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ABSTRACT

In plasma immersion ion implantation, a target is immersed in a plasma and a

series of negative, high-voltage pulses are applied to implant ions into the target. We

develop an approximate analytical model to determine the time-varying implantation

current, the total dose, and the energy distribution of the implanted ions for a voltage

pulse with finite rise- and fall-times. Scaling rules are presented for the implanted

current and energy distribution with respect to plasma density, peak applied voltage,

and ion mass. Comparisons with numerical simulations are used to demonstrate that

the accuracy of the model is well characterized by a single parameter: the ratio of the

ion flight time to the pulse rise-time.

I. INTRODUCTION

Ion implantation has become a routine fabrication technique in semiconductor

device manufacturing. In addition, metallurgical implantation is emerging as a

technology in which new surface alloys are created to improve resistance to wear,

corrosion and fatigue. Despite its widespread application, conventional ion implantation

is not without drawbacks. Among these are ion source and beam scanning complexity

and maintenance, low beam current, nonuniform implantation profile, and low energy

efficiency per implanted ion.

In plasma immersion ion implantation (PHI), the intermediate stages of ion

source, beam extraction, focusing, and scanning are omitted. The target is immersed in

a plasma environment, and ions are extracted directly from the plasma and accelerated

into the target by means of a series of negative, high-voltage pulses applied to the

target. Both metallurgical1"5 and semiconductor6 implantation processes have been

demonstrated using PHI.



Various analytical and numerical models of PHI have been developed7"9 that

determine the time-varying implantation current, the total dose, and the energy

distribution of the implanted ions. For a rectangular voltage waveform applied to the

target, an initial uniform density ion "matrix" sheath is assumed to form in the time

scale of the inverse electron plasma frequency u>pe, as electrons are driven away.

Subsequently, the sheath is assumed to grow in accordance with a quasistatic Child

law7.

In a realistic PHI experiment, the voltage pulse rise- and fall-times may

constitute a significant fraction of the total pulse width (~ 0.5—3 /zs). In this case, the

physical picture of a nearly instantaneous ion matrix sheath forming should be replaced

by that of a gradually expanding, nonuniform sheath. The time evolution of this sheath

determines the current j(t) and the energy distribution dN/dWoi implanted ions. Self-

consistent equations have been solved numerically to find the time evolution of the

sheath and the implanted current, as well as the energy distribution for non-abrupt

voltage pulses in one-dimensional planar, cylindrical, and spherical geometries8.

However, it is desirable to have an analytical estimate of j and dN/dW. In this study,

we develop an approximate analytical model for a trapezoidal voltage pulse in one-

dimensional planar geometry and compare the results with the numerical solutions.

The model yields the time evolution of the sheath edge, the instantaneous implanted

current, energy distribution, and total dose, plus their scalings with system parameters,

that are useful in describing and implementing the PIII process. Additionally, the

accuracy of the model is demonstrated to be characterized by a single parameter: the

ratio of ion flight time to pulse rise-time.
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H. BASIC MODEL

The applied voltage waveform is shown in Fig. 1 and is chosen to have the form

0 < t< U

tr < t < tr + tp . (1)

tr + tp < t < tt

where U = tr + tp + tf. The pulse is characterized by three different times: rise-time

k, plateau-time iP, and fall-time tj. Initially, the planar target is immersed in a

uniform plasma of density no. For t > 0 (Fig. 2), the applied voltage causes plasma

electrons to be pushed away from the electrode, resulting in the formation of an

expanding, nonuniform sheath. The model assumptions are as follows:

(1) The ion flow is collisionless. This is valid for sufficiently low pressures.

(2) The electron motion is inertialess. This follows because the characteristic

implantation time scale much exceeds upl.

(3) The applied voltage V < V0 is much greater than the electron temperature

Te during nearly the entire pulse duration; hence the Debye length XD < 8

(except for t > 0) and the sheath edge at s is abrupt.

(4) A quasistatic Child law sheath forms instantaneously at t = 0+ and exists

during the entire implantation. The current demanded by this sheath is

supplied entirely by the uncovering of ions at the moving sheath edge9.

(5) During the flight of an ion across the sheath, the electric field E(x) is frozen

at its value at the beginning of the flight.

Assumptions (3) (for t > 0), (4) and (5) are approximations that permit an analytical

solution to the sheath problem. The conditions for which these assumptions are

justified will be presented in Section VI by comparison with numerical results.
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m. SHEATH MOTION

The Child law current density jc for a voltage V across a sheath of thickness s

. 10,11
is

1/2

,• - 4, (2e\ Yl!l (2)

where e© is the free-space permittivity and e and M are the ion charge and mass.

Equating jc to the charge per unit time crossing the sheath boundary,

en0ft =jc , (3)

the sheath velocity is

ds _ 2 sluo v3'2(f\ (a)
Tt ~ 97{t) v (t)' { }

where

30 = (2e0Vo/en0)1/2 (5)

is the characteristic sheath thickness,

%o = (2eV0/M)1/2 (6)

is the characteristic sheath (and ion) speed, and

V(t) = V(t)/Vo (7)
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is the normalized voltage waveform.

To proceed, (4) must be integrated to obtain the sheath motion s(t). For

convenience in the remaining analysis, we introduce a normalized time T = wpit.

Integrating (4), with s(0) = 0, V(t) = t/tr from (1), and using the relation

Wpi = Uo/So , (8)

we obtain

/ \1/3S(T) =IAj r5/6/ Tl/2 , 0<T< Tr . (9)

where S = s/s0 is the normalized sheath thickness. Equation (9) is a relation for the

sheath motion during the rise-time of the pulse, 0 < T < Tr. During the pulse plateau,

Tr < T < Tr + Tp, s(t) is found by integrating (4) from Tr to T with V(t) = 1 to

obtain

S3{T) = S3(Tr)+ |(T- Tr). (10)

Solving for S(Tr) from (9) and inserting into (10) yields,

s(T) =[|(T-|rr)] , rr< r< rr+rP . (n)

Finally, during the pulse fall-time, Tr + Tp < T < Tt, integrating (4) from Tr + Tp to

T, with V(t) = (tt - t)/tf yields



il/3S(T) =[|rP +^{Tr + t}) -±(Tt- Tf/2ir;/2] ,

Tr + Tp < T < Tt (12)

where S(Tr + Tp), found from (11), was used. Equations (9), (11) and (12) provide a

complete description of the sheath edge position for the duration of the applied voltage

pulse. Note from (4) that since V(t) and the s(t) given by (9), (11) and (12) are

continuous functions of time, ds/dt given by (4) is also continuous, hence s(t) is a

smoothly varying function with continuous first derivative.

IV. QUASISTATIC IMPLANTATION

To calculate the current, following the approach in reference 7, we consider

implanted ions having initial normalized positions Xo = Xo/s0, reached by the

expanding sheath edge at time Ta = u>pit$. Setting S(T) = Xo at T = Ts, we find

X0 = S(Ta) (13)

or, inverting

Tt = /(*.), (14)

where f(Xo) represents symbolically the inverse of (9), (11) or (12).

At time T«, an ion begins its flight across the sheath. The ion flight time with

the sheath assumed frozen at T = Ta is given by11

rpt ZXp (15\
V1/2(Ta) K}

Hence, an ion at X0 reaches the target at a time T given by T — Ta 4- T or



-8-

T = AX,) (16)

where

*JT.) =fiX.) +^M^ . (17)

Taking d/dX0 of (16), we obtain the implantation current density j = enQ dx0/dt as

j(t) = enou0 'WV- ^

The normalized current density J(T) = j(t)/en0u0 is found by solving (16) for X0 and

inserting the result into (18).

From (16) and (18) it can be seen that continuity of J(T) requires continuity

both of g(X0) and dg(X0)/dX0. It can be shown that the second requirement leads to

the further requirement of continuity of dV(T)/dT. Hence, we use the following

smoothed approximation to V(T) from (1) in (17):

^- 0<t<U+ f,/2
[1 + {tltrTj* '

V®/V.m{ (19)

We now apply the preceding procedure to obtain analytical expressions for the

implanted current density. Since the sheath is assumed frozen during the ion flight, we

use ta as our reference time both for choosing the appropriate sheath model (9), (11) or

(12), and for choosing the appropriate voltage function from (19).



(1) Ta < Tr

Letting S = Xc and T = Ta in (9) yields

2/5

6/5 T3/5 (20)"•-(¥) *
r' is found by letting T = T, in the first expression in (19) and inserting the resulting

function V(Ta) into (15) to obtain

/ \1/2t' =3zJJ) [i +(r,/rr)8]1/16. (21)

Thus, g(X0) = T = T, + T' becomes

r=*(*.) =r. +3jt.( g] [i +(iy rr)8]1/16. (22)

where Ta(X0) is given by (20). Taking d/dX0 of (20) we obtain

# =|«. (23)

Taking d/dX0 of (22) and using (23) to evaluate (18), we find the normalized current

density

-1/2
1/16J( T) =kT./X. +|(jf) [1 +(T./ IV)8]

15/2 v-1m [1 +(T,/Tr)8]-16/16} . (24)

As described previously, J(T) is found by solving (20) and (22) for the root X0 as a
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function of T, and then inserting the result into (20) and (24).

(2) Tr < Ta < Tr + Tp/2

Here we use (11) for S(T) but V(Ta) is unchanged from case (1) above. Letting

5 = Xo and T = T, in (11) yields

ra =|Tr +|X3. (25)

Since V(Ta) is unchanged from case (1), (22) is still valid, but Ta is now given by (25).

We again take d/dX0 of (22), but now using (25) we find

ft =§*«2 - <26)

and thus J( T) becomes

-1/2
1/16J( T) =kxl +3(%) [l +(T.I Tr)<]

-3/2
11/16g) [i +(r./rr)e]'

13/2 N -1

^J [i +(r8/rr)8]-15/16| . (27)

(3) Tr + Tp/2 < Ta < Tr + Tp

For this interval, S(T) is still given by (11), hence (25) is still the correct expression for

Ta. However, V(T,) is now obtained from the second expression in (19), which when

inserted in (15) leads to
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-i/2r 8i1/16

g(Xo) =T. +3Xo(Z-^\ l+(^-^j

Taking d/dX0 of (28) and using (26), we find

J(T) =hx2 +z(^-^
-1/2

,27 1 x*(Tt - Ta
+ Tr, I Tf

1 +

-3/2

Tf )

(t. - t:
,1/16

3-.-15/16
13/2

-&*{**?) 1+(^) }

(28)

(29)

(4) Tr + Tp < Ta < Tt

For this case, we use (12) for S(T). Letting S = X0 and T = Ta in (12) yields

Ta = Tt - r;/5[|rP + rr + ts - igXij (30)

V(Ta) is unchanged from case (3), hence (28) is still applicable, but with Ta given by

(30). We again take d/dX0 of (28), but now using (30) we find

-3/2

dT. _9ya/rt- Ta\
dXo~2^°\ Tf )

and thus J(T) becomes

—3/2 1/2T 8~\*^^

+
27H^r •+(v)

1/16

(31)



-12-

27 1 x* T<- Ta
5- - - - I"15/16

1+(v^)1 r • (32)

V. ENERGY DISTRIBUTION

From assumption (5), ions starting at position X» at time Ta are implanted with

energy

W=V{Ts)1 (33)

where Wis in units of volts and here the exact voltage waveform (1) is used.

(1) Ta < Tr

From (1) and (33), ions entering the sheath at Ta are implanted with energy

W= Vo{Ta/Tr) . (34)

Inverting, we find

Ts=Tr(W/Vo). (35)

Inserting (35) into (20) and solving for Wyields

/ \2/5
W=V.lm Xf/5Tr-2/*. (36)
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Within the energy interval

/ \2/5dW=$(m VoXy5Tr-2/5dX0, (37)

there are dN = n0dx0 ions per unit area implanted. Hence, we find

^=i(^rvx"/5r'/5- (38)
Using (36) in (38), we find the energy distribution for ions entering the sheath during

the pulse rise-time:

1/3

dN
dW

_ (2!>\1/3 noSoTy3 (39)
" \1Q2J W1/6V!/6 '

(2) Tr < T, < Tr + Tp

Ions entering the sheath during the voltage plateau receive the full energy V0,

hence

where

jfc = n03o(SP - Sr)6(W- V0) (40)

/ \1/3Sr =S(rr) =MjJ T1/3 (41)

is the normalized sheath position at the end of the rise-time and

SP =S{Tr + TP) =[| TP +^ rrJ (42)
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is the normalized sheath position at the end of the plateau-time.

(3) Tr + Tp < Ta < Tt

From (1) and (33), ions entering the sheath at Ta are implanted with energy

W= V0(Tt- Ta)/Tf. (43)

Inverting, we find

Ta = Tt - Tf(W/V0) . (44)

Inserting (44) into (30) and solving for W yields

W=Vo [1+ Tr/ Ts +(5/2) TP/Ts -(15/4) X03/ T^'* . (45)

Taking the differential of (45) and using dN = n0dx0, we find

# =~h°° ^ [1 T> +&T' +T/) "A T,(W/V.rJ1/3. (46)

A quantity of much interest in PHI is /(Wmin), the fraction of ions that hit the

target with W < Wmin < V0. Integrating (39) and (46) from 0 to Wmin1 we obtain

1/3
5/6=(a) r-( wmin/v.r°/s, + i
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1/3-[l-^Tf(Wmin/Vo)*/2/sf] , (47)

where St = S(Tt) is the normalized position of the sheath at the end of the fall-time and

we have normalized /by the total dose n0s0St.

VI. DISCUSSION

(1) Scaling

Using a voltage waveform such as in Fig. 1 somewhat limits our ability to state

precisely how the current density scales with plasma density and ion mass.

Nevertheless, a set of restricted scaling rules can be given. For a fixed J(T), the

current density,

j(t) = enoUoJ(T) (48)

scales as n0u0, or using (6),

j<xn0Vy2M-1/2. (49)

From Section IV [see equations (25) and (27), for example], J(T) remains fixed only

when Tr, TP) and Ts are fixed. Hence, we require that

Tt = Wp4fc a nV2M-l/2U (50)

remain fixed, where x = r, p and /, in order for the scaling of (49) to remain valid.

Thus, for a particular ion species, the plasma density and total pulse width must be

simultaneously adjusted, while keeping the ratios tr/tp and t}/tp unchanged.
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If we characterize the energy distribution by the fraction /, defined by (47) and

considered a function of the normalized energy WmiJ Vo, then the energy distribution is

invariant with respect to changes in plasma density and ion mass, and is only a function

of the ratios U/tp and tj/tP. This can be seen from (47) by noting that both St and

T1 scale linearly with wpi.

(2) Comparison with Numerical Results

A PC-based numerical code has recently been developed8 that solves the PHI

implantation problem for non-abrupt voltage pulses of the form in (1). The nonlinear

partial differential equations for the ion and electron motion are solved with the

following simplifying assumptions: the ions axe cold and their motion is collisionless,

the electrons axe in thermal equalibrium, and Poisson's equation relates the densities to

the potential. The equations axe

% +&(«,«,) =o,dt ' dx

m\dt + Uidx) - edx '

Ue = 7l0exp(-$/Te) ,

9--«•,-•.)•

Figures 3-5 show comparisons between the numerical results and the model for a wide

range of ion masses and plasma densities. The voltage waveform in each case is given

by Vo = 30 kV, tr = 0.2 ps, tP = 0.8 /xs, and tf = 0.3 /is. Note that the agreement

between the analytical model and the numerical solution is best in Figs. 3(a)-(b) and
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poorest in Figs. 5(a)-(b). Figures 3-5 have been grouped according to a particular value

of the parameter /?, defined by

/» = t'/tr, (51)

where t1 is the ion flight time corresponding to the instant j(t) = jmax. The parameter

/? characterizes the severity of the approximation implicit in model assumption (5). For

a given rise-time tr, /? (or t ) scales as

/? OC So/Uo = u>~\ (52)

or

fi « M1/2n71/2. (53)

Returning to Figs. 3-5, which axe plotted for /? = 0.1, 0.5, 1.0, respectively, we note that

both (a) and (b) for a given figure yield nearly identical fits between model and

numerical result, despite having greatly different ion masses and plasma densities.

Hence, the accuracy of the instantaneous implanted current density obtained from the

analytical model is well characterized by the smallness of /? (which in practice ranges

from ~ 0.1-1.0). We note also that model assumption (4) becomes valid more quickly

during an implant for smaller (3.

A qualitative explanation for the discrepancies between model and numerical

results in Figs. 3-5 can be given by examining the implications of assumption (5) more

closely. During the pulse rise-time, the model underestimates the electric field E(x, t)

felt by an ion during its flight, hence the model underestimates the ion current collected

on the electrode during the interval 0 < t < tr + t . Note that E(x, t) is an increasing

function of t since from (1), the voltage increases as V(t) ~ t during the rise-time, while
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from (9), the sheath edge expands only as s(t) ~ i5/6. During the pulse fall-time, the

model overestimates the electric field felt by an ion during its flight, hence the model

overestimates the collected ion current for t > tr + t . In contrast, during most of the

pulse plateau, the model agrees very well with the numerical results for all values of /?.

As a final comment regarding the current density, we note that the predicted

scaling ofj oc V01/2 is verified numerically.

In Fig. 6, the energy distributions obtained from both the model and numerical

calculation axe compaxed. The fraction / of ions implanted with W < Wmin < V0 is

plotted versus tr/tp for voltage waveforms with tr = tf, U -f tp = 1.0 fis, and VQ = 30

kV, in an argon plasma with n0 = 1010 cm"3. Overall, the agreement is quite good.

For this example, the model somewhat underestimates the fraction of implanted ions

with energies W < Wmin « 0.6 Vo since all ions entering the sheath during the pulse

plateau axe assumed to receive the full energy V0. This error is seen to decrease as tr/tp

increases, corresponding to smaller /? values. Hence, 0 characterizes the agreement

between the model and numerical results for the energy distribution. From Fig. 6 we

also see that the model overestimates the fraction of very low energy ions, consistent

with assumption (5) for t > 0, and the dominance of the first term in (47) noted earlier.
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FIGURE CAPTIONS

Figure 1. Applied voltage waveform [ equation (1); — equation (19)].

Figure 2. Planar PIII geometry showing the ion density n in a growing quasistatic

Child law sheath.

Figure 3. Current density versus time for /? = 0.1, V0 = 30 kV, tr = 0.2 /xs, tp = 0.8

/xs, tf = 0.3 /xs, and (a) n0 = 1010 cm"3, M= 1 amu; (b) no = 5.5xlOn cm"3, M= 40

amu (— numerical solution; — analytical solution).

Figure 4. Current density versus time for /? = 0.5, V0 = 30 kV, tr = 0.2 /xs, tp = 0.8

/xs, tf = 0.3 /xs, and (a) n0 = 1.7xl010 cm"3, M= 40 amu; (b) n0 = 1010 cm"3, M= 24

amu (— numerical solution; — analytical solution).

Figure 5. Current density versus time for 0 = 1.0, V0 —30 kV, tr = 0.2 /xs, tp = 0.8

/xs, ^ = 0.3 a*s, and (a) n0 = 2.8xlO9 cm"3, M= 40 amu; (b) no = 1010 cm"3, M= 160

amu (— numerical solution; — analytical solution).

Figure 6. Fraction / of ions hitting the target with energies W < Wmin versus U/tp,

with WmiJ Vo as a parameter, for the example of U = tf, tr + tp = 1.0 /xs, V0 = 30 kV,

n0 = 1010 cm"3, and M = 40 amu (• numerical solution; — analytical solution).
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