.3 Given A, let T < f(e,A,n). IfA < e or A < min{/(v): f(v) > e} then

ETT[/] < 2e, (C.34)

and if A < Af then

EWT[/]<||7rT-7ro||tvd<e. (C.35)

Proof Begin with the case A < A/, so T < Af/\n(n2/e). If f(v) > 0, then f(v) > Af,
and

xT(v) = Ideg(V)e-^)/T (C.36)
Zl

< l.n.e-^fMn2/c)/Af (C37)

< e/n (C.38)

(the inequality 1/Z < 1 is from Proposition 4.3.1).
By Proposition 4.3.4,71-7(1/) > iro(v) if and only if f(v) > 0, so

|fcr-*o||tvd = E fcrM - ir0(tO] (C39)
v:/(v)>0

< n-[e/n-0] (C.40)

= e. (C.41)

And by Lemma 4.7.1,

E^I/] < E„0[/] + ||7TT - TTolltvd = IIttt - 7ro||tvd, (C.42)

concluding the proof for this first case.
If G is regular then Proposition 4.3.1 gives Z > deg, and for states v of nonzero

energy we again have

*rM <\ deg(v)e-A/-ln(n/e)/A/ <e/n, (C.43)
Z

leading to the same conclusions regarding ||7rr - 7r0||tvd and EWT[/].
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Now consider the other given values of A, all of which are less than or equal to
mm{f(v): f(v) > e}. If f(v) > e then f(v) > min{/(v): f(v) > e} > A. So for states
with f(v) > e, and at temperature T < A/ln(n2/e),

7rT(V) = ±deg(v)e-tWr (C.44)
Z

< i.n.e-*Mf*/*V* (C.45)
< e/n. (C.46)

Consequently

E^[/] = E *tM/(iO+ E Mv)f(v) (C.47)
v'-f(v)<e v:/(«)>e

< E M*)-e+ E W")-1 (C48)
«:/(«)<« v:/(v)>e

< 2e. (C.49)

If G is regular then

*t(v) <4deg(v)e-Aln(n/e)/A <e/n, (C.50)
z

again supporting inequalities (C.48) and (C.49). •
Lemma 4.7.5 Ift > t(T, e,n) t/ien beginning from any distribution Po and annealing at
temperature T for time t, the final distribution satisfies

\\Pt - Trrlltvd < e. (C.51)

Proof By Corollary 4.2.4, the probability *„&, of the least likely state satisfies ir^n >
^-e-1/7. Theorem 4.5.2 states $(T) > e_1/T*(co). By Proposition 4.4.7 and Theo
rem 4.4.9,

\\Pt ~*T||tvd < — (l- *(T)2/2)' (C.52)
""min

< (n2e1/T)e-<*(T)2/2, (C.53)

or

ln||P4-7rT||tvd < ln(n2) +~-ie-2/T$(oo)2. (C.54)

Then to make ||Pt —TryUtvd < £ it suffices to use

t >2(l»(»V«) +£) s^*. (C.55)
For regular graphs, Corollary 4.2.6 gives !„„„ > £e-1/T, giving an n rather than

ra2 in the final expression as well. •
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Remark 4.7.8 For a system in equilibrium at temperature T, raising the energy of a
given state may lower the expected energy of the system.
Example Consider a system with 3 states, of energies 0, 1, and x. In equilibrium at
temperature T, letting P = 1/T, by Boltzmann's law the expected energy is

xe~x0 4- e~P
E= * Jl B- (C56)

Differentiation with respect to x shows an extremal energy at x such that

e-sfl + (e-0 + !)(_^ + !) + pe-f* = 0# (C>57)

To take an example, T = 1/2 yields x w .722934887 and E « .222934887. Larger values of
x (as well as smaller ones) give smaller expected energy.

This example is particularly good since we are often interested in the temperature
relative to the range of energies of the states rather than in T itself. In this case the value
of x minimizing E fell between 0 and 1, and so did not affect the energy range. We find
that with x = 0 equation (C.57) has no positive solutions for P, implying that x is always
greater than 0. Substituting x = 1into (C.57) yields 2e~^ -/3 + 1 = 0, or p w 1.463055514.
Thus x is less than 1 for fi larger than this, or equivalently for temperatures less than about
.683501064.

The computation is even simpler if we take a system with just 2 states, of energies
0 and x, at temperature T = 1. In this case the expected energy is E = ** _xjT. Note that
E[/] —» 0 for x —* oo and for i-+0. The maximum of E occurs when 0 = (ex + 1) - xex,
which has numerical solution x « 1.278464543. Since the energy range in this case is x
itself, the behavior of the "relative temperature", T/x, is not immediately evident. •



Appendix D

Proofs for Chapter 5

Remark 5.0.1 Begin in equilibrium at To. Apply the schedule Ti,T2,...,Tn, where each
Ti < To. Then the probability distribution following this schedule may give less weight to
the global minimum than it had in the initial equilibrium distribution: in fact, may give it
arbitrarily small weight.
Example ("Probability Pump") The probability of the global minimum can be made
arbitrarily close to 0 independent of the initial distribution and of the upper bound on
the Ti. Consider the 4-state example of Figure D.l. Apply a schedule of the form

energies

stales

Figure D.l: Small but non-constant temperature does not imply nearness to small-
temperature equilibrium

0,..., 0, T, 0,..., 0, T, ...: the number of zeros separating two T's will be large but con
stant. After each application of temperatures 0,..., 0, virtually all the probability mass is
in states 1 and 4 (dashed arrows in figure). In particular, after one step starting from state
3, we are either in state 2 or state 4. From state 2 the move to state 3 is never accepted.
Thus the probability of remaining in state 2 after c attempted moves is precisely 1/2c -
the probability that all attempted moves happen to be to state 3 rather than state 1. So
the probability of being in either state 2 or 3 after c + 1 moves is less than 1/2c times the
probability of beginning there.

86
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When temperature T is applied (solid arrows), some fixed fraction of the probabil
ity mass onstate 4 (e~(f*~f*)lT ofit) is transferred to state 3. When the c+1 temperature-0
iterations are made, half the transferred amount reverts to state 4, but the rest (but for the
fraction 1/2C) shifts to state 2 and then to state 1. Thus with each application of T, 0,..., 0,
a fixed fraction of the probability on state 4 (at least e-U*-f*)lT[i —1/2C]) is transferred
to state 1, and the probability of state 4, the global minimum, decays to 0 exponentially!
•

This indicates that monotonicity of the cooling schedule is essential to its tractabil-

ity.
Lemma 5.1.3 H(P) > 0, with equality iffP = tt.
Proof

H(P) = £>(0)¥,(£M) (D.l)

^ *(S>M® (°-2)
= V(1) = 0, (D.3)

where the inequality follows from convexity of <p. Since 7r is strictly positive and (p is strictly
convex, equality holds ifEP(v)/7r(v) is constant. •
Theorem 5.1.4 Let M be the transition matrix for a Markov chain on V. Suppose ir is
a strictly positive measure on V and is stationary for M, i.e. irM = ir or equivalently, for
all u, J2V ir(v)M(v,u) = tt(u). Then for any distribution P on V,

H(P-M)<H(P). (DA)

Proof

H(P-M) =E^W^(^)EPWM(V^)) (D-5)

=?**($) (»•*)
= H{P), (D.9)

where the inequality follows from the convexity of y> and the fact that £w *'"jiffi'"' = 1.
•

Lemma 5.1.8 The entropy of P relative to ftp may be written

H(P,ire) = -S(P) - L(P) + InZ(P) + PF(P) (D.10)
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where the entropy S(P) andpartition function Z(p) areper definitions 5.1.6 and4-2.3, and
we define F(P) = EP[f(v)], and L(P) = Ep[lndeg(v)].
Proof

H(P,*T) =J>(*)ln(^I) (D.ll)
= £{/>(») In P(b)-[In deg(i;)-In Z(T)-/?/(»)]} (D.12)

V

= -S(P)-L(P) + In Z(P)-rpF(P). (D.13)

•

Lemma 5.1.9 The derivative of the partition function with respect to inverse temperature
P is

dZ{P) =-Z(P)^p[f\. (D.14)
dp

Proof

f = £(£*.(.).-*«•>) (D.15)
= £d*(.)e-«M(-/(«)) (D.16)

=-^E^^^'/W (D.17)
= = -Z(/3)E„e[f]. (D.18)

We have shown every step in the proof because the same tricks are repeated
throughout this chapter. •
Lemma 5.1.10 Thederivative of the expected energyin equilibrium at inverse temperature
P is

^ =-Var„,[/]. (D.19)
Proof

dFJTtp)
dp d0 *-> Z{&)= ^E^TmdesM'/(•)e-«W (D.20)

=E^*«(')/(«)(-/W)«-WW (D.21)

Substituting for Z'(P) from Lemma 5.1.9,

<**> =^lf{v?]+m^Il.m^[f] (D,2)
= -E»fl[/(t-)2] + E^[/(t,)]2 (D.23)
= -Var„fl[/]. (D.24)
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Lemma 5.1.12 The derivative of the Gibbs entropy plus the expected log of the degree in
equilibrium at inverse temperature P is

ffid^Hl-^^W. (D.25)

Proof From Definition 5.1.2 it is evident that the entropy of any distribution relative to
itself is 0. Using Lemma 5.1.8 to expand H(n:p,i:p),

(S + L)(*fi) = In Z(P) + PF{*fi). (D.26)

The derivative is

±(S +L)(«P) = |M+/}?(,,) +Ffo). (D.27)
Substituting for Z'(p) and F'(p) from Lemmas 5.1.9 and 5.1.10 respectively,

JL(S +L)(*e) = ~Z{Pyfa* +P(-Vary/9[/]) +Ffa) (D.28)
= -PVax^tf). (D.29)

•

Lemma 5.1.14 If F(P) = F(irp) then (S + L)(P) < (5 + L)(^p).
Proof By Lemmas 5.1.3 and 5.1.8 respectively,

0 < H(P,tc0) = -(S + L)(P) + In Z(P) + PF(P), (D.30)

and by the same reasoning

0 = H(irp,*fi) = -(S + L){vfi) + In Z(P) + PF(tt0). (D.31)

Since F(P) = Ffo), (S + L)(P) < (S + j&)(it^). •
Lemma 5.1.15 Let Po = 7r(/30) with Po > 0. For any distribution P, if

(S + L)(P) - (S + L)(P0) > 0 (D.32)

t/ien

-f-[(S +I)(P) - (5 +i)(i»o)] <F(J>) - F(P0). (D.33)
Po

Proof Let & be such that F(7rpl) = F(P). (Such a/?i exists - and is unique - since F(P)
is continuous and is monotonically decreasing from /maX to /m^ as P goes from -oo to
+oo.) From Lemma 5.1.14, (5 + L)(P) < (S + I)(/?i) so

(5 + L)(P) - (S + Z)(P0) < (5 + L)(ta) - (5 + £)(**). (D.34)
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By the hypothesis of the lemma (5 + L)(P) - (S + L)(P0) > 0. With (D.34) this
implies (5 + L)(-npx) > (S + £)(?%). Since P0 > 0 and (by CoroUary 5.1.13) (5 + X)(tt/3)
is decreasing for P > 0, if it were the case that Pi > po then (S + X)(7T/31) < (S + jL)(7T^0),
which would be a contradiction. It follows that Pi < Po.

Now, by Lemmas 5.1.12 and 5.1.10,

±(±(S-rL)(<xp)-F(*e)) = J-(-/3Varw,[/]) - (-Var^[/]) (D.35)
P_
A)

= (1 - ±l)Var^[/], (D.36)

which is strictly positive for P < Po- Since Pi < Po it follows that

±-(S +L)(*0l) - F^) <i-(S +L)(<K0O) - Ffa). (D.37)
Po Po

From (D.34 and rearrangement of the inequality above,

±-(S +L)(P)-(S-rL)(P0) < ~(5+I)(^1)-(5 +X)(7r/3o) (D.38)
Po Po

< Ffo^-Ffo,). (D.39)

•

Theorem 5.1.16 Beginning from the distribution Po = ttt0, anneal with cooling schedule
Ti, T2,... where To > Ti > T2 •• •. If the intermediate distributions are Pi,P2,..., then at
any time t, Ept[f] < Ep0[/].
Proof From a distribution Pt we make a move at temperature Tt+i to yield distribution
Pt+i. Let

and

*-?*«Mb(£$)- (D41)
By Lemma 5.1.4 we know that

Hi -Ht<0, (D.42)

and by Lemma 5.1.8,

So,

H(P,*T) =-(5 +L)(P) +In Z(T) +±F(P). (D.43)

0 > H[-Ht (D.44)

= 7j?~lF(Pt+i)-F(Pt)}-l(S +L)(Pt+i)-(S +L)(Pt)] (D.45)
+{Z(Tt+i)-Z(Tt)]
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which implies
F(Pt+i) - F(Pt) < Tt+i[(S+ L)(Pt+i) -(S-r L)(Pt)]. (D.46)

Now define a,- = (S + L)(Pr) so

F(Pt+i) - F(Pt) < Tt+i(ar+1 - or). (D.47)

Summing from r = 0 to t - 1,

t-i

F(Pt) - F(P0) < E Wot-k - O- (D.48)
T=0

But

t-i

E TT+i(ar+i - aT)
T=0

= Ti(ax - aQ) + T2(a2 - a{) + •••+ Tt.i(at.i - at.2) + Tt(a< - a<_0 (D.49)
= -Tiao + (Ti - T2)aa + •••+ (Tt_a - Tt)at_i + T£at (D.50)

't-i

= Ti E ArOr - a0 (D.51)
<T=1

where Xt = Tt/Ti, and for all r ^ t, Ar = (TT - TT+i)/Ti. Note that since the Tt's are
decreasing and non-negative, all AT > 0. Also, £AT = 1. That is, the Ar's yield a convex
combination of the ar's, and

E^ik+i-flr) = TjfE^rar-ao) (D.52)
T=0 \r=l /

< Ti (max a,. - a0) . (D.53)

Substituting inequality (D.47) back in for the left side of (D.53), for all t,

F(Pt+i) - F(Pt) <Ti (miixaT - a0) . (D.54)
Letting

k(t) = argmaxaT, (D.55)

for all t

F(Pt+i) - F(Pt) <Ti (afc(0 - a0) . (D.56)
We wish to show that F(Pt) - F(Pq) < 0, so it suffices to prove that ak^ - a0 < 0.

Note that k(k(t)) = k(t), sincemaximalityof ak in {ai,.. .,at} impliesmaximality
of ak in the subset {oi,.. -,ak(t)}. Thus as a special case ofinequality (D.56),

F(Pk{t)) - F(Po) < Ti(ak{m - a0) = Ti(ak{t) - oo). (D.57)

We need only show that ak^ - ao < 0.
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Suppose ajt(t) - ao > 0. Then

Ti(ak(t) - a0) < T0(ak(t) - a0) < F(Pk(t)) - F(P0) (D.58)

where the second inequality is from Lemma 5.1.15. But inequalities (D.58) and (D.57) are
in contradiction, so ak^ —ao must be strictly less than 0. •
Corollary 5.1.17 (monotonic cooling) Begin from a distribution Pq '- ||Po —Tolltvd < £
and anneal with cooling schedule T\t T2,... where T0 > Ti > T2---. Then at any time t,
Ept[f]<EVTo[f]-re.
Proof Let 6+(v) = max{0,(Po —To)M}» *'•£. 6+(v) is the vector of excesses of Po over
7tt0- Similarly let 6~(v) = max{0,(7rr0 - Po)(v)}, the vector of excesses of tttq over Po.
||Po —To 11 tvd < £ implies that the summed entries of 6+ and 6~ are each no more than e,
so they may be written as 6+ = e'A+ and 6~ = e'A~ where A+ and A~ are probability
vectors and e' < e.

So Po = TTT0 + e'A+ —e'A~. Because annealing is a Markov process, with Ml =
Mi'--Mt,

Pt = p0Ml = [*t0 + £'A+ - e'A-]Ml (D.59)

and

Ept[/] = E/W^o^K^ +^A+M'K^-^A-M*)^)] (D.60)
V

= EWTo [/]+ e'EA+Mt[f) - e'EA-Mt[f] (D.61)
< B^I/1 + e'.l-e'.O (D.62)
< ETTo[/] + £ (D.63)

•

Corollary 5.1.19 (monotonic superschedule) Let the temperature T and the cooling
schedule {T(r)}tT=i be such that for anyPo, the finaldistribution Pt satisfies \\Pt —TtTt lltvd <
e. If T(r) is a subschedule of a monotonically nonincreasing schedule {T'(r)}$.'=1, then
Ep„[/]<E,Ti, [/] + £.
Proof Let the offset of the schedules be c. Whatever the distribution Pc, the distribution
Pt+C satisfies ||Pt+c —T||tvd < £• Taking this to be the initial distribution for Lemma 5.1.17,
that lemma implies Ept,[/] < EWT[/] + e. •
Proposition 5.2.1 For any 6 there exists 0 < Ts < Tcrit such that for all T < Ts,
IKt - ^olltvd < 6-
Proof By Corollary 4.3.3, for every v € V, as T decreases from Tcrit towards 0, kt(v) tends
monotonically towards x0(v); that is, |7rr(v) - 7r0(v)| goes to 0 monotonically. It follows
that

Ikr - Tolltvd = r E I^tW ~ *o{v)\ -* 0 (D.64)

monotonically. The proposition follows from taking Ts to be the largest temperature less
than or equal to Tcrjt such that \\^t6 - flolltvd < S. •
Theorem 5.2.2 Let the n-vector Pt be the state probability vector at time t of a time-
variant Markov random process, starting at time 0 with state probability vector Pq . Let Mt
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be the transition matrix applied before time t (t = 1,2,...), so Pt = Pt-iMt. Let 7rt be the
stationary distribution corresponding to Mt, so 7rtMt = 7rt. Then for any distribution tto,

\\Pt ~ *t||tvd < \\P0 ~ ^Olltvd + Iko - TTlHtvd + ' ' ' + IKt-1 " TTtHtvd- (D.65)

Proof Let C(w) represent an unknown vector the sum of the absolute values of whose
elements is no more than 2w. Note a few properties of this notation:

• HP and Q are probability vectors (positive elements summing to 1) then
ll-P - QWtvd < wis equivalent to P - Q = ((w).

• The sum of two vectors of masses u/i and w2 is a vector whose mass is no more than
wi + w2. We write ((wi) + ((w2) = ((wi + w2).

• When a transition matrix acts on a vector of mass w the result is a vector of mass no

more than w. For a transition matrix M (positive elements, each row sums to 1), we
write ((w) •M = ((w).

By induction on t we show that

t-i

Pt = *t + C(\\Po - *o||tvd) +E^lki " *i+illtvd), (D.66)
t=0

from which the theorem statement follows immediately. The statement is trivially true for
t = 0. Then,

Pt+1 = PtMt+i (D.67)

= Lt+Cdl^o -Tolltvd) +ECdk -7Ti+1||tvd) JMt+i (D.68)

= \[*t+i +(Tt - 7rt+1)] +CGI^o - *o||tvd) +EXdk - *;+illtvd) JMt+i (D.69)

= Ut+i +C(\\Po -Trolltvd) +JZCihi -T*+illtvd)J Mt+i (D.70)
t

= 7r4+1 +C(||Po-7r0||tvd) +EC(lki-^+i||tvd)- (D.71)
i=0

m

Corollary 5.2.3 Let an annealing problem with critical temperature Tcrjt o.nd a sequence
of temperatures {Tt} satisfying T^t > To > Ti > T2 > • • be given. From an initial state
probability vector P0 anneal at temperaturesTi,T2, Then the distribution Pt at any time
t satisfies

\\Pt ~ 7rTt||tvd < H^O " TTolltvd + IkTo " ^Ttlltvd (D.72)

and

\\Pt ~ TTolltvd < H^O ~ TTTolltvd + \\*T0 - *o||tvd- (D.73)
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Proof Follows from theorem 5.2.2 and the fact that, because the 7rrt's are monotonic in t,

IkTo ~ Ti lltvd + •••+ Ik^.x - 7rTt||tvd = lkr0 - *Ttlltvd- (D.74)

The second statement of the corollary follows from the first:

\\Pt - Trolltvd < \\Pt-*Ttlltvd + lkrt - 7ro||tvd (D.75)
< 11^0-TTTo lltvd +|kT0-^Tt lltvd + IkTt " TTolltvd (D.76)

= Hi'o - *T0lltvd + lkr0 - *o||tvd. (D.77)



Appendix E

Proofs for Chapter 6

Lemma 6.1.2 If(G, f) and (G', f) are similar with scale factor a, then annealing on G
at temperature T is equivalent to annealing on G' at temperature aT. That is, ifv'0 = cr(v0),
the Markov chain v[ defined by annealing on G' is identical to a(vt) - the image in G' of
the Markov chain defined by annealing on G.
Proof Because G and G' are isomorphic, the probability of generating u from v € G is
equal to the probability of generating o(u) from a(v) G G'. The energies are related by
an affine transform, f'(a(u)) - f'(a(v)) = a[f(u) - f(v)], so the probabilities of accepting
these moves are also equal. Thus the two chains have equal transition probabilities, and
from isomorphic initial states are identical Markov chains. •
Lemma 6.2.1 Let an annealing graph G with n vertices and energy function f : G —* JR. be
given. Iff ranges from exactly f^n to /max, let /range = /max - /min- Let a value 0 < e < 1
be given, as well as values 0 < r < 1, c > 0, and k £ TL satisfying crk < /range < cr*'1.
Anneal at temperature T = crkT(e) —crke/ln(n2/e) for time

t = t(rf) (E.l)

= 2(ln(n2/£) +X) nV^. (E.2)
Then E»T [/] < /min + 2e /range; and regardless of the initial state probability vector P0 the
final distribution Pt satisfies \\Pt —TrWtvd < £• It follows that Ept[/] < /min + 3e /range-
Proof By Lemma 4.7.3, if/ ranged from 0to 1then using T = f(e) would ensure ETT[/] <
e. The lemma stipulates T = crkf < AangeT. By thesimple scaling result ofTheorem 6.1.2,
using T < /rangeT(e) ensures ETT[/] < /„»„ + 2e /range-

Rescaling Lemma4.7.5says that using time t = t(T//range) guarantees ||Pt - 7rr||tvd <
e. In this case, T//range > T/crk~l = rf, so time t = i(rt) is sufficient to guarantee
Ikr - -Ptlltvd < £•

Lemma 4.7.1 yields Ept[f] < f^ + 3£ /range- •
Theorem 6.2.2 Let us be given a value 0 < e < 1, and an annealing graph G which is
known to have no more than n vertices and whose energy function f is known to have range
ci < /range < c2. Let r < 1 and K 6 TL be such that rKc2 < ci. For k = 1,..., K in turn,
anneal at temperature Tk = c2rkf(e,n) for time t = i(rf). Then the distribution Pk after

95
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the K 'th "generation" of annealing satisfies

EPjc [/] < /min + 3£ /range. (E.3)

Proof Let A; be the value for which

rkc2 < /range <r*-^. (E.4)

By Lemma 6.2.1, annealing at Tk for time tk results in distribution Pk with

E„Tfc [/] < /min +2e /range (E.5)

and

\\Pk-*Tk\\tvd<e. (E.6)

The cooling schedule specified is monotonically nonincreasing and includes this
(Tk,tk) as a subschedule, so by a rescaling of Corollary 5.1.19, the final distribution Pk
satisfies

Epfc[/] < EWTfc[/] +£/range < /min+ 3£/range- (E.7)
•

Corollary 6.3.1 Under the conditions of Theorem 6.2.2, let r = 1 - T(e)/2 and K =
fin (fJ-J) / ln(l/r)] • Then the cooling schedule specified by Theorem 6.2.2 uses total running
time asymptotically equal to

Ki(rt(e)) <> y \n2(l/e)t(f(e)). (E.8)

to yield its solution of "quality" (relative expected energy) no more than 3e.
Proof We will be a little bit sloppy here to avoid wasting effort on something so straight
forward. We will take it for granted that the optimal value of r will tend to 1 from below
as e —* 0, and that the associated K will go to infinity.

Making rKc2 < cie means using

K= fln(|i)/ln(l/r)l (E.9)
=ln(|ii)/lii(l/r) +0(l). (E.10)

The run time t in each "generation" is

t- 2(ln(n2/e) +-V) n4e2«rf\ (E.ll)
for

2 12
lnt ~ —r +ln— ~ — (E.12)

rT rT rT K '
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under the continuing assumption that as e -* 0, r -• 1, while we know that f(e) -» 0 and
that l/f(e) = iln(n2/c) > ln(n2/e). Thus the log of the total time is

In Kt ~(X\ +(lnln -- In In -} . (E.13)
f = e/ln(n2/e), so lnln(l/e) = o(ln(l/e)) = o(l/f) for e small, and

lniirt~4r-lnlni. (E.14)
rT T

Letting r = 1 —6 (and presuming 6 —• 0 as e —> 0),

lniift~-l(l +£)-ln<S. (E.15)

The minimum of this expression occurs at

InKt 2 1 ,

° = — = f'V (E-16)
leading to the asymptotically optimal choice 6 = T/2 = %e/\n(n2/e).

Noting that 1/r = l+6+o(6) = l +f/2+o(T/2) leads to the interesting conclusion
that

1 1 1 ,—- = _ + - + 0(1) (E.17)
rT T %

and so
e2/rt = e2/f+2/2+o(l) „ g. fi2/* (£ lg)

It follows that

fr*) =Hn2/e) +%eV^
i(f) \n(n2/e) +4 e2l? ' K }

Also, since ln(l/r) ~ 6 = T/2,

^^.MW J^ (E.20)
ln(l/r) \e/\n(n2/e) e K' J v J

We conclude that

^^~ei(r~-ln2(l/£). (E.21)t(T) e K' } K )
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Proofs for Chapter 7

Proposition 7.2.4 Let t(e) > (1/e)2. Then for any fixed d, T(dt(e),1/d, e) ~ dt(e).
Proof Chebyshev's inequality (seefor example [2]) says that for a random variable X with
mean \i and variance a2, for all a > 0,

P[\X -fi\> aa] < 1/a2.

Let X ~ B(dt', 1/d) and a = y/Tfe. Then Chebyshev's inequality says that

X<t;--Wt'(l-l/d)l < PW-t^^^sfit^lid)
VI

< P

< e.

VI

If

t<t' - -y=y/t'(l - 1/d)
VI

then this will imply the desired result

P[X < t] < 1 - e.

(F.l)

(F.2)

(F.3)

(F.4)

(F.5)

We claim that t' = t + 2Vt/I suffices. First, note that t' = t(l + 2y/l/et) and that
l/(et) = e(l/e2)/t(e) < e -• 0. Thus

for

-Wt'(l-l/d) = yJ-£(l-l/d)t(l +2y/l/Tt)

^-^M.JJUi
< 2y/t/e

e-^fi^m >(«+Vt)-2v?
= t.

98

(F.6)

(F.7)

(F.8)

(F.9)

(F.10)
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We have now shown that for X = B(dt',1/d) with t' = t(l + 2y/lJIi) ~ t,
P[X > t] > 1 - e. Thus T(dt(e),l/d,£) < dt' ~ dt. Conversely, ?(dt(e),l/d,e) > dt, so
T(dt,l/d,e)~dt. •
Lemma 7.2.3 Let (G,f) = Tii=i(Gi,rifi) where without loss of generality each fi ranges
from exactly 0 to 1 and each rt > 0. Let n be an upper bound on the order of each Gi.

Let 0 < r <1, c> 0, and k £ TL satisfy rkc < r» < rk~lc.
Given e > 0, letf = f(e) andT= rkcf.
Let i = i(rf) and t = T(dt, l/d,£).
From any initial distribution anneal on G at temperature T for time t. Let the

final distribution have corresponding i-marginal distribution P. Then EWT[/t] < 2e and
\\P - T11tvd < 2e. Consequently Ep[rj/J < 4er;.
Proof With probability at least 1 - e, at least t moves are made on G», Write the final
distribution P as (1 - e)P' + eP", where P' and P" are (respectively) the distributions
conditional upon making at least t moves or fewer than t.

Since Gi is a graph with energy function rj/t- and energy range r;, Lemma 6.2.1
guarantees that EWT[r»/»] < 2ert- and that ||P/ - 7TT||tvd < £-

For any distributions 7r, P', and P", and any 0 < e < 1, if P = (1 - e)P' + eP"
then:

WP-Aui = \ E l^(") - »(»)l (F-ll)
Z t;

= iT,^ ~*) (p'(v) -*W) +e{P» -*(v))\ (F.12)
V

V

= (l-£)||P'-x||tvd + £||Pw-9r||tvd. (F.14)

The consequence for this case is that

||P-?r||tvd < (1 - e) - HJP' - -JTTlltvd + e -1 (F.15)
< 2e. (F.16)

It follows that

Epfc/i] < ErrlTifd+WP-irWtvd-ri (F.17)
< 4en. (F.18)

•

Theorem 7.2.5 Let (G,f) = Yli=i(Gi>rifi) w^ fi ranging from exactly 0 to 1 and
Ti > 0. Let n be a known upper bound on the order of each Gi, and let Ci and c2 be known
lower and upper bounds for the largest r^.

Given e > 0, let 0 < r < 1 and K € TL satisfy rKc2 < cie/d.
Let f = f(e) and Tk = rkc2f. Let i = i(rf) and t = T(dt, l/d,e).
From any initial distribution anneal on G with cooling schedule {(Tk,t)}k=0- Then

the final distribution P gives relative expected energy

E«p.^£lZgL <5£. (F.19)
maxv f(v)
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that is, the expected final cost relative to the full range of the cost function is no more than
be.

Proof First, consider a component %for which r^ > cie/d (case I). From rKc2 < cie/d
it follows that rKc2 < r». Also, by definition of c2, r°c2 > Ti. Then there is some k(i) in
0,..., K such that rk^c2 < r< < rfcW_1c2.

Lemma 7.2.3 says that from any initial distribution, annealing on G at temperature
Tfc(j) for time t yields a final distribution Pk satisfying

V«Th[rifi]<2eri (F.20)

and

\\Pk - 7TTJ|tvd < 2e. (F.21)

The "schedule" with temperature fixed at Tk^ for time t is a subschedule of the
monotonically nonincreasing schedule described by this theorem. Applying Corollary 5.1.19
and inequalities (F.20) and (F.21), the distribution P following the full coolingschedule has
the property that Ep[/j] < 2e + 2e, or

Vplnfi] < 4er<. (F.22)

Inequality (F.22) holds whenever rj > cie/d. The alternative is that rj < cie/d
(case II), in which case of course Ep[rj/j] < r» < cie/d.

Summing over all i,

Ep[/] = EEH^1 (F.23)

< E 4£r<+ E CW<* (F.24)
case I case II

d

< Ae^n + eci (F.25)
t=i

d

< 5eEr«- (F-26)
t=i

Since max,, f(v) = Ylri tne conclusion of the theorem follows. •
Corollary 7.3.1 Under the conditions of Theorem 7.2.5, let r = 1 - f(e)/2 and K =
Tin (fj-|J/ln(l/r)l. Since t(di, l/d,e) ~ di, the cooling schedule specified by that theorem
uses total running time

t8ep ~dKt(rf(e)) <> dj \n2(l/e)i(f(e)). (F.27)

to yield its solution of "quality" (relative expected energy) Esep < be.
Proof The computations are just the same as those for Corollary 7.3.1, which yielded an
efficient choice of r for Theorem 7.2.5, the only difference being the presence of the factor
d here.
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In this case we need

K= ln(jlf)/HUT) +0(l). (F.28)
The run time t in each "generation" is

t- d•2(ln(n2/e) +-V) nAe2^rf\ (F.29)

f°r 2 12
lnt ~ -r + In —r r (F.30)

rT rT rT

- the d has disappeared after the logarithm is taken.
Writing r = 1-6,

lndKt~i(l +6)-\n6 (F.31)
just as in the proof of Corollary 6.3.1. Thus the asymptotically optimal choice of r and K
is the same as in that single-variable case and the rest of the theorem follows immediately.



Appendix G

Proofs for Chapter 8

Lemma 8.1.4 For x, x' not divisible by b~k, s(x) and s(x') agree in components 1 through
k if and only if x and x' lie in a common k-piece.
Proof Induction on k. Straightforward for k = 1. Suppose x and x' lie in different (k+ 1)-
pieces but in a common fc-piece, with k ^ 0. Since they lie in a common A-piece, they
also lie in a common 1-piece, and so they have a common first digit xi (this uses the fact
that the pieces are open intervals), bx - xi and bx' —xi lie in different ifc-pieces but in
a common (A: - 1)-piece, so by the inductive hypothesis s(6x - xi) and s(bx' - x{) first
differ in the A;th component. The same is true for their complements: s(l - [bx —xi]) and
s(l-[bx'-xi]) first differ inthe &th component. Since s(x) = (xi , s(compXl(6a: - ii))) and
s^') = (ii , s(compXl(bx1 - xi))), these sequences first differ in the (k + l)st component.

Conversely, suppose s(je) and s(i') differ in component k+ l,k ^ 0. By definition,
s(x) = (xi , s(compXl(6x - xi))) and s(x) = (xi, s(compXl(6a:' - xi))). Since these differ
in component k+1, the latter portions differ in component k. By the inductive hypothesis,
compXl(bx - xi) and compXl (6a:'- xi) hein different fc-pieces. Thusx and x' liein different
(k + l)-pieces.

•

Lemma 8.1.6 (Additional Gray code property) For any vector s = (si,s2,...),
let kis = (sk+i,sk+2,...). Then for any integers k > 0 and j 6 {0,.. .,6* - 1}, for all
a:G(0,l),

*!s far) =s(comPi(aO). (G.l)
Proof The proof is by induction on k. For x' = (j + x)/bk+1, rewrite j as jib + j2, with
ii 6 {0,...,6fc-l}and j2 e {0,...,6-l}. Then

./ _ J + s h + (h + s)/6X- = -rr-rr = ^ ^ '—. (G.2)

By the inductive hypothesis,

kis(x') = s(comPil(^±i)) (G.3)

102
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= /compA(ia) +composA

= (comp^O'a), s(comp^p^^comp^x)))). (G.5)
so

(k +l)ls(x) =s(comp^^(i2)+il (a:)) . (G.6)
We wished to show that (k + l)Js(x') = s(compj(x)). Since the complement function relies
only on the parity of its subscripted argument, and j = jib + j2, we need only show that
comp^^) + ji has the same parity as jib + j2i Using "=" to denote congruence modulo 2,

if ji = 0

" \ (6-l)+j2 if j! =1 (Gl8)
s (6-l)ii+j2. (G.9)

comPil(;2) ={^.1)_j2 S;:J (G.7)
_ J h ifii = 0

Thus comp^(j2) + ji = [(6 - 1)^ + j2] + jx = bji + j2.
Lemma 8.1.7 Fors(x)={si,s2,...),

f(x) = F(si) + rF(s2) + r2F(s3) + •••. (G.10)

Proof Let (si,s2,...) = s(x), and f'(x) = EfcLi^-1^^). We prove that f(x) and
/'(x) are identical as formal power series in r, and therefore f(x) = f'(x). Specifically, by
induction on A: we will prove that / and /; agree in terms 1 through k for every A;.

Writing x as .3:1X2 • ••> by definition of s, si = xi, so the statement is true for
* = 1.

Also by definition of s, (s2,sz,...) = s(compSl(6x - Xi)), so f'(x) = xi +
7"//(compa.1(6x - xi)). But by definition of /, f(x) = xi + r/(compXl(6x - X!)). By
the inductive hypothesis, //(compXl(6x —xi)) and /(compXl(6x —xi)) agree through the
A:th terms, therefore f'(x) and f(x) agree through the A: + 1st terms.

•

Theorem 8.3.2 Let a value e and a deterministic fractal with energy scale parameter r be
given. Let T = T(e) and i = i(T). Apply confined annealing with cooling schedule (Tk, tk) =
(rk-lf,i), fork = 1,...,K, with K = [ln(l/£)/ln(l/r)]. Then the state returned has
relative expected energy

Econ=^-<3£ (G.ll)
/range

and the algorithm consumes run time

tcon=rin(l/£)/ln(l/^)l-<(0- (G.12)
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Proof By Theorem 8.2.1, annealing with (f,i) in generation 1 gives E[F(s},tl)] < 2e. By
the similarity of the connected components of Sk to Si, annealing in generation A: with

(Tfc,tjfe) = (rfc-1T1,t1) (G.13)

results in a distribution for sk satisfying

E[F(s%tk)) < 2e. (G.14)

By Proposition 8.3.1, sk ,ilc = a*/'*, so equation (G.14) also applies to sf*'*.
The energy of the final state x produced by this confined annealing algorithm

therefore satisfies

K oa

E[/] = £r*-1E[F(s*',*)]+ £ rfc-'E[F(^)] (G.15)
fc=l k=K+l

< —^—(2e +r* •1). (G.16)
1 — r

Since / ranges from 0 to 1/(1 - r), the relative expected energy achieved is

Econ=-^<2£ +r*. (G.17)
/range

The running time is obviously tcon = «K"ti.
Choosing K = |"ln(l/e)/ln(l/r)"|, for rK < e, yields the theorem as stated.

•

Theorem 8.4.2 For i,k> 1, S,+k with the unconfined move set and deterministic fractal
energy function f is a replica of Sk (also with unconfined move set and energy f). The
index set is {0,..., 6 - 1}* and the energy scale factor is rl.
Proof Write x G Sk+i as (j + x)/6*, for j G {0,. ..,6* - 1} and x G Sk. Thus j numbers
the z-piece containing x, while x is the offset of x from the left end of that interval. Then
<j(x) = (j, comp^x)) fulfills the conditions of Definition 8.4.1:

Property 1 follows from the invertibility ofcr: a~l(j,x) = (j + compj(x))/6*.
We now verify properties 2 and 3. With a point x G S»+jb associate x G Sk and

j G {0, ...,6* - 1} with x = (j + x)/6*; similarly for its neighbors x' = x - l/bi+k and
x" = x + l/bi+k.

Case I: x is neither l/(26fc) nor 1- 1/(26*). In this case x' and x" are just x± 1/6*
(yielding property 3), and j' = j" = j (property 2).

Case II: x = 1/(26*) or x = 1- 1/(26*). We treat only x = 1- 1/(26*); the other
case follows symmetrically. Then (j', x') = (j, 1- 3/(26*)), and (j", x") = (j + 1,1/(26*)).
Property 2 is satisfied for the edge {x,x'} because j —j', and for the edge {x,x"} because

av(x") = compel") = compJ+1(l - x) = compj(x) = av(x). (G.18)

As for property 3, in addition to equation (G.18) we have

av(x') = compel') = compel - 3/(26*)). (G.19)
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Together these mean that ay maps N(x) to {compel - 1/(26*)), compel - 3/(26*))}.
Whether j is even or odd, these are the two neighbors in 5*. of <7y(x) = compj(x) =
compel - 1/(26*)).

We now prove property 4. First, f(x) = £J+f rl~1F(si(x)). Define k]{si,s2,...)
to be (si,s2,...,sk). By Lemmas 8.1.4 and 8.1.6, for x = (j + x)/6* (with the usual
conventions for j and x), i|s(x) = i]s((j + l/2)/6*) and ijs(x) = s(compj(x)), so

m =i2rl~lFMU +l/2)/6*)) +r'fy^FMcomp^x))). (G.20)
J=i i=i

Using compj(x) = ay(x), the above expression for f(x) is of the form fi(j) + r*/(oy(x)).
•

Theorem 8.4.3 (product density on replica graphs) Let G be a replica of G with
scale factor c. Let Pt be an arbitrary probability distribution on the states V of G, and ttt
be the "equilibrium" distribution on I given by ^T(i) oc e'hW1'. Let Pt be the distribution
on states of G given by Pt = ttct x Pt, i.e. Pt(i,v) = -kct(i) •Pt(v)- Let Pt+i(i,v) be the
distribution on G after a single annealing move at temperature cT starting from Pt, and let
Pt+i(v) be the distribution on G after a single annealing move at temperature T starting
from distribution Pt. Then Pt+i = kct X Pt+i-
Proof First, for any Markov chain, Pt+i(v) is Pt(v) plus the "probability flux" summed
over edges incident to v. Mathematically, for a Markov chain Xt, the flux from u to v is

P(u -> v) = P(Xt = uandXt+i = v), (G.21)

the probability of going from u to v at step t. It can be decomposed as

P(u ->v) = Pt(u) •P(u -* v | u) (G.22)

where Pt(u) = P(Xt = u) and P(u -• v \u) = P(Xt+i =v\Xt = u). Note that P(u -• v \u)
is time-independent for a homogeneous Markov chain, while P(u —» v) implicitly depends
on t, through Pt(u). Then we are merely saying that

Pt+i(v) = Pt(v)+Yt[P(u->v)-P(v^u)} (G.23)

= Pt(v)+ ^2[Pt(u)P(u-* v\u)-Pt(v)P(v^u\v)}. (G.24)

Now, in the current context we are dealing with chains on G and G, so we use P
for probabilities in the former and P for the latter. We often abbreviate a vertex (i, v) of
G as just (iv), and write deg(z,v) for the degree of vertex (i,v) in G and deg(v) for the
degree of vertex v in G. Also, we let Ax(y) = min(l,e~y/T), the probability of accepting
at temperature T an annealing move which raises the energy by y.

Since all edges in G incident to (i,v) are either of the form (i, v') or (i',v) (i and
v do not both change along a single edge), application of the "flux" argument to G means
that

Pt+i(iv) = Pt(^)+El^(^ -» iv)-P(iv -> *'v)] +E[-P(*v' "> iv)~P(™ -» w')]. (G.25)
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(Double-counting the case i' = i, v' = v is irrelevant since the net flux of such terms is 0.)
For any edge of the type {(iv), (i'v)} in G,

P(iv -• i'v) = Pt(iv) •P(iv -• i'v | iv) (G.26)

=Ptiiv) •j^-^y •AcT(f(i'v) - /(iv)) (G.27)
=*cT(i)Pt(v)-j^AMfiV)-fiM). (G.28)

Symmetrically,

P(i't>->w) = 7rcT(Oi>*WT-VTAcT(//(i) -//(O)- (G.29)

By definition of Try,

*cr(0 •A^(/j(0 - //«) = 7rcT(i') •ActCZ/CO - //(i')), (G.30)

so for any edge {(iv),(i'v)},

P(i'v -* iv) - P(iv -» i'v) = 0. (G.31)

For any edge of the type {(iv), (iv')} in G,

P(iv -» iv') = Pt(iv) • P(iv -> iv' |iv) (G.32)

=PtW •̂ ^t-^ •AcT(/(iv') - /(iv)) (G.33)
=*cT(i)Pt(v) •̂ y •AcT(c[f(v') - /(v)]) (G.34)
=^cT(i)Pt(v)^^AT(f(v') - f(v)) (G.35)
= 7rcT(i)P(v - v'). (G.36)

Symmetrically,

P(iv' -+iv) = 7rcT(i)P(v' -» v). (G.37)

Substituting these expressions into equation (G.25),

Pt+i(iv) = Pt(w) +^[P(i'v-^ iv) - P(iv-^ i'v)] (G.38)

+ Yl{P(iv' -> «0 - jP(w -> iv')]
V'

= 7rcT(i)Pt(v) +£[°1+ttcT(z) ]£[P(v' - v) - P(v -> v')] (G.39)
t' v'

=*cT(i)lPt(v)+Y^lP(v'^v)-P(v^vl}\ (G.40)
= 7rcT(i)Pt+i(v), (G.41)
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where the final equality comes from recognizing that (in G) Pt(v) plus the net flux into v
is P«+i(v). •
Theorem 8.4.4 (marginal density on replica graphs) Let G be a replica of G with
scale factor c. Let Pt(i, v) 6e an arbitrary probability distribution on the states IxVofG,
and let Pt(v) = YliPt(hv) be the corresponding marginal distribution of v. Let Pt+i(i,v)
6e the distribution after a single annealing move on G at temperature cT starting from
Pt(h v); and let Pt+i(v) 6e the distribution aftera single annealing moveonG at temperature
T starting from Pt(v). Then P4+i(v) is the marginal distribution of v corresponding to
Pt+i(i,v).
Proof By the flux argument used in the proof of Theorem 8.4.3,

Pt+i(iv) = Pt(iv) +^[P(i'v -• iv) - P(iv -• i'v)]
t'€J

+ ]T [P(iv' -+ iv) - P(iv -> iv')]
v'€V

(G.42)

We will be substituting

P(iv -» iv') = Pt(iv)
deg(i,v)

and the symmetric form (swapping v and v').
The marginal distribution for v corresponding to Pt+i(iv) is

Y,Pt+i(hv) = £ A(«0+ L [Ptfv - iv) - P(iv -» i'v)]
t i€/ i,i'el

AcT(f(iv') - f(iv)) (G.43)

(G.44)

)])
«'€V Lie/ ^ '

= Pe(v) + 0+ £
v'ev L

v'ev

= Pt+i(v).

Pt+iW = £A+i(™)

Pt(v') •

- PM

deg(v;)

1

deg(v)

= PM + £ ip(v' -*v)~ p(v ->*')]

/(*') - /(»)]) (G.45)

AT(f(v) - /(„'))

AtUW) - /(")) (G.46)

'')] (G.47)

(G.48)

(G.49)

l} + (G.50)= ^2 {antisymmetric function(i,i')} +
t,i'6/
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E
v'€V

AT(/(iv)-/(iv'))S^'deiW

AT(/(iv)-/(iv'))

= Pt+i(v).

deg(v)
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(G.51)

(G.52)

(G.53)

(G.54)

(G.55)

Theorem 8.4.5 Let G be a replica graph with vertices I x V, and let the distributions
itt on I be as per Theorem 8.4-3. Let T^t 6e the critical temperature for I, and {Tt}
be a sequence of temperatures satisfying Tent > To > Ti > T2 > • • ♦. Anneal on G at
temperatures Ti,T2,... beginningfrom the distribution Pq. If there exists a distribution Po
on V such that the initial distribution P0 on I xV satisfies

||P0 - (7TTo X P0)||tvd < fi,

then the distribution at time t satisfies

\\Pt ~ (*Tt XPt)||tvd < £ + IkTo " TTtlltvd.

Proof The reasoning is just as for Theorem 5.2.2. Inductively, assume

\\Pt ~ (*Tt XPt)||tvd < £ + IkTo - TTTtlltvd.

(G.56)

(G.57)

(G.58)

Truth for t = 0 is given by the hypothesis (8.12).
As in the proof of Theorem 5.2.2, let ((w) be an unknown vector the sum of the

absolute value of whose elements is no more than 2vj; in this case the components of ( will
be indexed by i alone or (i,v) depending on the case. Rewrite Pt(i,v):

Pt(hv) = 7rTt(i).Pe(v)+[C(£ + ||7rTo-7rTt||tvd)](i,v)

= [*T,+l + CflkT, " *T,+i lltvd)] (*) •Pt(v)
+ [C(£ + ||irr0 - Tt lltvd)] (h V)

= *Tt+l(i)'PM+ [CdkTt - WTt+l||tvd)](»,«)
+[C(fi + lkT0-7rTt||tvd)](i,v)

= *Tt+l(i) •Pt(v) + [C(£+ \\vTo " WTt+l||tvd)](»,v).

The final inequality follows from

\\*T0 ~ ^Tt lltvd + IkTt ~ *Tt+l lltvd = |Kt0 ~ Tt+1 lltvd,

a consequence of Tcrjt > T0 > Tt > Tt+i.

(G.59)

(G.60)

(G.61)

(G.62)

(G.63)
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Applying Theorem 8.4.3, after one step at temperature Tt+i we get

Pt+l(i,v) = TTt+1(t) •Pt+l(v)+ [C(fi + ||7TTo - 7TTt+1||tvd)](^). (G.64)

•

Corollary 8.4.6 Let itt be the equilibrium distribution of si for annealing on Si at tem
perature T, and let T^t 6e the associated critical temperature. Run the unconfined annealing
algorithm with cooling schedule {(Tk,tk)}k<=1, where Tk is monotonically nonincreasing in
k and Tent > T\. Ifs\'tl and s^*1* are the values ofsi at the end ofgeneration 1 and at the
end of generation k respectively, then

\\skitk ~*rjtvd < \\s\*x - ttTi lltvd + IK - tfTJ|tvd. (G.65)

Proof The proof is virtually identical to that of Theorem 8.4.5. The only difference is that
in this case we must consider changes of generation as well as annealing moves. Suppose
that at the end of generation A: the state sk,th has probability

P((si,s2,...,sk)) = ir(si)P'((s2,...,sk))+[C(e)]((si,s2,...,sk)). (G.66)

Here P'({s2,...,sk)) is an arbitrary function (obviously we are thinking of it as the
marginal distribution on {s2,...,sk)), and by the last term we mean an element (indexed
by (*i, *2,•••»sk)) of an unknown vector ( of magnitude e. Since the change of generations
maps sk,th to 5*+1,0 by

(si,S2,...,Sk) l-> ((si,S2,...,Sk) , Srand), (G.67)

P((sus2,...,sk+i)) = {*(si)P'((s2,...,sk)) (G.68)

+[C(fi)]((si,s2,..., sk))} •P[sfc+i = srand]
= tt(si)P"((s2, ..., sk+i)) + [C(e))((si,s2,..., sk+i)), (G.69)

where of course

P"({s2,...,sk+i)) = P'({s2,...,sk))'P[sk+i = sraad\- (G.70)

That is, if sk,tk has a distribution which is approximately a product distribution, then s*+1,°
does also, and the error term is unchanged in magnitude. Thus the analysis of Theorem 8.4.5
applies to this case as well. •
Theorem 8.4.8 Consider two different unconfined annealing processes. The first uses
coolingschedule (Ti+»,ti+i), runs for generations with i > 0, and at time t into generation
1+ i has distribution P1+t,t((si,s2,..., si+i)) on state space Si+i. For a fixed integer k > 0,
the second uses cooling schedule (Tk+i,tk+i) = (rk~lTi+i,ti+i), again runs for generations
with i > 0, and at time t into generation k + i has distribution Pk+t,t({si,s2,..., s^+i)) on
state space Sk+i, with corresponding marginal distribution Pk+tk+i((sk,... ,sk+i)). If the
"initial" distributions satisfy Pk'° = P1,0, then for all i,t representing positive time,
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It follows that /£-*•' = Pi1*'*.
Proof We show by induction on "time" i,t that Pk+*k+i = P1+t,t. There are two cases:
either the generation number changes (along with the state space), or a move is made in
the current generation. The condition that ik+i = h+t assures that the same case applies
to both processes.
Case I: A new random variable is concatenated onto the previous state codes, which has
the same effect on the two distributions under consideration.

Case II: As per Theorem 8.4.2, regard Sk+i as a replica of the basic graph whose vertices are
identified by (sk,.. .,sk+i), i.e. regard Sk+i as a replica of S,\ The preservation of the equal
ity of the two distributions follows immediately from Theorem 8.4.4 and the assumption
fk+i^r^Ti+i.

Taking marginals with respect to the first variables of both sides of equation (8.16)
shows that P^'1 = P**'. •
Theorem 8.4.9 Let a value 0 < e < 1 and a fractal with energy scale parameter r be
given. Let f = f(e) and i = i(e). Assume e is sufficiently small that f < T^t, the
critical temperature for annealing on Si. Apply unconfined annealing with cooling schedule
(Tk>tk) = (r^fj), andk=l,...,K with K = [ln(l/e)/ln(l/r)T. The state returned has
relative expected energy satisfying

Euncon=-7 5: 3fi (G.72)
/range

and the algorithm has run time

tuncon = [ln(l/fi)/ln(l/r)] • t. (G.73)

Proof Initially sk is sk' . By Theorem 8.4.7, an unconfined annealing beginning from a
like-distributed «i (or any other distribution) would at generation 1 + i (i > 0) have

\\s\+i'tl+i - 7rTl+i||tvd < fi + lkTl - 7rTl+i||tvd. (G.74)
Thus by Theorem 8.4.8, at generation A: + i we have

Ha*"-'"' - irTl+t.||tvd < e+ ||xTl - *Tl+«lltvd- (G.75)
Now apply the triangle inequality for total variation distance, and the monotonicity of
entries of ir? below Tcrit:

ll^^-^olltvd < ll^+Mfc+<-^T1+J|tvd + lkT1+i-7ro||tvd (G.76)
< £ + ||7TTl - 7TTl+i lltvd + \\*T1+i ~ TTolltvd (G.77)
= £ + ||7TTl - TTolltvd (G.78)
< £ + £. (G.79)

The final inequality above uses Htt^ - 7r0||tvd < £- Since we areusing Ti = f(e,AF,b), this
is a consequence of Lemma 4.7.3.

For i = K - k, inequality (G.79) yields \\sk ,tK - -rrolltvd < 2e. This is precisely
what had in the proof of Theorem 8.3.2, so the same parameter choices lead to the same
result. •
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