
Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

HIGH QUALITY, LOW BIT-RATE SPEECH

CODING FOR LOW-POWER VLSI

IMPLEMENTATION

by

Paul Landman

Memorandum No. UCB/ERL M91/41

20 May 1991

HIGH QUALITY, LOW BIT-RATE SPEECH

CODING FOR LOW-POWER VLSI

IMPLEMENTATION

by

Paul Landman

Memorandum No. UCB/ERL M91/41

20 May 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Acknowledgements

This report was made possible by the support and guidance of several individuals.

Foremost, I would like to recognize my research advisor, Professor Jan Rabaey, for his

invaluable contributions during all phases of this project. Furthermore, I thank all of the

members of his research group for their assistance and patience in answering my questions.

Likewise, I am grateful to Professor Robert Brodersen and his students for their equally

kind support and assistance.

In addition, I would like to acknowledge my parents, Art and Fran Landman, who

were an endless source of comfort throughout my academic career.

Finally, I would like to dedicate this report to Karen Lugenbehl, the guardian of

my sanity for the last five years.

This research was sponsored by a fellowship from the National Science Foundation

as well as DARPA grants N00039-88-C-0292 and J-FBI 90-073.

n

Contents

List of Figures jv

List of Tables vj

1 Overview 1
1.1 Introduction 1
1.2 Organization 2

2 Low-Power VLSI Systems 3
2.1 Power Consumption in CMOS Circuits 3
2.2 Strategies for Low-Power VLSI 5

2.2.1 Packaging 5
2.2.2 Design Styles 6
2.2.3 Circuit Techniques 9
2.2.4 Technology Scaling 10
2.2.5 Supply Voltage Scaling 12
2.2.6 Architectures 13
2.2.7 Algorithms 17
2.2.8 Power Management lg

2.3 Summary of Low-Power Methodology 19

3 Speech Coding 20
3.1 Speech Processing Background 20

3.1.1 Human Speech Generation 20
3.1.2 The Speech Waveform 22
3.1.3 A Model for Speech Generation 24

3.2 Speech Coding Methods 28
3.3 Criteria for Candidate Algorithms 30
3.4 Selection of Candidate Coding Class 32
3.5 Overview of LPC and CELP !!!!!! 33

3.5.1 Linear Predictive Coding 33
3.5.2 Code-Excited Linear Prediction 37

Ill

4 Low-Power Speech Coding 40
4.1 Proposed Architectural and Algorithmic Approach 40

4.1.1 Proposed Architecture 40
4.1.2 Analysis of Architectural and Algorithmic Issues 43
4.1.3 Summary of Architectural and Algorithmic Techniques 55

4.2 VSELP Case Study 56
4.2.1 Overview of Algorithm 57
4.2.2 Computational Complexity 63
4.2.3 Suitability for Low-Power Implementation 65
4.2.4 Parallelization of Algorithm 67

4.3 Comparative Analysis of LD-CELP Algorithm 73
4.3.1 Overview of Algorithm 73
4.3.2 Computational Complexity 76
4.3.3 Suitability for Low-Power Implementation 78
4.3.4 Parallelization of Algorithm 79

4.4 Comparative Analysis of DoD CELP Algorithm 80
4.4.1 Overview of Algorithm 80
4.4.2 Computational Complexity 82
4.4.3 Suitability for Low-Power Implementation 83
4.4.4 Parallelization of Algorithm 84

4.5 Conclusions Regarding Low-Power Speech Coding 84

5 Directions for Future Work 85

6 Conclusions 87

Bibliography 89

IV

List of Figures

2.1 CMOS Inverter for Power Analysis 3
2.2 Waveforms for Power Analysis 5
2.3 Static versus Dynamic Design Styles 7
2.4 Dynamic CPL NAND Gate 8
2.5 Static CPL NAND Gate 9
2.6 CPL NAND Gate with PMOS Level Restorer 10
2.7 Generic Sequential Processor 14
2.8 Generic Parallel Processor 14
2.9 Generic Pipelined Processor 15

3.1 Human Speech Generation 21
3.2 Pitch Signal in Time-Domain ; 23
3.3 Pitch Signal in Frequency-Domain 23
3.4 Spectral Envelope of Speech Signal 24
3.5 Power Spectrum of Phoneme d 25
3.6 Time-Domain a 26
3.7 Simplified Model for Human Speech Generation 26
3.8 Acoustical Tube Model of Vocal Tract Filter 27
3.9 Pole-Zero Plot for Vocal Tract Filter [28
3.10 Coder Complexity versus Quality 29
3.11 LPC Analysis Filter 35
3.12 LPC Synthesis Filter 37
3.13 Simplified CELP Speech Coder/Decoder 38
3.14 Long-Term Pitch Filter [[[39

4.1 Pipelined-Interleaved Architecture 42
4.2 Sequential CELP Processor 44
4.3 Parallel CELP Processor 46
4.4 Effect of Number of Parallel Processors on Operating Frequency 48
4.5 Effect of Number of Parallel Processors on Power Savings 49
4.6 Effect of Parallelization on Power Savings 52
4.7 Co-Processor CELP Architecture 53
4.8 VSELP Block Diagram 58

4.9 Perceptual Noise-Weighting 60
4.10 Removal of Synthesis Filter Memory Component 60
4.11 Direct-Form Synthesis Filter 70
4.12 Synthesis Filter After First Retiming Step 71
4.13 Synthesis Filter After Second Retiming Step 72
4.14 Direct-Form Pipeline Allocation Schedule 72
4.15 Restructured Pipeline Allocation Schedule 73
4.16 LD-CELP Speech Coder/Decoder 74
4.17 DoD CELP Speech Coder/Decoder 80

VI

List of Tables

4.1 Complexity of VSELP Coder 64
4.2 gprof Breakdown of Dominant VSELP Coder Tasks 65
4.3 Manual Breakdown of Dominant VSELP Coder Tasks 65
4.4 Complexity of VSELP Decoder 66
4.5 Complexity of LD-CELP Coder 76
4.6 Breakdown of Dominant LD-CELP Coder Tasks 77
4.7 Complexity of LD-CELP Decoder 78
4.8 Complexity of DoD Coder 82
4.9 Breakdown of Dominant DoD Coder Tasks 82
4.10 Complexity of DoD Decoder 83

Chapter 1

Overview

1.1 Introduction

Over the past several decades, the topic ofspeech analysis and processing has been
the focus of much research and study. Considering the importance of the spoken word in
communications, this is not surprising. Indeed, the progress made in the development of the
digital signal processing field has largely been driven by its applications tothe speech signal.
These applications are wide ranging and include speech recognition, synthesis, encryption,
and compression among others. Of course, speech and audio signals are but one form
of communication - video is an equally important medium. Recently, the possibility of
combining these two capabilities into a single portable, personal communications system
(PCS) has stirred a great deal of interest.

The portability requirement, however, raises several important issues. First, this
form of personal, wireless communications suggests a cellular environment. In such an
environment, communication bandwidth becomes a severe constraint. This has been the

case for existing cellular telephone networks, and the situation will only be exacerbated
by the addition of full-motion video. Thus, compression of both audio and video channel
information will be a key issue.

Furthermore, as with all portable, battery-operated systems, power dissipation will
be acritical concern. By minimizing the power consumed by each component ofthe system,
the operating time between recharging sessions can be maximized. One could argue that
this could also be accomplished by increasing the storage capacity ofthe batteries; however,
batteries add both mass and volume to a portable system. The weight of the batteries

required to power a 25 Watt system for 8 hours is approximately 40 pounds, assuming

modern battery technologies. Therefore, it is clear that power conservation is not a trivial

concern.

In summary, data compression and low-power operation are two important issues

in the development of a portable multi-media terminal. This report will address these issues

through a case study of low-powerspeech coding. Of course, the ideas presented here are not

limited to a single application. The speech coding techniques could, for example, be equally

well applied to mobile telephony, secure communications, or voice mail. Moreover, the

low-power techniques developed in this paper are applicable not only to speech processing,

but to virtually any digital signal processing (DSP) application constrained to low-power

operation.

1.2 Organization

The contents of this report can be decomposed into several sections. Chapter 2

describes the mechanism of power consumption in CMOS circuits and proposes several

strategies for low-power VLSI. Chapter 3 then provides the reader with a brief background

on speech processing - coding, in particular. Moreover, it describes the concepts of linear

predictive coding (LPC) and code-excited linear prediction (CELP). Chapter4 relies heav

ily on the backgrounds built up in the previous chapters. Basically, this chapter combines

the notions of low-power VLSI and of speech coding to develop architectural and algorith
mic techniques for low-power speech coders. Finally, chapter 5 discusses several possible

directions for future work, and chapter 6 summarizes the results of the research.

Chapter 2

Low-Power VLSI Systems

2.1 Power Consumption in CMOS Circuits

One of the objectives of this report is to develop a methodology for achieving low-

power VLSI implementations of digital signal processing algorithms. Therefore, it would be

judicious at this point to discuss the mechanics of power consumption in CMOS circuits.

Consider the CMOS inverter of figure 2.1. The power consumed when this inverter is in use

can be decomposed into three basic components: static power, dynamic power, and short-
circuit (Vdd - Vaa) power. Each of these components will now be analyzed individually.

Ideally, CMOS circuits dissipate no static (DC) power since in the steady state
there is no direct path from Vdd to ground. Of course, this scenario can never be realized

in practice since in reality the MOS transistor is not a perfect switch. Thus, there will

Plk

H

dd

In

H

Will

Figure 2.1: CMOS Inverter for Power Analysis

always be leakage currents and substrate injection currents, which will give rise to a static

component of CMOS power dissipation. For a submicron NMOS device with an effective

if = 5m' *ke substrate injection current is on the order of 1-100 \iA for aVdd of 5V [1].
Since the substrate current reaches its maximum for gate voltages near 0.41^ and since gate
voltages are only transiently in this range as devices switch, the actual power contribution

of the substrate injection current is several orders of magnitude below other contributors.

Likewise, reverse-bias junction leakage currents are on the order of nanoamps and will have
little effect on overall power consumption.

Another component of power dissipation arises from the transient switching behav

iorof the CMOS device. At some point during the switching transient, both the NMOS and

PMOS devices will be turned on. This occurs for gates voltages between Vtn and Vdd~ \Vtp\.
During this time, a short-circuit exists between Vdd and ground and currents are allowed

to flow. A detailed analysis of this phenomenon by Veendrick reveals that for traditional

CMOS circuits this component is approximately 10% of the dynamic power dissipation of
the circuit [2]. Thus, although it can not be neglected, it is certainly not the dominant
component of power dissipation in CMOS circuits.

Instead, dynamic power dissipation consumes most of the power used by CMOS

circuits. Dynamic power dissipation is the result of charging and discharging parasitic
capacitances in the circuit. The situation is modeled in figure 2.1 where the parasitic

capacitances are lumped at the output in the load capacitor, Cl- Assume the inverter has

as input and output the waveforms of figure 2.2. The frequency, /, of the input signal
corresponds to a clock frequency in figure 2.1 of fdk = 2/. The total power dissipation of
the circuit, then, is given by:

Pdyn =fJ02 IdnWV°Wdt +fjz JdpW(Vdd - V0(t))dt (2.1)
Using the fact that Idn(t) =CL*fr and Idp(t) = Cl*^^ we can solve for the power,
Pdyn = Cjy^df = \Ciyldfcik' This is the classical result for dynamic CMOS power con
sumption. It illustrates that, assuming continual switching, the dynamic power is propor
tional to the frequency, the capacitive loading, and the square of the supply voltage. In
CMOS circuits, this component ofpower dissipation is by far the most important (account
ing for over 90% of the total power dissipation), as illustrated by the previous discussion.

Having derived the expressions for CMOS power consumption, it is interesting to
analyze how power consumption is distributed on a VLSI chip. It is important to realize

VJn Tclk

0 T/2 T

V .
put

11

1/f

lv o r~

Figure 2.2: Waveforms for Power Analysis (after Weste)

that not only does the core circuitry consume power, but also the I/O drivers consume
a significant amount of power. This is not surprising since I/O capacitances are on the
order of tens of picofarads while on-chip capacitances are in the tens of femtofarads. More

specifically, for conventional packaging technologies, Bakoglu suggests that pins contribute
approximately 13-14 pF of capacitance each (10 pF for the pad and 3-4 pF for the printed
circuit board traces) [3]. Since dynamic power is proportional to capacitance, I/O power is
clearly a significant portion of overall chip power consumption.

2.2 Strategies for Low-Power VLSI

2.2.1 Packaging

The preceding analysis of power consumption in CMOS circuits can be exploited
to yield several techniques for reducing power dissipation. The realization that I/O ca
pacitance at the chip-level can account for as much as 1/4 to 1/2 of the overall system
power dissipation suggests that reduction of I/O power is a necessity in multi-chip sys
tems such as the portable communications terminal. For I/O power, the issue, as stated
before, is mainly one of packaging technology. If the large capacitances associated with
inter-chip I/O were drastically reduced, the I/O component ofsystem power consumption

would be reduced proportionally. One currently evolving method of achieving this goal is

the multi-chip module or MCM.

In an MCM, all of the chips comprising a given system are mounted on a single

substrate, and the entire module is placed in a single package. Utilizing this technology,

inter-chip I/O capacitances are reduced to the same order as on-chip capacitances. This

is due not only to the elimination of the highly capacitive PCB trace interconnect, but

also to the reduction of on-chip pad driver capacitances due to the minimized off-chip load

driving requirements. Thus, utilizing MCM technology, the I/O component of system power

consumption can be kept at a minimum, shifting the focus of power optimization from I/O

considerations to chip core considerations.

Actually, low-power operation is but one of the advantages of MCM technology.

In addition, MCM's with their reduced chip level interconnect lengths and capacitances can

significantly reduce system delays resulting in possibly higher clock speeds and correspond

ingly higher performance levels. Furthermore, this packaging technique raises the effective

system integration level several orders of magnitude over existing packaging technologies.

For projected submicron technologies, an 8" x 10"MCM can be expected to houseclose to a

billion transistors [4]. This will relax current silicon area constraints and allow much needed

flexibility in designing low-power architectures such as those discussed in this report.

2.2.2 Design Styles

Logic design styles can also influence power consumption in CMOS circuits. At

the highest level, the choice of logic styles is between static and dynamic. Historically, dy

namic design styles have been touted for their inherent low-power properties. For example,

dynamic design styles often have significantly reduced device counts. Figure 2.3 shows an

implementation of a complex boolean expression in both static and dynamic design styles.

For the dynamic design, the logic evaluation function is fulfilled by the NMOS tree alone,

while in the static design both an NMOS and PMOS tree are required for this operation.
Since dynamic device counts are drastically reduced, corresponding capacitive loading is
also reduced; this, in turn, can lead to power savings.

In addition, dynamic gates don't experience short-circuit current power dissipa
tion. In contrast, whenever static circuits switch, a brief pulse of transient current flows

from Vdd to ground, consuming power. Furthermore, dynamic logic nodes are guaranteed to

OUT

STATIC GATE DYNAMIC GATE

Figure 2.3: Static and Dynamic Implementations of a Complex Logic Function

have a maximum of one transition per clock cycle. Static gates, unfortunately, do not fol
low this pattern and can experience aglitching phenomenon whereby output nodes undergo
spurious transitions before settling at their final value. This causes excess power dissipation
in static gates.

In practice, however, situations can arise thatresult insignificantly increased power
dissipation in dynamic circuits. Consider adynamic gate whose output is low over alarge
number ofclock cycles. During the precharge phase, the output node is charged to the Vdd
supply rail. When the gate is evaluated, however, the node is pulled down to ground. This
pattern repeats over many clock cycles as long as the outputof the gate remains low. Thus,

power is consumed during each clock cycle. If this were a static implementation, however,
only power due toleakage currents would be consumed since no switching would take place.
For certain data patterns, then, static logic can actually result in lower power consumption
overall.

Dynamic logic styles have additional drawbacks. For example, although reduced
device counts tend tolower circuit capacitances, dynamic gates often require large precharg-
ing transistors to meet timing constraints. This, coupled with the fact that every dynamic
gate must have at least one precharge transistor, can lead to huge clock line capacitances,
which, aside from making reliable clocking difficult, also consume a great deal of power.

1
A-J U wHr

n r
I dt^L

AB

B — —

Figure 2.4: Dynamic CPL NAND Gate

Also, there is the related issue of clock distribution and skew. As clock rates and die sizes

increase, these issues become increasingly important and can significantly limit the utility

of dynamic circuits. Of course, similar clocking issues arise in static logic; however, the
problem is not nearly as severe as in the dynamic case.

Furthermore, dynamic circuits are more difficult to design. For example, avoiding
charge sharing and its associated difficulties requires careful consideration by the designer.
As issues such as this arise, design times for dynamic circuits increase and dynamic logic
styles become less attractive.

Clearly, dynamic design styles do, however, merit serious consideration in the

development of a low-power circuit library. Indeed, adder simulations by Chandrakasan,
et. al.,[4] demonstrate the low-power possibilities of dynamic circuits. In particular, their
findings suggest dynamic complementary pass-gate logic (CPL) [5] as a possible candidate
for a low-power design style. A dynamic CPL NAND gate is depicted in figure 2.4. The
NMOS pass-transistor network performs the logic evaluation while the succeeding buffer
stage drives the fan-out of the gate. An additional clocked NMOS transistor is provided to
ensure that the final, inverting NMOS is offduring the precharge phase. Note that this "N"
stage would be preceded and followed by "P" stages based on PMOS transistors. Thus, the
A and B inputs would be precharged low, disabling the pass transistors and allowing evalu
ation to proceed in a "domino"-like fashion. Clearly, for complex pass-transistor networks,
the buffer and precharge transistor overhead becomes less significant; moreover, even if it
were not required, a buffer would probably be advisable to ensure adequate load driving
capabilities.

_L
dd

AB

B
"L

B

Figure 2.5: Static CPL NAND Gate

It is interesting to note, however, that the advantages of dynamic CPL are more

a function of the logic style rather than the dynamic circuit style. Figure 2.5 illustrates
that the static and dynamic versions differ only in the connection of the PMOS in the

buffering inverter and the presence or absence of the clocked NMOS transistor. Therefore,
thecapacitance of thestatic circuit is actually less than the dynamic configuration. In fact,
since clock routing and loading are now reduced, additional power savings are possible.
Ofcourse, this consideration must be balanced with the possibility of glitching and short-
circuit power dissipation. Indeed, since the NMOS pass-transistors exhibit a Vt drop in the
transmission ofhigh logic levels, the PMOS buffer devices could remain slightly conducting
even for a "high" logic level input. This situation can be remedied with a zero-V* NMOS

pass-transistor or a PMOS level-restorer as illustrated in figure 2.6. Overall, CPL has
proven to be a fast, low-power circuit style and deserves consideration in the construction
of a low-power CMOS cell library.

2.2.3 Circuit Techniques

In addition to judicious selection of design style, circuit-level techniques can also
allow designers to reduce power consumption. One example where custom circuits can
provide large gains in power reduction is in clock distribution. Switching power consumed
in charging clock lines and transistor gates often dominates chip power consumption. This is
especially true for dynamic logic in which each logic gate has at least one clocked transistor,
requiring extensive clock distribution. In order to reduce clock line charging power (which
is proportional to V2), one can attempt to reduce the voltage swing on large interblock

_L

B

1 r

B

dd

TZ

10

dd

AB

n

Figure 2.6: CPL NAND Gate with PMOS Level Restorer

portions of the clock line. This would, of course, require sense amps of some kind at the

boundaries ofeach block to restore full logic levels; however, significant power gains might be

possible with such a technique. Similarly, in a multi-chip, low-power system these reduced

logic swing techniques could be used at chip boundaries to reduce inter-chip I/O power.

2.2.4 Technology Scaling

Scaling of physical dimensions is another consideration for low-power circuits.

Analysis of device scaling is commonly coupled with a treatment of supply voltage scal

ing. In this report, however, they are treated separately to emphasize the effect of each

technique independently on the parameters ofinterest. Moreover, in attempting full scaling
(dimensions and supply), subthreshold conduction limitations prevent supply scaling from
proceeding to the same extent as dimensional scaling. The independent scaling analyses
account for this situation.

Basically, scaling involves reducing all vertical and horizontal dimensions by a fac

tor, 5, greater than one. Thus, transistor widths and lengths are reduced, oxide thicknesses

are reduced, depletion region widths are reduced, interconnect widths and thicknesses are

reduced, etc. From classical analysis [6], the first order effects of such a scaling on im
portant parameters can be derived. Device loading capacitances, for example, are of the

11

form, C = CoxWL. But Cox oc ^ a S and W oc £ as is L. The result is that gate
capacitances scale down by the factor S. This bodes well for reduced power consumption

since P oc CVd2df. So if / and Vdd remain constant, power also sees a reduction of S. The

effect of scaling on delays is equally promising. First, notice that current drive increases:

I oc Co*7r a S- Thus, propagation delays, which are proportional to ^p4, scale down by
a factor of S2. The power-delay product, then, shrinks by a factor of S3.

This discussion, however, ignores many important second order effects. For ex

ample, as dimensions scale down, more functionality tends to be placed on a single chip

leaving die sizes relatively constant. As a result interconnect lengths don't scale down by

the full scaling factor S. In fact, they tend to remain constant. As a result, interconnect

capacitance now remains constant rather than scaling down by S. Thus, it begins to dom

inate gate capacitance terms, which scale down by S. As this occurs, power consumption

is no longer reduced by S; instead, it too remains constant. Furthermore, delays are now

reduced only linearly, rather than quadratically, with S. Finally, combining these results,
the power-delay product sees only a factor of S improvement overall.

Another second order effect is that of velocity saturation. As dimensional scaling

continues to submicron dimensions without commensurate scaling of supply voltage, high
electric fields develop in device channels. Eventually, carrier mobility is heavily degraded
due to increased carrier collisions with the crystal lattice; this, in turn, brings on velocity
saturation. The net effect is the reduction of the current drive voltage dependence from a

square law to a linear relation. As would be expected, this significant reduction of current

drive has an adverse effect on circuit delays. Nevertheless, technology scaling does offer
significant advantages for low-power CMOS circuits.

Unfortunately, scaling is not always a viable option. Aside from the drawbacks of

interconnect non-scalability and submicron effects, chip designers often don't have complete
freedom to arbitrarily scale their fabrication technology. Instead, the capabilities of their
fabrication facilities impose limits on minimum lithographic dimensions. For this reason,
in order to achieve widespread acceptance, an ideal low-power methodology should not rely
solely on technology scaling or specialized processing techniques. Indeed, the methodology
should be applicable not only todifferent technologies, but also todifferent circuit and logic
styles. Ofcourse, whenever possible scaling and circuit techniques should be combined with

the high-level methodology to further reduce power consumption; however, the general
low-power strategy should not require these tricks. Again, the advantages of scaling and

12

low-level techniques cannot be overemphasized, but they should not be the sole arena from

which the designer can extract power gains.

2.2.5 Supply Voltage Scaling

Having treated dimensional technology scaling, the effects of voltage scaling will

now be considered independently. Specifically, consider reducing the supply voltage by a
factor, Sv, greater thanone. Since dynamic power consumption isproportional to thesquare
of the supply voltage, power dissipation is reduced in a quadratic fashion with Sv. This

square-law reduction offers a direct and dramatic means ofminimizing energy consumption.
Without requiring any special circuits or technologies, a factor of two reduction in supply
voltage yields a factor offour decrease in power. Furthermore, this power reduction isexpe
rienced notonly in thechip core, but also for chip I/O (assuming thechip is communicating
with other low-voltage components).

This savings does not, however, come without a cost. For as supply voltage is
lowered, circuit delays increase. To the first order, Idd oc V^ oc -^. Thus, propagation
delays, which go as ^*, will increase linearly with Sv. In order for the circuit to remain
functional, these delay increases cannot go unchecked. Some techniques must be applied,
either technological orarchitectural, in order to compensate for this effect. This is the topic
of the next section. First, however, a short discussion of second order effects in supply
scaling is in order.

Several important refinements can be added to the classical voltage scaling model.
First, the quadratic dependence of current drive on supply voltage is an approximation
valid only for supply voltages much larger than the device threshold voltage, Vt. In reality,
I « (Vdd - Vt)2 and, unfortunately, Vt cannot be scaled down indefinitely with supply
voltage. Instead, it is limited to approximately 0.6 V, by subthreshold conduction and

noise margin considerations. As the supply voltage decreases, the significance ofthis factor
is manifested as an undesirable loss of current drive.

Another, previously mentioned, second order effect is velocity saturation. Since
voltage scaling cannot track dimensional scaling beyond Vtmin, it will not prevent high chan
nel fields from eventually developing, causing velocity saturation. Consequently, even under
voltage scaling conditions, saturated device currents will begin todrop and propagation de
lays will increase. This further limits the amount that the voltage supply can be reduced

13

without incurring unacceptable delay penalties.

2.2.6 Architectures

Parallelism

In addition to the several low-level strategies presented, certain architectural issues

deserve consideration. As stated in the previous section, supply voltage scaling causes lin
ear increases in propagation delays which must be dealt with in order to maintain constant

system throughput. Parallel computing techniques are ideal for this objective [4]. In this

context, architecturalparallelism refers not only to systems with physical hardwareduplica

tion, but also to pipelined systems. In general, any technique that increases computational

concurrency can be used to compensate for the negative effects of voltage scaling.

As an example, consider a functional block that performs somecomplex operation,

A, as illustrated in figure 2.7. The registers supplying operands andstoring results for Aare

clocked at a frequency, /. Furtherassume that algorithmic and data dependency constraints

do not prevent concurrency in the calculations performed by A. When the computation of
A is parallelized, figure 2.8 results. Basically, the hardware comprising block A has been

duplicated N times resulting in N identical processors. Since there are now N processors,
a throughput equal to that ofsequential processor, A, can be maintained with a clocking
frequency N times lower than that ofA. That is, although each block will produce a result
only 1/Nth as frequently as processor A, there are N such processors producing results.
Consequently, identical throughput is maintained.

The key to this architecture's utility as a power saving configuration lies in this
factor of N reduction in clocking frequency. In particular, with a clocking frequency oif/N,
each individual processor can run N times slower. Since delays vary approximately linearly
with voltage supply, this corresponds to a possible factor of N reduction in supply voltage.
Examining the dynamic power consumption relative to the single processor configuration,
we see that capacitances have increased by a factor ofN (due to hardware duplication),
while frequency and supply voltage have been reduced by the same factor. Thus, since
Pdyn oc CVj^Z, dynamic power consumption is reduced by the square of the concurrency
factor, N (i.e. Pdyn oc fc).

Parallelism is not, however, the only form ofconcurrent computation that can be
exploited for power reduction - pipelining can be equally interesting. The pipelined case

/

i—••

Figure 2.7: Sequential Processor for Operation A

OPERATION

A
t t t •

f/N—of§

Figure 2.8: N-way Parallel Processor for Operation A

14

Nf "H

Nf—HI

OPERATION

Mi

15

> N stages

Figure 2.9: N-stage Pipelined Processor for Operation A

is shown in figure 2.9. In this situation, rather than duplicating hardware, concurrency
is achieved by inserting pipeline registers, arriving at an JV-stage pipelined version of pro
cessor A (assuming processor A can be pipelined to this extent). In this implementation,
maintaining throughput requires that we maintain clocking frequency, /; however, ignoring
the overhead of the pipeline registers, the capacitance, C, also remains constant. The advan

tage of this configuration is derived from the greatly reduced computational requirements
between pipeline registers. Rather than performing the entire computation, A, within one
clock cycle, only l/Nth of A need be calculated per clock cycle. Again, this allows a factor
N reduction in supply voltage and, considering the constant C and / terms, the dynamic
power consumption is reduced by N2. Thus, both concurrency techniques - pipelining and
parallelism - result in a first-order quadratic reduction in power consumption.

Bit-serial processing was another architectural style given consideration in this

study. Bit-serial processors do, in some sense, exhibit concurrency. Rather than time-
domain concurrency, however, they display what can be called spatial concurrency. There is
an important distinction to be made between time-domain concurrency and spatial-domain
concurrency. Pipelining and parallelism are examples of time-concurrent techniques. In
other words, at agiven time, computations are occurring concurrently across alarge number
ofspatially distinct processing units. In the case ofpipelining, these units are the N stages

16

of the pipeline, whilein the parallel scenario they arethe N identical processors. In contrast,

spatial concurrency refers to architectures that perform computations using the same piece

of hardware (i.e. spatial concurrency) over a large number of clock cycles. This is commonly

referred to as time-shared hardware, and bit-serial processing is a prime example.

Unfortunately, this form of processing has no advantages for low-power circuits.

Consider, for example, a function, B, that operates on a word of N bits: In bit-serial

form, this function would be implemented by a single-bit processor, which would clearly

possess l/Nth the capacitance of the bit-parallel case. Unfortunately, in order to maintain

throughput, the bit-serial processor must be clocked at a frequency N times higher than

the bit-parallel case. As in the pipelined and parallel scenarios, then, the effects of the

capacitive and frequency components in the dynamic power equation cancel out. Unlike,

those cases, however, the bit-serial processor cannot operate at a reduced voltage supply.

That is, due to the increased clocking frequency, the time allotted for the calculation of a

single result bit has not increased over the bit-parallel case; therefore, no Vdd reduction and,

subsequently, no power reduction are possible. Clearly then, it is time-concurrent rather

than time-sharing architectures that are attractive for low-power systems.

The preceding analysis has considered only the first order effects of parallelism on

power consumption. There are second order effects that detract from the power savings

achieved by using concurrent hardware. In a pipelined processor, for example, the pipeline

registers represent an overhead in both power and area that cannot be ignored. As the

pipeline depth increases, the hardware (capacitance) associated with the pipeline registers
approaches that of the actual processor stages. At that point, further pipelining becomes
unattractive.

Hardware parallelism also has its disadvantages. For instance, complete hardware

duplication entails a severe area penalty. In addition, associated with these distributed

processors is hardware and interconnect overhead related to signal distribution at the pro

cessor inputs and signal merging at the outputs. As in the pipelined case, these contribute

to increased power consumption and tend to limit the utility of excessive parallelism. Even

before considering this overhead, the area requirements of full parallelism can be a limiting
factor; however, the advent of MCM's should help to minimize this concern.

17

Arithmetic Format

Another architectural consideration is arithmetic format. Highquality, lowbit-rate

speech coding places severe computational requirements on the datapath of its hardware

platform. In particular, squaring and multiply-accumulate (MAC) instructions are quite

common (as in many DSP applications). Thus, dynamic rangein the datapath becomes an

important issue. Among the several arithmetic formats available are fixed-point, floating

point, and block floating-point. Each of these has different implications for low-power
performance.

Fixed-point offers the minimum hardware requirements and power consumption,

among the three options. Unfortunately, it also suffers the most from dynamic range dif
ficulties. Algorithmic scaling offers some relief from this problem, however, it must be

incorporated into the processor /i-code and thus has some runtime overhead. Floating
point, in contrast, alleviates the dynamic range issue at the expense of extensive hardware

additions. This increased hardware leads to correspondingly higher capacitances and, as
a result, higher power consumption. Block floating-point may offer the best compromise
between the two techniques. At the expense of a small amount of additional hardware

(and power), it accomplishes the scaling process (for the most part) automatically. Thus,
it achieves some compromise between dynamic range and hardware overhead.

2.2.7 Algorithms

These architectural considerations suggest several algorithmic criteria for low-

power. Although further developed in section 3.3, the key issues are presented now in
an introductory fashion.

The technique of scaling supply voltage is bounded not only by threshold volt

age considerations, but also by real-time requirements. Specifically, as voltage levels are
scaled down, propagation delays increase proportionally. At some point, the requirement
for real-time operation sets a limit on supply scaling. In other words, the maximum num
ber ofsequential operations that can be executed in one coding cycle relates directly to the
operating voltage.

As this relationship suggests, reducing the required number of sequential oper
ations per coding cycle translates directly to a lower supply voltage and, ultimately, to
reduced power consumption. Significantly, the number of "sequential" operations and not

18

the total number of operations per cycle limits power supply reduction. Independent oper

ations may be performed concurrently and, thus, do not serve to increase the time required

to complete a given coding cycle. Of course, this assumes that the hardware to efficiently

handle this concurrency is in place and, indeed, that was the focus of the previous section.

Parallelizability is but one algorithmic consideration. As suggested previously,

suitability for fixed-point or block floating-point implementation can also be important.

Again, this is intimately related to the dynamic range issue that can be so troublesome in

DSP applications such as speech coding. The issue is not purely one of hardware. Certain

algorithms and filter structures are more suitable for fixed-point implementations than

others. Forexample, the auto-regressive latticesynthesis filters associated withmany speech

coding techniques are highly advantageous forfixed-point implementations. This stemsfrom

the property that the tap coefficients (reflection coefficients) for these stable filters are less

than one in magnitude. This allows greatly simplified quantization schemes and minimizes

fixed-point implementation difficulties. Although not always the structure of choice for

various other reasons, the lattice example illustrates that algorithmic considerations can
affect power-related issues.

2.2.8 Power Management

At a slightly higher level, well-known power-management techniques can be applied

to reduce energy consumption. Specifically, processing blocks need only be clocked and

powered when they are performing some computation. During idle periods these processors

may be powered down (assuming stateinformation is properly preserved). In this way, large
power savings are possible (depending on the utilization level of the particular processing
unit).

For speech coding applications, in particular, power-down techniques can provide

significant power savings. In most speech coding environments, long periods of relative
silence are observed. Aspeech coder that monitors input energy levels can take advantage
of this fact by shutting down during periods of inactivity. Moreover, for a full-duplex
(transmitting and receiving) coder, only one oftheprocesses, either the coder or thedecoder

will be active at a time. This can provide an additional measure of power reduction.

19

2.3 Summary of Low-Power Methodology

To summarize, the proposed low-power methodology involves techniques ranging

from the circuit to thearchitectural level of design. At the highest level, the supply voltage
is scaled down from 5 V to some optimum technology-dependent voltage (roughly 1.5 V for

the 2 fim MOSIS CMOS process)[4]. In order to compensate for linearly increasing circuit
delays, some form ofconcurrent computational technique, such as parallelism or pipelining
is employed. The result is a power reduction, which to the first order goes as the square of
the supply reduction.

Beyond this, circuit techniques such as reduced clock line and I/O pad voltage
swings, withaccompanying sense amp circuitry, can be applied to further reduce power con

sumption. In addition, judicious choice of logic style can allow additional power reduction,

as can technology scaling and advanced packaging techniques. Finally, proper selection and

optimization of candidate algorithms to achieve maximum concurrency offers equally sig
nificant gains in power conservation. Combinations of these schemes, coordinated through
an intelligent power management methodology, can help to achieve maximum overall power
savings.

Ofcourse, if some of these techniques are unavailable orundesirable for a particular
design effort, the voltage scaling alone will provide large power savings. As stated previously,
this is one ofthe advantages ofthe parallelism technique: no additional circuit or technology
tricks are required. They are, however, extremely desirable and should be employed when
possible.

For the most part, this methodology is not specific to speech coding. This was one
ofthe key objectives of this research. As a result, the strategies discussed in this report can
be applied equally well to a wide range of DSP applications and algorithms.

20

Chapter 3

Speech Coding

The previous chapter presented techniques for achieving low-power VLSI imple

mentations of DSP algorithms. Furthermore, it contained important background material

on topics that are of critical concern to low-power circuits. The current chapter provides

additional background information, this time on speech processing, that will be central to

understanding the detailed analyses of the coding algorithms to be presented in chapter 4.

3.1 Speech Processing Background

3.1.1 Human Speech Generation

In order to facilitate an understanding of modern speech coding methods, an un

derstanding of the speech signal and the mechanism by which it is generated is essential.

Figure 3.1 shows a model of the human speech generation system. During speech produc

tion, the diaphragm forces air out of the lungs and into the trachea. This flow of air passes

by the vocal cords resulting in oneof two possible scenarios. In the first, the vocal cords are

tense, and the rush of air from the lungs causes them to vibrate at some pitch frequency,

thereby, modulating the flow of air into a series of discrete bursts. This corresponds to a

voiced sound such as a vowel. In the second scenario, the vocal cords are relaxed and the air

passes by relatively unaffected. This unvoiced mode of speech corresponds to consonants
such as 5, /, and p.

Continuing through figure 3.1, the stream of air proceeds past the larynx and
passes through a series ofresonant cavities - the pharynx cavity, the mouth cavity, and the

Pharynx Cavity

AVocal
Cords

Lungs

Nasal Cavity

Mouth Cavity

Figure 3.1: Human Speech Generation (after Flanagan)

21

22

nasal cavity, in particular. The flow of air, either modulated or unimpeded, excites these

cavities and causes them to resonate. The frequencies of these resonations is determined

by the size and shape of the cavities. This, in turn, depends upon the positions of various

vocal tract components including the jaw, the velum, the tongue, and the lips. As an

example, consider the production ofthe so-called nasal phonemes such as n. During a nasal
utterance, the velum allows the unimpeded flow of air into the nasal cavity as well as the

mouth. Thus, both cavities respond to the air flow and sound is radiated not only from the
lips, but also from the nostrils.

As a further example illustrating the importance of the vocal articulators, consider

the generation of the unvoiced consonants s and p. In the production of an s, the velum

is closed and the steady flow of air from the lungs directly enters the mouth. Were the

lips and tongue positioned so as to open the mouth cavity, the air would pass through and
radiate from the lips forming a sound similar to that of an h; however, the formation of

an s requires that the tongue be pressed to the roof of the mouth. Thus, the flow of air is

impeded and it passes by the tongue and lips as a turbulent stream. This is recognized as
the "hissing" quality of the s phoneme. When forming the phoneme p, the lips rather than
the tongue impede the air flow. Specifically, the lips cause a brief, but total, closure of the
vocal tract allowing a buildup ofpressure, which is released as a transient burst as the lips
are opened. The result if the "popping" sound characteristic of this phoneme.

The shape of the vocal cavities determines the resonances of the vocal tract filter.

These resonant frequencies are called formants and arelargely responsible for the character
ofthe speech generated. In other words, for voiced speech, altering the formant frequencies
can change the generated phoneme from, say, a to some other voiced phoneme such as
e. Thus, the information contained in the formant frequencies is closely related to the
particular phoneme uttered. Indeed, extraction of these formants can be (and has been)
used for rudimentary speech recognition.

3.1.2 The Speech Waveform

The previous discussion suggests several attributes of the speech waveform. For
example, realizing that (voiced) speech generation is excited by the modulated puffs ofair
passing the vocal cords, a speech signal containing a periodic component at the frequency
of the vocal cord vibrations would be expected. In the time-domain, this signal component

23

Q Q Q

Figure 3.2: Pitch Signal in Time-Domain

^f

Figure 3.3: Pitch Signal in Frequency-Domain

could be thought of as a discrete, periodic series of pulses recurring at an interval referred

to as the pitch period, Tp (see figure 3.2). In the frequency-domain, this corresponds to a
power spectrum with components at the pitch frequency, /p, and all of its harmonics (see
figure 3.3). This pitch-periodic signal is, however, but one component of the overall speech
signal.

In addition to the pitch excitation, the response of the vocal tract filter must be

considered. This component lends itself most directly to analysis in the frequency-domain.
Remember, theeffect of the resonant vocal cavities is to introduce formant frequencies into
the speech signal. These resonances appear as peaks in the speech power spectrum. In
general, three to five formant frequencies can adequately describe the vocal tract frequency
response. This number corresponds roughly to the number of resonant cavities present in
the human vocal tract. Thus, the cavities of the vocal tract filter contribute a frequency-
domain envelope of the form shown in figure 3.4.

Combining excitation and envelope, an actual frequency-domain power spectrum
of the voiced phoneme a is shown in figure 3.5. Notice the overall spectral envelope with
roughly three formant frequencies representing theresponse of the vocal tract filter. Further

more, the periodic fine-structure at the 125 Hz fundamental and its harmonics is the direct

contribution of the pitch periodicity of the voiced vowel. In the time-domain (figure 3.6),
the periodic pitch excitation is again noticeable at approximately 8 ms (=1/125 Hz) inter
vals. Each impulse-like pitch excitation is followed by an oscillating response corresponding

Magnitude
it

Formants

24

Figure 3.4: Spectral Envelope of Speech Signal Due to Vocal Tract Filter

directly to the impulse-response of the vocal tract filter. As this response begins to die out,
it is excited anew by the arrival of the next pitch impulse.

Of particular interest to many communications applications is the bandwidth re

quired to adequately represent the speech waveform. As seen in figure 3.5, the power

spectrum of the speech signal is largely band-limited to frequencies below 4 Khz. Indeed,

the sampling rate for contemporary digital telephone communications networks is 8 Khz,
resulting in a maximum representable frequency component of 4 Khz. Telephone net
work anti-aliasing sending filters, however, further reduce this maximum to approximately
3.6 Khz (-3 dB point). As a matter of common experience, the resulting speech quality
is quite satisfactory for most verbal communication purposes. Indeed, the input to the
majority of existing speech coders is 8 Khz "toll-quality" speech and, thus, for these coders

it represents the ultimate achievable quality for the compressed and decoded speech signal.

3.1.3 A Model for Speech Generation

The characteristics of the speech signal and its production suggest a straight
forward model for human speech generation. The model consists of two components: an
excitation source and a vocal tract filter as illustrated in figure 3.7[8]. The excitation source
is selected from two possible generators. The first is simply a periodic impulse train which
models the voiced speech excitation signal. The unvoiced speech excitation, in contrast,
is modeled by a "white"-noise source, which corresponds physically to the turbulent air
stream that is characteristic of unvoiced speech.

As suggested in section 3.1.2, the effect of the vocal tract can be simulated by a
filter capable of modeling three to five resonant frequencies. Since the shape and size of
the vocal cavities vary with time in the production of continuous speech, the vocal tract

25

dB

Power Spectrum for *ay'

Power Specnum

ooo 1.00 zoo 340 4J0O
HrxlO3

Figure 3.5: Power Spectrum of Phoneme a

VahwxlO3
Time-Domain 'ay'

Time-Domain

0.00 5jOO 104)0 154)0 20j00 25.00 30.00
Timo(ms)

Pitch

i
Impulse Train

Generator

White Noise

Source

Figure 3.6: Time-Domain a

? ? ?

1 .£.

^T
i

t-
Gain

Vocal Tract Parameters

1
Time-Varying

Vocal Tract

Filter

Speech

Figure 3.7: Simplified Model for Human Speech Generation (after Rabiner)

26

27

Area, A(x)

Figure 3.8: Acoustical Tube Model of Vocal Tract Filter

filter model must, of necessity, be time-varying. The detailed nature of this filter can be

derived by comparing the vocal tract to a cylindrical acoustical tube of non-uniform cross-

sectional area (see figure 3.8). The behavior ofsuch asystem has been examined extensively
[7, 8]. Using the mass conservation and momentum equations wecan derive the theoretical
response of the system:

dp pv2 dU
dT A(x) dx
au A(x) dP
dT p dx

(3-1)

(3.2)

In these equations, x is the distance along the vocal tract, U is the volume-velocity, P is
the sound pressure, A(x) is the cross-sectional area at x, p is the density of air, and v is
the velocity of sound. These equations can be solved for the approximate form of the vocal
tract transfer function, H(z) [8]:

G
I*Ml«

i-E^i***-'

where the relationship becomes exact as N goes to infinity.

This transfer function has the form ofan all-pole filter. Thus, the vocal tract filter
can be modeled as atime-varying all-pole filter oforder N. The determination ofthe order,
jV, relates to the number of formant frequencies to be modeled. Two complex-conjugate
poles are required to model a single formant frequency. Therefore, it is not surprising that
a ten-pole filter quite effectively models the response of the vocal tract (which is primarily
influenced by its first five formants). A pole-zero plot of a vocal tract filter model is shown

(3.3)

28

z-domaln

Figure 3.9: Pole-Zero Plot for Vocal Tract Filter

in figure 3.9. The spectral envelope produced by this model would be quite similar to that
of figure 3.4.

The applicability of the model is, of course, not universal. For example, the model

assumes the separability and independence of the excitation source and vocal tract filter.

This assumption does notstrictly hold, especially inthe case ofthe plosives (p, for example).
For most phonemes, however, the condition issufficiently satisfied and it need not be a point

of concern. Another restriction stems from the all-pole nature of the vocal tract model. The

all-pole filter models vocal tract resonances well, however, the anti-resonances introduced

by the nasal cavity are best modeled by zeros. Very high quality can still be achieved,

however, with the classical all-pole vocal tract filter. Furthermore, its relative simplicity
with respect to a full pole-zero representation makes the all-pole filter far more useful than

the pole-zero model.

3.2 Speech Coding Methods

Previous sections have dealt at length with the background information required

to understand the speech signal and how it can be modeled. This section now delves further

into the issue of speech processing and, specifically, into methods and algorithms for speech
coding. Speech coding refers to techniques that, taking the speech signal as input, reduce
the amount of information required to describe the waveform.

Consider, for example, a "toll-quality" digital speech waveform. As discussed in

section 3.1.2, this corresponds to an analog speech waveform sampled at 8 Khz. Further

Subjective
Quality

(Mean
Opinion
Score)

5-

toll-quality

4. /^<~—^^^^
3-

I ^s/\ ^t^/r Low-Complexity

2-

/ / \/ Medium-Complexity

/ High-Complexity

1
i i i i 1 1 1

29

0 8 16 24 32 40 48 56 64

Transmission Rate (Kbits/sec)

Figure 3.10: Coder Complexity versus Subjective Quality (after Noll)

assume that the speech samples require 8-bits of storage each (corresponding to the Ameri

can telephony standard 8-bit /x-law). For this case, the data bandwidth required to storeor

transmit the speech signal is 64 Kbits/sec. The purpose ofa speech codec (coder/decoder)
is to reduce this bandwidth requirement. Taking advantage of redundant information in

the speech signal, the coder produces a reduced bandwidth data stream that represents the
input speech signal. This channel information is then stored for later decoding or is trans
mitted directly to the decoder, which reverses the process to retrieve the original speech
waveform (or an approximation).

The compression ratios available from contemporary coding techniques vary widely
as does the quality of the decoded speech signal. Figure 3.10 shows a plot of subjective
speech quality versus transmission rate for coders of varying complexity [9]. In this graph,
complexity is defined by a criterion such as the number of multiply-accumulate operations
required per input sample. As a point of reference, toll-quality telephony achieves a Mean
Opinion Score (MOS) of 4.5 at 64 Kbits/sec.

Basically, coders can be subdivided into two categories: waveform coders and

parametric coders. Waveform coders perform time-domain sample-by-sample coding of the
speech signal. That is, these coders do not use prior knowledge of the nature of speech in
order to reduce the information bandwidth requirements. Pulse Code Modulation (PCM)

30

is the most common example of this type of coding. PCM is among the simplest coding
methods and, as such, it is also among the most prevalent. Quite simply, PCM coding
corresponds to sampling the analog waveform and quantizing sample amplitudes. Digital
telephony networks employ PCM with logarithmic (/i-law) quantizing schemes to achieve
their 64 Kbit/sec transmission rates.

A slightly more complicated scheme known as differential pulse code modula

tion (DPCM) can be employed to reduce the transmission rate for toll-quality speech.
In DPCM, differences between successive sample amplitudes, rather than their absolute

values, are encoded. Another member of this family, adaptive differential pulse code mod

ulation (ADPCM) performs the identical function with the addition of adaptive quantiza
tion. These coders achieve subjective qualities approaching 64 Kbit/sec PCM at bit-rates
of 32 Kbits/sec.

Waveform coders are, however, only one class of coders; the second class, para

metric coders, are equally important. Parametric speech coders utilize a priori information

about the properties of the speech signal to reduce transmission bandwidth. Most paramet
ric speech coders rely on linear predictive coding (LPC) in one form or another to achieve

this data reduction. Basically, these coding methods take into consideration the fact that

speech is a highly redundant signal. That is to say, speech samples in close proximity are
highly correlated. By modeling this correlation, LPC coders can extract a small number of

parameters that describe the speech waveform. These then, rather than the quantized sig
nal itself, are transmitted and used to synthesize decoded speech at the receiver. Included

in this important class ofcoders are residual-excited linear predictive coders (RELP), self-
excited linear predictive coders (SELP), and code-excited linear predictive coders (CELP).
The latter has proven extremely useful for low bit-rate coding and will be discussed later
in much more detail.

3.3 Criteria for Candidate Algorithms

Clearly then, there is a wide variety ofalgorithms available for the implementation
of speech codecs. Selection ofa particular coding style depends on the unique criteria ofa
particular application. For example, several factors were considered in selecting candidate
algorithms for the PCS speech coder. Most importantly, the search was constrained to
high subjective-quality coders (approaching toll-quality). Subjective quality, unfortunately,

31

is difficult to define and to measure. Several different measures exist and they include

the Mean Opinion Score (MOS), the Diagnostic Rhyme Test (DRT), and the Diagnostic
Acceptability Measure (DAM).

A secondrequirement - antagonistic to the first - was a compression ratio of 4:1 or

more. Beginning with a 64 Kbit/sec toll-quality input stream, this requirement corresponds

to a channel stream of 16 Kbits/sec orless. Furthermore, channel streams of 9.6 Kbits/sec
or less were even more desirable if high quality could be maintained. Unfortunately, as

figure 3.10 demonstrates, the combination of high quality and low bit-rates dictates the use

of high-complexity coders. Though unfortunate from an implementation standpoint, the

high-complexity of the candidate coding algorithms does provide a forum for thoroughly
testing the proposed low-power strategies.

Related to coder complexity is the concept of encoding delay. Encoding delay

describes the length of the waveform segment that must be analyzed in order to utilize

waveform redundancies to achieve compression. Thus, encoding delay is directly related to

memory storage requirements, which is one measure of implementation complexity.

Another issue related to encoding delay is that ofreal-time operation. Long coder-
decoder delays can bequite ahindrance to real-time communication. Assuming appropriate
echo control, however, total end-to-end delays on the order of 100-200 ms are acceptable.
Implied in this discussion is the requirement that the codec hardware operate in real-time.

For some systems, such as voice-mail, where speech is stored rather than decoded imme

diately, a real-time codec is not a necessity; however, the main application for this speech
coder is a real-time communication system. This places some restrictions on coder complex
ity since there is a limit to the number of operations per sample that can be implemented
in real-time.

An additional criterion for the candidate algorithms was suitability for low-power
implementation. As shown in the preceding sections, this corresponds, in some sense, to
suitability for parallel implementation. The highly parallel nature of the proposed architec
ture is most suited to an algorithm with a good deal of inherent concurrency. Remember,
for a parallel architecture, it is not the total number of operations per sample that dictates
the real-time requirements, but rather the total number ofsequential operations per sample.

Another condition related tolow-power operation is the suitability ofthe algorithm
for fixed-point or block floating-point implementation. As stated in section 2.2.6, full-scale
floating-point arithmetic is extremely costly in terms of power. It is, therefore, desirable

32

to implement the codec on a fixed-point or block floating-point processor, if possible. Un

fortunately, fixed-point quantization and dynamic range issues can be extremely important

in determining overall coding quality. Moreover, algorithm designers rarely delve into such

analyses when defining their algorithm; instead, they assume floating point platforms such

as commercially available DSP chips (i.e. AT&T DSP32c).

A final desirable property for the candidate algorithms is compatibility with exist

ing coding standards. Of course, this is by far the least critical concern; however, in order

to promote maximum utility of the speech coder, compatibility with some well-accepted

standard is a desirable situation.

3.4 Selection of Candidate Coding Class

The prerequisites for the candidate coding algorithms are numerous. In general,
the CELP class of coders, however, meets these requirements admirably. Actually, the high

quality at low bit-rates criterion in itself narrows the field quite significantly. At bit-rates

at and below 16 Kbits/sec, waveform coders are severely disadvantaged and yield very

low quality speech. In this realm, parametric LPC-based coders begin to demonstrate their

coding capabilities. Straight LPC coding, however, although intelligible at low bit-rates, can

not be considered "high quality." The decoded speech has an unmistakable "synthesized"

character that we are trying to avoid. Unlike straight LPC, however, CELP performs very

well at bit-rates down to 4.8 Kbits/sec. Thus, the high quality, low bit-rate requirements
alone were enough to suggest a CELP coding scheme.

The third criterion, minimization of the encoding delay, is a difficult problem for

high quality, low bit-rate speech. Inherently, achieving high quality at low bit-rates requires
that the coder make use of speech redundancies; however, this requires the coder to build

a history of the input speech waveform, which can then be analyzed for correlations. This

implies a coding delay of at least a frame (approximately 20 ms). Furthermore, channel
delays can themselves beonthe order of 100 ms. Fortunately, however, with adequate echo
control, CELP encoding delays are not a hindrance to real-time communication.

Real-timeconsiderations havelongbeenanotherdrawback for CELP coders. CELP

coders are based upon an analysis-by-synthesis methodology. In other words, several candi
date speech waveforms are synthesized, and the parameters corresponding to least distorted
synthesized signal are transmitted to the decoder. Such amethodology is, clearly, computa-

33

tionally intensive. To some extent, however, this is the price that must be paid for veryhigh

quality speech coding. Furthermore, the heavy computational requirements will provide an

extreme test of the low-power techniques espoused in this report.

Suitability for low-power implementation was an additional prerequisite. For low-

power, parallel architectures, this criterion is equivalent to requiring a highly concurrent

algorithm. CELP coders meet this requirement admirably. Their analysis-by-synthesis ap

proach requires the synthesis of numerous independent speech waveforms. For the classic

CELP coder, these synthesis operations can be performed concurrently. Since this "code-

book search" traditionally embodies the majority of the algorithmic complexity, CELP is
well-suited for low-power implementation.

Aside from concurrency, similarity to more general DSP algorithms is another

desirable quality. Again, the main component of the CELP algorithm is the synthesis of

several candidate speech waveforms. This synthesis is performed by a linear, time-varying
all-pole filter. This multiply-accumulate intensive operation is present in many, if not all,
DSP algorithms. Thus, optimizing a low-power architecture based upon this operation will

go a long way towards defining a more general-purpose low-power DSP architecture.

All of these considerations led us to restrict candidate algorithms to the CELP

family of coders. From this class, three algorithms were selected as candidates; they were
compared on the basis of all the previous criteria. In addition, suitability for fixed-point or

block floating-point implementation was evaluated, as was the issue of compatibility with
existing systems and standards. The three algorithms are Motorola's 8.0 Kbit/sec VSELP
algorithm [10], the Department ofDefense's (DoD) 4.8/9.6 Kbit/sec CELP algorithm [11],
and AT&T's 16 Kbit/sec LD-CELP algorithm [12]. The three coders are very high quality,
all achieving Mean Opinion Scores greater than 4.0 (4.5 corresponds to toll-quality). Since
they all meet the high quality coding criterion, it was not considered in final algorithm
selection.

3.5 Overview of LPC and CELP

3.5.1 Linear Predictive Coding

Before delving into an analysis of these three algorithms, an explanation of the
concept of linear prediction and, specifically, code-excited linear prediction is desirable.

34

The use of linear prediction in speech coding dates back to the late 1960's [13] and is based
on an extremely simple concept. In traditional LPC, bandwidth compression is achieved

by utilizing the inherent correlation present in the speech signal. Basically, a small set of

parameters containing information such as the pitch of the input speech and the coefficients

of the vocal tract filter are extracted from a frame of input speech. These parameters are

then transmitted to the decoder and used to resynthesize a time-domain approximation to
the original speech.

The method is based on the concept of linear prediction. This notion suggests
that speech can be modeled as an auto-regressive (AR) process. In other words, it assumes

that a sample of speech can be represented as a linear combination of Np previous speech
samples, where Np is the prediction order. Expressed mathematically,

sp(n) = axs(n - 1) + a2s(n - 2) +•••+aNps(n - JVp) (3.4)

where sp(n) is the predicted value of the sample s(n). The next step is to define an error
signal,

e(n) = s(n) - sp(n) (3.5)

By appropriate selection of the LPC coefficients, a,-, it is, of course, possible to
make the error signal identically zero for any particular sample, s(n). If this were done,
however, no information reduction would be possible since new LPC coefficients would have

to be transmitted for every sample. The goal, then, is to optimize the LPC coefficients over

a wide range of, say, NA input samples, where NA is theanalysis interval. This optimization
is accomplished by minimizing the energy contained in the error signal over the analysis
interval. Defining the energy,

NA-l

E= E e2W (3.6)
n=0

To minimize energy with respect to the LPC coefficients we set its partial derivatives to
zero:

^T =° fort = l,...,JVp (3.7)

This results in a system of Np equations with Np unknowns. The equations are known as
the autocorrelation normal equations and in matrix form are given by

[R(i - k)][ai] = [R(k)] for i,k= 1,..., Np (3.8)

Figure 3.11: LPC Analysis Filter

where R(k) is the short-term autocorrelation function,

NA-i

n=0

•-G^ e(n)

35

(3.9)

In general, solving such a system of equations would be a difficult task; however,
the autocorrelation matrix, [R(i - k)]9 has some useful properties. First, it's symmetric;
this reduces not only computational requirements, but also storage requirements since the
matrix is uniquely determined by its upper triangular component. Furthermore, the matrix
is Toeplitz (the elements on each diagonal are equal). For Toeplitz matrices, a particularly
nice method known as the Levinson-Durbin recursion exists for solving system 3.8.

Notice that the previous derivation inherently depends on the stationarity of the
input speech signal. Although the speech signal is not stationary in general, short segments
of speech can be approximated as stationary. This sets an upper bound on the size of the
analysis interval and requires that the LPC coefficients be updated regularly.

Using the coefficients defined by the normal equations, we can consider two inter
esting filter configurations. The first is the LPC analysis filter depicted in figure 3.11. This
filter is simply a realization ofequations 3.4 and 3.5 and is given in the z-domain by

JV„

A(z) = l-y£/aiz-i
*=i

(3.10)

36

Since the purpose of LPC analysis is to fully describe the correlation in the input
signal, the optimal output of the analysis filter would be white noise (i.e. a signal with no

correlation between its samples). For such a signal, each newsample gives newinformation

about the stochastic process. For that reason, it is called an innovations process [14]. The
innovations process wastes no energy describing redundant (correlated) information. For

this ideal scenario, the power spectrum of theinput speech waveform iscompletely described
by the LPC coefficients, and these coefficients would be all that was required at the receiver
to synthesize the decoded speech.

Actually, Wiener filter theory demonstrates that for large enough prediction orders,

Np, the residual signal, e(n), will, indeed, be white. Computational as well as stationarity
considerations, however, limit the the prediction order. In practice, a prediction order of

ten is quite common. Assuming this value for the prediction order, we canstudy the actual

form of the residual signal, e(n). While a tenth order predictor can remove the short-

term correlations due to the vocal tract response following a pitch excitation, it cannot

predict the long-term pitch correlations present in the input speech. Therefore, for voiced

speech, we expect e(n) to closely resemble an impulse train, with period equal to the pitch
period, emersed in low-energy white noise. For unvoiced speech, there is nolong-term pitch
correlation, and we expect e(n) to be nearly white.

Considering theinverse oftheanalysis filter (the synthesis filter) will give us further
insight into the situation. The synthesis filter depicted in figure 3.12 can be derived from
equations 3.4 and 3.5 in the z-domain is given by

1 S(z) 1
A(z)-E(z)-1.T^iaiZ-i <3-u)

Notice that the form of^ is that of an all-pole filter. In the figure, the residual, e(n), is
used to excite the all-pole synthesis filter, -jfe, to produce the original input speech. Ideally,
if e(n) as well as the LPC coefficients were available at the decoder, the input speech could
be reproduced exactly; however, in order to reduce transmission requirements we can take
advantage ofa priori knowledge of the form oftheresidual, e(n). In the voiced case, we can
approximate e(n) at the decoder by an impulse train and, thus, only the pitch period need
be transmitted to the decoder. For the unvoiced case, e(n) is approximately white, and a
white noise generator at the decoder can be used to excite the synthesis filter.

It is of interest that the preceding discussion has provided a justification for the
original speech generation model ofsection 3.1.3. Using that model as a guide, we see that

37

Figure 3.12: LPC Synthesis Filter

the residual signal, e(n), can be thought ofas theexcitation source in the model. Moreover,
the time-varying all-pole vocal tract filter is implemented by -^r. This realization also
justifies the choice oftenas the prediction order since this value corresponds to two complex-
conjugate poles for each of five formants.

3.5.2 Code-Excited Linear Prediction

Ideally, we would like to excite the synthesis filter in the decoder with the actual

residual signal, e(n). Code-Excited Linear Prediction (CELP) is a variation of LPC that
attempts to achieve this goal. The CELP concept is similar to LPC with the addition

that a vector quantized version ofthe excitation, e(n), is transmitted to the decoder and is
then used to excite the synthesis filter there (see figure 3.13) [15]. The vector quantization
process is achieved through an analysis-by-synthesis approach. Specifically, a codebook of

vector quantized excitation signals is kept in both the coder and decoder. In the coder,
each possible excitation in the codebook is passed through an LPC synthesis filter and
the synthesized signal is compared to the input speech. The codevector that produces
a synthesized speech segment that is perceptually closest to the input speech is selected,
and an index to this vector quantized version ofe(n) is transmitted along with the LPC
coefficients to the decoder. In the decoder, this excitation is selected out of an identical

Input

Speech

Coder

Excitation

Codebook

Decoder

VQ _
Index

Gain

Excitation

Codebook

Pitch

Detect

Gain

LPC

Analysis

Side

Info

Long-Term

Pitch Filter

Perceptual
Weighting

Filter

(LPCcoefficients,Pitch,Cain,etc)

Synthesis

Filter

Decoded

'Speech

Minimize

Distortion

38

VQ

Index

Figure 3.13: Simplified CELP Speech Coder/Decoder

codebook and is used to synthesize the decoded speech.

The vector quantization process will be most efficient for a white residual signal.
Therefore, in almost all CELP coders a long-term pitch filter is included in the synthesis
path in order to introduce the pitch correlations into the excitation from the stochastic

codebook. The form ofthis pitch filter is that ofasingle tap all-pole comb filter with a tap
delay equal to the pitch period. The filter and its frequency-domain response are illustrated
in figure 3.14. From the figure, it is clear that the filter introduces the pitch periodic
fine-structure into the frequency-domain speech signal as discussed in section 3.1.2. An
identical long-term pitch filter must be included in the decoder, and the pitch lag, i, must
be transmitted along with the codebook index and LPC coefficients.

In-©

Beta

-L

Filter

Out

Magnitude
n

1/L

Frequency-Domain Response

Figure 3.14: Long-Term Pitch Filter Schematic and Frequency-Domain Response

39

40

Chapter 4

Low-Power Speech Coding

4.1 Proposed Architectural and Algorithmic Approach

4.1.1 Proposed Architecture

Withtheknowledge ofbothlow-power VLSI andCELP speech coding accumulated
thus far, it is possible to formulate a proposal for a candidate low-power speech coding
architecture. As section 2.2.6 suggests, the architecture should provide for highly concurrent
execution. Parallel, pipelined, or hybrid architectures are all possibilities. A fully parallel
architecture has the inherent disadvantage ofextremely large area consumption. Thus, the
parallel datapath hardware would dominate chip area. Unfortunately, CELP coders require
large amounts of memory - both ROM and RAM. Among other things, this memory is
used to store the necessary excitation and pitch codebooks as well as the buffered input
samples used to adapt the LPC filter coefficients. Since minimizing I/O provides much
needed power savings, this memory should, if at all possible, be stored on-chip. The fully
parallel architecture, however, all but eliminates this possibility. Indeed, fitting several
parallel datapaths each containing a full array multiplier on a single chip is, in itself, a
questionable endeavor.

A pipelined architecture offers a possible solution to this conflict. The only area
overhead associated with a pipelined implementation results from the addition of pipeline
registers. Thus, theoverall datapath area consumption is drastically reduced relative to the
parallel implementation. The main disadvantage of this approach lies in the difficulty of
efficiently programming a deeply pipelined datapath. Historically, pipelined solutions suffer

41

from hazards. These hazards stem from the fact that in a deeply pipelined processor, the

prefetching and execution of an instruction begins before the previous instruction(s) has
completed.

The two main types of hazards are branching hazards and data hazards. The

former occurs when, while prefetching the next instruction, the wrong assumption is made

about whether a branch will be taken. If this occurs, the prefetched instruction(s) must
be discarded, and prefetching must begin again at the correct instruction. In contrast, a
data hazard refers to an attempt to utilize the result of a previous computation before that

calculation has completed. Both of these types of hazards can seriously hamper attempts
to efficiently program a pipelined processor.

A possible solution to this difficulty involves interleaving the execution of multi

ple programs in a single pipeline [16]. As Lee demonstrates, under certain conditions, this
pipelined-interleaved (PI or II) processor behaves as JV parallel processors sharing a single
memory without contention (where N is the pipeline depth). Therefore, the II processor
avoids the programming difficulties associated with pipelined processors while occupying
only slightly more area (additional area is required to store the states of the virtual pro
cessors). Figure 4.1 shows a high-level diagram of Lee's II processor architecture. The

architecture of this figure contains one refinement over Lee's implementation. That re

finement is the ability to switch off the interleaving mechanism when desired, turning the
processor into a classic deeply pipelined processor. This capability is manifested in the

architecture bymultiplexers, which allow the user to bypass the interleaving state registers
associated with the accumulator, the indexing registers, and the program counter.

Based on the particular tasks associated with CELP speech coding, this basic
architecture can be further refined. The CELP coding algorithm decomposes into, basically,
two types of subtasks. One of these subtasks is characterized by highly sequential, branch-
intensive, control-driven code. This type of code avoids parallel implementation and is
characteristic of the tightly coupled adaptive feedback loops associated with LPC coefficient
filter updates. The second type of task is the datapath-intensive computation associated
with the analysis-by-synthesis codebook search procedures.

Unfortunately, while the inherently parallel codebook search algorithms conform
well to the independence requirements ofthe II processor, the branch-intensive, sequential
components of CELP would severely undermine the efficiency of the processor. For when
executing a single, sequential piece of code, interleaving is of no use and the processor

Interleave?

Fetch

Decode

Fetch Operands

Pipelined Multiplier

.Interleaving
>State Registers

42

Figure 4.1: High-Level Diagram of Pipelined-Interleaved (n) Architecture (after Lee [16])

43

behaves as a conventional deeply pipelined processor. Such an architecture is notoriously

unsuited for branch-intensive, sequential code. In this situation, a less pipelined Von Neu

mann architecture gives much better performance.

This suggestsmodification of the proposed low-power architecture to a co-processor

organization. Specifically, a promising configuration consists of a control-oriented processor

aimed at efficiently executing the definitively non-parallel sections of the CELP algorithm,

coupled with a deeply pipelined n co-processor used to perform the computationally inten

sive pitch and codebook searches at the heart of the CELP algorithm. This n processor

component would have minimal control overhead, allowing only the most basic forms of

branching and looping. This optimization minimizes power consumption associated with

control overhead, while still enabling efficient handling of the easily parallelized, regular
code that would be mapped to the n co-processor.

4.1.2 Analysis of Architectural and Algorithmic Issues

At this point, a comparison of possible power savings from various architectural

techniques will be presented. In addition, the effects of the algorithm parallelization strat

egy described in section 2.2.7 will be discussed. In particular, with a purely sequential

CELP processor as a basis for comparison, the following architectural alternatives will be

analyzed: a fully parallel (or pipelined-interleaved) processor, a fully parallel processor ex

ecuting a parallelized algorithm, a co-processor configuration, and a co-processor executing
the parallelized algorithm.

Sequential Processor

A sequential processor executing the CELP algorithm will be used as the met

ric against which all other architectural and algorithmic variations will be measured (see
figure 4.2). In this analysis, the following definitions are of interest:

7T

o

T

M

f
C

V

p

ships:

Speech In

!!

f > CELP

44

Speech Out

Figure 4.2: Sequential CELP Processor

Number of indisputably sequential operations per frame
Number of possibly parallel operations per frame
a + 7r = Total number of operations per frame
Time allotted to process a frame
Average number of machine cycles per operation
Y = Clock frequency
Capacitance associated with processor hardware
Supply voltage from which processor is operated
Dynamic power consumed by processor

Using these definitions, a straightforward analysis reveals the following relation-

f _ i_ (<r +*)M
1 " T~ T
P <x CV2f

(4.1)

(4.2)

Thus, for a sequential processor, the frequency at which the clock must run is determined

by the total number ofoperations to be performed, the average number ofclock cycles per
operation, and the time allotted to perform these operations. Dynamic power is as derived
in section 2.1.

45

Fully Parallel Processor

With these results as a base, the relevant parameters for a fully parallel processor

can be derived. These results are easily extended to the pipelined-interleaved case, which in

the algorithmic sense is equivalent to the parallel approach. Since an N-stagen processor

behaves like an iV-way parallel processor configuration, the analysis is carried out for the

conceptually simpler parallel case. A depiction of the configuration is shown in figure 4.3.

Note that all sequential portions of CELP code would be executed on processor CELPi

with the other processors idle and powered down, while the parallel code segments would

execute on all N processors concurrently. The underlying assumption is that all "parallel"

code segments are JV-way parallel (i.e. may be mapped efficiently onto N independent

processors). For this derivation the following additional definitions are convenient:

a% = § = Fraction of operations that must be executed sequentially
v% ~ S = Fraction of operations that may be executed concurrently on N processors

Furthermore, the subscript p in the following equations refers to the fact that these param
eters relate to the parallel implementation.

We now find that,
_ 1 {c + j,)MU-Tp- f— (4.3)

Thus, the required clock frequency is reduced (relative to thesequential case) since N ofthe
parallel instructions can be executed simultaneously during each clock cycle. As discussed

in section 2.2.6, this reduced clock frequency allows us to reduce the supply voltage in the
same proportion. If the supply voltage, Vp, is scaled such that Vp = apV then,

«*-£ =•* +$ (4.4)
Therefore, for fully parallel code, the voltage supply can be reduced by a factor of N.
Furthermore, a simple derivation reveals that with this voltage scaling,

Pp =Pf™**1 +parallel = ft2p ^

This result clearly shows the importance of minimizing the scaling factor ap. Ifthe number
of parallel processors is set large enough so that execution of parallel code is not the com
putational bottleneck, then the lower bound on ap is simply a%, the fraction ofsequential
code in the algorithm. That is,

if JV > 2L then: 5> Ma2im.n M„2% (46)

46

Speech In

Speech Out

Figure 4.3: Parallel CELP Processor

47

An N ~ (10...20)^- should be sufficient. The key objective, then, is to minimize the
number of sequential instructions while providing enough processors to effectively handle

the parallel computational load.

Consider the following example based loosely upon the Motorola VSELP algo

rithm. Let M = 1 cycle/op, V = 5 V, r = 20ms, a + w = 350000, <r% = 0.5, and tt% =

0.5. On a sequential processor, this algorithm would require a clock frequency of approxi

mately 17.5 MHz. Figures 4.4 and 4.5 show the behavior of parallel power and frequency

as N is increased. An N ~ 15 gives a power reduction close to the theoretical limit of

four. Using this value of JV, the supply voltage and operating frequency become 2.67 V

and 8.75 MHz, respectively. In order to further reduce power consumption, the number of

sequential operations in the algorithm must be reduced.

Fully Parallel Architecture Executing Parallelized Algorithm

In certain cases, sequential code can be transformed into parallel code; however,

it is usually not a one-to-one translation. That is, each sequential instruction corresponds

to several, say fc, parallel instructions. Using prime (') notation to refer to parallelized

parameters, define

a' —a —Act = Number ofsequential operations in parallelized algorithm
7T7 = 7r + Air = t + kAa = Number ofparallel operations in parallelized algorithm

A<r% = ^7 = Fraction of original algorithm parallelized
At% = T^r = Ratio of additional parallel instructions to number of original instructions

3 —^ = Fraction of sequential operations remaining sequential after parallelization

For convenience, the case under consideration will, in future, be referred to as the

parallelized-parallel case. The processor configuration is identical to the parallel scenario

with the exception that the number ofprocessing units is now N'; however, for comparative
purposes we may take N = N' in the following. A simple analysis leads to,

a'p =(** +}£) - A<7%(1 -jp) =(*% ~A**) +jjr,(*% +kAa%) (4.7)
From these equations, it is clear that ifk> N' then a'p > ap, and no power reduction over
the parallel case is achieved. Thus, the prerequisite for a useful parallelization scheme is

that k < N'. In other words, the number of additional parallel instructions required to
parallelize each sequential instruction should be much less than the number of processors.

48

fp/f
fp/f versus N

1.00

0.95

0.90

0.8S

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.00 5.00 10.00 15.00 20.00 25.00 30.00
N (# Processors)

Figure 4.4: Effect of Number of Parallel Processors on Operating Frequency

49

Pp/P
Pp/P versus N

15.00 20.00 25.00 30.00
N (# Processors)

Figure 4.5: Effect of Number of Parallel Processors on Power Savings

50

Otherwise, it would require more cycles to execute the parallelized algorithm than the

original algorithm. In mathematical terms:

for k < Nf: a'p^ap- Aa% (4.8)

Since ap approaches <r%, for large JV, ap and, subsequently, the power can be
minimized by allowing Aa% to approach a%. This corresponds to parallelizing all of the

sequential code in the original algorithm. In this case,

as A<7% - <r%: ap -> —(tt% + ka%) (4.9)

In theory, as N' is increased, ap and the power consumption could become arbitrarily
small. Recall, however, that -^ = a'p implying that for large JV', the supply voltage would
become arbitrarily small. Due to physical limitations this is clearly impossible. To the first

order, assume that the minimum Vpr is just the threshold voltage (Vt « 0.8 V). Then, using
equation 4.9 we have

V
for A<7% -• <r%: N' < —(tt% + ka%) (4.10)

Turning now to the expression for power consumption we find,

where P' is the power that would be consumed were the newly parallelized algorithm exe
cuted on the original sequential processor. Further computations show that

^±£=1+(* - 1)A<7% (4.12)
This term, which will be larger than one, represents the degradation in power savings due
to the instruction count overhead of the parallelization process.

Equation 4.11 relates the parallelized power consumption to the sequential proces

sor power; however, a comparison to the parallel implementation would bemore meaningful.
This comparison leads to the following equation,

>p «%

This relationship exhibits an interesting behavior when only a small fraction of the sequen
tial operations are parallelized (Ao% < o%). That is to say, when very little parallelization

t =* o <4-13)

51

has been done. Specifically, for small amounts of additional parallelization, the power con

sumption actually increases over the parallel implementation of the original algorithm. The

reason for this lies in the fact that for small ^&, the overhead factor, ^, due to the in-
creased overall instruction count, rises more rapidly than the scaling ratio, ^, falls. If

N > k, however, this trend quickly reverses and increased parallelization begins to offer
significant power savings. In the limit, as all existing sequential code is parallelized,

as A„% ^ <r%. - - ^_p (4.14)

An example will help to clarify this concept and others. This example is actually

an extension of the previous VSELP case study. In addition to the parameters defined

there, we specify that each sequential instruction translates on average to four parallel

instructions (k = 4). We further specify that halfof the originally sequential instructions
are to be parallelized (s = 0.5, Aa% = 0.25). Using these parameters in equation 4.10 (and
assuming Vt = 0.8 V) gives N' < 15.6. We choose N' = 15 and note that this satisfies the

desired Nf> k relationship.

Assuming N = Nf and using equations 4.4 and 4.7, we see that ap = 0.533 and
ap = 0.35. Accounting now for the increased total instruction count overhead, we find

%• = 1.75. Applying equation 4.13 yields the result that P'p - 0.76PP. Furthermore, the
operating voltage, VJJ, becomes 1.75 V while the operating frequency goes to 6.13 MHz.

As stated above, however, algorithmic parallelization does not always lead to re

duced power consumption. Figure 4.6 shows anormalized graph of ^ verses ^*. Clearly,
insome cases increased parallelization actually increases power consumption. This is mainly
true for relatively small values of N'\ however, even for values of N' near Nmax = 15 there

is still abrief region, for ^& small, where increased parallelization is of no benefit.
One might wish to calculate the bound on power reduction when all sequential

instructions in the original algorithm are parallelized, Aa% -• a%. Using equation 4.14 for
this case, P'p -* 0.24PP. For this bounding case, the corresponding supply voltage and clock
frequency are given as 0.83 V and 2.92 MHz. This demonstrates the failings of this first
order analysis. For as Vdd -*• Vu the linear scaling of delays with Vdd breaks down and the
results become meaningless.

52

Pp'/Pp versus Added Parallelization Factor

0.00 0.20 0.40 0.60 0.80 1.00
Added Parallelization

Figure 4.6: Effect of Parallelization on Power Savings Relative to Original Parallel Imple
mentation (fc=4)

Control-

Oriented

CELP

!•••••*••••••••••«••••••mm mm••••

Speech In

N units

T
Speech Out

Figure 4.7: CELP Implementation Based on Co-Processor Architecture

53

Co-Processor Configuration

The analysis of the co-processor coder configuration follows closely that of the

parallel processor architecture. This is understandable since the co-processor architecture

is a simple extension of the parallel case. For the parallel configuration there were N
identical processors acting in parallel toexecute concurrent code. When executing sequential
code, however, all but one of the processors were shut down, leaving a single sequential
processor. In theco-processor scenario of figure 4.7, on theother hand, instead ofusing one
of the parallel datapaths, a custom control-oriented sequential code processor is provided
to process non-parallel code.

With this processor available, the control-related hardware in the parallel proces
sors can be minimized, reducing the capacitance associated with this hardware. This, in
turn, offers the possibility of power reduction. Unfortunately, the elimination of advanced

control features from the parallel processors will most likely lead to an increase in the

parallel operation count. In the subsequent detailed analysis, the following definitions are

54

useful:

Scn = ~c = Factor by which total capacitance of a parallel processor scales (Scv < 1)
Airc = Additional parallel instructions required to compensate for reduced control

ttc = 7r + Airc = Total number of parallel operations after including Axc
Sir = ^ = Factor by which number of parallel operations is increased (Sv > 1)

Note that Sc„ encompasses the reduced capacitance afforded by minimized control hard

ware requirements. Also, note that in this section, the subscript c refers to co-processor

parameters.

For this configuration, the new scaling factor, ac, is given by

°c ="% +̂ (4.15)
In the caseof large Nc where the sequential instructions represent the execution bottleneck

we have,

for Nc >^: ac - a% ~ ap (4.16)
Furthermore, as always ^ = 4 = £• = ac.

Of particular interest are the power consumption results. Relative to the original
sequential case we have,

Pc = (<r% + SCltS^%)a2cP (4.17)

Now extending the comparison to the parallel processor architecture and looking at the
sequentially bounded case (large iVc), we arrive at

fortfc>^BL. i£ =a% +scA7r% (4.18)

The co-processor architecture is only useful when jf < 1, resulting in the following condi
tion:

for Nc >%2*: Pc <Pp when S„ <y_ (4.19)
Thus, in order to benefit from the co-processor architecture, the fractional increase in the

number ofparallel instructions should be much less than theinverse of the capacitive scaling
factor.

Consider, once again, the VSELP example. Assuming control hardware overhead
accounts for approximately 25% of the capacitance associated with the parallel processors,

we expect a minimum SCir ^ 0.8. Using restriction 4.19, we see that 5ff must be less

55

than 1.25. This is quite a tight restriction, but let's assume that we meet it with ST =

1.10 (a 10% instruction increase). Even with this low instruction overhead, we achieve only
a 6% power reduction relative to the parallel processor case (i.e. ^ = 0.94). Increasing
parallelization will improve the situation; however, even for a completely parallel program
we can, at best, achieve §• = ScirST = 0.88.

*p

This resultdoes not seem particularly promising for the co-processor configuration;

however, we have ignored one important fact. We have assumed that sequential code

executes as efficiently on a single slice of the parallel processor as it does on the sequential

co-processor. In reality, the deeply pipelined character of the parallel processor slice greatly

degrades its performance on sequential code. Thus, the relative power savings from the
co-processor approach will be much larger than the predicted 12%.

4.1.3 Summary of Architectural and Algorithmic Techniques

From the preceding discussion we can draw several conclusions. First, of the

cases studied, maximal power savings can be achieved from a co-processor configuration.
In this architecture, one processor is a highly concurrent computational unit, while the
other is optimized for executing sequential, control-intensive code. In order to avoid the

large area penalties associated with fully parallel implementations, concurrency could be
achieved using a pipelined-interleaved processor as suggested by Lee. Such a processor may
be programmed as if it were N independent, parallel processors and, thus, we avoid the
programming difficulties related to deeply pipelined processors.

Furthermore, as shown by equation 4.6, power will be minimized by choosing
N> 2a.. In the example, the power reduction attributable to a 15-way parallel processing
system was shown to be -f = 0.28. By further increasing concurrency in the algorithm we
were able to compound power savings; however, increased concurrency came at the cost of
some operational overhead. In theexample, we assumed that for each sequential operation
eliminated, four parallel operations were required. In order for the parallelization process to
be worthwhile, this instruction overhead must be less than the number of parallel processors.

In addition, we found that the parallelization process could not proceed without
bound; the inability toscale Vdd past Vt made parallelization ineffective beyond some point.
For the above example, the maximum effective N was shown to be fifteen. Using this result,
by parallelizing 50% of the remaining sequential code we saved additional power over the

pi
parallel case as given by ^ = 0.76.

56

The final optimization, results from utilizing a co-processor approach rather than

a strictly parallel processor approach. By combining a processor optimized for sequential,

control-driven code with adeeply pipelined-interleaved processor for executing parallel code,
an additional power reduction on theorder of10-30% was shown possible. Combining these
results, an overall power reduction of a factor of six or more over a strictly sequential
implementation should be quite reasonable.

The accumulated strategy for low-power algorithmic optimization, then, is as fol

lows. Algorithm selection should be based on the extent of existing concurrency as well
as overall instruction count. Furthermore, the selected algorithm should be amenable to

additional parallelization with minimal overhead. Finally, the algorithm should be imple
mented on a co-processor architecture consisting of a control-intensive Von Neumann style
processor coupled to a deeply pipelined (« 15 stages) interleaved co-processor for execution

of concurrent code. This methodology is general enough to apply not only to speech cod
ing algorithms, but also to a wide variety of DSP applications. Recall, however, that the
validity of these results depends intimately on several assumptions. For example, the final
algorithm must have enough inherent concurrency to efficiently utilize the parallelism pro
vided by the suggested architecture. Moreover, the overhead incurred in delay and power
by the required pipelining hardware must not become significant relative to that associated
with the processing elements.

4.2 VSELP Case Study

As an application of the proposed low-power methodology, three high quality, low
bit-rate CELP coding algorithms will now be analyzed for low-power suitability. The first
algorithm, Motorola's 8.0 Kbit/sec VSELP coder [10], will be analyzed in detail. Like
the other two algorithms under consideration, VSELP takes as input a 64 Kbit/sec input
stream of8 KHz, 8-bit ^-Law PCM samples, which it immediately converts to 16-bit uniform

PCM for further processing. Similarly, the output, after decoding, is another 64 Kbit/sec,
8-bit /x-Law PCM stream. Furthermore, since all three coders achieve very high quality
output speech with MOS scores above 4.0, coding quality was not emphasized as a basis
for comparison of the algorithms.

The analysis in this section will begin with a description of the computational

57

complexity of the VSELP algorithm. In this context, complexity refers mainly to the

number of arithmetic and comparison operations that must be performed by the algorithm

during each coding frame. The next section will discuss the suitability of the VSELP

algorithm for parallel implementation. Following that discussion, the analysis will proceed

with low-power optimizations for key subsections of the algorithm. These optimizations

focus on increasing the available concurrency in the algorithm. Following this analysis,

focus will be shifted to the two other CELP algorithms under consideration: the AT&T

LD-CELP algorithm and the DoD CELP algorithm. Having covered the main low-power

issues in the detailed VSELP presentation, discussion of the other two algorithms will be

mainly by way of comparison and contrast to the VSELP coder.

4.2.1 Overview of Algorithm

Before proceeding with the VSELP case study, a brief overview of the distinctive

features of the algorithm is required. The VSELP frame size is 20 ms and refers to the

period with which the LPC coefficients of the synthesis and perceptual weighting filters

are recalculated. Each frame is divided into four subframes of 40 samples and 5 ms each.

For each subframe, the codebook search procedures determine the appropriate codebook

indices and gains. The results of this process are transmitted subframe-by-subframe to the
decoder.

A high level block diagram of the VSELP coder is shown in figure 4.8. As with all

CELP algorithms, coding is based on an analysis-by-synthesis methodology. Conceptually,
linear combinations of the vectors in the three codebooks are taken as excitations to a

synthesis filter embedded in the coder. The resulting synthesized speech is perceptually
compared to the input speech and a mean-square distortion measure is calculated. Using
this synthesis approach, an attempt is made to find the codebook indices and gains that
result in the least distorted synthesized speech.

These gains and indices are then transmitted to the decoder along with the ap
propriate LPC coefficients. As illustrated by the figure, the decoder is basically a replica
of the codebook search portion of the coder. It consists of the three excitation codebooks,
a synthesis filter, and an optional spectral postfilter. As in the coder, the output speech is
created by exciting the synthesis filter with a linear combination of the indexed codevectors

from the three codebooks. A more detailed description of the entire process follows:

VQ ,
Indices

Coder

, Long-Term
u #••»» FIHnrSfnf.Fitter State

!•••»» Codebook 1

»•* Codebook 2

Decoder

/
!_••*-

I...•»

Long-Term

Rlter State
(Adapthwl

Codebook1

Codebook 2H—»»-

\

^£>

Input ml.
Speech •<">"

Beta

^ Gamma

€•
>J4

unnuL

t>

Weighting

Filter ,W(z)

Weighted
Synthesis
RKer, H(z)

P'(n)

P<n)

e
Minimize

Distortion

58

,tVQ
• Indices

Side • # (LPCcoefficients, Gains, eta)
Info >•

eta

rgg7°i 0

Gamma.

{>

>j?) Synthesis

Rlter, 1/A(z)

Optional
Spectral

Post-Rlter

Decoded
Speech

Figure 4.8: High-Level Block Diagram of VSELP Coder/Decoder

59

Coder

Preparations for Codebook Search Once in every frame, an LPC analysis, as de

scribed in section 3.5.1, is used to calculate the coefficients of the synthesis and perceptual
weighting filters. This analysis is centered in the fourth subframe of each frame and utilizes

an analysis window of 170 samples (21.25 ms). The analysis procedure is a fixed-point

covariance lattice algorithm called FLAT and is similar to the Burgalgorithm for reflection

coefficient calculation [14]. Since the LPC analysis is performed only once per frame, the

direct form LPC coefficients for each subframe are interpolated based on the values from

the current and previous frames. A by-product of the FLAT analysis is an estimate of the

energy associated with the current frame. As with the LPC coefficients, subframe energies
are estimated by interpolation of frame energies. In this case, however, interpolation is
accomplished by a geometric, rather than a linear, interpolation process.

In addition, a perceptual noise-weighting filter is employed to account for the

acoustical noise masking properties of the human ear. People are less able to distinguish
noise (error) energy concentrated near speech formants than they are noise located in the
troughs ofthespectral speech envelope. The coding process accounts for this by means ofa
perceptual weighting filter, W(z). Figure 4.9 conceptually illustrates the generation of the
weighted error signal during a codebook search. This configuration is completely equivalent
to that depicted in figure 4.8. The initial error signal is given by the difference between the

input speech and the synthesized speech signals. This error signal is then passed through
the weighting filter with transfer function, W(z) =^, where A(z) is the LPC analysis
filter and A= 0.8. In the frequency-domain, this filter has troughs at each of the formant
frequencies. As a result, noise energy concentrated near these frequencies will receive less
weight than noise occurring in other spectral regions. Thus, noise is allowed to accumulate

near formant frequencies, while noise occurring near anti-resonances is minimized. In the
actual coder implementation, the weighting process takes place at the inputs ofthe speech
signal differencing node rather than the output. In other words, the input and synthesized
speech signals are filtered by W(z) prior to generating the error signal. In the synthesis
path, then, H(z) = -jgj- = ^j is referred to as the weighted synthesis filter.

The next step in the coding process is to subtract off the zero-input response of
weighted synthesis filter, H(z), from the weighted input speech. This is an attempt to
minimize the complexity ofthe upcoming codebook search procedure. For if thestate com-

e(n)

Input
Speech

s(n)

Synthesis

Filter, 1/A(z) e
Perceptual

Weighting

Filter, W(z)

Figure 4.9: Concept of Perceptual Noise-Weighting

Input
Speech

s(n)-

ex(n)

Perceptual

Weighting
Filter, W(z)

Weighted
Synthesis
Filter, H(z)

Zero-State

Weighted
Synthesis

Filter, Hz^z)

WV*
•o

Wn> Weighted
Error

60

Weighted
Error

Figure 4.10: Removal of Synthesis Filter Memory Component

ponent of H(z) can be eliminated, the number of multiplications required in the synthesis

filtering process can be drastically reduced. To this end, the response of H(z) to an exci
tation is decomposed into two parts: a zero-state response and a zero-input response. The

zero-input response contains the component of synthesized speech due to the state of the

filter, H(z). It is this component that is subtracted from the weighted input speech before

the codebook searches begins. The only component that must be calculated during the
search, then, is the zero-state response. As a result, significantly less multiplications are
required. Figure 4.10 illustrates this procedure.

61

Pitch Codebook Search The pitch filter component of the classical CELP algorithm
(as described in section 3.5.2) is implemented in the VSELP coder as an adaptive code-

book. This concept requires some explanation. The purpose of the long-term pitch filter

in traditional CELP coders is to introduce pitch periodicity into the excitation waveform.

This allows the excitation codebooks to be approximately white and increases the efficiency

of the vector quantization procedure. A simple filter that achieves this end is of the form

B(z) = 1_pz-L (see figure 3.14). In the time-domain, for the simple case of f3 = 1, the
impulse response is an impulse train of unity amplitude and period X, where X corresponds

to the desired pitch period. Similarly, in the frequency-domain the transfer function has

the form of a comb filter with discrete impulse components at the pitch frequency and all

of its harmonics. Thus, as desired, the filter introduces the pitch component into the time

and frequency-domain representations of the excitation signal.

The VSELP coder implements the X-stage delay line associated with this filter

as an adaptive codebook whose contents are simply past values of the excitation signal.
By performing a codebook search, the appropriate pitch lag, X, and pitch gain, /?, are

found. The codebook is adaptive in the sense that after each subframe excitation has been

calculated, the pitch codebook contents must be adapted to reflect this recent history of
the excitation waveform. This methodology is completely equivalent to the physical B(z)
filter implementation.

The actual codebook search methodology is based on an end-point recursion tech

nique. Conceptually, for each codevector corresponding to a given lag, X, there exists an
optimal amplification, (3opt. For every possible lag, X, the indicated codevector is amplified
by its optimal (3opt and then used tosynthesize a segment ofspeech. The value ofXresulting
in the least distortion is selected as the pitch lag. Since codevectors for adjacent values of
X differ only in their two endpoints, an endpoint recursion technique is used to reduce the

computational requirements of the H(z) filtering process. This recursive methodology is a

key stumbling block in the low-power implementation of this algorithm and the issue will
be revisited in a later section.

Stochastic Codebook Searches After determining the optimum pitch lag component
oftheexcitation, it remains to determine theoptimum components from codebooks one and
two. Selection ofthecodevector from thefirst codebook proceeds under a joint optimization
assumption of gains f3 and 71 (where 71 is the gain ofthe codevector from codebook one).

62

Selection of the optimal codevector from codebook two is undertaken with the assumption
of jointly optimized /?, yu and 72 (72 is the gain of the second codevector). In order to
simplify this joint optimization process, the 5"(^)-filtered codevectors from codebook one

are first orthogonalized to the previously selected filtered pitch excitation component prior
to the first codebook search. Likewise, before the second codebook search, the filtered

codevectors from codebook two are orthogonalized to the filtered pitch codevector as well

as the filtered codebook one vector. This orthogonalization process decouples the selection
of successive codevectors from previously determined excitation components.

Under normal circumstances, this orthogonalization procedure would be prohibi
tively complex since it would have to be performed on every codevector from each code-

book (and twice on those from the second codebook) - quite an expensive computation for
codebooks of 128 vectors each. The unique structure of the VSELP codebooks, however,
circumvents this difficulty. Each codebook is described completely by linear combinations

of seven basis vectors. Furthermore, the weights associated with these basis vectors are

restricted to ±1. Thus, the aforementioned orthogonalization process need only be carried
out on the seven filtered basis vectors from each codebook.

Once again, a recursive search procedure is employed, although this time it is
not an end-point recursion. Through a gray-coding procedure, the weights of successive
codevectors are constrained to differ in only one basis vector. Using this information, a
recursion can be developed to implement the codebook search procedures. This recursion

applies equally well to the first and second codebook searches. Moreover, since it is a
linear operation, the synthesis process represented by the zero-state H(z) filter need only
be performed on the fourteen basis vectors.

Joint Optimization of Excitation Gains At this point, the optimal indices into the
adaptive pitch codebook and the twostochastic codebooks havebeenselected. It remains to

jointly optimize the three gains /?, yu and 72 to achieve minimum distortion. This process
is implemented as a classical three-dimensional vector quantization procedure. Instead,
of quantizing those three gains, however, three equivalent gains - GS, P0j and Pt - are
quantized. It turnsout that these gains can beefficiently vector quantized due to convenient

restrictions on their range space. They are, however, completely equivalent to the three
original gains. The vector quantization procedure is carried out over a three-dimensional
codebook containing 256 codevectors.

63

Channel Transmission and Filter Updates The encoding algorithm concludes by
transmitting the relevant LPC, codebook index, and gain parameters to the decoder. In

addition, the states of the adaptive pitch codebook and the weighted synthesis filter are
updated based on the selected (optimal) excitation. Finally, processing ofthe nextsubframe
begins and the entire procedure repeats.

Decoder

The VSELP decoder is a subset of the coder. As shown in figure 4.8, it consists of

the three codebooks, the excitation gain amplifiers, the synthesis filter (unweighted), and
an optional spectral postfilter. Using the gains and codebook indices received from the

coder, the excitation signal is reconstructed from a linear combination of the gain-scaled
codevectors. This excitation is applied to the synthesis filter to produce the output speech
(assuming no post-filter). As in thecoder, thestateoftheadaptive pitch codebook and the
synthesis filter are then updated. Finally, the whole process repeats.

4.2.2 Computational Complexity

The computational complexity of the VSELP algorithm can be approximately
measured by an operation count since the number of operations that must be executed in

a given time determines the operational requirements ofthe host processor. In general, the
required processor operations can be broken into two categories: arithmetic instructions
and control instructions. The arithmetic operations include multiply-accumulates (MACs),
multiplications, additions, and subtractions. The main control instruction is the branch

operation, which alters theinstruction flow (usually) based on theresult ofsome comparison.
The VSELP algorithm actually requires threeother important arithmetic instruc

tions: divisions, common logarithms, square roots, and exponentials. These instructions
are not directly supported on most architectures and, thus, some other method (such as
the cordic algorithm) based on the existing operations must be applied to implement the
instructions. Thus, an accurate instruction count must break these special operations down
into their component suboperations; however, for the VSELP algorithm the number of
these special instructions relative to the total operation count is so small that this process
is unnecessary. Therefore, even these complex instructions are counted as single operations.

The analysis-by-synthesis nature ofCELP algorithms makes them inherently com-

Operations Per Mega-Operations
Operation 20 ms Frame Per Second (MOPS)

Comparison 147707 7.3854

MAC 109664 5.4832

X 39889 1.9945

± 35823 1.7912

/ 179 0.0090

S 28 0.0014

log 9 0.0005

T 1 0.0001

Total 333300 16.7 MOPS

Table 4.1: Complexity of VSELP Coder

64

plex. For each subframe, all codevectors in thecodebook must besynthesized and compared

to the input speech. This requirement has led to real-time implementation difficulties. End-

point recursions and structured codebooks are often used to reduce instruction counts and

achieve real-time implementation of CELP coders; however, the complexity of CELP coders

remains among the highest in the speech coding domain.

Table 4.1 presents the instruction counts for the coder portion of the VSELP al

gorithm. This data is based upon a C language implementation of the VSELP algorithm

coded by Robert Kavaler of Teknekron. Clearly, the multiply-accumulate and comparison
operations dominate the instruction count. Often, comparisons used for looping constructs

can beoverlapped with instructions from within theloop and their contribution to algorith
mic complexity is effectively eliminated; however, these comparisons are explicitly included
here in an attempt to account for inevitable execution overhead.

In order to determine which sections of the algorithm dominate the coding process,

a breakdown ofinstruction counts by subblock is useful. Using the gprof profiling program,
table 4.2 highlighting the computationally intensive subblocks of the VSELP algorithm can
be derived. These results illustrate that the majority of the computational complexity of
the VSELP coder can be attributed to the pitch search algorithm and the two codebook
searches. Specifically, it is the section of the codebook searches that performs the H(z)
filtering that dominates the codebook searches.

Since gprof results are somewhat dependent on processor and compiler efficiency, a
manual count of operations in these routines was performed to verify the results. The data

Task Subtask % of Total Runtime

Pitch Search 37%
Codebook Searches H(z) Filtering

Search Recursions

Orthogonalization

25%

11%

5%
41%

Total 78%

Table 4.2: gprof Breakdown of Dominant VSELP Coder Tasks

Task Subtask % of Total Operations
Pitch Search 35%
Codebook Searches H(z) Filtering

Search Recursions

Orthogonalization

19%

11%
6%

36%

Tot al 71%

65

Table 4.3: Manual Breakdown of Dominant VSELP Coder Tasks

from this analysis is summarized in table 4.3. As shown by this table, the computational

load is, indeed, centered on the pitch search and codevector filtering operations.

Although the decoder requires relatively few computational resources, table 4.4 is

included for completeness. Clearly, since the decoder represents only 4.8% of the overall

instruction count, and since it contains no codebook search procedures, it should not be

the focus ofmuch optimization. Consequently, it is upon the codebook search and filtering
routines of the coder that parallelization and optimization efforts should be focused.

4.2.3 Suitability for Low-Power Implementation

Algorithmic Concurrency

Clearly, the criteria for an algorithm that will efficiently execute on a low-power,
parallel architecture are quite different from those for an algorithm intended to execute on
a classical Von Neumann architecture. In particular, it is not the overall instruction count

that is critical; instead, it is the number ofoperations that must be performed sequentially
that limits performance and power savings.

In VSELP, as with most CELP algorithms, the codebook search procedures domi-

Operations Per Mega-Operations
Operation 20 ms Frame Per Second (MOPS)

Comparison 7410 0.3705

MAC 4304 0.2152

± 2921 0.1461

X 1741 0.0871

/ 383 0.0192

s 16 0.0008

T 1 0.0001

Total 16776 0.839 MOPS

Table 4.4: Complexity of VSELP Decoder

66

nate the computational requirements. For a parallel, low-power architecture this is a fortu

itous circumstance since for most CELP codebooks individual codevectors are independent.

As a result, the synthesis filtering and distortion calculations for each of these codevectors

can be performed concurrently. Thus, CELP codebook searches are inherently parallel and

map well to the pipelined-interleaved processor described above.

Unfortunately, most algorithm designers do not have parallel architectures in mind

when they specify a particular CELP algorithm such as VSELP. Usually, the algorithms
are targeted at existing off-the-shelf DSP processors such as AT&T's DSP32c or Motorola's

56001 DSP. These can be considered sequential machines relative to the massively pipelined
architectures proposed in previous sections for low-power implementations. Therefore, the
designers are not concerned with maximizing parallelism in their algorithms. Instead, they
attempt to minimize total instruction counts - multiply-accumulates in particular. To

this end, the extensive use of recursions in codebook search procedures is common. This

methodology was adopted by the VSELP designers in both the pitch and stochastic code-

book searches. These highly non-parallel recursions, are not ideal for implementation on a
concurrent architecture. Therefore, it can be advantageous to parallelize certain sections of

the algorithm at the expense of a (hopefully) slight increase in the total operation count.
Once again, these optimization will be concentrated in the pitch and codebook search pro
cedures.

67

Suitability for Fixed-Point Arithmetic

Another issue of suitability for low-power implementation is that of fixed-point
or block floating-point feasibility. Recall that full floating-point implementations require
excessive hardware overhead that leads to increased power dissipation. Unfortunately, al
gorithmic designers who are targeting floating-point DSP architectures often don't con

sider fixed-point issues. This can be troublesome for applications like speech coding that,
historically, suffer from dynamic range issues arising from the widespread squaring and
multiplication operations present in the algorithm.

Fortunately, the VSELP designers were aware of this issue. They put some effort

into arriving at an algorithm that lends itself well to block floating-point implementation.
The fact that Motorola's 56001 DSP chip is block floating-point based might have had
some influence on this decision. Since the classic Levinson-Durbin LPC analysis can often
frustrate attempts at fixed-point implementation, VSELP relies on the FLAT algorithm,
which is specifically intended for a fixed-point processor. This is a point in favor ofVSELP
as a candidate low-power coding algorithm.

4.2.4 Parallelization of Algorithm

Aside from fixed-point considerations, parallelization of the codebook search and

codevector filtering operations are the primary focus of low-power optimizations. These
optimizations are presented in two parts, the first focusing on the pitch search procedure
and the second on the two subsequent codebook searches (in particular, the codevector
filtering portion).

Pitch Codebook Search

The complexity of the pitch search procedure can mainly be attributed to the
requirement that all codevectors in the adaptive codebook be passed through the weighted
synthesis filter, H(z). In order toreduce the overall instruction count, the VSELP algorithm
takes advantage ofthe overlapping nature ofthe pitch codebook. Specifically, for successive
pitch lag indices, the corresponding codevectors differ only in their two endpoints. Thus, an
end-point recursion can be used to generate the required ^(^)-filtered signal, b'L(n). This

68

recursion is described by the following equations:

,/, x J *lM X> n
hdn) = \ (4.20)

I ZL(n) + zl(u - X) X < n

and

' r(-X)A(0) n = 0
ZL(n) =^ 2L-i(rc - 1) +r(-L)h(n) 1<n<NT (4.21)

k ZL-i(n-l) NT<n<N-l

where r(-) is the memory of the adaptive pitch filter codebook, h(>) is the impulse response
ofH(z), Xis current value of the pitch lag index, N is the subframe length, and NT is the
duration of impulse response h(-).

Thepitch search procedure begins by calculating an initial value for zimin(n) using
a straightforward convolution. Then for all successive values of X the above recursion is

applied.

The recursive nature of this pitch search is inherently non-parallel. This has been

shown to be an obstacle to achieving a low-power implementation. One method of cir

cumventing this situation is to split the codebook into several independent sections. These

sections would all execute concurrently. Each would begin with a convolution to calculate

their respective ziimin(n). At that point, however, calculation of the filtered codevectors,
*L,(n)» covid proceed in parallel using the above recursion. For although the independent
b'L.(n) calculations are locally recursive, their calculation for mutually exclusive ranges of
Xcan be interleaved intoa processor pipeline to achieve concurrency.

As stated previously, this concurrency comes at the price of some increased in

struction overhead. In this case, the overhead comes from the extra initial convolutions

that must be carried out. These convolution amount to manually filtering given codevec
tors through the H(z) filter. This filtering process, however, can itself be parallelized, and
this is the topic of the next section.

Stochastic Codebook Searches

The majority of the computational load attributable to the stochastic codebook

searches is due to the filtering of the fourteen basis vectors through the H(z) weighted
synthesis filter. Furthermore, as was seen in the last section, the efficiency of this filter
determines the extent ofthe overhead caused by the pitch search parallelization procedure.

69

Fortunately, a simple transformation can be used to parallelize the synthesis filter.

Section 3.5.1 described the form oftheall-pole synthesis filter, -^Hr. The weighted synthesis
filter has a similar form and is given by H(z) = -^W. The direct-form implementation of
this filter is depicted in figure 4.11. Using the principle of retiming, we migrate delays

across the coefficient multipliers resulting in figure 4.12. A final application of this retiming

procedure achieves the filter of figure 4.13. This filter has somenice properties for a pipelined

implementation. The presence of the delays in the feedback accumulation path effectively

decouples the calculation of successive output values. This effect is best illustrated by a

resource allocation diagram. For simplicity, assume the number of pipeline stages in the

processor is equal to the order of the synthesis filter (ten in this case). Furthermore, the

length of the input vector to be filtered is 40 samples. Figure 4.14 shows the schedule

for the original direct-form synthesis filter of figure 4.11. Notice that the calculation of

each successive sample depends upon the results for the previous sample. This introduces

"bubbles" intothe pipeline and, therefore, theutilization factor is quite poor at only 52.6%.

For the restructured filter, however, figure 4.15 shows that, aside from the time it takes to

fill the pipeline at the beginning of the procedure and the time it takes to empty it at the

end, the pipeline remains fully utilized. The pipeline utilization factor achieved for this

scenario is 97.8%.

For the stochastic codebook searches this utilization can be further improved since

not one but fourteen codevectors need to be filtered. These filtering operations can be

overlapped, thus, occupying those triangular pipeline emptying and filling regions shown in
the figure. The new utilization is 99.8%.

The H(z) filtering process is the major contributor to the complexity of the
stochastic codebook search procedures; however, the inner search loop, itself, also makes a

significant contribution. Fortunately, this loop is based on a recursion similar in style to the
pitch search recursion. Therefore, the same codebook subdivision process can be applied
here in order to parallelize the search.

Clearly then, efficient parallel implementations can be developed for the pitch
search, codevector filtering, and stochastic codebook search procedures. Furthermore, the
required transformations are easy to derive and to implement.

70

e(n)- ©- s(n)

© %

<$> ^

*P
Figure 4.11: Direct-Form Synthesis Filter

71

e(n)- e s(n)

e-

<5>-

-N
\

<
Figure 4.12: Synthesis Filter After First Retiming Step

Pipeline
Stage

N

72

e(n)-

£
s(n)

<

<

-1

N.

<}
Figure 4.13: Synthesis Filter After Second Retiming Step

Time

2N-1 40(2N-1)

\ \ \ \ \ Emp
••pipeline Full \ Empty \Pipeline Full \ •—•—————•— \pipdine Full \

Empty \ \

^Ll X1.N 2.1 A2.N *40.1 X40N

NOTE: X]j s Multiplication by coefficient a. for Computing Sample s(i)

Figure 4.14: Resource Allocation Schedule for Direct-Form Pipelined Synthesis Filter

Pipeline
Stage

Time

73

41N-1

NOTE: Xjj =Multiplication ofSample s(l) bycoefficient a

Figure 4.15: Resource Allocation Schedule for Restructured Pipelined Synthesis Filter

4.3 Comparative Analysis of LD-CELP Algorithm

The preceding detailed analysis of the Motorola VSELP algorithm covered the key

issues involved in optimizing an algorithm for low-power implementation. Indeed, in many

ways the VSELP algorithm is typical of DSP algorithms, and the optimizations applied to

it can also be applied to other DSP applications. The analysis, then, of the AT&T LD-

CELP [12] candidate algorithm will beundertaken inacomparative, rather than exhaustive,
fashion. The overview of the algorithm will highlight key points unique to LD-CELP and

will illustrate where it differs from traditional CELP as well as the VSELP algorithm.
Furthermore, the subsequent analyses ofcomputational complexity and suitability for fixed-
point and parallel implementation will rely heavily on the preceding VSELP discussion.

4.3.1 Overview of Algorithm

Figure 4.16 shows a high-level representation of the LD-CELP algorithm. Whereas
theVSELP algorithm achieves a channel stream of8.0 Kbits/sec, the LD-CELP algorithm
aims at only a 4:1 compression ratio with a 16 Kbit/sec channel stream. In lieu of the high
compression, however, LD-CELP achieves the extremely low encoding delay of less than

2 ms. Indeed, LD-CELP is an acronym for low-delay CELP. In certain communications

systems requiring echo cancellation, this low encoding delay is extremely desirable. For the

purposes of this research, however, it is not a necessity and the LD-CELP algorithm will
be analyzed purely on the basis of its other merits.

Coder

64 Kb/s

u-law

Exeiution

Codebook

Decoder

u-law to

uoifbsn

Conversion

-^

Backward

Giia

Adapter

Vector

Buffer

Backward

Synthesis
Adapter

Perceptual
Weighting

Filter

Minimize

Distortion

16 Kb/s

VQ

Index

Excitation

Codebook

is^Gain Synthesis

Filter

umfonnto

u-law

Conveoion

MKh/x

U u-law

*

...

Backward

Gain

Adapter

Backward

Synthesis
Adapter

Figure 4.16: LD-CELP Speech Coder/Decoder

74

VQ

Index

75

Coder

LPC Analyses A major difference between LD-CELP and conventional CELP coders

(including VSELP) is that the AT&T algorithm relies on backward adaptation of LPC

filter parameters. Traditional CELP coders analyze the input speech signal to determine

appropriate LPC coefficients, which describe the various synthesis and perceptual weighting

filters in the coder. These parameters are then transmitted to the decoder as side informa

tion in order to ensure that the coder and decoder filter configurations track one another.

LD-CELP avoids this side-channel by using a backwards adaptation method to update the

filter coefficients. Instead ofanalyzing theinput speech to determine the appropriate predic

tor parameters, the algorithm analyzes the synthesized (decoded) speech waveform. Since

this signal is available in identical form in both the coder and the decoder, filter updates

can track on both ends. Excitation gains in the synthesis path are updated in a similar
manner.

Another unique attribute of LD-CELP is its high-order LPC predictor. In contrast

to VSELP and most CELP coders, the AT&T coder makes use ofa50th (rather than 10th)
order LPC synthesis filter. This can be attributed to the fact that LD-CELP has no pitch
filter in the synthesis path. Instead, the functions of the normally 10th order vocal tract

filter and the long-term pitch filter are combined into this single high-order filter. This

presents problems in both numerical precision and computational complexity that will be
addressed shortly.

As mentioned briefly, the excitation gain is updated by a 10thorder adaptive linear

predictor. This predictor operates in the logarithmic domain and the LPC analysis can be
accomplished by the standard Levinson-Durbin recursion operating on previous values of
excitation gains.

Codebook Search The LD-CELP codebook search is based ona single codebook in the
classic CELP tradition. Rather than being formed by linear combinations of basis vectors,
the LD-CELP codevectors are individually stored in the excitation codebook. In order to

achieve the low 2 ms encoding delay, the vector length is reduced from VSELP's 40 samples
to a mere five samples. The codebook contains 1024 entries, resulting in a codebook index
of10 bits that must be transmitted to the decoder for each five samples ofinput speech. As
with VSELP, the algorithm takes advantage of a zero-state synthesis filter, however, this

Operations Per Mega-0perations
Operation 2.5 ms Frame Per Second (MOPS)

Comparison 17984 7.1936

MAC 13977 5.5908

± 5448 2.1792

X 5184 2.0736

/ 78 0.0312

log 4 0.0016

T 4 0.0016

Total 42679 17.1 MOPS

76

Table 4.5: Complexity of LD-CELP Coder

filter is now of 50th rather than 10th order. Again, as in VSELP, perceptual weighting is

performed and a mean-square distortion measure isapplied to the search procedure. Finally,

the codebook vectors do not overlap, but are, instead, completely independent.

Decoder

Like the VSELP decoder, the LD-CELP decoder is a subset of the coder. Taking

the received codebook index, it selects the appropriate excitation vector, gain-scales it, and
passes it through the 50th order synthesis filter. Filter coefficients and excitation gains are
updated in a backwards adaptive fashion, as in the coder.

4.3.2 Computational Complexity

Table 4.5 shows the computational breakdown of operations for the LD-CELP

coder. The total number of operations required per second exceeds that of the VSELP

coder. Considering their compression ratios, this is quite a surprising result. The VSELP

coder achieves a factor of two greater compression than LD-CELP, yet it requires less
operations per second to reach that end.

Decomposing the coder complexity into its dominant subcomponents reveals that

the computational load is concentrated in twosubblocks: the codebook search and the 50th

order LPC analysis. The data for this result is shown in table 4.6. The significance of the
computational requirements ofthe codebook search algorithm are, perhaps, not surprising.
This situation arises in basically all CELP coders due to the analysis-by-synthesis method-

Task % of Total Operations
50th Order LPC analysis 44%

Codebook Search 41%
Total 85%

Table 4.6: Breakdown of Dominant LD-CELP Coder Tasks

77

ology. The only point of interest lies in the fact that the codebook has no special structure

like the VSELP codebook that can be exploited to reduce overall instruction counts. Thus,

the LD-CELP algorithm opts for the more traditional, exhaustive approach to the codebook
search.

The fact that the LPC analysis is a dominant component of computational load is

probably a more interesting result. It can be directly attributed to the union of the pitch
filter and the traditional synthesis filter into a single 50th order filter. As table 4.6 shows,
performing the Levinson-Durbin recursive analysis required by this filter is not a trivial

task. Moreover, the filtering operation itself requires significant computational resources
since the synthesis filter contains 50 taps.

The decoder, although computationally simpler than the coder, requires some non-

trivial resources (see table 4.7). Since coefficients are updated backwards adaptively in both
coders, the LD-CELP decoder must also perform a 50th order LPC analysis, as well as a

10th order excitation gain LPC analysis. Thus, although no codebook search is required,
a significant number of operations must still be performed. Of course, these operations are
in addition to the traditional decoder functions of synthesizing theoutput speech based on
the selected codebook excitation vector.

An overall comparison of the VSELP and LD-CELP algorithms reveals that even

with acompression ratio two times less than theVSELP algorithm, LD-CELP requires 47%
more operations per second. Thus, although the AT&Talgorithm achieves high quality with
low encoding delay, it does this at a significant price.

Operations Per Mega-0 perations
Operation 2.5 ms Frame Per Second (MOPS)

Comparison 9199 3.6796

MAC 7181 2.8724

± 4100 1.6400

X 1284 0.5136

/ 68 0.0272

log 4 0.0016

T 4 0.0016

Total 21840 8.74 MOPS

78

Table 4.7: Complexity of LD-CELP Decoder

4.3.3 Suitability for Low-Power Implementation

Algorithmic Concurrency

As we have seen, the operational requirements of the LD-CELP algorithm are

significantly higher than those ofVSELP. Throughout this paper, however, we have empha
sized that for low-power implementations it is not necessarily the total instruction count

that can bedetrimental but, instead, thetotalsequential instruction count. Ifan algorithm
can be sufficiently parallelized, the drawbacks of a high overall instruction count can be
lessened.

In some respects, LD-CELP is ideally suited for parallel implementation. The

vector quantized codebook consists of completely independent codevectors and, thus, the

synthesis of these codevectors can occur simultaneously. This is the advantage of a non-
structured codebook. For although the total instruction count is increased by the lack of

an efficient recursive search procedure, the search can be easily implemented on a parallel
architecture. Indeed, the codebook search algorithm requires no further parallelization -
the concurrency already exists.

Not all of the algorithm, however, lends itselfso readily to parallel implementation.

The 50th order LPC analysis, for example, stubbornly resists attempts to map it toa paral
lel architecture. For the VSELP algorithm, too, the LPC analysis routine does not conform

easily to a concurrent implementation; however, since the 10th order VSELP analysis oc
cupies so little of the computing power of the processor this fact is of little import. The
AT&T LPC analysis, however, is one ofthe two resource dominating calculations required

79

by the algorithm. Therefore, its inherently sequential nature is not a trivial matter.

Suitability for Fixed-Point Arithmetic

When considering suitability for low-power, fixed-point implementation, the LD-

CELP LPC analysis is again a stumbling block. A 10th order Levinson-Durbin recursion

presents precision difficulties in itself, but a 50th order version (almost) requires floating

point capabilities. Moreover, the extreme sensitivity of the 50th order synthesis filter pole

positions to imprecisions in the direct-form LPC coefficients adds to these difficulties. Con

sequently, any implementation of the LD-CELP algorithm has little hope of utilizing a

fixed-point or even block floating-point architecture. Clearly, the required floating-point
hardware overhead would have quite a negative effect on power consumption.

4.3.4 Parallelization of Algorithm

As suggested above, parallelization of the 50th order LPC analysis procedure is a

key stumbling block to a low-power implementation. This is due to the Levinson-Durbin

recursion's strong resistance to parallel implementation. The basis for this resistance is

two-fold. First, the algorithm is, as stated, a recursion with each successive iteration de

pending on the results of the previous stage. This makes pipelining or interleaving difficult.
Furthermore, the individual operations comprising the recursion are mostly inner products,
which, taken individually, are difficult to parallelize.

The Schur algorithm offers a solution to these difficulties. Like the Levinson-

Durbin recursion, it calculates the reflection coefficients for the LPC synthesis filter; how

ever, it requires no inner products and is easily implemented on a pipelined processor. The

interested reader is referred to Haykin [14] for a pipelined implementation of the Schur
algorithm.

Thus, by proper selection oftheLPC analysis algorithms we have effectively paral
lelized its computation. This further illustrates the important influence algorithm selection
can have on the ability to achieve a low-power implementation.

Unfortunately, the numerical precision issue is not abated by this technique. As in

the Levinson-Durbin recursion, the high order of the required analysis virtually precludes
fixed-point implementation. Thus, while the parallelization issue has a straightforward
solution, the issue of floating-point hardware overhead remains unresolved.

VQ

Indices

Coder

Long-Term
Rlter State ^5-

Input . .
Speech •<">"

Weighting
Filter ,W(z)

e L!£L Weighted
Synthesis
Rlter, H(z)

•to)
e

Minimize

Distortion

S !•••«•
Stochastlo

Codebook t£

I. ...»>
Long-Term
Rlter State

(Adaptiw)

Decoder '4^U (LSPo^flc,*nt-'Ga,n*'-tc->^ j S.# ^
i Long-Term r^A •

C*

S ••••»
Stochastlo

Codebook

©

t£

.Jn> Synthesis

Rlter, 1/A(z)

• Adaptive :

1 Post-RIter :
• :
!•«••••••••••••••

Decoded
Speech

80

VO

Indices

Figure 4.17: DoD CELP Speech Coder/Decoder

4.4 Comparative Analysis of DoD CELP Algorithm

The final candidate algorithm for the low-power, high quality speech coder is
the Department of Defense's (DoD) CELP 3.1 coder [11]. As before, the analysis of this
algorithm is performed on a comparative basis with the previous two algorithms.

4.4.1 Overview of Algorithm

Figure 4.17 shows a schematic view ofthe DoD algorithm. This particular version
of the DoD CELP coder compresses the 64 Kbit/sec input speech waveform into a channel
of9.6 Kbits/sec. The frame length of15 ms determines theLPC analysis rateand is divided
into four subframes during which separate codebook searches are performed.

81

Codebook Search

DoD CELP differs from the VSELP algorithm mainly in the structure of the

excitation codebook. DoD CELP relies on two rather than three codebooks. The first

is an adaptive codebook identical in spirit to the one used by VSELP to introduce the

pitch component of the excitation. Like the VSELP algorithm, the DoD coder employs

an end-point recursion technique to search this adaptive codebook. The DoD algorithm
slightly extends the utility of this pitch codebook, however, by allowing non-integer pitch
lags. These are achieved by interpolating the contents of the pitch codebook to the desired
non-integer lag value.

The codebook search procedure also differs for the stochastic codebook. For DoD

CELP there is one stochastic codebook rather than two. The codebook contains 512 code-

vectors and has a novel structure. This structure allows computational reductions similar

to those achieved by VSELP. The codebook structures, however, are drastically different.
The sample values in the DoD codebook are ternary-quantized, Gaussian, unit-variance
white-noise. The fact that all samples are either -1, 0, or +1 is used to reduce compu
tational complexity; however, this is not where the major savings occurs. In addition to

being a ternary codebook, successive codevectors in the codebook overlap completely save
for two samples at each end. Since the codevectors are white, this causes no loss in vector

quantization efficiency; however, this structure can now be exploited using an end-point
recursion technique to reduce the total instruction count.

LPC Analysis

The DoD algorithm also differs in the form oftheLPC coefficients used. Whereas,
both VSELP and LD-CELP rely on the reflection and direct-form coefficients, the DoD
CELP algorithm makes use of line spectrum pair (LSP) coefficients. The choice of these
coefficients revolves around their behavior under linear interpolation. Since, as in the pre
vious algorithms, LPC analysis takes place only once per frame, interpolation must be used
to arrive at the coefficient values to be used for each subframe. Reflection and direct-form

coefficients have relatively poor linear interpolation characteristics [17]. LSP coefficients, on
the other hand, introduce little distortion due to linear interpolation. Unfortunately, calcu
lation ofLSP coefficients is more complex than that of direct-form coefficients and involves

non-primitive operations including sinusoids and cosinusoids. Fortunately, the analysis is

Operations Per Mega-Operations
Operation 15 ms Frame Per Second (MOPS)

Comparison 147479 9.8319

MAC 128969 8.5979

X 46483 3.0989

± 41507 2.7671

cos 4520 0.3013

/ 742 0.0495

T 187 0.0125

sin 145 0.0097

Total 370032 24.7 MOPS

Table 4.8: Complexity of DoD Coder

Task % of Total Operations
Codebook Search 67%
Pitch Search 20%

Total 87%

Table 4.9: Breakdown of Dominant DoD Coder Tasks

10th order unlike the 50th order LD-CELP algorithm.

82

4.4.2 Computational Complexity

As with traditional CELP coders, the DoD coder's computational complexity is

dominated by the adaptive and stochastic codebook searches. Table 4.8 shows operation
counts for the coder as a whole, while table 4.9 illustrates the dominance of the codebook

searches relative to the overall computational load. Therefore, as with the VSELP coder,
low-power optimizations should be focused on the codebook and pitch search procedures.

Like the VSELP algorithm, the decoder requires relatively few operations. Unlike
the AT&T coder, coefficients are passed to thedecoder on a side-channel and no expensive
backwards adaptations are required. Table 4.10 summarizes the operational requirements
of the decoder.

Overall, the complexity ofthe DoD coder (as given by instruction counts) is similar
to the AT&T coder; however, both of these coders are significantly more complex than
the Motorola VSELP algorithm. Furthermore, neither algorithm achieves the compression

Operations Per Mega-Operations
Operation 15 ms Frame Per Second (MOPS)

Comparison 5402 0.3601

MAC 4680 0.3120

± 2669 0.1779

X 2430 0.1620

/ 355 0.0237

T 88 0.0059

cos 50 0.0033

Total 15674 1.04 MOPS

83

Table 4.10: Complexity of DoD Decoder

available from VSELP (although the DoD algorithm comes close).

4.4.3 Suitability for Low-Power Implementation

Algorithmic Concurrency

As with the VSELP algorithm, the use of end-point recursion in the codebook

search nullifies the concurrency inherent in traditional CELP coders. The discussion of this

issue for the DoD algorithm is identical to that presented for VSELP and the reader should

refer to section 4.2.3 for a detailed account.

Suitability for Fixed-Point Arithmetic

The issue of suitability for fixed-point implementation arises here once again in
relation to the use of the Levinson-Durbin recursion. Unlike VSELP, which is designed
to utilize a fixed-point algorithm called FLAT, the DoD CELP algorithm is based on the

straightforward Levinson-Durbin recursion. Not only does this introduce dynamic range
and numerical precision difficulties but, in addition, the resulting direct-form coefficients

are converted to LSP coefficients prior to interpolation. Following interpolation they are
converted back to direct-form coefficients once again. This procedure tends to foster accu

mulation ofnumerical errors and is best implemented on a floating-point processor.

84

4.4.4 Parallelization of Algorithm

Since the DoD algorithm relies on end-point recursion for the codevector filtering

required in both of its codebook searches, we can fall back on the same techniques devel

oped to handle this difficulty in the VSELP algorithm. Specifically, the codebook searches

can be subdivided into several independent and concurrently executable searches involving
subsections of the codebooks. Moreover, the codevector filtering process can be parallelized

through the retiming transformations introduced in the VSELP analysis. Again, for details

of these techniques the reader should refer to the appropriate VSELP discussions.

4.5 Conclusions Regarding Low-Power Speech Coding

The issues involved in the selection of a candidate speech coding algorithm for a

low-power host architecture include not only the usual coding quality, complexity, and bit-

rate concerns, but also issues suchas algorithmic concurrency, suitability for parallelization,

andfeasibility offixed-point implementation. Thethree algorithms that have been analyzed
in this report represent a nice sampling of the domain of CELP-based coding algorithms.
Since all three coders result in high quality decoded speech (MOS > 4.0), the algorithm
selection does not focus on this point. Instead suitability for low-power implementation
dominates the selection criteria.

In this respect, Motorola's VSELP algorithm is the logical choice. For while not

only achieving the highest compression ratioof the three coders, it also has by far the min

imum computational requirements. As has been repeatedly emphasized, however, absolute
instruction count is not necessarily the key issue for low-power implementation. Instead, it
is the sequential instruction count after thealgorithm has been parallelized that isofcritical

importance. While the AT&T algorithm is perhaps the most readily parallelized, we have

shown that the VSELP algorithm can be parallelized with only slight modifications.
Furthermore, the VSELP designers' consideration of fixed-point numerical pre

cision issues in their specification of the algorithm make it even more attractive from a

low-power perspective. Finally, VSELP has been accepted by the Telecommunications In
dustry Association as the North American digital cellular standard. Thus, a chip based on
this algorithm would find wide acceptance. For all ofthese reasons, the VSELP algorithm
is the most promising for a low-power VLSI implementation.

85

Chapter 5

Directions for Future Work

This paper has presented several strategies for the low-power CMOS design of a

speech coder. It has raised issues relating to power consumption in all levels of design from
processing to algorithmic. These concepts, though plausible in theory, must be demon

strated in practice to achieve widespread acceptance. Furthermore, the original motivation
of the low-power speech coder was its intended use in a portable, multi-media personal

communications terminal. Therefore, the most immediate goal of future research will be to

implement the coder as a low-power ASIC (application-specific integrated circuit).
As occurs in any implementation phase, issues will arise suggesting modifications

to the low-power methodologies and architectures developed in this paper. Moreover, it
is likely that new, additional techniques for low-power will be developed. There is never

only one solution to a problem, and hopefully through continued research in the area of

low-power many important new concepts will be developed. The implementation of the
coder chip will propel this process.

Another future topic of related importance is the development of a CAD framework

for low-power VLSI. One of the key components of this CAD system would be a series of

hierarchical power estimation tools. Here, hierarchical refers to a series of power tools
that follow the design process from the algorithmic to physical levels providing continually
refined estimations of power consumption. At the algorithmic level, power bounds could
be based simply on the type, quantity, and timing constraints of the required operations.
As the design traverses to lower levels, progressively more detailed models of circuit power
consumption could be applied.

Another important part ofa complete CAD framework might be alow-power VLSI

86

synthesis system. This would require the development not only of the traditional silicon

compilation software and low-power cell libraries, but also of programs to seek out, create,

and exploit concurrencies in the target algorithms. This is by no means a trivial task, as

parallel computing professionals can attest. It could, however, be an important addition to

a designer's low-power arsenal.

Finally, a future goal of this research could be to generalize the ideas presented in

this report and to develop a fully programmable low-power DSP chip with accompanying

compiler. The strategies presented in this paper are, for the most part, quite general and it

is likely that they could be extended to a general-purpose DSP processor. Once again this

would require an extremely powerful compiler that could exploit algorithmic concurrencies

in order to achieve efficient implementations on the low-power DSP processor.

87

Chapter 6

Conclusions

This report has presented a detailed analysis of several high quality, low bit-rate

speech coding algorithms with respect to implementation on a low-power hardware plat

form. In this vein, several techniques for low-power VLSI were presented. Among the most
important was the concept of lowering supply voltages in order to achieve a quadratic power

reduction, while exploiting parallelism to compensate for circuit delay increases.

This basic philosophy led to several criteria for low-power speech coding algo

rithms. In particular, parallelizability and low sequential instruction count were key issues.

It is these properties that would allow the algorithm to be efficiently implemented in real
time on a low-power ASIC.

Issues such as parallel implementations of recursions and high-order LPC analyses

also became important. Recursions, which increase algorithmic efficiency in a sequential
processor, can actually be detrimental to a parallel architecture. Fortunately, these re

cursions can be parallelized in a straightforward manner with little operational overhead.

Methods of implementing high-order LPC analyses on parallel processors include the Schur

algorithm, which maps easily to a pipelined architecture.

With the addition of technology scaling and circuit and logic level techniques,

power savings can be even further increased. Techniques such as reduced voltage swings on

inter-block clock lines and inter-chip I/O lines, coupled with novel use of sense-amp circuitry
could dramatically improve power savings. Furthermore, an intelligent power management
strategy, including idle processor shutdown and recognition of periods of input speech silence

could also contribute significantly to the low-power speech coder implementation.

The amalgamation of all of these issues resulted in a high-level proposal for an

88

ASIC speech coding architecture. Based on a multi-processor approach, the architecture

would contain a small Von Neumann processor to handle the non-parallel, control-intensive

portions of the algorithm, coupled with a highly pipelined co-processor to handle the massive

parallel computational requirements.

All of these notions will be applied to the implementation of the low-power CELP

coding ASIC and, indeed, to the entire personal communications system. The result should

be a portable, multi-media terminal capable of functioning at power consumption levels
several times below those possible with conventional techniques. Moreover, the results

and knowledge gained in this endeavor will enjoy almost direct applicability to other DSP
applications constrained to low-power operation.

89

Bibliography

[1] R. K. Watts, ed., Submicron Integrated Circuits, John Wiley & Sons, NY, 1989.

[2] H. J. M. Veendrick, "Short-Circuit Dissipation of Static CMOS Circuitry and Its Im
pact on the Design of Buffer Circuits," IEEE Journal of Solid-State Circuits, Vol. SC-
19, August 1984.

[3] H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Addison-Wesley,
Menlo Park, CA, 1990.

[4] A. P. Chandrakasan, S. Sheng, and R. Brodersen, "Design Considerations for a Future
Portable Multimedia Terminal,'' Proceedings of Second Rutgers Workshop on Third
Generation Wireless Information Networks, NJ, October 1990.

[5] K. Yano, et. al., "A 3.8 ns CMOS 16 x 16 Multiplier Using Complimentary Pass
Transistor Logic," Proceedings of the IEEE, September 1987.

[6] D. A. Hodges and H. G. Jackson, Analysis and Design ofDigital Integrated Circuits,
McGraw-Hill, NY, 1988.

[7] S. Furui, Digital Speech Processing, Synthesis, and Recognition, Marcel Dekker, inc.,
NY, 1989.

[8] L. Rabiner and R. Schafer, Digital Processing of Speech Signals, Prentice-Hall, NJ,
1978.

[9] N. Jayant and P. Noll, Digital Coding of Waveforms, Prentice-Hall, NJ, 1984.

[10] I. Gerson and M. Jasiuk, "Vector Sum Excited Linear Prediction (VSELP) Speech
Coding at 8 Kbps," Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing, 1990.

90

[11] J. Campbell, Jr., V. Welch, andT. Tremain, "An Expandable Error-Protected 4800 Bps

CELP Coder," Proceedings of the International Conference on Acoustics, Speech, and

Signal Processing, 1989.

[12] J-H Chen, "High-Quality 16 Kb/s Speech Coding with a One-Way Delay Less Than

2 ms," Proceedings of the International Conference on Acoustics, Speech, and Signal

Processing, 1990.

[13] F. Itakura and S. Saito, "Analysis Synthesis Telephony Based on the Maximum Like

lihood Method," Proceedings of the 6th international Conference on Acoustics, 1968.

[14] S. Haykin, Modern Filters, MacMillan Publishing Company, NY, 1989.

[15] M. Schroeder and B. Atal, "Code-Excited Linear Prediction (CELP): High Quality
Speech at Very Low Bit Rates," Proceedings of the International Conference on Acous

tics, Speech, and Signal Processing, 1985.

[16] E. Lee, A Coupled Hardware and Software Architecture for Programmable Digital Signal
Processors, Ph.D. Dissertation, University of California, Berkeley, 1986.

[17] S. Saito and K. Nakata, Fundamentals of Speech Signal Processing, Academic Press,
FL, 1985.

