
Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

VERSION MODELING USING PRODUCTION

RULES IN THE POSTGRES DBMS

by

Lay-Peng Ong

Memorandum No. UCB/ERL M91/51

5 June 1991

VERSION MODELING USING PRODUCTION

RULES IN THE POSTGRES DBMS

Copyright © 1990

by

Lay-Peng Ong

Memorandum No. UCB/ERL M91/51

5 June 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

VERSION MODELING USING PRODUCTION

RULES IN THE POSTGRES DBMS

Copyright © 1990

by

Lay-Peng Ong

Memorandum No. UCB/ERL M91/51

5 June 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

1 Introduction

As noted in [STON80]. versions (also called hypothetical relations) can be

used to support "what if* scenarios in the database, and offer a mechanism

for manipulating live data without fear of corrupting the database. In gen

eral, versions are implementedthrough differential files (deltas) [SEVR76]. ei

ther via forward deltas [ST0N81. WOOD83]. orviabackward deltas [KATZ82].

The main drawback of version systems is that the semantics axe hard-coded,

and thus such systems are difficult to extend when new semantics axe de

sired. Furthermore, no single system is general enough to subsume all of the

proposals. This thesis shows that production rules in a database system can

be used to implement versions, and that such rules axe general and flexible

enough to accommodate any new semantics that the user might want.

The organization of the thesis is as follows: Section 2 introduces the con

cept of using production rules in a database system to implement versions.

Section 3 describes how the POSTGRES [STON86] database management

system (DBMS) supports features beyond that provided by normal relational

DBMS that are essential for version processing. Section 4 details the opera

tions of such a version system through examples. Section 5 discusses perfor-

mance issues of such a system. Finally, section 6 discusses future extensions

to the system.

2 Implementation

Previous proposals for implementingversions ([STON80]. [STON81], [AGRA82],

[KATZ82]. [W00DS3]) each define slightly different version semantics. How

ever, none of the above proposals have been able to provide a general enough

framework to encompass all the other proposed systems. The POSTGRES

Version System (PVS) built on top of POSTGRES, a DBMS under devel

opment at the University of California at Berkeley, uses production rules to

implement versions. The next few sections will detail the implementation

of versions using production rules, and show that these rules can be easily

modified to implement different version semantics.

While [KATZ88] describes a version as a semantically meaningful snap

shot of an object in time, others have extended versions to include those that

are not snapshots; that is, such versions should be optionally able to "see1'

changes in the base relation. The user decides at the time he creates a version

whether or not the version is a snapshot of the base relation. The PVS sup-

ports both types of versions. In addition, versions can be implemented using

either forward or backward deltas (differential files). This section describes

the implementation of versions using production rules.

2.1 Syntax

The syntax for creating a version is:

create [direction] version Vname from BnameCabstime]

where direction by default is forward for forward deltas, but it can be

set to backward for backward deltas. 1 'name is the name of the version while

Bnamt is the name of the base relation. If the optional abstimt clause is

specified, then the version created is a snapshot of the base relation as of the

time specified.

2.2 Forward Deltas

Versions implemented via forward deltas are logical entites made up of 3

physical relations: base, v_add, and v_del (see figure (1)). The base rela

tion is the relation being versioned. The v_add relation stores the net tuples

added (this includes replaces of tuples in the base relation) to the version,

Figure 1: A version is made up of three physical relations.

whilethe v_del relation has a single attribute (DOID) which stores the OIDs

of tuples from the base relation which have been "deleted" or "replaced" in

the version. Together, the vjadd and vjdel relations formthe delta relations

of a version, and are created whenever the user creates a version.

Versions maintained via forward deltas allow 2 alternative update seman

tics:

1. Versions which can "see" changes made in the base relation; that is,

the changes are propagated.

2. Versions which are snapshots of a base relation at a point in time; In

this case, any changes to the base relation after that point in time will

not be reflected in the version.

In addition, the update semantics for both types of versions are such that

the base relation is never modified by updates, deletes or appends to the

version.

2.2.1 Version Creation

The query, "create [forward] version vl from base*', performs the following

functions:

1. Creates a dummy relation named "vl" .

2. Creates the delta relations(v_add and v.del).

3. Define the set of rules that govern the semantics of versions.

The first command creates a dummy relation with the same schema as

the base relation but with no tuples in it. It is necessary to create such a

relation because the PRS2 rules can only be defined on. and triggered off.

existing relations. The following section describes the rules that axe defined.

2.2.2 Version Semantics

This section describes the semantics of versions implemented via forward

deltas. In POSTGRES, the semantics of such versions axe:

version = (base —netj&eleted-fromJbase) U netjaddtd

Given a version vl. the retrieve rule defined for it transforms a retrieve on

vl into a retrieve of all qualifying tuples in v_add U (base —v_del). Thus, a

retrieve to a version is transformed into a retrieve on the union of v_add and

base. The processing of union queries is described in section 3.3. Similaxfy.

a rule is defined to transform appends to vl into appends to v_add.

Deleting tuples from a version is more complex. Since tuples in a version

can reside in either the base or v_add relations, there are two cases to

consider when we define the delete rule for versions:

1. Delete all qualifying tuples in the v.add relation.

2. Qualifying tuples in the base relation are '"deleted" by appending their
oids to the v.del relation.

The second case is necessary because the semantics of versions axe such

that modifications to versions are not propagated to the base relation. Thus,

tuples in base axe never actually deleted. Finally, the update rule for vl

performs the following:

1. Replace all qualifying tuples in the v.add relation.

2. Invalidate all qualifying tuples in the base relation by appending their
oids to the v_del relation.

3. If this is the first time a tuple from the base relation is updated in the
version vl, append a copy of this tuple to v.add.

Once again, tuples in the base relation axe never actually modified. A

detailed listing of the rule definitions is shown in appendix A.

2.3 Derivatives

As noted in [KATZ82]. versions implemented using forward deltas necessar

ily results in an inefficient access to the most recent version which must be

painstakingly reconstructed from the base and the forward deltas from inter

vening versions. This is an especially crippling deficiency in systems where

typically, the "current" or "working" version is often the most recent version.

A way to provide efficient access to the latest version is to implement versions

via backward deltas or "negative" differential files [KATZ82].

In the versioning scheme using backward deltas, changes to the base are

made in place and the old values axe recorded in the deltas. The old version

(base) is defined by the new version and the differential files in [KATZ82] as:

base —(newjversion U totaljdeleted) —totaljnserted

In the PVS. another method (deri*ative) is used to provide efficient access

to the latest version. Such versions are called "derivatives" in POSTGRES.

The command, udefine derivative vl from base", performs the following 2

functions:

rename base to vl

retrieve into base (vl.all) where 1=2

The first command renames the current relation, base, to be vl on which

all updates and queries on the new version will be performed. Indices defined

on base are preserved in vl. since the rename command preserves indices.

The second command creates a dummy relation (one with attributes and

relevant structural information but physically containing no tuples) with the

same name as the relation being versioned so that rules can be defined on the

"older" version. Since changes to the new version axe made in place, no spe

cial rules are needed for retrievals or updates to it. However, a retrieval rule

is needed when one wants to access the "older'' version. The retrieval rule

"freezes" the ''older" version at the time when the "new" version is created.

This ensures that subsequent changes to the version will not affect the pre

vious versions, and that the previous version cannot be modified. Thus the

semantics for versions implemented via backward deltas axe that updates axe

only allowed for the most current version, and not for the previous versions.

Subsequent versions will perform similar renamings and rule definitions.

8

3 Support

This section describes the underlying support needed by the PVS. As a suc

cessor to INGRES, one of the aims of POSTGRES is to provide additional

functionality that the relational model lacks. Among the advanced features

provided by POSTGRES are:

1. The concept of having an object identifier (OID) for each tuple which

is globally unique within a database.

2. A rule system that supports production rules.

3. The concept of historical data.

While the above mentioned features provide the framework from which

the version system is implemented, that alone is not enough for the system

also requires support for union queries, and semantic optimization is neces

sary in order for the system to perform efficiently. Thus, POSTGRES needs

to be extended to support the last two requirements.

3.1 The POSTGRES Rules System.

The POSTGRES rules system (PRS2) [STON90] follows the production rule

paradigm of a rule being an event-action pair where a typical rule looks like:

ON <event/condition> THEN DO [INSTEAD] <action>

If the "INSTEAD" keyword is used, the original query which triggered the

rule is not executed, and the action of the rule is executed in its place. If

^INSTEAD" is not used, then both the query that triggers the rule and the

action of the rule axe executed.

In PRS2. an event can be any one of the usual retrieve, replace, append,

or delete queries on a relation, and an action is any set of Postquel queries

which optionally references the triggering event-relation. In addition, both

event and action clauses can contain references to current and new wherever

normal tuple variables axe allowed. The semantics of current and new axe

as follows: When a tuple, A, is accessed (i.e., retrieved, replaced, or deleted),

there is a tuple variable called current that refers to A . In addition, in the

case of an append or replace, there is also a tuple called new which contains

the new values for A. While POSTGRES is not the only data manager that

has a rules subsystem (for instance, both Iris and Staxburst have similar rules

10

subsystems), it is the only one wThose triggering events include the uretriever

event.

The PRS2 rules system is made up of 2 rule subsystems: The Query

Rewrite System (QRS)[GOH90] and the Tuple Level System (TLS). The

user can optionally define rules using either S3rstem by simpty changing a

single keyword. The following is an example of a rule in the PRS2 using the

QRS to keep an audit trail of all employees who have a raise that causes their

salaries to be $50000 or more.

define rewrite rule audit.raise is

on replace to emp.salary do

append audit (name = CURRENT.name,
old.sal = CURRENT.salary, new.sal = NEW.salary)
where CURRENT.salary < 50000

and NEW.age >= 50000

To define the same rule using the TLS subsystem, the user need only

change the keyword ''rewrite" to "tuple", and the above rule will become a

tuple level rule.

3.2 Historical data.

POSTGRES supports the notion of historical data, that is. data that is not

part of the '"current" state of the database. For example, tuples which have

11

been logically deleted over time axe not part of the "current" state of the

database, but are instead part of some l,pastr database state. Similarly,

"oldv values of tuples which have been replaced axe also part of that "past"

database state. In POSTGRES, tuples are never physically overwritten or

deleted. Instead, both the old and new versions of the tuples axe retained.

but with the old tuple invalidated. Each tuple has a "timespan" during

which in was valid. Thus in Postgres, it is possible to query historical data

by simplying specifying the timespan you axe interested in. For example, the

following time-range query finds all employees that earned more than $10000

in the 12th of January 1989:

retrieve (e.all) from e in emp["Jan 12 1989"]
where e.salary > 10000

3.3 Union Queries

Queries on versions implemented via forward deltas are transformed by the

QRS into union queries. Union queries axe queries of the form:

retrieve ({A | B}.all) where {A | B}.attribute = foo

The relations A and B form the union set of the query. A scan on a

union set is called a union scan, while a join is called a union join. Currently,

12

POSTGRES has no support for union queries, thus it needs to be extended

in order to support version processing. This section describes the semantics

of such queries.

A primary aim when extending POSTGRES to support union queries is

to make minimal changes to the DBMS. The next few sections describes in

greater detail the parser and planner preprocessor extensions.

3.3.1 Parser Extensions

The primary change to the parser involves the addition of a relational union

operator, denoted by the symbol "|". to POSTQUEL. For example, the fol

lowing quen* retrieves the names of everyone in the emp and student emp

(stud.emp) relation who makes more than $10000:

retrieve (alLemp.all)
from alLemp in (emp \ stud.emp) where alljemp.salary > 10000

3.3.2 Planner Preprocessor Extensions

The planner preprocessor intercepts all union queries and converts them into

an equivalent set of "normal" queries that will be processed by the plan

ner and executor. The algorithm for transforming a union query into its

equivalent set of non-union queries is as follows: Given a union scan over N

13

relations. N simple scans wall be produced, one for each of the N relations.

For example, suppose we have the following union scan over the relations A,B

and C. which retrieves everyone named "foor from relation A, and everyone

named ufoo" who is also 50 years old from relations B and C:

retrieve ({A | B | C}.all) where {A \ B \ C}.name = "foo"
and {B \ C}.aye = 50

The planner preprocessor will split this union scan into the following 3

simple scans:

retrieve (A.all) where A.namt = ^oo"

retrieve (B.all) where B.name = "foo" and B.age = 50

retrieve (Call) where C.name = "foo" and Cage = 50

Thus, the 3 simple scans provide the same semantics as that of the original

union query.

3.4 The Semantic Optimizer

In general, a union scan over N relations is transformed by the planner pre

processor into N simple scans. As noted in the previous sections, transform

ing a union scan into its equivalent set of simple scans results in redundant

queries. This section describes the various rules for semantic optimization

14

that is used to improve the efficiency of the PVS. In general, semantic opti

mization is done in 2 phases described in the following subsections.

3.4.1 Phase 1 (Pi) Semantic Optimization

Pi semantic optimization involves the following:

1. optimize tautological qualifications

2. optimize contradictory qualifications

Tautological qualifications axe qualifications which will always be true.

for example, consider the query:

retrieve (.4.all)
from A in em.p. B in stud-emp where A.name = "John"
and A.oid notjn B.oid

In POSTGRES. each tuple in a database has a OID which is globally

unique within that database. The "notJn" operator is a boolean relational

operator that returns true if the tuple on the left hand side of the operator

is not in the specified set of tuples on the right hand side of the operator.

Thus, in the above query, the qualification " A.oid notJn B.oid" will always

be true and can be semantically transformed into the equivalent qualification

"1 = 1". The transformed qualification is what is known as a constant qual

ification, and in POSTGRES, constant qualifications need only be evaluated

once per query instead of once for every tuple in the relation.

15

Contradictory qualifications axe qualifications that will never be true.

Examples include qualifications of the form:

1. u A.oid = B.oid" where A and B axe 2 different relations.

2. "A.oid notJn A.oid"

These qualifications will be transformed by the semantic optimizer into

the following constant qualification: "1 = 2". which is always false.

As a further refinement of to the first phase, the semantic optimization

will also remove redundant queries; that is, queries whose qualifications axe

never satisfied. For example, the query:

retrieve (A.all)
from A in emp where A.name = "John"
and A.oid notJn A.oid

will be transformed by the semantic optimizer into :

retrieve (.4.all)
from A in emp where A.name = "John"
and 1 = 2

Because the constant qualification is always false, the query will never

return any tuples. Thus, the Pi semantic optimizer picks out all such re

dundant queries the removes them, thereby saving the time it takes to plan

and execute such queries. In general, about half of the generated queries for

16

version processing are redundant queries. Thus. Pi semantic optimization

effective^' reduces the number of queries by half.

3.4.2 Phase 2 (P2) Semantic Optimization

The idea behind the third phase of semantic optimization is the following:

Consider the following query

retrieve (.4.all)
from A in em.p. B in emp where A.name = "John"
and A.oid = B.oid

and B.salary < 15000

which is semantically equivalent to :

retrieve (.4.all)
from A in emp where A.name = "John"
and A.salary < 15000

Without P3 semantic optimization, the above querj* results in a 2-way

join on the "emp" relation. However, because of the unique properties of

OIDs. and because A and B axe both range variables for the "emp" relation,

the qualification "A.oid = B.oid" is actually a one-to-one mapping of each

tuple in emp to itself. P3 semantic optimization removes such redundant

joins and converts them to their semantical!)* equivalent scans. In version

17

processing, all generated queries involving replaces and deletes to versions

result in redundant joins, thus P3 optimization will speed up such queries.

4 Examples

In this section, the concepts described in sections 2 and 3 axe illustrated by

showing examples of the following:

1. A simple version

2. A cascaded version

3. A version join

4.1 Simple Versions

Given the set of rules shown in Appendix A, and the data shown in figure (2).

suppose we want to rename everybody named "John" to "Joe". The query

will be:

replace vl (name = "joe") where vl.name = "John"

The QRS will transform this query into:

replace vl.add (name = "joe")
where -Cvl.add I base}.name = "John"
and base.OID not.in vl_del.DOID

18

and {vl.add I base}.OID = vl.add.OID

append vl.deKDOID = base.OID)
where {vl.add 1 base}.name = "John"
and base.OID not.in vl.deletd.DOID

and {vl_add I base}.DID = base.OID

append vl_added(name = "joe",
salary = {vl.add I base }.salary, ...)

where {vl.add I base}.name = "John"
and {vl.add I base}.0ID not.in vl.add.OID

and base.OID not.in vl.del.DOID

and {vl.add I base}.0ID = base.OID

Queries of the form "retrieve ({A | B}.all) where {A | B}.?tame = "foo""

are called union queries. Relations A and B form the union set of the query.

A scan on a union set is called a union scan, while a join on such a set is

called a union join.

The above union queries will be spilt by the planner preprocessor into

their equivalent sets of non-union queries respectively according to the algo

rithm described in section 3.3. After undergoing the 2 phases of semantic

optimization described in section 3.4, the resulting quer}T becomes:

replace vl.add (name « "joe")
where vl.add.name = "John"

append vl.del(DOID = base.oid)

19

vl

OID

975

978

979

field!

John

Maiy
Jobs

fieM2

32

33

34

vl

OID

975

978

979

fieldl!
Join

Mwy
JofaD

vt.deleaed

ft

32

33

34 Mjdeleted

.OJQ
1532 975

vl.oddadvl.edded

OID field 1 field2

1314

1320

1321

Mike

Join

M«y

31

32

47

OID fieldl -

TOT
1320

1321

1322

Mike 31

Joe 32

M«y 47
Joe 34

BEFORE

vl

OID field 1 field2

1314 Mike 31

1320 John 32

1321 Mvy 47

979 John 34

978 Muy 33

AFTER

vl

OID fieldl field2

1314 Mike 31

1320 Joe 32

1321 Mhv 47

l«U Joft 34

978 Mey 33

Figure 2: vl is a version of base.

where base.name • "John"
and base.oid not.in vl.del.DOID

append vl.add(name « "joe", salary » base.salary,
where base.name « "John"
and base.oid not.in vl.del.DOID

Thus three things happens on an update to a version:

.)

1. All qualifying tuples that axe in the vl_add relation are updated

_OJD.
1532

153!

2. Qualifying tuples in the base relation which arenot in the vl jdel rela-

20

J20JP.
975

979

tion are "invalidated" by appending their oids to the vl.del relation.

3. If this is the first time a base tuple is updated in the version, it will be

appended to the vl_add relation.

The net effect of these three queries will be to replace all qualifying tuples

in the version. Given that subsequent retrieves on the version will retrieve

tuples from

vjadd U (base —vjdel)

the replace is correctly processed.

4.2 Cascaded Versions

We can also create versions of versions using the rules stated in section Ap

pendix A. When we create a version of vl named v2, the schema of v2 looks

like figure (3).

Now suppose we retrieve everyone is v2 whose salary is less than $5000 :

retrieve (v2.name) where v2.salary < 5000

This query will trigger the retrieve rule for v2 and be transformed by the

QRS into :

21

i v2

i vl

| bose "_____ Ivl debar!
OID JfcML _. Off) DOS)

Ivl.added1

OID fieldl •~

| v2_added Iv2 deleted
OID field! ~ _Ojp DOID

Figure 3: a version v2 of a version vl

retrieve ({ v2.add I vl}.name) where
{v2.add I vl}.salary < 5000
and vl.OID not.in v2.del.D0ID

Since vl is itself a version, the retrieve rule for vl will be triggered, and

the query gets rewritten by the QRS into :

retrieve ({v2.add I vl.add I base}.name) where
•Cv2.add I vl.add I base}.salary < 5000
and {vl.add I base}.oid not.in v2.del.D0ID

and base.oid not.in vl.del.DOID

The union query will be split by the planner preprocessor into retrieves

on the individual relations v2j&dd, vl_add, and base:

22

retrieve (v2_add.name) where v2.add.salary < 5000

retrieve (vl.add.name) where vl.add.salary < 5000
and vl.add.oid not.in v2.del.D0ID

retrieve (base.name) where base.salary < 5000
and base.oid not.in v2.del.D0ID

and base.oid not.in vl.del.DOID

The net result of evaluating these 3 queries will be to a retrieval of all

tuples in v2 which satisfy the user qualification. Thus, we have achieved the

desired retrieval semantics for cascaded versions.

4.3 Version Joins

As shown in the previous sections, a scan on a version is transformed by

the QRS into a set of union scans. Similarly, a join between 2 versions is

transformed by the QRS into a set of union joins. Consider the following

query on empl (a version of emp) and deptl (a version of dept) which lists

the employee's name and the floor he works on:

retrieve (empl.name, deptl.floor)
where empl.dname = deptl.name

This query is transformed by the QRS into :

retrieve ({empl.add I emp}.name, {deptl.add I dept}.floor)

23

where {empl.add I emp}.name = {deptl.add I dept}.floor
and emp.oid not.in empl.del.DOID
and dept.oid not.in deptl.del.DOID

In general, given 2 versions \\ with a union set of size N, and V2 with a

union set of size M. a join of l'i and V2 results in a cross-product with M * N

queries being generated. Thus, in the planner preprocessor, the above union

join is split and semantically optimized into the following equivalent set of

simple joins:

retrieve (empl.add.name, deptl.add.floor)
where empl.add.name = deptl.add.floor

retrieve (empl.add.name, dept.floor)
where empl.add.name = dept.floor

and dept.oid not.in deptl.del.DOID

retrieve (emp.name, dept.floor)
where emp.name = dept.floor

and emp.oid not.in empl.del.DOID

and dept.oid not.in deptl.del.DOID

retrieve (emp.name, deptl.add.floor)
where emp.name = deptl.add.floor

and emp.oid not.in empl.del.DOID

The net result of running the above queries will be a retrieval of all

employees in empl and the floor they work on.

24

5 Performance Analysis

This section evaluates the performance of the PVS which has been imple

mented as described in section 2 with the algorithms and semantic optimiza

tions described in section 3. This performance analysis is aimed at comparing

the performance of standard POSTQUEL commands on real relations versus

the same ones for versions. In addition, improvements provided by seman

tic optimization are noted, and the overhead of the rules system (QRS) is

discussed. The tests are run on a multi-user DECStation 3100. The base

relations, rlk and rok, are standard relations used in the Wisconsin bench

mark, with 1000 and 5000 tuples respectively. In the timings, vl is a first

level version, while v2 is a second level version (i.e. v2 is a version of vl).

Both vl and v2 are versions implemented via forward deltas. The following

is the set of queries used in the timings:

1. query (Ql): retrieve (relname.id)

2. query (Q2): replace relname (ul = a.ul) from a in relname

3. query (Q3): append relname (tup.all)

In the timings, relname is replaced by the name of the version being

timed, and tup is a relation containing either 1000 or 5000 tuples.

25

Relation Elapsed time(s) Semant Opt.
base 0:11 nil

vl 1:08 nil

vl 0:48 Pj Opt
vl 0:25 P\ + ?2 Opt

Table 1: Running Q2: Time for updates with and without semantic opt.

Table 1 indicates that semantic optimization on average improves the

performance of the PVS by approximately 75%.. Thus, even with the over

head incurred by doing semantic optimization, the improvement made by

semantically optimizing version queries is sizable.

Relation-type % change Elapsed time(s) % degradation
base - 0:03 -

vl 0% 0:06 100

vl 50% 0:07 133

vl 100% 0:07 133

v2 0% 0:07 133

v2 50% 0:08 166

v2 100% 0:09 200

v3 100%* 0:12 300

Table 2: Running Ql: Retrieving 1000 tuples.

26

Relation-type % change Elapsed time(s) % degradation
base - 0:18 -

vl 0% 0:21 17

vl 50% 0:25 38

vl 100% 0:36 100

v2 0% 0:21 17

v2 100% 0:41 127

Table 3: Running Ql: Retrieving 5000 tuples.

Relation-type % of tuples replaced Elapsed time(s) % degradation
base 100% 0:11 -

vl 50% 0:18 63

vl 100%. 0:25 127

v2 50% 0:23 109

v2 100% 0:31 181

v3 100% 0:38 245

Table 4: Running Q2: Replace on 1000 tuples.

Relation-type % of tuples replaced Elapsed time(s) % degradation
base 50% 0:41 -

base 100% 0:47 14

vl 50% 1:16 62

vl 100% 1:45 123

v2 100%. 2:04 164

Table 5: Running Q2: Replace on 5000 tuples.

27

Relation-type # of tuples appended Elapsed time(s) % degradation
base 1000 0:11 -

base 5000 0:42 -

vl 1000 0:12 9

vl 5000 0:44 4

Table 6: Running Q3: Appends on base relations and versions.

relation-type operation # tuples % degradation
vl

vl

append
retrieve

5000

10000

12.5

62

Table 7: Timings from Woodfill

From the tables, we see that the performance of versions is bounded by

a factor of its level from the base. In the case of appends, there is only

a minimal overhead for appending to a version versus appending to a base

relation. This overhead is the cost associated with the processing of the

append rule of the version. A comparison between timings from [WOOD83]

shows the the PVS actually performs better for appends to versions. In the

case for retrieves, the performance of the PVS is no worst than half that

of the implementation by [WOOD83]. Timings from tables 4 and 5 indicate

that, in general, updates to versions are very expensive, and is about twice as

slow as the implementation by [WOOD83]. This is because every update to

28

a version is transformed by the QRS into 3 queries: an update to the v.add

relation, an append to the v_del relation and an append to the v^add relation.

Thus, the timings in tables 4 and 5 reflect the composite times for running the

3 queries. From the timings, the PVS, on average, runs slightly slower than

the hard-coded implementation by [WOOD83]. However, the PVS provides a

high-level abstraction for managing version semantics that allows the user to

easily definethe semanticshe wants, while the implementation by [WOOD83]

offers no such flexibility.

6 Future Extensions and Conclusion

Currently, we only support versions of data: that is, the version must have

the same attributes as the base relation. This should be extended so that we

can support versions which have different attributes from the base relation.

This thesis has shown that with minimal extensions to POSTGRES, it is

possible to design a version system based on production rules. In addition,

because of the generality and flexibility of rules, such a S3rstem need not be

bound to any particular semantics, and is able to subsume most, if not all,

of the variations of versioning techniques. Finally, performance analysis of

29

such a system has shown that it compares with traditional systems.

7 Appendix A

Set of rules that govern the semantics of versions implemented via forward

deltas:

APPEND :

define rewrite rule v_append

on append to vl then do instead

append v.add (fl = NEW.fl, ...)

/* NEW refers to the tuple.values being added to
the vl relation } */

DELETE :

define rewrite rule v_delete

on delete to vl then do instead

{

delete v_add

where CURRENT.oid = v.add.oid

append v.del (DOID = base.OID)
where CURRENT.oid = base.oid

}

/* CURRENT refers to the tuples being deleted from vl */

RETRIEVE :

define rewrite rule v.retrieve is

on retrieve to vl do instead

30

retrieve (.vl.all)

from b.base in base, .vl in (v.add I b.base)
where b.base.oid not.in v.del.DOID

/* '{ I'' is the symbol for a relational union operator
* which will be described in section 4.3/

*/

REPLACE :

define rewrite rule v.replace

on replace to vl then do instead

{

replace v.add (fl = NEW.fl, ...)
where CURRENT.oid = v.add.oid

append v_del (DOID s base.oid)
where CURRENT.oid = base.oid

/* The next rule is needed to append the

* the base tuple to the v_add relation
* if this is the first time the base tuple is

* updated in the version.

*/

append v.add (fl = NEW.fl, ...)
where CURRENT.oid not.in v.add.oid

and CURRENT.oid = base.oid

}

31

References:

[AGRA82] Agrawal,R. and DeWitt, D. J.,
"Updating Hypothetical Data Bases"
Unpublished working paper

[GOH90] Jeffrey K. Goh,
"Rule Processing with Query Rewrite"
Masters Report, EECS Division, UC Berkeley (Dec 1990)

[KATZ82] Katz, R.H. and Lehman, TJ.,
"Storage Structures for Versions and Alternatives"
Computer Sciences TechReport #479, CSD, U. Wisconsin-Madison
(July 1982)

[KATZ88] Katz R. H.,

"Towards a Unified Framework for Version Modelling,"
EECS Division Tech. Report, UCB/CSD 88/484, U.C. Berkeley
(December 1988)

[SEVE76] Severence, D.G., G.M. Lohman,
"Differential Files: Their Application to the Maintainance ofLarge Databases,"
ACM Trans, on Database Systems,Vl, N.3 (September 1976)

[STON80] Stonebraker, M.R. and Keller, K.
"Embedding Expert Knowledge and Hypothetical Data Bases
into a Data Base System". Proc. ACM SIGMOD Conference,

SantaMonica, California, (May 1980).

[STON81] Stonebraker, M.R., "Hypothetical Databases as Views"
Proc. ACM SIGMOD Conference, Ann Arbor, Michigan, (May 1981)

[STON86] Stonebraker,M., L. Rowe,
"Design of Postgres,"
Proc. ACM-SIGMOD Conference onManagement of Data, 1986

[STON90] Stonebraker, M.R., A. Jhingran, J. Goh, S. Potiamanos,
"OnRules, Procedures, Caching, and Views in Database Systems,"
to appear in ACM-SIGMOD Conference on Management of Data, 1990

[WOOD83] Woodfill, J., M. R. Stonebraker,
"An implementation of Hypothetical Relations,"
Computer Science Tech. Report, UCB/ERL M83/2, U.C. Berkeley
(January 1983)

