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Abstract

This paper describes a database management system (DBMS) modified to usehardware write pro

tection to guard critical DBMS data structures against software errors. Guarding (write-

protecting) DBMS data improves software reliability by providing quick detection of corrupted

pointers and array bounds overruns. Guarding will beespecially helpful in an extensible DBMS

since it limits the power of extension code tocorrupt unrelated parts of the system. Read-write

data structures can beguarded as long ascorrect software isable totemporarily unprotect the data

structures during updates. The paper discusses the effects of three different update models onper

formance, software complexity, and error protection. Measurements of a DBMS which uses

guarding to protect its buffer pool show two to eleven percent performance degradation in a

debit/credit benchmark.

1. Introduction

Today, software errors are the largest cause of failure infault tolerant transaction processing systems

[Gray90]. Between 1985 and 1990, software was at fault in 62% ofTandem system outages. The second
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and third largestcontributors, operations and hardware, wereat fault 15% and 7% of the time, respectively.

In order to improve the reliability of these systems, we must improve the reliability of the software they

run.

One factor that limits the reliability of software is software error propagation. Using redundancy,

hardware components can detect their own errors and recover without disturbing the system. Software

errors, on the other hand, often cause damage that is not detected immediately. The damaged system can

initiate a sequence of additional software errors as it executes, eventually causing the system to corrupt per

manent data or fail. Error propagation complicates software failure modes, making the code difficult to

reason about, test, and debug. Reproducing propagation-related failures during debugging is difficult since

error propagation is often timing dependent.

For some systems, software error propagation reduces DBMS availability as well as reliability. In

multi-process DBMS architectures, a software error in one process might propagate damage to shared data

structures. An uninitialized pointer used in one process, for example, could propagate damage to DBMS

shared data before the error is detected. Even if no propagation has occurred, all DBMS processes may

have to go through recovery simply because the extent of propagated damage is not known.

Unfortunately, the advent of extensible data managers will make the error propagation worse in the

future than it is now. Extensible DBMS include extended relational systems [Stonebraker87], object-

oriented systems [Bannerjee87], and DBMS toolkits [Carey86]. An extensible DBMS lets users or database

administrators add access methods, operators, and data types to manage complex objects. Moving func

tionality from DBMS clients to the DBMS itself improves application performance but could worsen sys

tem failure behavior. Extensibility allows differentobject management packages with varyingdegrees of

trustworthiness to run together in the data manager. Every time one user on the system tries to use a new

object manager or combine existing ones in a new way, there is a risk of uncovering new errors. Because

of error propagation, this risk is not confined to the person using the new feature, but affects the reliability

and availability achieved by everyone.

The most common approach to software fault tolerance is to write additional code that checks for

errors. By detecting errors quickly, systems limit the chance that minor errors will propagate into worse

ones. However, checking for errors increases processing costs. No published figures are available



regarding the cost of error checking in the DBMS, however, run time checks for array bounds overruns in

Fortran programs can double program execution time [Gupta90]. Furthermore, the checkers themselves

can have defects. They have to be maintained as the software they check is maintained. Implementing and

testing them increases development cost

To address software error propagation, we have modified a DBMS to use hardware write protection

to protect some of its data structures from propagated errors. Several system calls were added to the Sprite

operating system [Ousterhout88] to allow the DBMS to guard (write protect) regions of its address space.

The DBMS uses these services to protect data in its buffer pool. To provide read-write data with protection

against errors, the DBMS must support an update model that allows correct software to modify protected

data, but prevents accidental updates by incorrect software. Different update models will make different

tradeoffsregarding software complexity,performance, and the kind of error protectionoffered.

We have experimented with three models for updating guarded data structures: expose page,

deferred write, andexpose segment. A single DBMS canuse different update models in different program

modules, if necessary. The expose page model is the simplest one. The DBMS must recognize that it is

about to update a protected record, unprotect thepage containing therecord, and reprotect the record after

it is updated. In the deferred write model, the DBMS copies a record it intends to update into unprotected

memory and updates the copy. At the end of transaction, a system call recopies the updated record into

protected memory. Finally, the expose segment model lets the DBMS make a system call to unprotect all

guarded dataat once. After theupdate, a second system callreprotects theguarded data.

In all three models, guarding DBMS data allows the hardware to detect illegal attempts to write to

protected pages. Asa debugging tool, guarding canhelp eliminate pointer management errors earlier in the

software development cycle. Even after product release, guarding lessens the impact ofaddressing-related

errors by detecting errors at the time propagation occurs rather than after the damaged data is used.

Because guarding detects a class of errors notwell-covered bydata consistency checkers, it complements

existing fault tolerance techniques. For multi-process DBMS architectures, guarding can prevent one

DBMS process* errors from corrupting data structures used by the other processes - improving overall

DBMS availability. Inanextensible data manager, guarding isa compromise between running application

code ina separate process andrunning it as a full fledged partof theDBMS. Much of theprotection of the



separateaddressspace modelis retainedat a cost muchcloserto the single-address space model.

Initial performance measurements indicate that guarding the DBMS buffer pool has a relatively

small performance impact. For a debit/credit benchmark, guarding caused roughly two to eleven percent

degradation in performance, depending on update model and workload. This cost is comparable to the

costs of data structure consistency checking normally included in fault tolerant software. Guarding all of

shared memory was more expensive, five to eighty-seven percent overhead for the same benchmarks, but

even full shared memory protection may be worthwhile in some environments. Changes to the DBMS

required to support the update models have been small. To support deferred write, a few hundred lines

were added to a roughly 50,000 line DBMS; the other models required less than a hundred lines.

The paper is divided into five sections. The first introduces the DBMS and operating system testbeds

on which we have implemented guarding. The second details the update models and describes their imple

mentations. The third section presents some performance results and evaluates the reliability effects of

guarding based on previously published statistics about system software errors. The fourth and fifth sec

tions give previous work and conclusions.

2. System Assumptions

In this paper, we assume an extensible DBMS architecture with multiple backend processes. Each

DBMS backend process has its own private address space, but all of them share a single common memory

region. The shared region contains a lock table, buffer pool, and some in-memory meta data structures

used by all of the backend processes. DBMS application programs run in separate address spaces and

communicate with the DBMS using messages. POSTGRES, the DBMS used to evaluate guarding, has a

process-per-user architecture, but that does not have an impact on guarding. Record-level locking is

assumed.

The DBMS used in this study has an unconventional storage manager [Stonebraker87], but the

results should still be applicable to more traditional DBMS designs. The POSTGRES storage system has a

"no overwrite" policy in which data records are not updated directly. An "update" marks the current

version of the record as invalid and inserts a new version of the record on the same page as the old one.

Out-of-date records are removed (or archived) by a background garbage collector process. Guarding is



implemented below the level of the POSTGRES storage system and does not take advantage of its no-

overwrite property.

POSTGRES is extensible, so code implementing user-defined operators, access methods, and data

types can be added to the DBMS. Most extension code will access shared data through a lower-level inter

face. Locks are set through the POSTGRES lock manager and disk data is accessed through the

POSTGRES buffer manager. Normally, the extension code will not have to know about the existence of

guarded pages. Some extensions, such as user-defined access methods which have their own page formats,

would have to know about and use guarding directly. For example, B-tree access methods had to be

modified to unprotectpages before addingor deletingkeys.

The Sprite operating system, which we modified to support guarding, is a Unix-based distributed

operating system being developed at Berkeley. We chose Sprite as a testbed because the source code was

available and well-documented. The guarding implementation assumes that the processor has a software-

loaded Translation Lookaside Buffer (TLB).

3. Models for Updating Protected Data

3.1. The Expose Page Update Model

In the expose page update model, a DBMS process unguards a record before writing to it and

reguards the record after the write. Because write-protection isenforced in hardware at page granularity,

unguarding one record also unguards all ofthe records on the same page. The page granularity ofguarding

does not imply page granularity for transaction locks, since transaction locks are enforced by software.

Managing protected data in the buffer pool using this model is straightforward. When the data

manager updates, inserts, or deletes a record ona buffer page, it unprotects the page with a system call.

While the page is unprotected, the page header can bemanipulated directly (for updates and deletes) or the

data in the record can be changed.

After the DBMS has updated a record, it does not necessarily have to reguard the record immedi

ately. If the record is not immediately reguarded, subsequent updates avoid the cost of unguarding and

reguarding the data. Deferring the reguard operation reduces the protection offered to the data, however,

and increases the opportunity for the DBMS to "forget" to reguard the page. Our implementation



unguards onerecord at a time, reguarding each record before updating thenext.

In the Sprite shared memory implementation, unguarding a page for one DBMS process unguards it

for all of the others aswell. The guard and unguard system calls change the software page table and modify

the TLB (Translation Lookaside Buffer) entry for theaffected page. A single software page table is used

for a shared memory segment, so, if a second process refers to the unprotected page, it will be allowed

access. Sprite has also been modified to include a guarded read system call which allows the DBMS to

read a page from disk without leaving it unprotected during the entire I/O operation.

Expose page is best for detecting pointer errors affecting pages containing infrequently updated

records. "Hot" pagescontaining frequently updated records will be unprotected much of the time,so they

will receive less benefit from guarding than cold pages. The major costsassociated withexpose page are

an increased number of system calls and the additional TLB operations required to change page protec

tions. If guarding were implementedon a processor with a virtually-addressed cache, changing page pro

tection status from read-write to read-only would require a cache flush. Virtually-addressed caches nor

mally require cache flush operations to change the protectionbits for cached data.

3.2. The Deferred Write Update Model

The second model of DBMS data structure protection is designed to leave the record guarded until

the end of transaction. When a DBMS process needs to update a record, it copies the record into writable

memory and updates the copy rather than update the record in place. After the update is complete, an

InstallDatasystem call copies the new record value into the protected page. InstallData takes as an argu

ment an array of (source address, destination address, length) triples, so several records can be installed

with a single system call.

InstallDatacombines an unguard operation, a copy, and an guardoperation into a single system call.

The operating system unprotects the page in the processor's TLB, copies in the updated record, and repro-

tects the page in the TLB. If a record must be installed in a page that is no longer in the buffer pool, the

DBMSreads the page back into memorybefore installing the data. Unlike the expose page model,Install

Data never changes process page tables so unprotectingthe record for one DBMS process does not unpro

tect it for the others. InstallData changes only the TLB entry and changes it only for the duration of the



copy. Since Unix-based operating systems disallow context switches during system calls, no other

processes can see the unprotected page.

As in the exposepage model, deferred write offers the DBMS programmer some latitude in deciding

when to complete the guarded update. The updated record could be reinstalled immediately after the

update. It could also be installed after several updates, at the end of transaction, or after several transac

tions. In our implementation of the deferred write model, guarded records are installed at the end of tran

saction. Writable records in POSTGRES are kept in unshared process memory, so the data must be

installed before transactions running in other DBMS processes can see it

Some modifications to the POSTGRES buffer manager were required to support deferred write. If

the DBMS asks for a record on a page during a scan, the buffer manager has to see if there is already a

writable copy of the record. If the record has not been copied, the scan returns a pointer to the protected

record. Otherwise, the copy is returned. A hash table tells the buffer manager whether or not there is

currently an unprotectedcopy of the record. If the DBMSdecides to update a record, it first tells the buffer

managerto make sure the record is writable. The request to make a record writable is logically at the same

place the DBMS would upgrade a read lock to a write lock. Hence, the existence of copies did not cause

radical changes to the DBMS software.

Deferred write is similiar in some respects to the shadow paging technique used in System R

[Lorie77]. Shadow paging is a no-overwrite transaction management technique in which a new block on

the disk is allocated forevery page modified bya transaction. When thepage is evicted from memory or

forced todisk, it goes to the new location. The update iscommitted by remapping the new page into the

original page's position initshome relation. Shadow paging was not used inconjunction with write protec

tion in System R and did not provide the error detection benefits of deferred write. Also, unlikeshadow

paging, deferred write uses in-memory copies and does not affect the allocation of theprotected data on the

disk.

An in-memory variation of shadow paging could be used inconjunction with guarding to limit copy

ing costs. Thedeferred write implementation could copy the entire page containing a target record instead

of simply copying the record. When the update is complete, thecopy could be protected and remapped

into the (main memory) position occupied by the original version of the page. In general, this technique



will be cost effective only if records are very large. When records are small, making two small copies is

faster than copying and remapping a full page.

The deferred write update model provides more protection to guarded records than the expose page

model does. Because deferred write updates protected records during a system call, the protected page is

never directly addressable to the DBMS process. In deferred write, software errors can damage the writ

able copy of a record, but other recordson the samepageare lessat risk. Installing the updateto the wrong

place on the page is the only way to corrupt them.

Deferred write has an additional advantage over both exposepage and conventional DBMS transac

tion management. When bad software corrupts data, often the damage is not detected immediately. After

an error is detected, the DBMS never knows how much data has been corrupted. The detected error could

be part of a larger cluster of undetected errors. With guarding and deferred write, however, the DBMS

knows that protected data cannot be corrupted until the InstallData system call. If a transaction detects that

it has corrupted some of its data, it can simply throw away all uninstalled data. If the same transaction also

caused undetected damage, that damage will be thrown away (assuming data is installed at the end of tran

saction). The pages from which the data came (and other buffer pool pages, for that matter) are guaranteed

not to have been damaged by this transaction because those pages were never unprotected.

A conventional DBMS handles this situation by aborting the transaction and hoping that the DBMS

transaction support removes the effects of undetected errors. Aborting the transaction will remove the

damage only if the erring software accurately recorded its updates in the log. Some errors, like those

caused by corrupted pointers, are not remedied by recovery protocols. The most practical way for a con

ventional DBMS to get the same guarantee as the deferred write update model is to invalidate the entire

buffer pool after detecting an error.

3.3. The Expose Segment Update Model

The expose segment update model is similar to the expose page model, however, protection is added

to or removed from all guarded pages at once. When the DBMS makes an ExposeData system call, all

protected data becomes visible. A second system call, HideData returns the protection to all exposed data.



Expose segment provides less protection than the other two models since nothing is protected from

the routines which update critical data structures. The reason for using the expose segment model is that it

simplifies the management of guarded data in some modules. Using the expose segment model, a DBMS

programmer can unprotect data for a procedure and its descendants in thecall tree withoutknowingexactly

which protected pages will be written. For POSTGRES, we found the expose segment model to be con

venient for small, fast, and trustworthy operations that needed access to data on several pages. For exam

ple, we use it in a shared memory hash table in the implementation of record-level locking.

To further simplify programming in the expose segment model, we use a pre-processor to place calls

to ExposeData and HideData in procedures. The DBMS programmer flags with a keyword any procedure

which is to update protected data. The pre-processor adds ExposeData and HideData calls at the first line

and before all return statements in the targeted procedures. The pre-processor eliminates a class of errors in

which data is never hidden again after an ExposeData call. It also makes adding protection to new data

structures very easy.

To implement the expose segment update model in Sprite, we modified thepart of the operating sys

tem that loads the processor's TLB. Normally, theTLB loader forces theDBMS process to takea protec

tion fault if it tries to write to protected data. After an ExposeData system call, the Sprite TLB loader

allows writes to guarded data. When the data is hidden again, the mappings foranyguarded pages still in

the TLB must be returned to read-onlystatus.

Theimplementation is optimized for the case in which few pages are written while theguarded data

is exposed. After an ExposeData system call, the TLB loader records the page number of the first few

guarded pages that are updated in a trace buffer. If only a few pages are ever updated, the trace buffer

allowsfast reprotection of thesepages duringHideData. If the tracebufferoverflows, the entireTLB must

be flushed to reprotect the exposed pages.

The expose segment model of guarded update is similar to a conventional protected subsystem.

Other protected subsystems (the operating system kernel, for example) require more complicated mechan

isms since they areexpected toprevent malicious as well asaccidental damage.



4. Performance Impact of Guarded Data Structures

Because the DBMS and operating system have to do extra work during updates of guarded records,

guarding will decrease DBMS performance for update-intensive workloads. The extra costs involved in

guarding include the additional system calls and TLB operations required to change page protections. In

thedeferred write update model, additional processing is required tocreate and keeptrack of record copies.

In order to measure the performance impact of guarding, we compared several different versions of

POSTGRES using a workload based on the TP1 debit/credit benchmark [Anon85]. In our version of this

benchmark, two thousand transactions were run against a small database. Each transaction retrieves a tuple

from an account relation, updates the account relation and two other smaller relations (branch and teller),

and appends a record to a fourth relation (history). Account is 200 pages long and branch and teller are

each one page.

The benchmark database is small in order to allow the DBMS to store the entire database in main

memory. We wanted to measure guarding under both a CPU-bound and a disk-bound workload. Since the

POSTGRES storage system is optimized for battery-backed main memory, it includes a "no disk write on

commit" option which we used for the CPU-bound benchmark. In the CPU-bound case, POSTGRES

never writes updated pages to disk so the CPU is saturated. When POSTGRES runs on a system with vola

tile memory, it must writeall modified data pages to diskat transaction commit. In volatile-memory mode,

POSTGRES runs at about 25 percent CPU utilization. The benchmarks were run single-user on a DECSta-

tion 3100 implementation of the Sprite operating system.

Table 1: Debit/Credit Performance for Guarding
In-Memory Database, CPU-Bound

Update Model

Protection

Overhead

Normal POSTGRES 0%

Expose Page Guarding 7%
Expose Segment Guarding 10%
Unprotected Copy (no guarding) 6%
Deferred Write Guarding 11%
Full Protection 87%
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We compared six different versions of POSTGRES. The normal version is a vanilla DBMS with no

guarding support The unprotected copy version used the deferred write update model but did not protect

the pages. Comparing the unprotected copy POSTGRES to normal POSTGRES shows the overhead in

deferred write attributable to copy management, but not to write protection. The next three POSTGRES

versions each use a different one of the update models described in the paper.

The last POSTGRES version, full protection, protects all of shared memory ~ including the lock

table, some shared memory lookup tables, and the buffer pool. The full protection version uses the expose

page update model to update data in the buffer pool and exposesegment to update all other data structures.

Tables one and two compare the protection overhead for each of the six program versions. Each

benchmark run of two thousand transactions was repeated five times to get an average elapsed time. If the

standard deviation of the five elapsed times was greater than one percent of the average, all five runs were

repeated. The tables present their results as the percent increase in the average elapsed time caused by the

protection mechanism.

The tables show that the least expensive of the three update models for the guarded buffer pool is

expose page. Expose segment is slightly more expensive,probably because exposesegment requires both a

system call and a TLB fault to access protected data whileexpose page only requires a systemcall. In the

disk-bound case, the costs of the different models are roughly the same. Since guarding does not affect

diskaccesses, it hasa large impact onlywhen there is high CPUutilization.

Deferred write has about the samecost as expose segment. This cost is dividedbetween the cost of

managing record copies and thecost of making guarding-related system calls. Comparing the unprotected

Table 2: Debit/Credit Performance for Guarding
25% CPU Utilization, Write-Through on Commit

Protection

Update Model Overhead

Normal POSTGRES 0%
Expose Page Guarding 2%

Expose Segment Guarding 3%
Unprotected Copy (no guarding) 2%

Deferred Write Guarding 3%
Full Protection 5%
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copy DBMS to the deferred write DBMS shows that much of the expense is related to copy management.

Deferredwrite makes only one system call per transaction, so it would be expected to have less guarding-

related overhead than the other two techniques. From profiledata, we have seen that nearly all of the copy

management costs come from allocating, freeing, and searching for record copies in the copy hash table.

Because records are small in the benchmark, physical copying does not affect performance.

In the CPU-bound case, the full protection DBMS is significantly slower than the versions that only

protected the buffer pool. The difference was more pronounced on read-only transaction workload, since

buffer pool protection alone caused no measurable decrease in performance. Full shared memory protec

tion caused a 70% to a 116% increase in average elapsed time, depending on the placement of the system

calls.

5. Reliability Impact of Guarded Data Structures

In order for guarding to increase reliability, failing software must try to update protected data ille

gally. If broken software always managed to unguard data structures before corrupting them, guarding

would not be effective. Guarding wouldalso have no impactif softwarefailures simply cause the program

to halt or produce incorrect results without ever overwriting any data (e.g. deadlock).

We could measure the reliability impact of guarding by running an extensive test suite against the

protected DBMS,however, the resultsof such a test are unlikely to reflect the impactof guardingin a com

mercial system. Guarding has been implemented for a single research DBMS. The typesof errorsexperi

enced at our site will not be the same as the commercial fault tolerant systems experience in the field. Also,

a measurement studywould have to compare one system with guarding to another system without guarding

in order to get meaningful results. Comparison is important since, to be cost effective, guarding must

detect errors that would not be detected by less expensive means.

A second evaluation alternative is to estimate the effectiveness of guarding using existing software

error studies. Graph 1 summarizes some of the results from six studies of software failures in operating

systems. The published studies in the table are from MVS ([Velardi84] and two from [Mourad87]), and

DOS/VS [Endres75]. These studies are difficult to compare since they were taken at different phases of the

development cycle and had classifications which obscured information we need to evaluate guarding. Each
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Graph 1: Summary of Error Study Data

of the studies classified errors in slightlydifferent ways.

In graph 1, we have regrouped the categories from each study into a few categories that could be

compared across all of the studies. The result is four classes of errors: addressing errors, synchronization

errors, error handling errors, and miscellaneous. Addressing errors are the ones of most interest for

evaluating guarding. Error handling errors come about when the system failed after being unable tohandle

an error in a lower level subsystem. The Endres study is different from the others largely because it

classified many errors as "specification errors" without going intodetail about how they affected theexe

cution of the program.

The studies show that addressing errors make up twenty to thirty percentof the recorded software

errors. In thesestudies,errors are assigned a primary cause(based on available data and the interests of the

research team). The secondary effects of theerror may involve addressing failures as well, so thirty per

cent is not necessarily an upper bound.
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While this initial evidence is promising,more work is requiredto show a strong relationshipbetween

guarding and reliability. We are currently collecting failure data from a commercial DBMS in order to

better characterize DBMS errors. Using this data, we intend to conducta more complete study using fault

injection techniques such as those used in [Chillarege89].

6. Using Guarding to Improve Data Availability

Guarding is a relatively inexpensive way of isolating processes in a multi-process DBMS from one

another; this isolation can be used to improve the availability of data after one process fails. Software

errors from one DBMS process sometimes destroy data structures in shared memory, forcing all DBMS

processes to recover. By reducing the need for multi-process recovery, guarding can improve recovery

speed. Because data is either unavailable or less available during recovery, improving recovery speed

improves data availability.

To see the impact of multi-process recovery, consider three levels of recovery:

(1) Single-Process Recovery: One DBMS process aborts its current transaction and exits. To recover,

the process must restart and reinitialize its in-memory data structures. The transaction in progress on

the failed process must be restarted and the transaction's work must be redone.

(2) Multi-Process Recovery: All DBMS processes must reinitialize. In conventional write ahead log

ging systems, some undo/redo log processing is required. The DBMS buffer pool is discarded, and

must be reloaded from disk. Communications with the client processes must be reestablished.

(3) Media Recovery: As above, but the contents of disk must be restored from dump tape before multi

process recovery begins.

Each level of recovery removes the effects of a different class of errors. Media recovery affects errors

which corrupt the disk. Multi-process recovery is required when shared memory is corrupted. Single-

process recovery can cleanup from errors affecting process local memory. If all DBMS shared memory

were guarded, many of the errors that normally require multi-process recovery could be repaired by faster

single-process recovery.

For some systems, using single process recovery in place of multi-process recovery will increase the

risk posed by undetected errors. The additional risk comes when a transaction manages to commit data
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with undetected errors. If a second error occurs, multi-process recovery reinitializes the buffer pool and

discards the buffer damaged by the first error. If the second error is cleaned up with single process

recovery, the damaged buffer is not discarded.

In storage systems based on shadow paging and in the POSTGRES storage system, even this situa

tion cannot occur. POSTGRES uses a no-overwrite update policy instead of a conventional log [Stone-

braker87]. As a consequence, any updated buffer page must be written to stable main memory or to disk

before the end of transaction. Once written to stable store, the corrupted buffer will be used in recovery

whether the buffer pool is discarded or not.

In a write ahead loggingsystem, multi-process recovery is more reliable than single process recovery

only when the system log is not corrupted. If both thedataand the log record are corrupted, multi-process

recovery willnot remove the damage since data in the log must be used for recovery. For example, if the

DBMS miscalculated a data value, thecorrupted value would be written into the log.Addressing errors can

obviously corruptbufferpool data withoutgenerating bad log records, but mostof theseerrors are detected

by guarding.

In summary, guarding shared datastructures makes itpossible to usesingle process recovery in place

of multi-process recovery. Using faster single-process recovery will increase data availability during

recovery. In some storage systems, single process recovery increases the risk of unrecoverable damage,

but the increased risk issmall. The exact increase in risk depends on how effective guarding isatprevent

ing errors andhow long errors remain undetected after they occur.

7. Previous Work

An alternative to protecting shared data structures with guarding is to keep those data structures in

one address space and the clients of the data structures in another. In order to make such an architecture

practical, a fast cross-address-space procedure call mechanism like that of the Taos operating system

[Bershad89] is required. TheTaos Lightweight Remote Procedure Call (LRPC) isoptimized forRPC-style

communication in which only a few parameters are passedbetween caller and called routine. The Service

Request Block (SRB) mechanism in theMVS/XA [IBM] operating system is similar to LRPC. An SRB is

a highpriority thread of control which can be created ina remote address space. BothLRPC and SRB use
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a fast path through the schedulerand somesharedmemory to reduce overhead.

Guarding provides the same kinds of protection against non-malicious damage as does an address

space boundary. However, access to read-only records is faster than would be possible in a separate

address space implementation. Since database workloads often require the DBMS to scan through large

amounts of data before selecting some for update, faster read performance is a distinct advantage.

Tandem's process pair mechanism [Bartlett81] also relies on multiple address spaces to prevent pro

pagation of software errors. The Tandem data manager has a primary and "hot spare" process executing

at the same time on different machines. The primary executes all transactions and sends checkpoint mes

sages to the spare. If the primary fails, the spare can reconstruct the data manager's state from the check

point messages. While errors might propagate within the primary, they are less likely to propagate to the

spare.

While process pair prevents the same kinds of errors as guarding does, it is much more expensive.

Keeping the spare up to date requires resources for sending and processing checkpoint messages. Worse,

the implementation of the checkpoint protocol is non-trivial. Modifications to the DBMS may affect the

checkpoint protocol, making them expensive to implement and test Finally, the model does not help detect

errors. The primary and spare both have large, unprotected buffer pools. An undetected pointer error can

damage a buffer without making the primary turn over control to the spare. The corrupted buffer will

eventually corrupt permanent data.

The 801 System [Chang88] uses page protectionbits to provideoperatingsystem support for DBMS

locking and logging, rather than using page protection to increase fault tolerance. A data manager running

on the 801 does not set locks explicitly. Memory management hardware detects a read or a write to an

unlocked buffer and the DBMS traps to the operating system. The operating system then sets locks and

implements physical logging of 128 byte subpages. To support fine-grain locking, the 801 memory

management unit provides write-protection at subpage granularity. The same hardware would support sub-

page granularity guarding.

Unlike a system using guarded data structures, the 801 treats any attempt to write to one of its

buffers as legitimate. By moving responsibility for locking from the DBMS to the operating system, the

801 is losing information available to the DBMS about which data is updated erroneously. If a bad pointer
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causes a write to an unlocked buffer, the 801 locks the buffer and logs it normally. Under the same cir

cumstances, a guarded system would immediately halt the transaction.

Implementing protected operations such as locking in the operating system is one alternative to the

expose segment model of guarding. However, installingthe DBMScode in the operating system makes the

operating system vulnerable to errors in the installed code. Guarding gives the DBMS implementormore

freedom to decide what code is reliable enough to have access to protected data. More debugging support

is available for user programs than for the operating system, so implementing protected subsystems in the

DBMS is more practical than implementing them in the OS.

The expose segment update model implementation provides some of the same protections as a pro

tected subsystem mechanism without requiring any special hardware or restricting the designer's choice of

programming environment Existing protected subsystem mechanisms often rely on special memory

management hardware [Schroeder72], [Wulf74], or type-safe languages [Lampson80]. The expose seg

ment update model can be implemented on any processor which uses a software-loaded TLB. Of course,

guarding is designed to protect against accidental damage not malicious damage. Existing protected sub

system mechanisms were designed to protect against both.

We chose to implementthe virtual memory supportrequiredfor guardingby modifying the operating

system. It would also be possible to support guarding using the Mach external pager [Young87]. Imple

menting guardingdirectly in the operatingsystemshouldmakeguardingmore efficient

8. Conclusions and Future Work

We have modified the operating systemand data manager in order to limit software error propaga

tion in DBMS shared memory. Write protecting the data manager's buffer pool allows early hardware

detection of addressing-related software errors. Guarding reduces the complexity of software failure by

preventing errors from propagating to protected data structures. Guarding techniques can also improve

recovery speed since limiting potential error propagation decreases the amount of work required at

recovery time. While any DBMS could use these techniques, they are especially important to a extensible

DBMS such as POSTGRES. With a guarded system, one person using (or developing) new access

methodsor data types has smaller impact on the availability and reliabilityachieved by his or her peers.
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In general, the performance impact of guarding is comparable to the impact of other software tech

niques for detectingsoftwareerrors, such data structure verifiers or array boundschecks. Guarding can be

implemented efficiently by taking advantage of processors with software-loaded TLBs. For read-only

workloads, guarding provides the DBMS with additional protection at no extra cost For update-intensive

workloads,experiments have shown that the additionalCPU demandcaused by guarding is only a few per

cent when small records are updated. In the future, we will use page remapping techniques as a method for

reducing copy cost for large records.

In deciding whether or not to guard data structures, system designers face a tradeoff between poten

tial reliability and availability improvement and a small but measurable performance loss. For some sys

tems, no reliability gain will be worth any loss in performance. Others may be willing to accept the small

performance loss in order to achieve any reliability improvement. Still other systems may want the option

of switching from guarded to normal operations at different points in the system lifetime or for different

customers. An important second area of future work is the development of techniques for quantifying the

reliability impact of guarding. These techniques will help system designers or administrators make an

informed decision about whether or not to use guarding.

Over time, trends in system cost will tilt the performance/protection tradeoff in the favor of guarding.

Falling memory prices are increasing the sizes of disk caches like the DBMS buffer pool. Some data in the

cache will remain unused for long periods of time. It is essential that bad writes into this data be caught at

the time of the error rather than the first time the data is used. Meanwhile, as processors become faster, the

additional processing demands caused by guarding will become less of a concern.
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