Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

STEPS - SPICE TEXT EDITING
PACKAGE UTILIZING SCHEMATICS

by

Denis S. Yip

Memorandum No. UCB/ERL M91/43

15 April 1991

STEPS - SPICE TEXT EDITING
PACKAGE UTILIZING SCHEMATICS

by

Denis S. Yip

Memorandum No. UCB/ERL M91/43

15 April 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

TITLE:
STEPS -- Spice Text Editing Package utilizing Schematics

ABSTRACT

Circuit designers have been designing circuits on paper and simulat-
ing them with SPICE for two decades. With the current techology, the
designer now can have all the advantages of workstations and windows,
including its graphical interface.

Simulation plays an important role in the design of present day
integrated circuits, devices, and processes. STEPS - Spice Text Editing
Package utilizing Schematics - is a CAD tool to allow designing in the
schematic background and simulating at the same time. STEPS uses the
structure of the Berkeley CAD Framework -- OCT, VEM, and RPC.

In addition on allowing the user to design and simulate the circuit in
the same graphical schematics interface, STEPS also contains an internal
electrical-rule checker to check for errors which can be detected in the ini-
tial phrase of the design. With the integration of STEPS and SPICE, cir-
cuit designers now can utilize the graphical interface to design the
schematics on their workstations.

The motivation for this project is the lack of a standard public-
domain schematic-capture package. Although commercial schematic-
capture packages are available, those packages tend to provide their own
libraries of software to suit their particular needs. STEPS, on the other
hand, tries to be as flexible as possible to allow researchers to obtain a
schematic-capture package to suit their own needs.

ACKNOWLEDGEMENTS

This project has been funded by a grant from the Semiconductor
Research Corporation, and their support is greatly appreciated.

My research advisor, Professor Donald O. Pederson, has given me
the initiative, motivation, and both technical and personal advices to me
through my graduate career. Without his guidance, my project will not be
at all successful. In addition, I would also like to thank him for his care-
ful reading and editing of this report.

I would also like to express my gratitude to Professor Robert Meyer
for three of his distinguished classes on analog integrated circuits. He has
shown continued interest in the progress of this research, and I thank him
for his timely advice and for reading this report.

Several Berkeley graduate students have also helped me while I pur-
sued this research.

Special thanks is given to Dr. Theologus Kelessoglou for his help
on expert system. Dr. Andrea Casotto has also given me tremendous help
on supporting STEPS onto OCT, the Berkeley CAD environment.

The idea and format of STEPS are partially adapted from the RPC-
SPLICE program from the University of Illnois at Urbana under Professor
Resve Saleh. Professor Saleh and his students have given me numerous
ideas on how the program can be improved.

TABLE OF CONTENTS
1 Introduction

2 Functionality

2.1 Summary

2.2 Structure

2.3 Editing

2.4 SPICE Netlist Generation
2.5 Display

2.6 Printouts

2.7 SPICE Control Cards
2.8 Simulation

2.9 Help

3 Structure
3.1 Summary
3.2 Introduction to OCT
3.3 STEPS as an OCTtool
3.4 Remote Procedure Call Package for OCT/VEM

4 Electrical-Rule Checker
4.1 Summary
4.2 Background
4.3 Electrical Design Rules
4.3.1) Loops of Voltage Sources
4.3.2) Loops of Inductors
3) Series of Current Sources
4) Shorting of Power
5) Shorting of Voltage Source
.6) Extremely Small Capacitance
7) Substrate nodes connected to most positive or negative nodes
8) Length of FET’s too large
9) Path from Supplies to Ground
.3.10) Base Resistance must not be Zero
.3.11) Connectivity ‘

B

4.4 Rules Not Implemented in the Electrical-Rule Checker
4.4.1) Avoid Parallel Pullups
4.4.2) Avoid Gates in the Middle of Pulldown Chains
4.4.3) Avoid Charge-sharing

5 Performance
5.1 Summary
5.2 Performance of the Electrical-Rule Checker
5.3 Performance of STEPS

-4 .

6 Overview of Commercial Schematics CAD Tools
6.1 Summary
6.2 Tektronix’s QuicKic

6.2.1)
6.2.2)
6.2.3)
6.2.4)
6.2.5)
6.2.6)
6.2.7)
6.2.8)

Background

Display

Placing Elements in a Schematic
Wiring the Schematic
Subcircuit

SPICE Netlist Generation

Other Differences

Conclusion

6.3 ViewLogic’s Workview

6.3.1)
6.3.2)

.
.

O\ N OV O O
Wwbwb
O~ ON NP W
N N’ s’ e’ ” e’

Background

Display

Placing Elements in a Schematic
Wiring the Schematic
Subcircuit

SPICE Netlist Generation

Other Differences

Conclusion

7 Conclusion

REFERENCES

Appendix A) Manual

Lists of Figures

1 INTRODUCTION

STEPS, a schematic-capture package, is intended to enable SPICE
users to design circuits and simulate them concurrently with a fast and
robust package. Almost no text editing is needed since all SPICE infor-
mation can be entered through schematic interface or dialog boxes in
STEPS. All SPICE analysis can be done directly in STEPS, and various
postprocessors are integrated inside STEPS to take full advantages of the
available graphical postprocessors. For example, NUTMEG, a postproces-
sor of SPICE3, is available. Furthermore, an internal filter is constructed
to allow conversion from SPICE2 output files to XGRAPH. Therefore, by
pointing at the appropriate nodes, the user can directly obtain a graphical
output of dc, ac, distortion, noise, fourier, or transient analyses. This
interface emulates the functionality of an oscilloscope.

At present, most SPICE designers at Berkeley use text editing for
entering data into SPICE input files. Although commercial schematic pro-
grams, e.g.,, ORCAD, support schematic entry for personal computers,
schematic-entry packages are unavailable in the public domain to support
the UNIX and X-Window systems. The limitation that most designers
have to convert their schematic design diagrams into SPICE input files by
naming all the subsequent nodes and entering parameters and values from
a text editor is inconvenient. Nodes are easily misnamed, and corrections
may be very cumbersome if the circuit is large. Moreover, no schematic
printout is available.

In Chapter 2, the functionality of STEPS is presented. This chapter
provides a general overview of all the features available in STEPS, and
how these features are designed to suit the circuit designers’ needs in the
whole design process. Specific commands are not included, but special
features of STEPS are studied in the separate sections of the chapter. The
specific algorithm and coding of each feature, which are available through
the OCT/VEM/RPC Release 8.0, are not presented in this report, but the
purpose and the functionality of each specific feature which is useful for
the circuit designers are addressed.

STEPS operates within the Berkeley CAD framework --
OCT/VEM/RPC. Chapter 3 gives a brief description on how the whole
framework ties together, and which role STEPS plays in the structure.
References are given for more details of the OCT/VEM/RPC framework.
The major goal of this chapter is to understand that even STEPS is only a
part of a larger framework. Fortunately, the remote procedural calling
package (RPC) allows STEPS to edit the schematics and execute indivi-
dual commands of the OCT/VEM/RPC structure.

In Chapter 4, the electrical-rule checker of STEPS is presented.
This electrical-rule checker is introduced in STEPS as to check for design

-6 -

errors in an early stage of the design cycle. Problems introduced during
the schematic capture are spotted early in the design before the simulation
stage; therefore, corrections can be made quickly. The background of the
electrical design-rule checker is introduced in the beginning of the chapter.
Then, a rule-by-rule presentation analyzes the rules that have already been
implemented in the electrical design-rule checker in STEPS. Finally, rules
which are not practical to be developed in the STEPS environment are
described. The reasons for this are brought out independently.

In Chapter 5, the performance of STEPS is evaluated. Although
STEPS includes a significant amount of code (approximately 23,000 lines
of C code), the run-time is very fast in the OCT environment. Users
therefore do not find the execution time of STEPS to be a burden. Indivi-
dual run-time performance of the electrical-rule checker is analyzed in
Section 5.2 independently.

Chapter 6 compares STEPS with two commercial schematic capture
packages - Tektronix’s QuicKic and Viewlogic’s Workview. These two
packages are available and particularly designed for workstation purposes,
although a PC interface is also possible. Strikingly similarities are found
between the two packages and STEPS. The major difference found is that
neither package supports a fully developed electrical-rule checker.

2 FUNCTIONALITY
2.1 Summary

STEPS has been developed to include the complete circuit design
process. Many features are introduced not only to make the schematic-
capture editing process easier, but also to allow as much convenience and
flexibility as possible on the entire circuit design process.

2.2 Structure

STEPS utilizes the structure of the Berkeley CAD Framework --
Oct, VEM, and RPC (Remote Procedure Call Package) [1]. A framework
has been developed to allow the integration of CAD tools across many
technologies, levels of abstraction, and styles of design. Oct is a central-
ized data manager for VLSI design data; VEM is a graphicalfextual
browser and editor for Oct; RPC is a Remote Procedural Calling package
for controlling remotely executing CAD tools from VEM. STEPS can
utilize all the components and programs in the Oct/VEM/RPC framework.
The basic schematic technology of VEM has been altered in STEPS to
provide an easier user interface.

The palette in VEM is also modified so that all devices which can
be represented in SPICE are included in the symbol palette. Resistors,
inductors, capacitors, dependent sources, transformers, voltage sources,
current sources, voltage sources connected to ground, ground, voltage sup-
plies, diodes, JFET’s, BJT’s, and MOSFET’s are displayed by windows.
Selection and connection of one or more of these various devices are very
convenient.

2.3 Editing

Schematic editing is a major feature of STEPS. To allow compati-
bility of STEPS with the Berkeley Oct/VEM/RPC framework, STEPS util-
izes all the convenient editing commands used in VEM. Dialog windows
are popped up when information is required.

Due to the fact that the number of transistors may be very large in a
practical circuit, several features are included to hasten the circuit editing
process. For example, all model parameters of a device, (i.e. BTJ, diode,
JFET or MOSFET), are saved globally. The user can change any global
parameter as often as he wishes. On the other hand, if there is a specific
device which has different parameters than those saved globally, the user
can change the specific local parameters of a device through another com-
mand. A large amount of time can be saved to change all the parameters

on a unit basis.

2.4 SPICE netlist generation

STEPS allows the conversion of schematic diagrams into a SPICE
netlist file automatically at any point in the design process. Naming of
nodes is automatic in STEPS. All the node names, node values, model
names, and model values are named accordingly and then displayed.
Users are free to change the model names and model values as often as
necessary.

By invoking the command "spice-file", users are allowed to generate
an automatic SPICE netlist in ASCII file format. Editing and viewing of
this netlist is allowed both under STEPS or under text text editor. The
SPICE input file is allowed to be simulated concurrently in STEPS.

Another function of STEPS is to allow easy monitoring of the cir-
cuit. Very often in circuit design, an input device, most commonly a vol-
tage source or a current source, is included in the circuit for monitoring
means. To allow easy temporary attachments for monitoring purposes,
STEPS allows users to use the command ’add-volt-source’ or ’add-curr-
source’ to attach an input device anywhere in the circuit. The user needs
to point to the node where the input device is to be attached, and invoke
the specific command. A voltage source or a current source is introduced
in the SPICE netlist, without any permanent attachment in the actual
schematic circuit.

Figure 2.4.1 presents a schematic diagram and Figure 2.4.2 is a
SPICE input circuit generated from the schematic diagrams by STEPS.

2.5 Display

For the user’s convenience, STEPS displays several parameters for
the user’s information on his input. Please refer to Figure 2.5.1 for an
example of the display. The displayed parameters are divided into two
sections. One section provides model values, which includes model names
and the model values. For example, a resistor may display rl and 100
which means the resistor is named rl and has the value of 100 ohms in
the Spice input file. NMOS transistor may display M3 and 4/2 which
means the NMOS transistor is named M3 and has the Width/Length
parameter of 4/2. Similarly, a npn device may display Q2 and x3 which
means the npn is named Q2 and has the area value of 3 times the nominal
values. The node numbers are also displayed with a different color (black
versus blue and red).

-9.-

The display of STEPS is designed such that different features of the
schematic capture have different colors representing them in a multi-
colored workstation. The color blue represents a device model; red
represents the model value; green represents the model name; black
represents the node name; brown represents the wire connection. All the
above representations are displayed in the workstation or in the hardcopy
output.

The electrical-rule checker of STEPS changes the display of STEPS
by highlighting any rule violation found internally. This feature is
designed to allow easy search of the location which has violated specific
rules under the electrical-rule checker.

STEPS allows the user to turn off the highlight from the electrical-
rule checker and also turn off any portion of the model names, model
values, and node names. The user is therefore the controller of the whole
display. He can choose the specific parts that he wants to see to be
displayed.

Fig 2.5.2 is a STEPS palette of all the models availalbe.

2.6 Printouts

Printouts of STEPS displays are available in both the OCT database
format and the PostScript format. Users can select to print part or all of
the circuits as well as to print any portion of the model names, model
values, and node names. Text-writing is also allowed using the OCT data-
base structure so that hardcopies of the circuits as well as textual informa-
tion are readily available for presentation purposes.

2.7 SPICE Control Cards

The SPICE-Control commands are designed for the convenience of
SPICE users to edit the SPICE files without going through text editing.
Therefore, the users may edit all the SPICE options through STEPS’ dia-
log windows. The commands and parameters needed are requested
automatically by dialog windows. The SPICE editing is done with a higher
speed since the users do not need to type in the whole line of options.
Also, many values are automatically generated by schematic arguments to
further fasten the SPICE editing process. If the user wants to delete an
option (not using that option on subsequent SPICE files), he can invoke
the option command and press the CANCEL button on the dialog window.
For example, if the user has initially chosen the .temp option but wishes to
cancel the .temp option in subsequent runs, he can simply invoke the
".temp" command and then press the CANCEL button when the dialog

-10 -

window is opened. STEPS automatically drops the option from the SPICE
input file. The SPICE-Control commands currently implemented in
STEPS are as follows: .options, .temp, .width-in, .op, .dc, .ac, .tf , .sens,
.disto, .noise, .tran, .four, .print, .plot, .ic, .nodeset, and user-options.

The ’user-options’ feature of STEPS allows the user to support his
own modified version of SPICE, since individually developed SPICE ver-
sions may have different commands than Berkeley standard SPICE. The
user has two options to enter his own text entry. He can simply prepare a
text file called ~/.steps-options in his home directory or enter the com-
mands through dialog windows. Once this command is invoked, the user
is asked to select whether to ’activate’ or ’deactivate’ the ’user-options’
command. Once it is activated, the user is asked to select whether to enter
his own text entry in the include file or in the dialog window.

2.8 Simulation

STEPS are integrated with different simulators to allow the user to
choose his favorite simulators in conjunction with STEPS. Currently,
Berkeley SPICE2G.6 and SPICE3d4 are integrated with STEPS. While
running STEPS, the user can invoke SPICE from the schematic diagram.
Therefore, the user can look at the output promptly and directly from
schematics. The user is then allowed to edit the schematics until the
correct result is obtained.

For SPICE2 users, STEPS allows internal conversion so that a
graphics plot instead of an ASCII plot of SPICE2 can be displayed. This
feature is also convenient for SPICE3 users if a hardcopy is needed since
some printers do not support SPICE3 Nutmeg hardcopy plots.

Another feature offered by STEPS allows the user to inspect previ-
ous circuits. Therefore, the user who has changed a schematic but is
unsure about the change can test out the previous circuit that he has
designed.

Users can introduce their own executable programs to complement
other CAD tools into STEPS. Many SPICE versions (called "alphabet
spices") are available with special models suitable for individual needs.
For example, the program SSPICE is used for implementation of algo-
rithms for periodic steady-state analysis in SPICE3. To accomodate this
need, a command is introduced in STEPS to allow users to integrate CAD
tools with STEPS with great ease. One requirement of such program is
that the SPICE input file is the input to the program. When this command
is invoked, a dialog window is opened to ask users to enter two fields.
The first field is the path and name of the executable program and the
second field is solely the name of the program. For example, if the user

-11 -

wants to integrate a program into STEPS called hspice, which is contained
in the directory /ic3/user/bin/hspice, the wuser should enter
"fic3/user/bin/hspice” for the first field and "hspice” for the second. This
feature allows the user to integrate his own SPICE-compatible simulator in
STEPS.

2.9 Help

For the users’ convenience, an on-line help manual is available. All
schematic-capture editing commands and STEPS commands are presented
in menu format for novice users who may need assistance on certain struc-
tures and functionalities of STEPS.

-12 -

3 Structure

3.1 Summary

Because STEPS is part of the OCT framework, it is important to
know the way STEPS communicates with the outside world. This chapter
introduces the various structures that STEPS utilizes, and how the whole
structure ties together. Although the interface is somewhat transparent to
the user, the basic structure of STEPS is presented to give an overview of
the integration of the various interfaces.

3.2 Introduction to OCT

OCT is a data manager for VLSI CAD applications. It is a major
component of the Berkeley CAD framework and has been used at Berke-
ley and other sites for the several years. [2,3] OCT offers a simple inter-
fiacg for storing information about the various aspects of an evolving chip

esign.

The basic unit in a design is the cell. This can be as small as a
transistor or NAND gate, or as large as the entire floorplan of a CPU. A
cell can consist of instances of other cells, such as a NAND gate consist-
glg of several transistors or the floorplan consisting of an ALU, register

le, etc.

A cell can have many aspects or views. For example, there can be a
schematic view, showing in an abstract way what sub-cells the cell con-
sists of and how they are connected. There can be the symbolic view,
where additional information of rough relative placement, sub-cell size and
shape, and initial implementation of interconnect might be kept. Further-
more, there is a physical view, where the implementation is fully defined
with exact placement and specific geometry. In addition, there are quite
different views, such as the simulation view, which might contain the
description of the cell in a format that a particular simulator could under-
stand. [3]

OCT provides a mechanism for representing data but places no
meaning on the data. Policy is used for assigning meaning to the data
represented using OCT. For example, OCT has objects that represent
layers and geometry, but it does not specify how the objects are related to
the meaning of a geometry implemented on a given layer. The policy
states that a geometry that is contained by a layer is implemented on that
layer. As another example, OCT has objects that represent nets and termi-
nals, but it does not specify how connectivity is represented. The policy
describes how terminals and nets are used to represent connectivity. [3,4]

-13 -

3.3 STEPS as an OCTtool

STEPS is introduced to the Berkeley CAD framework OCT as one
of the so-called Octtools. Since STEPS is a specific tool to enhance
schematic capture for circuit designers, STEPS does not support all views
of OCT. Only the schematic view is supported by STEPS. Each circuit
in STEPS is a cell in OCT. The different ’colors’ in STEPS are
represented by different ’layers’ in OCT. After the schematic capture is
finished in STEPS, the ASCII SPICE netlist is generated internally by a
program to read OCT database node by node, connection by connection.
Finally, the represented information in schematic form is converted into a
SPICE input file. Other commands operate similarly, using the OCT data-
base. Fortunately, the users do not need to understand these internal details
presented here to use STEPS. Although STEPS is only one out of many
programs in OCT, the user can treat STEPS as an independent program
working under the OCT environment.

3.4 Remote Procedure Call Package for OCT/VEM

OCT works in a distributed environment of multiple machines and
multiple languages. In order for this environment to be successful, OCT
uses a remote file system to access the database, allowing the database to
be spread out over many machines. This Remote Procedure Call (RPC)
package allows user applications to run as separate processes outside of
the OCT/VEM address space. The applications make subroutine calls to
VEM and OCT as if they were in the same process and address space,
similar to tightly bounded VEM commands. The RPC client, that is the
RPC code linked with the application program, interprets these calls and
passes them to VEM. The RPC server, linked with VEM, calls the
appropriatt VEM and OCT routine, and returns the results to the RPC
client. Having user applications as separate process communicating with
VEM via a local-area-network using RPC has the important advantages for
different languages, asynchronous, separate processes, portability, and
invisibility of the specific applications. [5]

STEPS is one of the applications which uses RPC. VEM argument
lists are built in STEPS, and a remote function can then be executed.
However, control is immediately returned to STEPS without waiting for
the remote command to finish. Therefore, no time is wasted to wait for
the procedural calls. STEPS is started using an operating system remote
execution function. The application then connects back to VEM via a reli-
able byte stream, and a list of commands and remote function bindings.

- 14 -

4 ELECTRICAL-RULE CHECKER

4.1 Summary

Electrical design-rule checking can generate constraints that are
satisfied by integrated circuits. Since synthesis tools for all but a few
types of circuits are still in experimental stage, circuit design, especially
analog design, remains an iterative process, with manual intervention by
the designer an essential part of each iteration. Violating a design rule
does not necessarily mean a circuit is unusable, but careful analysis can
reduce error with great amount of CPU time saved in the simulation pro-
cess. An electrical-rule checker has been included within STEPS in the
Berkeley OCT/RPC CAD environment. Integrated circuit designed in the
OCT/VEM environment can be automatically checked for design errors by
STEPS’ electrical-rule checker.

4.2 Background

Circuit simulation, the task of modeling and numerically analyzing
the performance of electrical circuits using computers, plays an essential
role in the design of present-day integrated circuits. Unfortunately, many
input-file errors are very hard to detect once in the simulation stage. To
overcome this disadvantage, electrical design rules are designed to test for
design errors in the early stage of the design cycle. Problems are spotted
early in the design before the simulation stage. Simulation CPU time can
then be saved. By pointing out the places where the implicit assumptions
of the rules are violated, the rules can focus attention on those parts of the
circuit that need more detailed modeling.

Nowadays, schematic-capture with various CAD tools has been
designed to allow designers to initialize, analyze, and design their circuits
on a workstation instead of on paper. Design rules can be of great help
with the utilizing of CAD tools. Electrical circuit simulators are the main
CAD tools used by analog designers and the designers of critical digital
building blocks. Therefore, electrical design-rule checking is a very
important process to reduce the design time by pointing out errors quickly.

OCT/VEM/RPC is the main CAD tool package in the Berkeley
CAD environment. The schematic-capture package, STEPS, is available
for initial schematic design of integrated circuits.

The rules are summarized below:

1) Loops of Voltage Sources
2) Loops of Inductors

-15 -

3) Series Connection of Current Sources

4) Shorting of Power Supplies

5) Shorting of Voltage Sources

6) Extremely Small Capacitance

7) Substrate nodes connected to most positive or negative nodes
8) Length of FET’s too large

9) No Path from Supplies to Ground

10) Base Resistance must not be zero

11) Connectivity

12) Values on various parameters

4.3 Electrical Design Rules
4.3.1) Loops of Voltage Sources

Loops of voltage sources cause simulation problems. Unfortunately, there
is no easy way to go through every loop schematically to check for loops
of voltage sources. Figure 4.1.1 is a loop of voltages. Figure 4.1.2 is a
loop with two voltage sources and two resistors. Figure 4.1.3 is a loop of
five voltages. The most basic algorithm is to check for the positive termi-
nal and negative terminal of every voltage source and see if any equivalent
pair is found. If so, a voltage loop is detected and the loop is highlighted
through the RPC application of STEPS. Unfortunately, this method does
not work in Figure 4.1.3, where a loop of more than three voltage sources
is presented. Therefore, an algorithm is proposed to merge all the back-
to-back voltage sources until only two are left. Then, the basic algorithm
can be used to check whether the voltage sources are in a loop.

Below is a description of the algorithm:

a) Identify all voltage sources one by one (in any order). Identify the
positive node and negative node by OCT objectid. If the symbol is a vol-
tage supply or a voltage-to-ground source, give the ground terminal the
objectid of zero. Then, every voltage source in the circuit has a positive
node and a negative node, with the objectids representing them.

b) Two lists of node identifications are presented. List 1 is used for
merging the voltage sources and List 2 is used to check for loop using the
basic algorithm described above.

c) For each voltage source, check to see if the pair of positive and nega-
tive nodes are equivalent to the pairs saved in List 2. If so, a loop is
detected; otherwise, save the pair to List 2. Note that positive and nega-
tive terminals are just arbitrary identifications. Therefore, a pair is saved
with no pointer to determine whether the terminals are positive or nega-
tive. Also, the check is done in pairs to allow negative voltage sources to

- 16 -

be detected.

d) Merging of loops of voltage sources is done through List 1. The algo-
rithm is best illustrated through an example. Refer to Figure 4.1.3. The
first voltage source to be checked is the source between node 1 and 2. It
is saved in List 1. List 1 now has nodes [1 2]. Another voltage source is
added from node 2 to ground. List 1 now has nodes [1 2 2 0]. Repeated
nodes are deleted in List 1. Therefore, List 1 now has [1 0]. Another
source is added from node 3 to ground. Thus, List 1 has [1 0 3 0] and
node 0’s are deleted since it is repeated. Henceforth, List 1 has [1 3].
Finally, the last voltage source is added from node 1 to 3. [1 3] matches
with List 1. The loop is then detected and highlighted.

4.3.2) Loops of Inductors

Loops of inductors also cause problems in simulating electrical circuits.
The algorithm used is the same as that of detecting loops of voltage
sources. Figure 4.2.1, 4.2.2, and 4.2.3 illustrate three examples, similar to
those in Section 4.3.1.

4.3.3) Series Connection of Current Sources

Series connection of current sources are another problem in electrical cir-
cuits. The algorithm for detection of series of current sources is quite
difficult, since detection is needed for current sources that are in series, but
not in parallel. Fortunately, with the algorithm for detection of loops
readily available from Section 4.3.1 and 4.3.2, the algorithm to detect
series circuits is not that complicated. First of all, if there are terminals of
current sources next to each other, a flag is raised. Then, when all the
instances in the circuit are checked, the flag is checked again. If the flag
is raised, we check to see if the current sources are in a loop. If the
current sources are not in a loop, they are in series. Then, the series of
current sources is highlighted and warning messages are presented. Figure
4.3.1 is a series connection of two current sources. When the electrical-
rule checker of STEPS is run, the series connection of current source is
detected and highlighted. On the other hand, even though the terminals of
the current sources are next to each other in Figure 4.3.2, the current
sources are detected to be in a parallel connection by the algorithm from
part 1. Henceforth, we know that the current sources are not in a series
connection and therefore no highlighting is made.

4.3.4) Shorting of Power Supplies

Shorting of power supplies creates a series problem. In analog circuits,

.17 -

shorting of power creates unforseen error which is hard to detect in simu-
lation output. In digital circuits, every path in the switch graph from VDD
to ground must have at least one open switch in it. This rule generates
constraints mainly for CMOS circuits and pre-charged circuits. For
CMOS, the power-short constraints are the primary criteria for the well-
formedness of logic gates. For pre-charged circuits (NMOS or CMOS),
the power-short constraints are usually satisfied by using a clocking discip-
line. [6, 7, 8]

The algorithm is to inspect every power supply in the circuit and check to
see if there exists any direct connection from power supply to ground.
For example, in Figure 4.4.1, there is a connection from the power supply
to ground. A warning message ’Shorting of Power Detected’ is presented
if the electrical-rule checker is ran.

4.3.5) Shorting of Voltage Sources

Similar to Rule 4, the shorting of voltage source creates the same prob-
lems. The basic explanation and basic algorithm are similar to Rule 4.
Figure 4.5.1 is a voltage source with a direct connection to ground. If this
example is run in the electrical-rule checker , a warning message is
presented.

4.3.6) Extremely Small Capacitance

In analog circuitry, capacitance in the femtofarads unit causes nonconver-
gence in transient analysis. Unfortunately, convergence errors are the
hardest to detect in simulators like SPICE. Therefore, it is desirable to
test the circuit schematically before going to the simulators. Warning sig-
nals are given in STEPS, and users can choose to change the errors or
ignore the messages. In the electrical-rule checker, every capacitance
value is checked. If the capacitance is less than 5 femtofarads, a warning
message is presented. Figure 4.6.1 is a circuit with the capacitance of 1
femtofarad. If the electrical-rule checker is run, the warming message
"Capacitance value too small -- may cause convergence errors’ is popped
up with the corresponding capacitor highlighted.

4.3.7) Substrate nodes connected to most positive or negative nodes

In a MOSFET or a JFET, substrate nodes should be connected to the most
positive node for n-type channels and the most negative for p-type. The
algorithm is as follows: First, all the instances of the circuit are tested and

the most positive and most negative nodes are determined. Then, another
loop is run to test each MOSFET and each JFET of the circuit. If the n-

- 18 -

type substrate is not connected to the most positive node and the p-type
substrate is not connected to the most negative one, waming messages are
presented. In Figure 4.7.1, the most positive node is node 1, which is the
power supply, and the most negative node is node 0, which is the ground.
In this specific example, if the NMOS substrate is not connected to node
1, and/or the PMOS substrate is not connected to node 0, warning mes-
sage will be presented. Consider the enhancement-load inverter circuit in
Figure 4.7.2. Without transistor M1 and capacitor C1, the maximum value
for the output voltage Vo would be VDD-VT. By addmg M1 and C1, the
designer ingeniously raises the gate voltage of M2 so that Vo can reach
VDD. This dynamic design technique, known as bootstrapping, eliminates
the need for an additional supply [9]. However, in the schematic shown,
the substrate of M1 is tied to its source. As a result, the substrate-drain
junction of M1 becomes forward biased limiting the voltage rise of Node
3 and, hence, the output swing, as shown in Figure 4.7.3a. From the rule
defined above, one can check that the substrate node is not connected to
the most negative node and a warning message is presented. The user can
then connect the substrate of M1 to ground and the desired output swing
is obtained, as illustrated in Figure 4.7.3b.

4.3.8) Length of FET’s too large

If the length of MOSFET or JFET is too large, nonconvergence may result
in the simulators. Lengths of JFET and MOSFET are tested in the
electrical-rule checker, and values of more than 100 lambda’s (with a 5
micron/lambda process) are detected and warmed. Figure 4.8.1 is an
example where the W/L of the PMOS is 132/131. If the electrical-rule
checker is run, a warning message "MOSFET length too large - may cause
nonconvergence’ is presented. Also, the corresponding MOSFET or JFET
is highlighted.

4.3.9) No Path from Supplies to Ground

Path from supplies to ground must exist. Therefore, a test is made on
whether a path exists schematically. First of all, the circuit is tested to see
if the voltage supply and the ground are both presented If not, a warning
message is given. Then, the node number of the supply is identified. For
example, in Figure 4.9.1, node 1 is the supply node. All the nodes of the
circuit are identified by instances. Since there are three instances (exclud-
ing supplies and grounds) in this circuit, the nodes are identifed as [1,2]
(resistor), [2,3,0] (npn), and [3,0] (voltage source). The algorithm is as
follows: At the top, the supply node (1) is detected. Then, the node is
cancelled to see if node O is found. If not, a path from supplies to ground
is missing. In Example 9.1, the resistor has nodes [1,2]. With the supply
node of [1], node 1 is repeated and cancelled in the global list. So, node

-19 -

[2] is in our global list. Then, nodes [2,3,0] are in the individual node list.
Henceforth, node 2 is cancelled, and node [3,0] are in the global list.
Once the node 0 is in our global list, a path is detected from supply to
ground and no warning message is presented.

4.3.10) Base Resistance must not be zero

The base resistance (rb) of a bipolar transistor in the circuit is checked
against zero since a zero rb causes problems in analog circuits. For exam-
ple, Figure 4.10.1 is a bipolar blocking relaxation oscillator. When SPICE
is run, an error in transient analysis occurs. Figure 4.10.2a shows the par-
tial simulation results up to the time-step error at t=1.87us. This error is
due to the zero internal rb of the bipolar transistors. If an rb of 100ohms is
added, the problem is corrected. The electrical-rule checker in STEPS
detects every bipolor transistor with rb=0 and an error message is
included. The algorithm is as follows: First we identify the internal bag
and properties of OCT where the parametes are located. Then, we check
for the parameter string. If rb=0 is detected or simply no rb is present, a
warning message pops up in STEPS. [11]

4.3.11) Connectivity The connectivity of the schematic circuits is a very
important factor to be checked since it is quite hard to see if a circuit is
actually connected from the display without the recognization of the com-
puter program. The connectivity should be checked by the design-rule
checking. The connectivity is checked as follows: Every instance of the
circuit is checked one by one. If there is any isolated node, (i.e. node that
is not connected with any other instances), a warning message is
displayed. Note that the connectivity verification algorithm designed by
Spickelmier [10] cannot be used here, since a schematic is compared to
the layout to make sure that they are the same in connectivity verification,
and the layout is unavailable. The only algorithm that one can use is to
check that every node in the circuit is not an isolated node. Figure 4.11.1
is a circuit which looks perfectly valid in both the paper display and under
the X-Window. Unfortunately, one of the terminals is actually uncon-
nected.

4.3.12) Values on various parameters

All values of the schematics are checked against illegal values. For exam-
‘ple, the length and width of MOSFET, values of resistors, capacitors, and
inductors are not allowed to be negative. Other values are checked and
details are omitted here.

-20 -

4.4 Rules that are not implemented in the Electrical-Rule Checker

4.4.1) Avoid parallel pullups

No signal vertex may be simultaneously connected to two different
pulled-up nodes and to ground. This rule is intended to make the usual
simple pullup over pulldown ratio calculations accurate. The constraints
generated by this rule for an array of the two-port dynamic RAM cells can
be satisfied by plaining some restrictions on RAM usage:

A) Simultaneous reads and writes on the same bus are prohibited.

B) Writing into a cell from both buses simultaneously is prohibited.

C) Reading the same cell from both buses simultaneously is prohibited
when the storage transistor is on.

Although the last restraint seems an unnatural restriction, the storage pull-
down must be wider than usual if both buses read from it at the same
time, since the saturation currents of the two pullups are added. [6]

Unfortunately, a signal vertex cannot be detected in OCT. Furthermore,
parallel pullups are allowed in analog circuits. Henceforth, this rule is not
implemented in the electrical-rule checker.

4.4.2) Avoid gates in the middle of pulldown chains

If the gate of a transistor is connected to a pulldown tree, the connection
should be through the pulled-up node, not through a lower node in the
tree. For CMOS, a gate connected to either an NMOS pulldown tree or a
PMOS pullup tree should be connected through the node where the two
trees meet.

Unfortunately, the PASS and CLEAR and pulldown chains are impossible
to be detected alone. If user input is required, the purpose of the
electrical- rule checker is defeated, since the user has to know that it is
actually a pull-down chain. [6]

4.4.3) Avoid charge-sharing

A signal that is used on the gate of a transistor must be either isolated
from all other nodes (storage charge) or connected to VDD, ground, or a
pulled-up node. When two nodes isolated from power become connected
to each other, the charge on the nodes is shared between them. If the
nodes initially have different values, the result may be an illegal intermedi-
ate voltage. Static storage nodes (nodes on even cycles in the inverter

221 -

graph) also must be isolated to avoid charge-sharing.

In a charge-sharing circuit, the input is stored at node STORE when
LOAD is high during phase 1. LOAD may go high before Theta 1, shar-
ing the charge between STORE and X. If the LOAD and READ signals
are simultaneously high, the illegal value can be propagated to the output.

Again, due to the impossibility of determining out what the STORE,
LOAD, and the clock Theta 1 is, this rule cannot be proposed to the
electrical-rule checker.

=22 .

S PERFORMANCE

5.1 Summary A brief analysis of the performance of STEPS is
presented in this chapter. Both the speed and the code of the program are
inspected. The time performance of the electrical-rule checker is also
analyzed independently. The time performance of the electrical-rule
checker is analyzed rule-by-rule. The result is that the time performance
is very efficient in the electrical-rule checker.

5.2 Performance of the Electrical-Rule Checker The CPU time is
individually calculated. Each rule discussed in Section 4 has different
CPU time. The CPU runtime were obtained on a DECStation 3100 with
24 Megabytes of physical memory running ULTRIX 4.1. The CPU time
is estimated by using the number of objects and dividing by the time
range.

Rule 1: 2,200 Objects/Second
Rule 2: 2,200 Objects/Second
Rule 3: 1,850 Objects/Second
Rule 4: 4,330 Objects/Second
Rule 5: 4,330 Objects/Second
Rule 6: 32,680 Objects/Second
Rule 7: 7,500 Objects/Second
Rule 8: 30,890 Objects/Second
Rule 9: 5,260 Objects/Second

Rule 10: 24,680 Objects/Second

Rule 11: 2,850 Objects/Second

Rule 12: Not evaluated

The electrical-rule checker procedure in STEPS currently has 2614 lines of
C code, with RPC applications.

5.3 Performance of STEPS STEPS is written in the language C
under the OCT/RPC environment. There are approximately 23,000 lines
of C code. The run-time performance of STEPS is directly dependent on
the performance on the OCT/VEM/RPC performance, with the indepen-
dent STEPS runtime less than 10% of the runtime on the VEM graphics
environment.

-23 .

6 OVERVIEW OF COMMERCIAL SCHEMATICS CAD TOOLS
6.1 Summary

Because of the availability of graphics window systems in advanced
workstations, many circuit designers design their circuits using schematic-
entry programs. Several are now available commercially. A brief com-
parision of two popular commercial schematic-entry programs,
TekTronix’s QuicKic, and Viewlogic’s Workview with STEPS is
described below:

6.2 Tektronix’s QuicKic
6.2.1 Background

QuicKic is a package produced by Tektronix, Inc. [12] QuicKic is a
menu-driven schematic and layout editor. From schematics, QuicKic can
generate Tekspice and Spice netlists. In this section, only the schematic
editor is included.

6.2.2 Display

An example display of a circuit in QuicKic is given in Figure 6.2.1
and Figure 6.2.2. Differences between a QuicKic display and a STEPS
display are not obvious. All model values, model names, and node values
are presented in both QuicKic and STEPS. Several differences can be
observed, though. First, QuicKic does not display the area size of the
transistor, but STEPS offers this option for the user. With STEPS, the
user can choose whether or not to display the area size. Furthermore, with
STEPS, the user can choose to display only the area size with an area
different from the nominal value. Secondly, in QuicKic, the VCC and
VEE power supplies are displayed. This information is not crucial to the
circuit since one can easily look at the nodes to determine such informa-
tion. Furthermore, STEPS allows the user to control the display. This
means that the user can select to turn off one or more of the model names,
model values, or node names. QuicKic does not allow this feature.

6.2.3 Placing Elements in a Schematic

All the basic commands of a schematic editor (place elements,
remove elements, etc) are presented in both STEPS and QuicKic. QuicKic
has the advantage of containing a large database of all devices. As a
result, the users can select a device model with model values displayed as
part of the model names. For example, when a user wants to select a

=24 -

resistor with 4k ohms, he can choose a model called R4000 and place it in
the display. In STEPS, the user has to choose a generic resistor and
change the value to 4k ohms afterwards. On the other hand, this feature
also imposes inconveniences to the user. If the user has a circuit which
has only one model value, he can hasten his schematic entry. If he needs
various models with different values on his circuit, the searching of data-
base plus the placement from the database will delay the process of
schematic entry. One good advantage of QuicKic over STEPS is that a
node which is opened is represented as a cross in QuicKic. Once the node
is wired, the node becomes a dot in QuicKic. An example is given on
Figure 6.2.2 for reference. This gives an easy way for the user to distin-
guish between connected node and disconnected nodes. In STEPS,
disconnected nodes have to be detected by the electrical-rule checker.

Another difference is that QuicKic requires the user to enter a node
for the substrate. For example, if a bipolar transistor is requested, the user
is asked to enter the node for the substrate. This is inconvenient for
several reasons. First of all, it is very generic that this node is the most
positive or the most negative node. It is automatically placed this way in
STEPS unless changes are requested from the user. Secondly, the user
has to know the assigned node name from the model. For example, the
user needs to enter the VEE node in order to connect the node to VEE.
This may lead to problems such as incorrect entry of node names. In
STEPS, the substrate nodes are automatically assigned. If the user wants
to use the substrate nodes at other locations, he can do that graphically by
connecting a wire rather than entering the node names. This may lead to
less error when the user has the chance to check his circuit through the
schematic diagram graphically.

6.2.4 Wiring the Schematic

The wiring procedure is quite different between STEPS and
QuicKic. Using STEPS, the user has to select one node and then move
the mouse to another when a connection is designed. QuicKic uses a
different procedure. The user has to select the first node, then the second.
After selecting both nodes, the user has to select the second node again to
terminate the wire. As the wire is placed, a diamond-shaped marker is
displayed at the most recent vertex (the second node). If a connection is
made to another wire, a connect point is drawn. A wire is terminated by
entering the last node twice. In contrast, STEPS connects two nodes
wire-by-wire, which means that the user connects two points in two pro-
cedures. In QuicKic, the user can actually connect the wire for one node
in three procedures. Which editor presents a better solution is a matter of
taste. STEPS appears simplier to use, but QuicKic is more efficient for
experienced users.

-25 -

6.2.5 Subcircuit

Global connection of nodes is allowed in both STEPS and QuicKic.
For example, the VCC and VEE nodes can be selected to become global
connections no matter what kind of hierarchy is involved. QuicKic
presents a better display of these global nodes since all global connections
are represented by arrows in QuicKic. STEPS does not have this feature.
The definition of subcircuit is very similar in STEPS and QuicKic. All
the input and output terminals have to be labelled in both editors. The
procedures to create a circuit from a subcircuit are also very similar. In
QuicKic, the subcircuit has to be defined as a subcircuit so that one may
place it as an element in the circuit. In STEPS, the hierarchy is much less
strict due to the OCT structure. This means that one does not need to
define a circuit as a subcircuit in STEPS. The hierarchy structure can be
switched and defined as the user desires.

6.2.6 SPICE Netlist Generation

In QuicKic, a *"TSPICE’ command in the simulation menu is used to
generate a spice netlist. All the models are generated, but all the com-
mands have to be entered from a text editor. For example, if a ’.print’
command is requested, it has to be entered through a text editor by the
user. One of the goals of STEPS is to allow immediate simulation at the
ending of the schematic-capture process, which means that no command
needs to be entered through the text editor. Obviously, QuicKic has a
different goal. In STEPS, all the commands (.print is one of them) can be
entered through menus in the schematic-capture process. One obvious
advantage is that a user can design the circuit through schematic diagrams
and simulate it without any intermediate process. In QuicKic, if many
runs of simulation are needed, the user needs to use the text editor to enter
commands between the initial schematic-capture process and the simula-
tion process. This may be very cumbersome and redundant.

6.2.7 Other Differences

1) STEPS allows key bindings which QuicKic does not allow. This
feature is an OCT/VEM function to allow a user to select short keys to
represent a command. Experienced user will find key bindings to be very
useful since selecting from menu may be a very cumbersome process for a
large circuit.

2) Instead of fully automatic menu-driving, the user of QuicKic needs
to enter most of the commands through text-entry when asked. In STEPS,
most commands can be entered in one key stroke or by menu selection.
This may create a faster design process for the user.

-6 -

3) STEPS allows the user to present his own commands for a different
SPICE version, and QuicKic allows only TSPICE to be used. Obviously,
as a commercial product, the allowance on only one SPICE is an under-
standable feature, but as a public domain product like STEPS, the more
flexibity is presented, the better the product is.

4) As a commercial product, QuicKic has a very large database to
select from, which means that many commercial products can be picked
directly without going through the schematic-editor process. STEPS obvi-
ously lacks this feature.

5) Unlike STEPS, QuicKic does not interact with the simulation pro-
cess. This means that the schematic circuit is not checked against any rule
violations. STEPS, as mentioned earlier, presents an -electrical-rule
checker to check for schematic rules violation.

6) STEPS has two commands, "chng-local-parm” and "chng-global-
parm", to allow the users to change the model parameters locallly or glo-
bally. In QuicKic, the user has to change the model parameters model-
by-model.

7) In STEPS, the user can generate a SPICE input file with a voltage
or current source added at the selected node, usually in the input, to test
the circuit. These are the "add-curr-source” and "add-volt-source” com-
mands in STEPS. QuicKic does not offer a similar presentation.

8) Dialog boxes are not presented in QuicKic when pertinent informa-
tion is needed. STEPS allows dialog boxes so that required inputs which
the user forgets to enter is directed by the dialog boxes.

6.2.8 Conclusion

As a conclusion, both schematic editors are very similar in structure.
As a commercial product, QuicKic emphasizes the whole integrity of the
software. This disallows certain features which STEPS is able to present.
Speedwise, the processing time of QuicKic is less than that of STEPS,
although not very significantly.

227 -

6.3 Viewlogic’s Workview
6.3.1 Background

Workview 4.0 with Viewdraw from Viewlogic is examined and
compared with STEPS in this section. Viewlogic has a simulation facility,
called Viewsim, for simulation purposes. Furthermore, the tutorials of
Workview and Viewsim have different sections for analog and digital
designs, which made them easy to use for a particular design purpose.

6.3.2 Display

Workview supports a very easy-to-use display with all the menu
options on the left side of the display (Figure 6.3.1). The display structure
is very similar to that of STEPS, since all model names, model values, etc
are supported in the display. Zooming and panning on the screen are very
similar between Workview and OCT/VEM/STEPS. The ViewIn and
ViewOut function keys on the display of Workview, which STEPS does
not support, are useful when the object to be magnified is in the middle of
the screen. The labeling function of STEPS and Workview is very simi-
lar. Workview allows a better automatic labelling structure. For example,
the user can type in ’A[1:10]’ to name the ten nodes selected to become
Al, A2, A3, ... A10. This feature is not supported by STEPS. Similar to
STEPS, Workview also presents dialog boxes to ask the users for various
information. For example, the symbol value and the component value
(model name and model value respectively in STEPS) are requested by the
dialog box structure, as in STEPS.

6.3.3 Placing Elements in a Schematic

When a user intends to add a component in Workview, a prompt
appears at the bottom of the screen saying "Specify component position”.
The user can then select a position using the mouse of the workstation.
Similar to STEPS, the user is also allowed to add a title or text on the
screen. Furthermore, the text font or text size can also be entered, as in
the OCT/VEM/STEPS structure. Different from STEPS and similar to
QuicKic, Workview supports a huge library of models and components.
This is very advantageous compared to STEPS, since the user can easily
find a commercial product without having to redraw it. The ’copy’ func-
tion of Workview is very similar to that of STEPS, with the three pro-
cedures to select the original component, select the location, and copy the
component. Workview has the command ’Reflect’ to reflect the com-
ponent right away. On the other hand, STEPS allows relection through
the ’translate 90 degrees’ command. Henceforth, if many reflections are
needed, Workview provides a more efficient routine here. Fortunately, it

- 28 -

is very rare that many reflections are needed.

6.3.4 Wiring the Schematic

Similar to QuicKic and different from STEPS, Workview presents a
small square (a cross is presented in QuicKic) for a "dangling net." The
circuit is much easier to read with the "dangling net" distinguished from a
connected node. Both STEPS and Workview allow the user to copy the
whole net instead of component-by-component. A disadvantage in
Workview is that when a wire is added, the user needs to type in the com-
mand ’Add Net’. STEPS bypasses this by key bindings, which is more
efficient and convenient. Moving a component without disrupting the wir-
ing is a major advantage in Workview versus STEPS. Unfortunately, it is
difficult to change the OCT/VEM/STEPS structure to present this offering
to the user.

6.3.5 Subcircuit

Viewdraw, similar to OCT/VEM/STEPS, supports an unlimited
number of hierarchical levels. Subcircuits are defined the same as in
OCT/VEM/STEPS. The two hierarchical structures (Workview’s and
OCT’s) are strikingly similar, with no significant discrepancies found.

6.3.6 SPICE Netlist Generation

A wirelist program in Workview interprets the design levels for
input to the simulator. A composite-type component indicates to the
wirelist program that it should trace down the block hierarchy. Wirelisting
links multiple sheets and brings together the hierarchy of a schematic.
Viewdraw supports a number of different SPICE netlist formats - the
Viewsim (.vsm files) format, the SPICE (.cir files) format, the PSPICE
(.cir files) format, and the HSPICE (.cir files) format. An "Export Wirel-
ist" command in Workview takes all the wirelist description files produced
by the "ExportCheck” command and produces a connectivity description
file. Henceforth, Workview also has the connectivity checks which the
electrical-rule checker in STEPS provides.

There are two types of wirelists structures in Workview -- flattened
wirelists and hierarchical wirelists. Flattened wirelists (connectivity
descriptions) are created from a hierarchical design by expanding and
removing the intermediate levels in the design. A flattened wirelist con-
tains only instances of primitive components and their interconnections.
The values of global signals, parameterized attributes, and expression
evaluation are usually resolved during the generation of the wirelist. This

-29 .

structure is very similar to the STEPS netlist generation command.

A hierarchical wirelist creates a connectivity description file that
retains the hierarchical structure of the design. A hierarchical wirelist typ-
ically contains a number of composite blocks that correspond to the origi-
nal design tree. This structure is very similar to the OCT datatrace design
manager - VOV - designed and implemented by Casotto at U.C. Berkeley.

Similar to QuicKic and other commercial schematic-capture design
packages, Workview does not allow command like ".print" to be entered
in the schematic-capture process. Workview allows such commands to be
entered only in the simulation package which they present.

6.3.7 Other Differences

1) STEPS allows the user to present his own commands for a different
SPICE version which Workview does not allow.

2) As a commercial product, Workview has a very large database to
select from, which means that many commercial products can be picked
directly without going through the schematic editor process. STEPS obvi-
ously lacks this feature.

3) In STEPS, the user can generate a SPICE input file with a voltage
or current source added at the selected node, usually in the input, to test
the circuit. These are the "add-curr-source” and "add-volt-source” com-
mands in STEPS. Workview, similar to QuicKic, does not offer similar
presentation.

6.3.8 Conclusion

Workview and OCT/VEM/STEPS are very similar in structure.
Workview provides many of the same commands which STEPS presents.
As a schematic editor, Workview is an excellent package as a front end
for simulation.

-30 -

7 CONCLUSION

STEPS is now released through the Berkeley CAD framework -
OCTTOOLS. Circuit designers can design the schematic diagrams in the
STEPS graphics environment. Simulation can also be done using various
versions of SPICE. Almost no text editing is needed since all SPICE
information can be entered through schematic or dialog boxes in STEPS.
All SPICE analysis can be done directly in STEPS, and various postpro-
cessors are integrated inside STEPS to take full advantages of the graphi-
cal postprocessors available. Furthermore, an internal filter is constructed
to allow conversion from SPICE2 output data format to XGRAPH.
Therefore, by pointing at the appropriate nodes, the user can directly
obtain a graphical output of dc, ac, distortion, noise, fourier, or transient
analyses. This interface emulates the functionality of an oscilloscope.

In this report, the functionality of STEPS is presented. The features
mentioned include the structure, editing power, netlist generation, display,
printouts, control cards and simulation within STEPS. As in all the
softwore programs, the full power of a tool can only be recognized by
explefriences. This report can only serve as an introduction to the program
1tselt.

Chapter 3 is devoted to emphasize the structure of STEPS. Since
STEPS is actually a part of the OCT/VEM/RPC framework developed in
Berkeley, the structure is quite complicated and a full explanation is
needed. It is suggested that the OCT manuals are fully explored for users
who have interest about the structure of STEPS.

An internal on-line electrical-rule checker is also included in STEPS.
It is written to check for errors in schematic diagrams so that users can
directly be informed schematically if any circuit rules are violated while
using STEPS. This topology checker for schematic circuits is introduced
to check for certain degeneracies in a circuit. For example, if only one
branch is connected to a node, or if there is no DC path from a node to
ground, or if there are loops of voltage sources and/or inductors, the
electrical-rule checker in STEPS will point out the errors immediately
through highlighting in the schematic diagrams. CPU time and user’s
design time are thus minimized by these early checks on the errors.

STEPS has been compared with two commercial schematic-capture
packages, Tektronix’s QuicKic and Viewlogic’s Workview. The advan-
tages and disadvantages of the three products are discussed.

-31 -

REFERENCES

(1] D. Harrison, P. Moore, Rick. L. Spickelmier, and A. R. Newton,
"Data Management and Graphics Editing in the Berkeley Design Environ-
ment," IEEE Trans. ICCAD ’86, Santa Clara, CA.

[2] Rick Spickelmier, editor. "OctTools Distribution 3.0," Memorandum
No. UCB/ERL M89/56, UC Berkeley Electronics Research Laboratory,
Berkeley, California, 1989.

[3] Rick Spickelmier, Peter Moore, A. Richard Newton, "A Progammer’s
Guide to Oct,” Technical Report UCB/ERL M90, UC Berkeley Electron-
ics Research Laboratory, Berkeley, California, August 15, 1990.

[4] Rick Spickelmier, Jeff L. Burns, and A. Richard Newton. Policy
Guides for Oct. Technical Report UCB/ERL M90, UC Berkeley Electron-
ics Research Laboratory, Berkeley, California, January 1990.

[5] Rick Spickelmier, A. Richard Newton, "A User’s and Programmer’s
Guide to RPC: Remote Procedure Package for OCT/VEM," Technical
Report UCB/ERL M90, UC Berkeley Electronics Research Laboratory,
Berkeley, California, February 28, 1990.

[6] Kevin Karplus. "Exclusion constraints for digital mos circuits: A
new set of electrical design rules"” IC-CAD, IEEE Trans. ICCAD 1985,
244-246 |

[71 Kevin Karplus. "A Formal Model for MOS Clocking Disciplines”,
Comnell Computer Science Technical Report 84-632, Comell University,
August 1984.

[8] David Cooke Noice. "A Clocking Discipline for Two-phase Digital
Integrated Circuits”, Stanford PhD Thesis, January 1983. University
Microfilms 8314482

[9] D. Hodges and H. Jackson, Analysis and Design of Digital
Integrated Circuits, Second Edition, McGraw-Hill, 1988.

[10] R L Spickelmier and A.R. Newton, "Connectivity Verification Using
a Rule-Based Approach”, IEEE Trans. ICCAD 1985, 190-192

[11] Theologos Kelessoglou, "NECTAR, A Knowledge-Based Framework
for Analog Circuit Verification", Memorandum No. UCB/ERL M&89/40,
UC Berkeley Electronics Research Laboratory, Berkeley, California, 1989.

[12] "QuicKic Graphic Editor Reference Manual", Version 7B, Tektronix,
Inc., Beaverton, OR, March 1990.

-32 .-

[13] "WorkView 4.0 Reference Manual”, Viewlogic Systems, Inc., Marl-
boro, Massachusetts.

FIGURES

-33 .-

Lists of Figures

Fig 2.4.1:

"] T}

pds pumke

o o
PRRDARRRARRDDRNND
4

oq g 09 09 09 09 0Q 09 OQ
NNPHbmHSSSQMPQWNNNrrrMM'

Fig

Schematic Circuit from STEPS

SPICE input ciruit generated by STEPS from Fig 2.4.1

Display of STEPS

Model Palette of STEPS

Basic Loop of Voltages

Loop with 2 voltage sources and 2 resistors
Loop of 5 Voltages

Basic Loop of Inductors

Loop with 2 inductors and 2 resistors

Loop of 5§ Inductors

Series of 2 current sources

Parallel Current Sources

Shorting of Power Supply

Voltage source with Connection to Ground
Capacitor of 1fF

Substrate node connected to most positive node
Enhancement-load Inverter circuit
Substrate-drain junction limiting voltage swing
Connection of Substrate to Ground

W/L of PMOS

Path from Supplies to Ground

: Bipolar Blocking Relaxation Oscillator
: Connectivity Circuit

Example Display of QuicKic
Dot Display in QuicKic
Example Display of Workview

Fig U1 U13 Displays for Tutorial on User’s Manual

¢
L

.
ol
¢ |s
Q
@

o

500
r0

- L
500
r2
q

g4
/&7
X 2
a2 9
10
500 10k
ré r8

Q |
th

gql3

14

}/qll |/q15
N lﬁ |
N 15
ad 13 H
y 4
12
[E%lO
1{7
.__{:qla
ql2 q16 18 20

Figure 2.4.1

STEPS input deck from demo:schematic

veel 0 de 5
z0 2 3 500

.model m1218 pnp ISwle-16 BF=100 VA=34
gl 4 53 mi2181

z2 1 6 500

g3 75 6 m1218 1

.model m988 npn IS=le-16 BF=100 VA=33
qd4 7 7 8 m988 1
g5 8 9 10 m988 1
6 10 0 500
g7189 mess 2
z8 9 0 10000

g9 4 11 12 m988 1
ql0 12 12 0 mS88 1
qll 1 4 11 m%88 1
gl2 11 13 0 m988 1
gl3 13 13 0 m988 1
gl4 1 4 14 m988 1
gl5 14 9 15 m9%88 1
rl6 15 0 500

ql7 16 14 17 m988 1
qls 17 17 0 m9%88 1
vl9 16 0 dc 2

.dec v19 1 10. .5
q20 1 18 19 m988 1
z21 19 0 10000

r22 1 18 1000

i23 18 0 dc 0.0002
.t£ v(8) i23

i24 0 13 dc 0.0004
.t£ v(8) i24

.width in = 3000

.width out = 80
.end

Figure 2.4.2

..

:u:~_x ||||| IRV ARG 13t ean) ol

_§.
08 = Ino YyIpyn*
000E = UI YapTA°
o {7}
1'S'C 2an3iy - 2°0 G 0 94 9p°
2T 9P 0 b O
0007 0 G S
2o GO E P
2963 GpZgb —
5YA 00T=3d 979751 :&3%_§=_m_ w>||
088 € T 24
0%£ 2 T T4
G 0T oA
_(£°2)A 9 Fd°
orjeMaysseumoTd ¥oUy 339p INAUY SIS

BT R

wefl] | O [
0 i [8

SOW

‘ 3 EO BH EH
] H1 M

3113

diaH u3aJI§ Juld Bziwoisn) 3jeds) Uoissas

[Frewoyas:ayiored- joquiks/ sjoquiks/ o ewayas/ ABOjaWaa) /qi/SI00330~ 180 WIA (EIX]

= Jabeuely uoissag [.n

— = — — — —— — . — — = = ="

)puim-uado : dyewayds:al
0r60

(06-dos-62 o_gs

7°S'T N3

Lrg E E q
il gl

SONW

L34r > +

| O=I

W sa

BANMA

Figure 4.1.1

L (O C

@
&
&

o)
&

Figure 4.2.1

000000~

ol

| | | igure 4.3.1

Figure 4.4.1

S

Figure 4.5.1

Figure 4.6.1

Figure 4.7.1

—1l x7in

'% ved
ml
32—
|? cl
I\
5 iml ;_1_C
cl

Figure 4.7.2

Volts
5.00
4.00
3.00
2.00
1.00
0.00

Volts
5.00
4.00
3.00
2.00
1.00
0.00

1 ! “,—(5')-
— — %
ra o
v [
1
.
x109
0.00 10.00 20.00 30.00
(a))

Figure 4.7.3a
(7 T%
| /

A a
/ [
I I]
! x10°9
0.00 10.00 20,00 30.00
®)

Figure 4.7.3b

!
/
- !

Figure 4.8.1

 Figure 4.9.1

RN

|
LY
F_l—_\iéllf
—
3

|/
I\

b

¥

Figure 4.11.1

P J

—t -«
g 'If-‘f?- P

'F:_iéure 6.2_.2“

o~

¢

k]

!

'
Bakyc)y
Alkye)
cport
A K
(fo *

St
3!

af
3K

Y

v e
IRy eI
1L

et

RAW)

e T s i

Figuré 6.3.1

o tiete mmn v srem s seh e s

{version -1 {made 17-TJan-91)
vy Eile iy Jbepsvem. loy. 226336
2

Figure Ul

e R A T e R R T s
§ bk G R R s
this ix VI version 8-1 (made 17-Jan-31) .
Log file is ftopdver. log. al6346 f
wemd Cexample:schemabic” @ oopen-window ;
Buifer does not exist, New bunifer cveatad.

fiswing properbice for - exappleschemabic’

Teclnology [stnos

............ SRS e - e
{$-Ret) : (p-Eel}

Figure U2

.kl

B T e

Figure U3 .

mnp t
mw(ik
van: pointe(ly

t&!!&)‘
ctis{1

: Y {LRORDH
!|i|!| !{: " i !a'lilsl

See aoe a0e see s
.,
esessaseseserases

[——

Figure U4

Figure US

b

EE LY

g 1

csseincan sessesnes

vend:le

. . . .
.
-
.
.
.
.
.
.
. . . .
.
.
.
.
. . . .
.
.
.
. . . .
.
.
.
.
. . - . .
.
.
.
. . . .
.
-
.
. . . .
.

P

. . .
. . . .
. . . .
. . . .
. . .
. . . .
. . . .
. . . .
. . .
. .

. .

.

. .

. .

. . . :
:
N
:

. . . i
:
H

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . .

i:nt l’ﬁ)

.i. i 'hi"

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

s e ese oo o
oy

. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
- .

Te
oo ase o o bas s

Y

.
. .

. .

. .

. .

. .

. . .
. .

. .

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Poe

=)

Y

% des

A v

“esemas

B‘uﬂ:’en ﬂoes :not:exis

.
.
.
. -
.
.
.
.
.
.
.
.
.
. . . . B
.
.
. B
.
.
.
N
.
.
.
.
.
/"
.
K4
.
S
N,
.
.
L
4
4
A
S,
.
.
. Nt
K4
4
S
S,
.
.
.

. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
i .
H
; .
i
H
.
i
. .
Sel
-
‘..
P
c L
s
. .
~. .
..
S,
. e
Nad
. .
Ny .
b
‘.
. ,C"
’”
.

TR

. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .

. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .

. .
. .
. e
..
. .
. .
. .
. e
. e
. .
. e
. .
. .
. e
. e
. e
. .
f .
f .
. e
. e
. «
s .
H
H
H
P .
H
H
P.
:
. .
[V
..
P
.
N
. .
A
.
Wad
. .
[N
~
‘..
pA3
.",.
.

eesscans

-
2
.
o

£d

(3
o3

"

o o

6 =

Lo IR TR T

B Biae

-3

Foe

IO

ode o

e by

'I‘c'hl

P T R TS e : N

. .
. . . . B B .
. B . . “ w00 00 s0 o0s wee on oo e00 a0 see wre e
. -
. .
. .
h
. B .
. #
. .
3
. B . B
3
. B -
. .
. .
. B B
. .
| S
o e e . . e e e . e e e e e e . . e e e [L
. B B
. -
. B .
. .
. - . . .
. B .
- N
. B
. B .
0
{]
- - - - . il
. B .
. . . - .
.
:
. F U8
. 3
i
. B .
. - .)
. .
H
. B . ,
- {]
. B B N
0’
. .

cansens

B
Ve

. -
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. -
. .
. -
. .
. .
. .
. .
. .
. .
. .
. .
. .
. -
. .
. .
. .
. .
. .
. .
- .
. .
- .
. .
. .

ta(1]

ééi.:cs(‘.ll po

. .
. .
. .
. .
. .

.o

. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . -
. . .
. . .
. . .
- . .
. . .

.
. .
. .
. .
. .
. .
. .
. .
. .
. .
.

. .
. .
.

. .
. .
. .
. .
. .
. .
. .
. .
.

. .
. .
. .
. .
. .

3
. . § . .
. . i . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

B
-
.
.
.

o
i .
H
H
i .
|
o
o
o
o
o
.
o
.

L 3f g4

o

o

-—

Figure U10

=TI

Jreserersensosenssreses o

,
4

IS T A

R

asssesensearassanscany,

o
. ..-»........-.m-./:

eerrenanesone:

Figure Ul1l

Riadeee

AHHIHEA
~-! Al

l |‘| ‘lllt'lI‘

pelit s AEHERER
i e

eevenmsmanmmm - - ool

;

LY

nesctaseesqpesesedoses

i
R IR
2’ ehe N~
i 3
: ;
N - s

Seenae st

.
.
sessnseteefaccraseres

\X4

ll"ll

Figure U12

wm“'éaiﬁﬁg'ag doiie:

H
i
3
H H
i i
<{\ '.;'\ “
J 1 k \'::’ 1 k
”’ } e I°':>=¥ ?
N, o
2 o
2 3
=
H H
| z
' i
! i

; Y &7

-
assovese .

~

-

L4
.
(SO ¢ 1
3

....... 15 Figure U13

u

STEPS (Spice Text Editing Package utilizing Schematg

Denis S. Yip / Prof. D. O. Pederson
Version 1a3 / March 1990

User’s Manual

Table of Contents

Section 1:
INTRODUCTION

Section 2:
OVERVIEW

Section 3:
TUTORIAL

Section 4.
STEPS COMMANDS

Appendix:
VEM COMMANDS

_D .
Section 1: INTRODUCTION

SPICE is an all-purpose electrical circuit simulation program.
At present, most SPICE designers in the Berkeley system use ascii text
editing for SPICE input file entry. Although there are commercial
schematic programs, for example, ORCAD, to support schematic entry of
SPICE for personal computers, schematic-entry packages are unavailable
in the public domain to support UNIX and the X-Window systems. This
is often inconvenient since most designers have to convert their schematic
design diagrams into SPICE input files by naming all the subsequent
nodes and entering parameters and values from a text editor. Errors fre-
quently occur due to misnaming of nodes and corrections to these errors
may be very cumbersome if the circuit is of significant size. Also, a
schematic printout is unavailable.

STEPS is designed for local SPICE users to overcome the
above difficulties through a public domain schematic-entry package. Users
can easily design their circuits on terminals and check their designs with
SPICE as often as needed. STEPS is used as a pre-processor for Spice2,
Spice3, NECTAR (A Knowledge Based Environment to Enhance SPICE),
and xgraph. Therefore, simulation of circuits by Spice2, Spice3, NEC-
TAR, and xgraph can be done while running STEPS. A SPICE2-to-
xgraph filter is also integrated to present direct xgraph output from the
schematic diagrams through SPICE2. Furthermore, users can also
integrate their own favorite simulators into STEPS as long as the simula-
tors recognize SPICE input file.

STEPS utilizes the structure of the Berkeley CAD Framework
-- Oct, VEM, and RPC (Remote Procedure Call package). The schematic
package of VEM is the pre-processor for STEPS; therefore, STEPS can
utilize all the components of VEM. In addition, layouts of the circuit ele-
ments can be done in VEM as desired. The RPC package is specific to the
local system of remote functions communicating with VEM and OCT;
therefore, the protocol and interface are specific to VEM and OCT.
STEPS has all the advantages of VEM and OCT and can easily integrate
with other programs which utilize the OCT object. On the other hand, the
technology of VEM is altered for the convenience of SPICE users. The
basis and format of STEPS are partially taken from the RPC-SPLICE pro-
gram from University of Illnois at Urbana.

-3

Device values and model names are printed in STEPS
through the "label" structure in Oct, and the node numbers are automati-
cally named and displayed in STEPS. Since speed is a major concern in
STEPS, schematic editings are set up so that minumun key or menu inputs
are required. All SPICE information has default values and editing of all
SPICE models and devices is made as easy as possible. Since generation
of SPICE information from schematics is the main goal of STEPS, SPICE
users may find that STEPS has an advantage over other schematic-entry
packages since many inputs with other packages for other information are
not necessary in STEPS. Also, through the memory structure of OCT, all
STEPS parameters are saved. Therefore, if a model or a parameter is
changed, it is saved permanently even if the user has exited both STEPS
and VEM.

The goal of STEPS is to enable the SPICE users to design
circuits and simulate them concurrently with speed and robustness. There-
fore, almost no text editings are needed since all SPICE information can
be entered through schematics or dialog boxes in STEPS. All SPICE
analysis (for example, sensitivity analysis, various types of plots, etc) are
allowed to be done directly in STEPS. Furthermore, the postprocessor of
SPICE, for example, NUTMEG, is also integrated inside STEPS. There-
fore, SPICE outputs will be able to be analyzed in a more detailed format.
The present emphasis is on increased functionality, higher-level modeling,
and integration with display tools, and physical design tools, such as
Integrated Circuit Layout. STEPS has accompanied some of these goals
by utilizing the IC Layout Tool -- VEM.

_4 -
Section 2: OVERVIEW

Familiarity in editing with VEM is a basic requirement for
using STEPS effectively. This user-manual is presented in three sections:

1) TUTORIAL

Running through this tutorial provides a general idea on how
to run STEPS.

2) STEPS

A detailed description of all current STEPS commands is
given here.

3) VEM commands (Appendix A)

All VEM commands are presented here. Users who are fam-
iliar with VEM can skip this section. On the other hand, those who want
to know more about VEM are advised to look at the VEM users’ guide
refer to ~octtools/document/PostScript/schematic.ps.Z or refer to
" dyip/steps/schematic.ps@ic.Berkeley. EDU or refer to
~ dop/steps/schematic.ps@janus.Berkeley. EDU.

STARTUP:

Instructions to use STEPS in janus.berkeley.edu:

1) In your ~/.rhosts file, type in the following lines:

janus.Berkeley. EDU

janus

2) Copy ~dop/.Xdefaults into your home directory ~/.Xdefaults.

3) Set path to ~dop/bin as the first option on your path by modifying
your ~/.cshrc file or “/.login file. Your setpath should look something like
set path = (. “dop/bin ~dop $home/bin) ... etc

4) Run STEPS by typing "vem7-3 &" or "vem &" and following the
TUTORIAL in the user manual. The user manual is contained in
~dop/steps/manual. You can access it by typing "ditroff -ms -P{Printer}
manual” or get a copy by mailing dyip@ic.berkeley.edu or owner-
octtools@ic.berkeley.edu

Instructions to use STEPS in ic.berkeley.edu:

1) In your ~/.rhosts file, type in the following:

ic.Berkeley.EDU

ic

2) Copy ~dyip/.Xdefaults into your home directory ~/.Xdefaults.

3) Set path to ~dyip/bin as the first option on your path by modifying
your ~/.cshre file or ~/login file. Your setpath should look something like
set path = (. ~dyip/bin ~ dyip $home/bin) ... etc

4) Run steps by typing "vem7-3 &" or "vem &" and following the
TUTORIAL in the user’s manual. The user’s manual is contained in
" dyip/steps/manual. You can access it by typing "ditroff -ms -P{Printer}
manual” or get a copy by mailing dyip@ic.berkeley.edu or owner-
octtools@ic.berkeley.edu

-6 -

The online help menu of STEPS gives a detailed description
of STEPS and a brief description of all VEM commands. Look through
the online menu when problems arise. Currently, only ic.Berkeley. EDU
and janus.Berkeley.EDU support STEPS. If you want your machine to be
supported, please mail steps@ic.Berkeley.EDU.

_7 -

Section 3: TUTORIAL

The following is a brief tutorial on how to use STEPS. Fol-
low through the tutorial, and you will gain a basic idea on how STEPS
works. For efficient use of STEPS, familiarity and experience are neces-
sary. It should be keep in mind that an emitter-coupled pair is being
created in this tutorial.

Setup STEPS by following the instructions in Section 2:
Overview’s "Startup” section. Then, after setting up the appropriate
display (X11 Window System is required), type "vem &" in your UNIX
shell. If VEM Version 7 instead of VEM Version 8 is desired, type
"vem7-3 &". Now, a white VEM console window is opened, as shown in
Figure Ul. Type "example:schematic" and then press "o" on the keyboard
with the mouse on the console window. "example" is the cellname and a
"schematic” tells VEM that you are editing through schematics. Since the
"example” cell does not yet exist, a message "Buffer does not exist. New
buffer created" appears in the VEM console window. Then, a dialog box
is displayed with "Technology=scmos", "View Type=schematic", and "Edit
Style=schematic" in it. Move the cursor over the box labeled "OK" and
click the left mouse button. Please refer to Figure U2.

A VEM graphics window is now opened. Arguments can be
entered in VEM through points, lines, boxes, text, and object. Move the
cursor to the VEM graphics window and click the left mouse button. This
creates a point in the VEM graphics window. Hit the <delete> key to
delete the point or simply press Control-u or Control-w to delete all the
arguments. To enter a box, press the left mouse button, and hold it down
while you move the mouse. As you move the mouse, a box appears. To
draw a line, move the mouse to the place you would like one end of the
line to be and click the left mouse button to create a point. With the cur-
sor over the point you just entered, press the left mouse button again and
move the mouse around. You have now created a line. Control-u and/or
delete keys can be used to delete the above arguments.

While the cursor is in the VEM graphics (not console) win-
dow, hit the key "r" to invoke STEPS. You can also invoke STEPS from
the VEM menu by clicking the middle mouse button. Under Applications,
you will see the option "STEPS". Click the left mouse button over
STEPS commands from VEM through key bindings or menu. After you

-8 -

have invoked STEPS, wait for the message "STEPS: operational” in the
console window (the white one). The grey window is called the graphics
window and the white window console window. Once the operational
message is displayed, WHILE HOLDING DOWN THE SHIFT KEY,
click the middle mouse button. You now get the STEPS menu. In order
to get the regular VEM menu, just click the mouse button WITHOUT
holding down the shift key.

Now, invoke the command sp1ce-dev1ces" either from the
STEPS menu (STEPS option) or type ":spice-devices” in the graphics win-
dow. A device palette window is now opened which contains all Spice
devices. Please refer to Figure U3. Press two points next to each other
about three inches apart in the graphics window. Move the cursor to the
"spice-devices" palette and then move the cursor on top of the vertical
resistor. Press "c" or invoke the command "create-instance” through VEM
menu by pressmg the middle mouse button. You have now created two
resistors in the graphics window. Please refer to Figure U4. Try the com-
mand "show-all" by pressing "f" or invoking VEM menu. Figure US is a
reference. "Show-all" zooms the window such that the devices are at the
middle. Try the command "zoom-in" by pressing "z" or invoking the
command through VEM menu. Then try the command "zoom-out" by
pressing "Z" or invoking the command through the VEM menu. Please
refer to Figure U6. Move the cursor to the top of the resistors and invoke
the command "pan" by pressing "p" or invoking the command through
VEM menu. Please refer to Figure U7. "Pan" gives you more space to
work with on the directions desired. Continue to invoke these four com-
mands until you are familiar with them.

Place a point above the resistor after you have "zoomed" the
window to the appropriate scale (such that you have enough space to
work). Move the cursor to the "spice-devices" palette at the top of a vol-
tage supply (VCC) and then press "c" or invoke the command "create-
instance” through menu. Now, you have a voltage supply on top of the
two resistors. Please refer to Figure U8. Keep in mind that you are trying
to create an emitter-coupled pair in this tutorial. Create a horizontal line
right under the voltage supply. Then, create a vertical line between the
terminal of the VCC and the horizontal line. Now, create two vertical
lines between the horizontal line and the two resistors. If you place the
line incorrectly, delete the line by the pressing the <delete> key two times
or by pressing Control-u and then redraw the lines.

_9.

Press "c" or invoke the command “create” through VEM
menu. Note the color of the wire on the node changes from light blue to
brown. This means that the lines are connected and they are now wires
instead of plain lines. Place a point on top of the wire (node) by pressing
the left mouse button and then press Control-n (or.select the VEM com-
mand "select-net" through the VEM menu). You will see the color
changed to light blue and a message "A machine generated net has been
selected” in the console window. Please refer to Figure U9. Nodes are
called nets in VEM. The node is changed to a different color. This
means that the entire node is connected together.

Now, under the left resistor, create a point and then choose
an npn BJT into the graphics window. While placing the cursor on top of
the BJT in the graphics window (not the "spice-devices" window), press
"s" or invoke "select-object” from the VEM menu. You will see the
highlighting of the npn. Now type "my:180" and press "t" or invoke the
command "transform”. This is to transform the object by 180 degrees by
the y-axis (mirror). Then press "m" or invoke the command "move-
objects” in the VEM menu. Press "u" or invoke the command "unselect-
objects”. You will see that the npn is mirrored. Move the npn under the
right resistor by selecting the npn using "s" and placing two points. The
first point should be placed under the left transistor and the second under
the right one. Look at how the object is moved by pressing "m". Now
create another npn from the spice-palette under the left resistor. "Copy-
objects” is similar to "move-objects”. Select the left npn by pressing "s"
and then place the first point on top of the selected object. Place the
second point on the leftmost side and then press "x" or invoke "copy-
objects” through menu or key. Unselect the npn. You have now copied
an object. Please refer to Figure U10. To remove the object, select the
leftmost npn again using "s" and then press "D". The object is now
deleted.

Remember that an emitter-coupled-pair is being formed.
Create two lines from the bottom of the resistors to the collector of the
npn. Press "c". Now connect the two emitters of the npn’s by lines and
then press "c". Create a resistor under all the objects. Create a line from
the top of the resistor to the line which connect the emitters. Press "c"
again. Now, create a ground under the resistor and connect the ground to
the bottom of the third resistor. Also, create a long line at the ground ter-
minal so that a long grounded node is represented. Please refer to Figure
Ull. Connect the base of the right npn to the ground. Place a voltage
source on the left side and connect the top of the voltage source (positive
side) to the base of the left npn and connect the bottom of the voltage

source to ground (or use the voltage source with the grounded symbol on

- 10 -

the negative end). An emitter-coupled pair is now created, as in Figure
U12.

Now, press ":spice-file" and hit RETURN or invoke the com-
mand "spice-file" under "text file" in the STEPS menu by pressing SHIFT
and clicking the middle mouse button together. Look at how the display
is changed, as in Figure U13. You can also edit the models, (e.g., model
values), by invoking the STEPS command "model-edit". The model
names can also be changed. Other SPICE options can be entered through
the "SPICE-Control” commands in STEPS. Try all the commands in
STEPS one-by-one by following the last section of this menu (Section 4:
STEPS commands).

One advantage of schematic entry is to copy subcircuits
directly and quickly. You are now going to copy the whole emitter-
coupled-pair (ECP). Make sure you have enough space to copy the whole
ECP by panning (pressing "p" or by menu - "pan") and zooming (pressing
"z" or by menu - "zoom-in"). Use a box to surround the whole emitter-
coupled-pair (ECP). Press "s" or by menu - "select-objects” inside the
box. Copy the whole box by putting one point inside the box and another
outside it (again, make sure you have enough space), and then press "x" or
by menu - "copy-objects”. Press "u" (or by menu - "unselect-objects") to
unselect. Now you have two ECP’s. Connect the two ECP’s and then
invoke the command "spice-file" again. Look at how STEPS analyzes the

whole circuit.

By working with several schematic diagrams and invoking
more STEPS commands, you will be familiarized with STEPS. Report
any difficulties, bugs, or simply comments to steps@ic.Berkeley. EDU.

PRINTOUT OF SCHEMATICS

You can printout the schematics of the circuit by:

1) Using the option "print-out” in STEPS.

- 11 -

2) In UNIX, type in "oct2ps <cellname>:schematic > <cellname>.ps"
to generate a Postscript output file. For example, type in "oct2ps
example:schematic > example.ps” to generate a hardcopy of the cell
named ’example’.

3) In UNIX, type in "oct2ps <cellname>:schematic | lpr -P{Printer}"
to direct output to printer directly.

- 12 -
Section 4: STEPS COMMANDS

4.1) OVERVIEW of STEPS Commands

STEPS - spice-devices -
"Open a window displaying all the Spice devices"
STEPS - print-out -

"Present a PostScript Printout of the schematic
diagram"

STEPS - bugs -

"Online bug report, which is mailed directly to the
author"”

STEPS - quit -

"Quit STEPS"
Edit - model-edit -

"Edit the selected model"
Edit - chng-local-parm -

"Change the model parameters of selected device
locally”

Edit - chng-global-parm -

"Change the model parameters of selected device
globally"

- 13 -
Text File - spice-file -
"Generate a Spice input file of the schematics”

Text File - add-volt-source -

"Generate a Spice input file with a voltage source
added at the selected node (usually the input)"

Text File - add-curr-source -

"Generate a Spice input file with a current source
added from ground to the selected node (usually the input)”

Analyses - xgraph -

"Display an xgraph output of the selected node after
running .plot on Spice2"

Analyses - edit-after-update -

| "Display an editing window after the schematics are
changed to a Spice input file"

Analyses - Spice2 -

"Display the Spice2 output after converting from
schematics to Spice"

Analyses - Spice3 -

"Display a Spice3 window of the corresponding
schematics”

Analyses - nectar -

"Display a nectar window of the corresponding
schematics”

- 14 -
Analyses - curr-file-edit -

"Edit the current .spi file without updating from
schematics to Spice"

Analyses - curr-file-spice2 -

"Running Spice2 without updating from schematics
to Spice”

Analyses - curr-file-spice3 -

"Running Spice3 without updating from schematics
to Spice"

Analyses - curr-file-nectar -

"Running nectar without updating from schematics to
Spice”

Analyses - choose-editor -

"Choose the desired editor - vi or Emacs"
Analyses - integrate -

"Integrate other simulators or programs into STEPS"
Analyses - execute -

"Execute programs which had been ’integrated’ by
users. :

SPICE-Control - .options -

"Invoke .options in Spice"

SPICE-Control - .temp -

"Invoke

- 15 -

.temp in Spice"

SPICE-Control - .width-in -

"Invoke
SPICE-Control - .op -

"Invoke
SPICE-Control - .dc -

"In
voke
source"

SPICE-Control - .ac -
"Invoke
SPICE-Control - .tf -

"Invoke
source"

SPICE-Control - .sens -
"Invoke
SPICE-Control - disto -

"Invoke
ing load resistor"

.width in"

.op in Spice"

.dc in Spice by selecting the corresponding

.ac in Spice"

.tf in Spice by selecting the corresponding

.sens in Spice"”

.disto in Spice by selecting the correspond-

SPICE-Control - .noise -

"Invoke
ing voltage or current source"

SPICE-Control - .tran -
"Invoke
SPICE-Control - four -
"Invoke
SPICE-Control - print -
"Invoke
SPICE-Control - plot -
"Invoke
SPICE-Control - .ic -

"Invoke
tions of selected nodes"

- 16 -

.noise in Spice by selecting the correspond-

.tran in Spice”

four in Spice"

.print in Spice"

.plot in Spice"

Jdc in Spice by choosing the initial condi-

SPICE-Control - .nodeset -

"Invoke
of selected nodes"

.nodeset in Spice by choosing the conditions

SPICE-Control - user-options -

"User can include their own text in this command”

Display - highlight-off -

"Turn off the highlight of erroneous models"

-17 -

Display - model-name-off -

"Turn off all model names display”
Display - model-name-on -

"Turn on all model names display"
Display - model-value-off -

"Turn off all model values display"
Display - model-value-on -

"Turn on all model values display"
Display - node-value-off -

"Turn off all node values display"
Display - node-value-on -

"Turn on all node values display"
Display - all-value-off -

"Turn off all Spice displays"
Display - all-value-on -

"Turn on all Spice displays (default is on)"
HELP - user-help -

"Online HELP manual"

- 18 -

4.2) STEPS commands

I) spice-devices

This command displays a window (called a palette) which
has the symbols of the Spice devices. Resistors, inductors, capacitors,
dependent sources, transformers, voltage sources, current sources, voltage
sources connected to ground, ground, voltage supply, diodes, JFET’s,
BJT’s, and MOSFETs are displayed by windows. The user can press the
left mouse button in his own console window to select a point and then
put the mouse on the selected symbol and then press "c" or invoke the
MENU command "create-instance”. The device selected is created in the
location specified. Note that two types of MOSFETs are present: The
lowest version has only three terminals - gate, drain, and source. The sub-
strate is assumed to be connected to ground. If something other than
ground is needed to connect to the substrate, the upper version of mosfet,
wlllich ({ms four terminals (gate, drain, source, and substrate), should be
selected.

II) print-out

Invoking this command automatically generates a PostScript
printout of the schematic diagram. There are three options for this com-
mand: namely, "Suppress node values”, "Suppress model names", and
"Suppress model values”. The user can select one or more of the above
options. Not selecting any options by pressing "OK" will give a
PostScript printout of a fully labeled schematic printout. Suppressing one
or all of the above options leads to a PostScript printout with no labels on
the suppressed options. The PostScript printout is named <cellname>.ps,
and the user can obtain a printout with the Unix command "lpr -P{Printer}
<cellname>.ps". ‘

IIT) bugs

Invoking this command opens a dialog window. User is
asked to report any bugs, suggestions, or comments promptly. Typing in
the bugs will lead this command to mail the information to the author.

- 19 -
IV) quit

Invoking this command quits STEPS permanently. The user
can still use VEM, but if STEPS is desired, the user has to either press "r"
in his VEM console window, or invoke the STEPS command through
menu.

- 20 -

4.3) Edit commands

I) model-edit

This command allows the user to edit every model inside the
"spice-devices” palette. All the necessary Spice parameters are requested
through dialog windows. Move the mouse on top of the model that needs
to be edited and type ":model-edit” or invoke this command through the
STEPS menu by pressing the shift key and the middle mouse button
together. All of the necessary commands are asked and you can ignore
those commands which you do not intend to enter. Once the model (or
instance, as called in OCT) is edited, no subsequent modeling is needed.
Even if the user exits STEPS and VEM totally, the model parameter is
presented provided that the user has saved the window by the vem-
command "save-window" or "save-all". Note that inside the dialog win-
dows, EMACS editing is assumed. Ctrl-k kills the line to allow reentering
of text data. Also note that it is not necessary to press RETURN after
entering the data. Simply press 'OK’ after you finished editing.

II) chng-local-parm

"chng-local-parm" changes the local parameters of the model
selected. Move the mouse on top of the model that needs to be edited and
press ":chng-local-parm"” or invoke the command through the STEPS
menu. The model parameters of SPICE include only JFET, MOSFET,
BJT, and diodes. So, selecting models other than the above presents a
warmning message. The local model parameters can be changed. For
example, if the global npn BF is 100, but you only want to change one
npn to 40, you can easily do so by invoking this command. Also, if you
have 10 npn transistors with BF equals 100 and another 10 equal 50, you
can first set the global parameter to 100, and then change one model
through this command to 50. Finally, you can copy the other 9 npn’s
(with BF = 50) by copying the model with local parameters changed to 50
using the "copy-objects” command on that specific model.

IIT) chng-global-parm

This command changes the global default parameters of all
MOSFETs, JFETs, BJTs, and diodes. Press ":chng-global-parm" or
invoke the command using STEPS menu on any spot in the VEM graphics

-921 -

window. The default values or the last changed values are displayed, and
the user can change any parameter. The Spice input file uses these param-
eters on all devices (for example, all npn’s) unless the device parameters
are changed locally through "chng-local-parm".

_92

4.4) Text File

I) spice-file

This command is the heart of the program. In any position
of the VEM graphics window, invoke this command by typing ":spice-file"
or through the STEPS menu. Naming the nodes (or nets, as called in
VEM and OCT) are not necessary. Once this command is invoked, the
Spice file is generated. All the node and model names and values are
named accordingly and then displayed. The Spice input file is called
<cellname>.spi and is contained in the home directory or in the directory
where the cell is contained.

II) add-volt-source

This command is the same as "spice-file" except that a vol-
tage source is connected to ground and added in the Spice input file. On
the node where the voltage source is to be added, make a point by placing
the mouse on top of the node and press the left mouse button. A point is
displayed on top of the wire (or net). Press Control-n to invoke the VEM
command "select-net” or choose the command through the VEM menu by
pressing the middle mouse button. Then, press ":add-volt-source" or
invoke the command through the STEPS menu by pressing shift and mid-
dle mouse button. A voltage source is then added in the Spice input file.
The positive side is the node selected and the negative side is the ground.
Of course, negative values are allowed on the voltage source by using
"model-edit". This command is designed since most inputs of an IC cir-
cuit requires a source input. This saves time in editing the circuit.

III) add-curr-source

This command is the same as "add-volt-source" except that a
current source instead of a voltage source is selected. The current source
is pointed from ground to the node selected. Negative values are also per-
mitted. For more details, see Section II above.

- 23 .

4.5) Analyses

I) xgraph

This command is designed for Spice2 users so that a graphics
plot instead of an ascii plot from Spice2 can be displayed. Invoke this
command through the menu or typing in ":xgraph" in the graphics win-
dow. Five options are presented: namely, .dc, .ac, .tran, .disto, and
.noise. Dialog windows are opened to ask the users to enter subsequent
data for the plot. Then, an xgraph plot is presented after STEPS runs
through Spice2 internally. The user can either select a hardcopy by
changing the plot to .ps file and printing them as necessary. This com-
mand is also convenient for Spice3 users if a hardcopy is needed since
some printers do not support Spice3 Nutmeg hardcopy plots. You can
also select the nodes through schematics by putting a point or line on top
of the node (net) and then press Ctrl-n before invoking this command.
Any number of nodes are accepted. These are used as arguments and no
manual text entry is necessary.

IT) edit-after—ﬁpdate

Instead of using another window to look at the Spice input
file, the user can directly edit the Spice input file. Invoke this command
through STEPS menu or by typing ":edit-after-update”. An xterm window
is opened with the newly updated Spice input file. The user can now edit
the input file first before going to Spice simulator.

IIT) Spice2

This command directly invokes Spice2 from the schematic
diagram. Invoke this command through menu or by typing ":spice2". A
window is opened and the Spice2 output file is displayed. The user can
look at the output promptly and directly from schematics. The user can
then edit the schematics again until the correct result is obtained.

- 24 -
IV) Spice3

This command is similar to the command ":spice2" described
above except that Spice3 is invoked. The user can directly run the circuit
through the most updated version of Spice3 and then edit the circuit.

V) NECTAR

NECTAR is a knowledge-based environment of SPICE.
NECTAR corrects errors in the SPICE inputs directly. Users who are not
familiar with NECTAR are recommended to read the NECTAR menu first
before invoking this command. Invoke this command through STEPS
menu or by typing ":nectar". a NECTAR window is opened and the user
can directly use nectar to simulate the circuit from schematics and edit the
schematics until a correct result is obtained.

VI) curr-file-edit

This command is the same as "edit-after-update” except that
the Spice input file is not updated. The previous Spice input file therefore
is displayed by an editor. This command is presented so that a user who
has changed the schematics but is unsure about the change can use this
command to try out the previous circuit. Also, the user can refer back to
the previous circuit to compare with the present circuit. Thus, the current
<cellname>.spi (Spice input file) is edited without updating from schemat-
ics to Spice input. If no <cellname>.spi file exists, a warning message is
displayed.

VII) curr-file-spice2

This command is the same as "spice2" except that the Spice
input file is not updated. The previous Spice input file therefore is simu-
lated by Spice2. This command is presented so that a user who has
changed the schematics but is unsure about the change can use this com-
mand to try out the previous circuit. Also, the user can refer back to the
previous circuit to compare with the present circuit. Thus, the current
<cellname>.spi (Spice input file) is analyzed without updating from
schematics to Spice input. If no <cellname>.spi file exists, a warmning
message is displayed.

- 25 -
VIII) curr-file-spice3

This command is the same as "spice3" except that the Spice
input file is not updated. The previous Spice input file therefore is simu-
lated by Spice3. This command is presented so that a user who has
changed the schematics but is unsure about the change can use this com-
mand to try out the previous circuit. Also, the user can refer back to the
previous circuit to compare with the present circuit. Thus, the current
<cellname>.spi (Spice input file) is analyzed without updating from
schematics to Spice input. If no <cellname>.spi file exists, a warning
message is displayed.

IX) curr-file-nectar

This command is the same as "nectar” except that the Spice
input file is not updated. The previous Spice input file therefore is simu-
lated by nectar. This command is presented so that a user who has
changed the schematics but is unsure about the change can use this com-
mand to try out the previous circuit. Also, the user can refer back to the
previous circuit to compare with the present circuit. Thus, the current
<cellname>.spi (Spice input file) is analyzed without updating from
schematics to Spice input. If no <cellname>.spi file exists, a waming
message is displayed.

X) choose-editor

This command asks the user to choose an editor -- either
Emacs or vi.

XI) integrate

This command is introduced for the convenience of the users
to introduce their own executable programs to complement other CAD
tools to STEPS. Many SPICE versions (called "alphabet spices") are
available nowadays with special models suitable for individual needs. For
example, the program S-SPICE is used for implementation of algorithms
for periodic steady-state analysis in SPICE3. This command therefore is
introduced to allow users to integrate CAD tools into STEPS with great
ease. One requirement of such program is that SPICE input file is the
input to the program. When this command is invoked, a dialog window is
opened to ask users to enter two fields. The first field is the path and

26 -

name of the executable program and the second field is solely the name of
the program. For example, if the user wants to integrate a program to
STEPS called hspice, which is contained in the directory
fic3/user/bin/hspice, the user should enter "/ic3/user/bin/hspice” for the first
field and "hspice” for the second. Rather than entering "~ user/bin/hspice”,
enter the full pathname. Otherwise, errors may occur.

XII) execute

This command is used to execute programs and/or CAD tools
which the user has introduced through the command "integrate". The user
is asked to enter a program name which he had integrated from the com-
mand ’integrate’. Then, a new spice file is created from STEPS and the
program can be ran and evaluated inside STEPS. The user is then asked
to select the way the program is run. For example, the way spice2 is run
is "spice2 < input > output” and the way spice3 is run is "spice3 input".
So, the user can choose the approriate way through a selection of menus.
Keep in mind that the program should take SPICE input file as the input.
Otherwise, unpredictable results may be obtained.

-7 .-
4.6) SPICE-Control

The SPICE-Control commands are designed for the
convenience of SPICE users to edit the Spice files without going
through text editing. Therefore, the users may edit all the Spice
options through STEPS’ dialog windows. The commands and
parameters needed are requested automatically. The SPICE edit-
ing is done at a high speed since the users do not need to type in
the whole line of options. Also, some values are automatically
generated by schematic arguments to further hasten the SPICE
editing process. If the user wants to delete an option (not using
that option on subsequent Spice files), he can invoke the option
command and press the CANCEL button on the dialog window.
For example, if the user has initially chosen the .temp options
but wishes to cancel the .temp option in subsequent runs, he can
simply invoke the ".temp" command and then press the CAN-
CEL button when the dialog window is opened. Then, STEPS
automatically drops the option from the SPICE input file.

I) .options

When this command is invoked by the STEPS menu or by
typing ":.options", all the options in Spice can be entered with ease. A
first dialog window asks the users to select by mouse one or more of the
options below: ACCT, LIST, NOMOD, NOPAGE, NODE, OPTS. These
commands have no arguments. Then, a second dialog window is opened
to ask the users to choose any .options value in SPICE. The following
options are presented: GMIN, RELTOL, ABSTOL, VNTOL, TRTOL,
CHGTOL, PIVTOL, PIVREL, NUMDGT, TNOM, ITL1, ITL2, ITL3,
ITL4, ITLS, CPTIME, LIMTIM, LIMPTS, LVLCOD, LVLTIM,
METHOD, MAXORD, DEFL, DEFW, DEFAD, and DEFADS. All
default arguments are also printed in the dialog window. If the user wants
to change one of the parameters, he can simply do so through the mouse,
and the changed value(s) is printed in the Spice input file when the Spice
input file is updated from schematic-entry.

- 28 -
IT) .temp

If the user wants to analyze the circuit at different tempera-
tures, this command can be invoked by menu or by typing ":.temp". Enter
the values needed. For example, if the user wants to simulate the circuit
at three tempeartures, namely: -55, 25, 125 (all in Celcius), he needs to
type "-55, 25, 125" in the dialog window.

III) .width-in

The default value of ".width in" in Spice is 80. The user can
change this to any appropriate value by this command.

IV) .op

".op" forces SPICE to determine the dc operating point of the
circuit with inductors shorted and capacitors opened. Invoke this com-
mand and press either YES or NO. "YES" asks Spice for an dc operating
point analysis. The default value is "NO".

V) .dc

Since the ".dc" command in SPICE requires a voltage or
current source, this command needs a source as the argument. Move the
mouse on top of a voltage source, current source, or a voltage supply
(vdd, vss, vce, or vee). Invoke this command by menu or by typing ".dc"
while the mouse is on top of a source. Then, a multi-argument dialog
window is opened to request for the VSTART, VSTOP, and VINCR
values, which are the starting, final, and incrementing values, respectively.
Then, a .dc is generated in the Spice input file on the selected voltage or
current source.

VI) .ac

When this command is invoked, a dialog window is opened
asking the user to choose from one of the three analyses types -- DEC,
OCT, and LIN, which represent decade variation, octave variation, and
linear variation, respectively. Three values are requested, which are N,
FSTART, and FSTOP respectively. N is the number of steps of the

-29 .

analysis, FSTART is the starting frequency and FSTOP is the stopping
frequency.

VII) .tf

Since the ".tf" option in SPICE requires an input source, the
user needs to supply an argument for this command. Move the mouse on
top of a voltage source, current source, or a voltage supply. Invoke this
command by menu or by typing ".tf" while the mouse is still on top of the
source. When this command is invoked, a dialog window is opened to
ask if the user wants to refresh the node values in the schematics. This
option is provided because the user may have not had any spice runs or
some additional components are added to the circuits. Therefore, the
nodes may be out of date if the above situations arise. So, the user can
press ’yes’ to refresh the node values if those are the cases. Then, a dia-
log window is opened to ask for the OUTVAR name. OUTVAR is the
small-signal output. Examples are V(3), I(5), V(I3), I(VSUPPLY2), etc.
The Spice file contains the line <.tf OUTVAR INSRC>, where OUTVAR
is the output variable entered through dialog window and INSRC is the
source input selected by schematics as argument to this command.

VIII) .sens

When this command is invoked, a dialog window is opened
to ask if the user wants to refresh the node values in the schematics. This
option is provided because the user may have not had any spice runs or
some additional components are added to the circuits. Therefore, the
nodes may be out of date if the above situations arise. So, the user can
press 'yes’ to refresh the node values if those are the cases. Then, a dia-
log window is presented to ask for the output variables required. SPICE
will determine the dc small-signal sensitivities of each specified output
variable with respect to every circuit parameter. For example, V(9) V(4,3)
V(17) I(VSUPPLY6) may be entered. Do not enter commas between the
output variables.

IX) .disto

Since a load resistor is required for this Spice option, the user
needs to enter a resistor as a schematic argument for this command.
Move the mouse on top of the resistive load that you need to select and
invoke this command by menu or by typing ".disto". Then, a dialog

- 130 -

window is opened to ask for the <INTER <SKW2 <REFPWR
<SPW2>>>>. INTER is the interval at which the summary printout of the
contributions of all nonlinear devices to the total distortion is to be printed.
The analysis is performed assuming that one or two signal frequencies are
imposed at the input; let the two frequencies be fl1 (the normal analysis
frequency) and f2 (=SKW2*f1). The program then computes the follow-
ing distortion measures: HD2 (2 * f1), HD3 (3 * f1), SIM2 (f1 + f2),
DIM2 (f1 - £2), and DIM3 (2 * f1 - f2). If INTER is omitted or set to
zero, no summary printout is made. REFPWR is the reference power
level used in computing the distortion products; a default value of 1ImW is
used. SKW2 is the ratio of f2 to fl. If omitted, a value of 0.9 is used.
SPW?2 is the amplitude of f2. The default value is 1.0.

X) .noise

Since .noise requires an input source, this command needs a
source (voltage source, current source, or voltage supply) as argument.
Move the mouse on top of a source and then invoke the command by
STEPS menu or by typing ".noise". When this command is invoked, a dia-
log window is opened to ask if the user wants to refresh the node values
in the schematics. This option is provided because the user may have not
had any spice runs or some additional components are added to the cir-
cuits. Therefore, the nodes may be out of date if the above situations
arise. So, the user can press ’yes’ to refresh the node values if those are
the cases. Then, a dialog window is opened to ask for the OUTVAR and
NUMS. OUTVAR is the output voltage which defines the summing point.
NUMS is the summary interval. If NUMS is zero, no summary printout is
made.

XI) .tran

Once this command is invoked, TSTEP, TSTOP, TSTART,
TMAX, and UIC are asked. TSTEP is the printing or plotting increment
for output. TSTOP is the final time, and TSTART is the initial time.
TMAX is useful when one wishes to guarantee a computing interval
which is smaller than TSTEP. UIC is defaulted to N (no). If the user
types Y instead, UIC is also presented. TSTART, TMAX, and UIC are
optional arguments.

_31 -
XII) .four

When this command is invoked, a dialog window is opened
to ask if the user wants to refresh the node values in the schematics. This
option is provided because the user may have not had any spice runs or
some additional components are added to the circuits. Therefore, the
nodes may be out of date if the above situations arise. So, the user can
press 'yes’ to refresh the node values if those are the cases. Then, the fre-
quency and the output variable(s) are asked. The Fourier analysis is done
through SPICE and/or NUTMEG.

XIII) .print

When this command is invoked, a dialog window is opened
to ask if the user wants to refresh the node values in the schematics. This
option is provided because the user may have not had any spice runs or
some additional components are added to the circuits. Therefore, the
nodes may be out of date if the above situations arise. So, the user can
press 'yes’ to refresh the node values if those are the cases. Then, a dia-
log window with five options are displayed: namely, DC, AC, TRAN,
NOISE, and DISTO. The user can choose one or more of the options and
enter the appropriate arguments. Refer to a SPICE manual for the correct
form of arguments.

XIV) .plot

When this command is invoked, a dialog window is opened
to ask if the user wants to refresh the node values in the schematics. This
option is provided because the user may have not had any spice runs or
some additional components are added to the circuits. Therefore, the
nodes may be out of date if the above situations arise. So, the user can
press ’yes’ to refresh the node values if those are the cases. Then, a dia-
log window with five options are displayed: namely, DC, AC, TRAN,
NOISE, and DISTO. The user can choose one or more of the options and
enter the appropriate arguments. Refer to a SPICE manual for the correct
form of arguments.

-32 -
XV) .ic

This command refers to the initial conditions. When this
command is invoked, a dialog window is opened to ask if the user wants
to refresh the node values in the schematics. This option is provided
because the user may have not had any spice runs or some additional com-
ponents are added to the circuits. Therefore, the nodes may be out of date
if the above situations arise. So, the user can press ’yes’ to refresh the
node values if those are the cases. Then, another window is opened to ask
the user to enter the ’.ic’ options. For example, if the user wants the ini-
tial conditions to be 3V at node 1, 4V at node 2, and 5V at node3, he
should enter "V(1)=3 V(2)=4 V(3)=5", with a space between each entry.
This is in the same format when using SPICE directly. On subsequent
SPICE runs, the .ic that the user has entered is recognized. To cancel
individual nodes, simply delete the corresponding entries. To delete .ic
totally, simply invoke ’.ic’ and press ’cancel’ when the node values are
requested.

XVI) .nodeset

This command is the same as ’.ic’ except that ’.nodeset’ is
utilized.

XVII) user-options

The user has two options to enter their own text entry. He
can simply prepare an include file called ~/.steps-options in their home
directory or enter the commands through dialog windows. Once this com-
mand is invoked, the user is asked to select whether to ’activate’ or ’deac-
tivate’ the ’user-options’ command. Once it is activated, the user is asked
to select whether to enter his own text entry in the include file or in the
dialog window.

-33 .

4.7) Display commands

For the user’s convenience, STEPS displays several
SPICE values after the user has invoked "spice-file" or after the
user has edited the models through "model-edit". The displayed
parameters are divided into two sections. One section provides
model values, which displays model names and the model
values. For example, a resistor may display r1 and 100 which
means the resistor is named rl and has the value of 100 ohms in
the Spice input file. An nmos may display M3 and 4/2 which
means the nmos is named M3 and has the Width/Length parame-
ter of 4/2. Similarly, an npn device may display Q2 and x3
which means the npn is named Q2 and has the area value of 3
times the normal values. With a different color (black versus
blue and red), the node numbers are also displayed after "spice-
file" is ran.

Unfortunately, due to the limitation of the X font of
the X window, the values may not be printed (a small box is
printed instead) if the models are zoomed too small. Also, some
users may not want to see such values since they may think that
the values are distracting. STEPS allows the users to control the
display through the commands below.

I) highlight-off

When the users run "spice-file" or equivalent analysis, STEPS
automatically checks whether if the circuit contains nodes that have less
than two connections. Then, the respective models are highlighted. This
command is used to turn off the highlighted models. If the user runs
"spice-file" again, the highlights will be automatically turned off. The user
does not need to run this command everytime.

- 34 -
II) model-name-off

Turn off all the model names. The default is on.

III) model-name-on

Turn on all the model names. The default is on.

IV) model-value-off

Turn off all the model values. The default is on.

V) model-value-on

Turn on all the model values. The default is on.

VI) node-value-off

Turn off all the node values. The default is oh.

VII) node-value-on

Turn on all the node values. The default is on.

VIII) all-value-off

Turn off all the display values, including the model values,
model names, and the node values. The default is on.

- 35 -
IX) all-value-on

Turn on all the display values, including the model values,
model names, and the node values. The default is on.

- 36 -

4.8) HELP

I) user-help

This command invokes the online help manual. The online
help menu is divided into five sections, namely:

1) Schematic capture - MENU commands

This command lists all of the VEM schematic capture MENU
commands and a brief description of each of them.

2) Schematic capture - non-MENU commands

These non-MENU commands are VEM commands which are
not uncommonly used and thus are not in the VEM menu system. A brief
description of each of them is also presented in the help manual.

3) STEPS

All STEPS commands are given here, with a detailed descrip-

tion for each of them for the convenience of users without users manual of
STEPS on hand.

4) STEPS startup

This help menu gives a brief description on how to startup
STEPS.

- 37 -
5) STEPS setup

This help menu gives a brief description on how to setup
STEPS (how the .Xdefaults file is configured, etc.)

- 38 -
Appendix: VEM COMMANDS

The following are descriptions of all VEM commands for reference
purposes. The first symbol is the key-binding. One can access the com-
mands either by invoking the commands through the menu system or just
press the key bindings inside the VEM console window.

o0: System - open-window -

"Creates a new graphics window from an old one or
a cell specification”

Ctrl-d: System - close-window -
"Closes the window containing the mouse cursor"
?2: System - where -

"Displays information about the current mouse posi-

tion"
L: System - list-palettes -
"Displays list of available palettes"
P: System - palette -

"Opens a window containing a menu of layers or instances"
MENU: System - re-read -

"Rereads the contents of the cell from disk"
S: System - save-window -

"Saves the contents of the window containing the
mouse on disk"

-30 .
Ctrl-s: System - switch-facet -

"Replaces the cell in this window with one you
specify”

b: System - bindings -

"Displays the key, menu, and type-in bindings for a
command”

p: Display - pan -
"Pans the window so that the mouse (or point) is the
new center"
2. Display - zoom-in -

"Zooms in by a factor of two or to the provided

box
Z: Display - zoom-out -

"Zooms out by a factor of two or in proportion to
the provided box"

e: Display - toggle-expansion -

. "Toggles between the ‘contents’ and ‘interface’
facets of instances”

f: Display - show-all -

"Zooms the window to show all of the cell’s con-
tents"

Display - same-scale -

. wi . . .
"Makes the window containing the mouse the same
size as the one with a point"

-40 -
i Display - push-master -

"Opens a new window looking at the master of
instance under the cursor”

MENU: Options - window-options -
"Configure window specific display options"
MENU: Options - layer-display -

"Displays a dialog allowing you to change which
layers are displayed"

Ctrl-p: Props&Bags - show-property -

"Displays the properties attached to object under cur-
sor

Ctrl-e: Props&Bags - edit-property -

"Edits properties attached to object under cur-

sor
B: Props&Bags - select-bag -

"Selects the bag containing the object under the cur-
sor

Ctrl-b: Props&Bags - select-bag-contents -

"Selects the items in the bag containing the object
under the cursor"

MENU: Props&Bags - create-bag -
"Creates a new empty bag"
MENU: Props&Bags - attach-to-bag -

"Attaches selected items to a previously created

bag

-41 -
MENU: Props&Bags - detach-from-bag -

"Detaches selected items from a previously created

bag"
U: Undo - undo -
"undo the last operation”
c: Edit - create -
" "Creates new instances, segments, or formal termi-
nals

D: Edit - delete-objects -
"Deletes existing geometry"
n: Edit - name-objects -

"Changes the name of instances, nets, bags, proper-
ties, and terminals"

I: Edit - replace-instance -

"Replaces instances with other instances in sym-
bolic"

E: Edit - edit-label -
"Creates or edits labels"
S: Selection - select-objects -

"Selects items inside boxes, under points, and that
intersect lines"

Ctrl-n: Selection - select-net -

"Highlights the net containing the object under the
cursor”

-4 -
Crrl-t: Selection - select-terms -
"Selects formal terminals”
u: Selection - unselect-objects -

"Unselects items that were previously selected (use
control-W to unselect all)"

L Selection - transform -

"Transforms selected objects in place according to
supplied specification”

m: Selection - move-objects -

"Moves selected geometry to a new location or
orientation”

MENU: Selection - copy-objects -

"Copies selected geometry to a new location or

orientation”
M: Selection - drag-instance -
"Drags selected instances and segments connected to
them"

R: Application - rpc-any -

"Starts an rpc application given host and

r: Application - RPC-SPICE -
"steps - See steps help manual for details"
V: Version -

"Displays the current VEM version"

Ctrl-l: redraw-window -
"Redraws the window containing the cursor"”
(: push-context -

"Pushes the current argument list allowing you to
enter new ones"”

): pop-context -

"Pops the current argument list replacing it with the
pushed one”

CMD: log-bindings -

"Outputs all alias, menu, and key bindings to log
file"

Ctrl-c: interrupt -

"Interrupts a graphics window preventing
redraw"

W: write-window -

"Saves the contents of the window containing the
mouse to an alternate location on disk"

S: save-all -

"Allows you to choose which buffers of all buffers
to save on disk"

CMD: rr-nc -

"Rereads the contents of the cell without
confirmation (dangerous)”

-44 -
CMD: deep-reread -
"Rereads the contents of the cell recursively”
CMD: recover-facet -

"Replaces current cell with an alternate version
saved earlier."

CMD: kill-buffer -

"Removes all traces of the cell in the window con-
taining the mouse"

CMD: kill-application -

"Stops any RPC application running in the window
containing the mouse"

c: create-geometry -

"Creates new boxes, paths, polygons, and labels"
a: alter-geometry -

"Replaces existing geometry with one you specify”
C: create-circle -

"Creates new circles"
I: create-instance -

"Places instances of other physical cells at a
specified spot”

_ 45 -

w: set-path-width -
"Sets the default path width on a layer-by-layer
basis"
T: create-terminal -
"Creates a new formal terminal”
l: change-layer -
"Changes the layer of existing geometry to one you
specify”

D: delele-objects -
"Deletes selected objects”
T: promote -

"Promotes a set of actual terminals selected using

select-term”
: change-segment -
.\ "Changes the layer and/or the width of selected seg-
ments
/.: select-layer -

"Line select-objects but conditionalizes on a layer"
CMD: alt-buffer -

"Places another facet in the background of the win-
dow containing the cursor”

- 46 -
CMD: swap-bufs -

"Swaps the background and foreground facets of a
window" .

Ctrl-r: rpc-reset -

"Resets the RPC state of a window if the application
dies unexpectedly"

c:’ create -

"Creates new primitives, wires, and formal termi-
nalsl'

