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Abstract

The object of this paper is to prove the stability of an adaptive
control scheme designed to asymptotically achieve output regulation
for a class of nonlinear systems. The solution proposed in [l] to the
nonlinear output regulation problem is reviewed and the robustness
of the solution to parametric uncertainty is analyzed. A standard
adaptive scheme is then applied to the problem and slowly-varying
results are employed to achieve asymptotic output regulation.

Keywords. Nonlinear Output Regulation, Adaptive Control, Cen
ter Manifold, Slowly-varying.

1 Introduction

The task at hand is to analyze and account for parameter uncertainty in the
nonlinear output regulation problem. Recent work by Isidori and Byrnes
[l] has produced necessary and sufficient conditions for the solvability of
both the state feedback and output feedback regulator problem for a class
of nonlinear systems. In their work, the signals to track are restricted to
those that can be considered as the output of a Poisson stable exosystem.
Their analysis is based on the local properties of center manifolds. Using
the work in [l] as a point of reference, this paper will proceed to examine
the same problem in the presence of parameter uncertainty. In section 2, we
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review the nonlinear regulator theory and the solution developed in [l]. In
section 3 we introduce parametric uncertainty to the problem. In section 4
welay the ground work for ouradaptive scheme by reviewing slowly-varying
theory for nonlinear systems. Finally, our adaptive scheme is developed in
section 5.

2 Nonlinear Regulator Theory

The subsequent discussion follows closely that of [l]. The class of systems
that will be examined is those of the form

x = f{x,9*) + g(x,9*)u + p(x,e*)w m
y = *(*) UJ

where w is the state of an (autonomous) exosystem

w = s(w,9*) (2)

For this system, we will begin by considering 9* € Rp as a vector of known
parameters in order to review nonlinear regulator theory in the absence of
uncertainty. The control objective is to have the output track a reference
signal that is the output of the exosystem and given by —q(w(t)). The plant
(1) is assumed to have m inputs and o outputs. The state x of the plant
is defined on a neighborhood X of the origin in Rn. The state w of the
exosystem is defined on a neighborhood W of the origin in Rs. Further, /
and the columns of g and p are assumed to be smooth vector fields and h(x)
is a smooth mapping on X. Also, s is a smooth vector field and q(w) is a
smooth mapping defined on W. The composite system is then

x = /(x,0*) + 0(x,0*)ti + p(ar,0*)t0
w = s(w,9*) (3)
e = h(x) + q(w)

Finally, it is assumed that /(0, •) = 0, 5(0, •) = 0, h(Q) = 0, q(0) = 0 so that,
for u —0, the composite system (3) has an equilibrium state (x,w) = (0,0)
which yields zero error, independent of the value of 0*. For the state feedback
regulator problem, we seek a state feedback of the form

u = a(x, w, 0*)



such that the closed loop system

x = f(xi9*)-rg(xi9m)a(xiwi0*)-rp(x,9*)w
w = s(x,9*) (4)
e = h(x) + q(w)

exhibits some stability property and lim^oo e(t) = 0. Following [l], westate
the nonlinear state feedback regulator problem formally.

State Feedback Regulator Problem. Given a nonlinear system of
the form (3), find, if possible, a feedback u = a(x,w,9*) such that

1. the equilibrium x = 0 of

x = f(x,9*) + g(Xi9*)a(x,0,9*) (5)

is asymptotically stable in the first approximation, i.e.

°(^[f(x,01 +9(x^<x(xyQ,9*)]\x=o) CCI
2. there exists a neighborhood U C X xW of (0,0)such that, for eachini

tial condition (x(0),w(Q)) € U, the solution of the closed loop system
satisfies

Km(h(x(t)) + q(w(t))) = Q
x—*oo

Under the following two hypotheses, statements concerning the existence of
a solution to the state feedback regulator problem can be formulated:

(HI) the linear approximation of (5) is stabilizable.
(H2) the point w = 0 is a stable equilibrium of the exosystem, and there

is an open neighborhood of the point w = 0 in which every point is Poisson
stable. In short, this assumption implies that the eigenvalues of the linear
approximation of the exosystem lie on the imaginary axis.

Byrnes and Isidori state necessary and sufficient conditions for the solu
tion of the state feedback regulator problem.

Theorem 2.1 (Byrnes and Isidori) Under hypotheses (Hi) and (H2),
the state feedback regulator problem is solvable if and only if there exist
Ck(k > 2) mappings x = t(w,9m), with tt(0, 9*) =0 and u= c(w, 9m), with
c(O,0*) = 0, both defined in a neighborhood W° C W of 0, satisfying the
conditions

ts(wt9*) = /(Tr,n +P(^^>
g{<K,9*)c{w,9*) (6)

h{n(w,9m)) + q(w) = 0



Remark. The proof relies on center manifold theory and constructs a state
feedback

u = a(x, to,0*) = c(w, P) + K*[x - 7r(w, 9m)] (7)

that is shown to be a solution of the state feedback regulator problem.
K" is a matrix of feedback gains such that the eigenvalues of the linear
approximation of (5) have negative real part.

3 Parametric Uncertainty

To proceed with the discussion, 9* is now considered as a vector of unknown
parameters. Before attempting to handle the uncertainties of the plant and
exosystem with adaptation, the question of robustness is addressed. In this
setting, a control is formulated based on a model of the composite system,
given by

x = f(x,9°) + g(x,9°)u + p(x,9°)w
w = s(w,9°) (8)
e = h(x) + q(w)

where 9° is a fixed estimate of 9*. Assume the following:

A 1 A certainty equivalence feedback law of the form

u = a(x,w,9°) = c(w,9°) + K°[x - n(w,9°)] (9)

is applied to the actual composite system (3), where

1. K° = K(9°) is such that K{9*) asymptotically stabilizes the linear
approximation of (5) at x = 0.

2. x = 7r(ti7,9") and w= c(w,9*) satisfy the conditions of theorem 2.1 for
the system (3).

The stability of the composite system with (9) as input is now examined.

Theorem 3.1 (Bounded-error manifold) Under the assumptions (Al)
and (H2), there exists neighborhoods V C Rp of 9° = 9* and W° C W of
w = 0 such that the composite system (3) with (9) as input has an invariant
manifold, the graph of a Ck(k > 2) mapping

x = tt(iM°,0*)



defined on W° x V satisfying the condition

fS*(«,n = /(*,**)+pom>
g(V,9*)[c(w,9°) + K<>{*-ir)] llU;

yls a consequence, the solution (9) to the state feedback regulator problem
based on (8) yields bounded tracking error when applied to (3).

Sketch of Proof. First defined <j> = 9° - 9* and replace 9° by <f> + 9*.
Next augment the exosystem with 4> = 0. From the triangular structure
and the assumptions concerning the eigenvalues of the plant disconnected
from the exosystem, it follows that the closed loop composite system can
be transformed into coordinates in which center manifold theory directly
applies. In the original coordinates, and replacing <f> by 9°-0*, this manifold
is the graph of mapping x = %(w,9°,9m) satisfying the condition (10). (see
[2] for details of center manifold theory.)

Finally, by assumption the point (ar, w) = (0,0) is a stable equilibrium
of the closed loop composite system. Under this condition, for sufficiently
small (x(0),iy(0)), bounded tracking follows from center manifold theory
and the continuity of h. D

Remarks:

1. The neighborhood V is at least as small as the largest open set such
that, with 9° in that set, K(9°) also stabilizes the linear approximation
of (5) at x = 0.

2. The manifold V(w,9°,9*) is conceptual and will not need to be calcu
lated.

3. The preceding argument extends naturally to theoutput feedback reg
ulator problem also described in [l].

4 Slowly-Varying Parameters

The question of robustness is now addressed, under the added assumption
that the parameters are allowed to vary slowly. Consider any fixed 9° in a
compact set T C V. Define z = x - tf(iw, 0°,9m) on a neighborhood Z° C Rn
with ^ defined by the previous theorem.



The dynamics of the state z are then

i = x-¥(w,9°,9*)
= f(x,9*) + g(xi9*)a(x1w,91i)-rp(x,9m)w ( .

-/(*, 9*) - $(¥,9*)a{V, w, 9°) - p($,9*)w K }
= F(z,w,P,P)

From Theorem 3.1, for every 9° € I\ the following three conditions hold

1. F, F2, Fe° are continuous on Z° x W° x T

2. For each 9° € T, 2 = 0 is a twice continuously differentiable isolated
root of F(z,w,9°,9*) = 0.

3. the equilibrium point z = 0of(ll)is uniformly asymptotically stable,
uniformly in the parameter 9° with some set Br = {z G Rn : \z\ < r]
contained in the domain of attraction.

These conditions are the requirements of the following useful lemma formu
lated by Hoppensteadt [3] and recently restated by Khalil,Kokotovic [4],

Lemma 4.1 (Hoppensteadt) Under conditions (1-3), there exists a Lya-
punovfunction W(z,9°,9*) such that

*1(\Z\)<W(Z,P,P) < K2(\Z\)
Wz{z,9°,9*)F(z,w,9°,9*) < -k3(\z\) .

\Weo(zy9°,9")\ < Cl K }
\Wz(z,9°,9*)\ < c2

for all z € Br and 9° € V, where ki(-), «2(*)> Kz(') are strictly increasing
functions and ci and c2 are nonnegative constants.

With this Lyapunov function in hand, the slowly-varying analysis pro
ceeds in the following way. Allow 9° to vary. The dynamics of the state z
are now

= f(z, w,r,r) -^r (i6>
Consider now the Lyapunov function of Lemma 4.1 and take its derivative
along the trajectories of the system (13).

W = Wzz + Weo9°
= WzF(z,w,9^9*)-V[WBo-Wz^]P ( .

W < -icaCWJ +rfil^l V ;
< -K(W) + d1\9°\



where k= k$ owj1 and d\ = ci +C2supr(f$r). To show that z is stable for
small |^(*o)| and sufficiently small |0°| observe that the set D = {W < «i(g)}
is an invariant set under the condition

|0°l < <Ki(q))/di

If \z(t0)\ < KjH^iC?)) for any 9 < »*» then, from (12), W(t0) € D. Since £>
is invariant, (12) implies that \z(t)\ < q, Vt > to. In addition, if 9° —> 0 as
* -+ oo then \z(t)\ -> 0 as i -• oo since VF(z(i),0°(*),0*) -• 0 as t -»• oo.

The analysis above is formulated to allow for slow variations in the con
trol parameter 9°. Note, however, that the analysis readily extends to incor
porate slow variations in plant and exosystem parameters 9 in a compact set
about the nominal value 9*. To retain stability unformly in the parameters
we assume

A 2 For all 9 6 T, w = 0 is a stable equilibrium of the exosystem, and there
is an open neighborhood of the point w = 0 in which every point is Poisson
stable.

Corollary 4.1 Under the assumptions (Al) and (A2), for sufficientlysmall
initial conditions (z(0), w(0)), the stability of the composite system (3) under
the input (9) is robust to plant and exosystem parameter variations that are
sufficiently slow and stay in a neighborhood of the nominal parameter value
9m.

Proof. Follows immediately from the previous lemma and discussion. •
The previous discussion is now applied to a generic indirect adaptive

control scheme. Consider the composite adaptive system,

x = f(x,9*) + g(x,9*)a(x,w,9°) + p(x,9m)w
w = s(w,P)
9° = G(x,w,9°,t) UW
e = h(x) + q(w)

Corollary 4.2 Under the assumptions (Al) and (H2), for sufficiently small
initialconditions (a;(0), w(0)), the stability of the composite system (3) under
the input (9) is robust to parameter variations in the control law that are
sufficiently slow and stay in a neighborhood of the nominalplant parameter
value 9*. Namely, the stability of (15) is achieved if sup^t^G^x^w^0^
is sufficiently small and G is such that 9° stays in T.



Remark. Because the parameter update law is a function of x and 0°,
some additional analysis will be required to guarantee a sufficiently small
bound on supt>tQ\G(x,w,9°,t)\.

Corollary 4.3 Under assumptions (Al) and (H2), for (15), for sufficiently
small initial conditions (x(0),w(0)) and supt>*o|<j(a;,w,0o,*)| sufficiently
small and 9°(t) € T, if 9° converges to some9 thenx converges to $(w, 0,9*)
and the steady state error, e{t), of system (15) is bounded and given by

h(^(wj,9*))-h(ir(w,9*))

Proof. This is the case of 9° -* 0 as t —• oo and 9* = 0 so that z(t) —• 0
as t —• oo. By definition of z, x converges to $(w, 0,0*). Then by the
continuity of h and the stability of the composite system, the steady state
error is bounded and given by /&($(w,0,0*)) - h(ir(w,9*)). U

Corollary 4.4 Under assumptions (Al) and (H2), for (15), for sufficiently
small initial conditions (a:(0), iu(0)) and supt>t0\G(x,w,9°yt)\ sufficiently
small and 9°(t) G T, if 9° converges to 9m then

/imt_tooe(i) = 0

Proof. Here x converges to $(w, 0*,0*). Observe that $(ty,0*',0*) satisfies
the same partial differential equation as 7r(u>, 9*) since \P(w,9*,9m) is the
manifold made invariant by the input (9) with 9° = 9*. Thus, from the
properties of center manifolds, x converges to the ir(w,9m) of Theorem 2.1.
Then Theorem 2.1 implies that ftmt-»ooe(t) = 0. •

Remark. Typically, it is not possible to guarantee correct parameter
convergence a priori without additional assumptions.

5 Adaptive Nonlinear Output Regulation

The last result of the previous section suggested that if an identifier could
be constructed that guaranteed 9° converges to 9* then asymptotic track
ing would be guaranteed as well. However, as is known in the adaptive
literature, guaranteeing parameter convergence a priori requires additional
assumptions. Rather than take that approach here, a specific identifier will
be suggested that will result in asymptotic tracking. This identifier is for
mulated in the mind-set of indirect adaptive control. Namely, an identifier
is constructed to estimate plant parameters and then these parameters are
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used in a certainty equivalence control law. The identifier used here is anal
ogous to the observer-based identifier found in [5].

We prepare by making two additional assumptions.

A 3 For all 9° € T, x = 7r(w, 0°) and u = c(iu,0°) satisfy the conditions

fe*(tD,*°) = /(7T,0°)+KT,0>
<7(7T,0O)CK0O)

h(Tr(w,9°)) + q{w) = 0

Consider again the composite system (3) where 0* is considered a constant
but unknown parameter vector. The following standard assumption for
adaptive systems is made.

A 4 The vectorfields /(x, 0*) ands(w,9*) and the columns ofg(x,9*) and
p(x,9*) have the following linear parameter dependence:

/(*,«") = ELi **/•(*)
»(*.«*) = ULifyiA*)
»(*.»•) = ELitauW
*(»,»•) = ELi4f«(»)

where 0*, i = 1,.. .,p are unknown parameters, which appear linearly, and
the smooth vector fields fi(x), gij(x), Pi,j(x), S{(w) are known.

Regressors are formed as

Xl{x,w,u) = lfi(x)-rg1j(x)uj-rpitk(x)wki...i
fp(x) + 9P,j{x)uj + pPtk(x)wk]

xl(*>) = [si(w),...,sp(w)]

where summation over j, k is implied. Consequently, Xx(x* wiu) € Rnxp
and xZ(w) € Rsxp contain all of the nonlinearities of the system. Now the
composite system can be written as

x = xl(xiu)iu)9"
w = xl(w)9*.

In what follows, the conventional notation for estimates of unknown pa
rameters, 0, will replace the previously used 0°. To estimate the unknown
parameters, the following identifier system is used.

x = Slx(x -x) + Xx{x, w,u)9
ib = Qw(w - w) + xl(w)9 (16)
0 = ~PXx(x,«;, u)Px(x -x)- pXw(w)Pw(w - w)



Here Qx e Rnxn, tow € R5X* are Hurwitz matrices and Ps € Rnxn, Pw €
Rsxs are positive definite symmetric solutions to the Lyapunov equations

«x-far + -fx«s = —Inxn
M\ir*'u> ' Pvuklw = ~lsxs-

Finally, p is a small positive constant. Now, define ex = x —x, ew = w —w,
and <f> = 9 —9*. Then the identifier error system becomes

ex = £lxex + xZ(xiwiu)<f>
iv, - &wtw + Xw(w)<P (17)
4> = -/>X*(s, w, «)-Pc£x - PXw(w)Pwew.

Theorem 5.1 Under the assumptions (Al), (H2), (A3) and (A4), for suf
ficiently small initial conditions (x(0), w(0)) and (£x(0)>£u/(0)>$(0))> for ine
composite system (3) under (adaptive) input (9), 3p > 0 of the identifier
(16) such that

1. 4> € Xoo,

2. Ex,E\i) € 1j<x> n 1J2>

3. (x,w) e Lqo,

q. £Xy£w C -LioO)

5. limt_oo £x(t) = ]im.t->oo£w{t) = 0,

6. limt_oo e{t) = &(*(*))+ q(w(t)) = 0.

Proof. Consider the Lyapunov function

V(eXJ ew,<t>) = pelPxex + pelPwew + <£T<£ (18)

Taking the derivative of V along the trajectories of (17) yields

V = -ptTxex - p£^,ew < 0

Hence 0 < V(t) < V(0) for all t > 0, so that V,<}>,£x,ew € loo- Since V is a
positive, monotonically decreasing function, the limit V(oo) is well-defined
and

f°° • f°° T T- / V dr = p {exex + ejetw)dr < 00
JO JO
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so that ex,ew € X2.
It is now shown that p can be chosen so that the analysis of section 4

holds. This will imply that x remains bounded. Consider the parameter
update law

0 = j> = -pxx(x,w, u)i*£* - PXw(w)Pwew
Since XxtXw are smooth, w is bounded and eXi ew € £«» it follows that
3m > 0 and a strictly increasing function k4(.) such that

l^l</>(m +/c4(|z|))
for all z € £r = {z € Rn : |*| < r}. Then for the Lyapunov function of
section (4), equation (14) becomes

W < -Kafl^D +^l
< -K3(\z\) + dlP(m + K4(\z\))
< -k(W) + pdtKB(W) + pdim

where « = k3 o kJ1 and «5 = k4 ok^1. Now pick p0 sufficiently small
such that (k - p0diKs)(>) is a strictly increasing function of W. Define
«6 = (« - podiK5). Then

W < -«6(W) + pdim

for all p < p0. Now observe that the set D = {W < Ki(q)} for any q < r is
an invariant set if

P < «6(«i(g))/(^im) = />!

Hence, if/) is chosen such that p < min{p0,pi} then D is an invariant set.
Finally, if |*(*0)| < kJHkiC?)), then from (12) W{t0) € D. Since D is
invariant (12) implies that \z(t)\ < q for all t > t0.

Because z is bounded and w is bounded by assumption, x is bounded.
Since x, w are bounded, Xr(s,w,w)> Xt/>(w) are bounded. This implies iXi
iw are bounded. Since ex,ex,ew,£w 6 Loo and eXiew € X2, lim^-coe.,. =
limt_»oo£w = 0.

Finally, the convergence of the tracking error is proved. Return to the
Lyapunov function of (18). The nontrivial trajectories corresponding to
V = 0 are given by the set

S = {(eXieWi<j>):
£x = 0,sw = 0,Xx (*> ™, u)<j> = 0,x£(w)<£ = 0}
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From the definition of 0, trajectories in this set are such that

xl(x,w,u)9 = xl{x,w,u)9*
Xl(w)9 = xl(w)9* (19)

From Theorem 3.1, ^l(w^9^9m) satisfies the condition

am _ _

Qn-xlMO* =*J(*K 9,0*), to, u)9* (20)

Further, by assumption (A3), 7r(w, 0) satisfies the condition

foXlMO =Xx(*(*>, h *>i u)0 (21)
From (19), 7r(u;, 0) also satisfies

jj^xZW =;£(*(«,»), to, «)»* (22)
Now, limt_»oo £x = lim^oo ew = 0 implies lim*_>oo 0 = 0. So from Corollary
4.3, x converges to W(tt?,0,0*). Now since ir(w,9) satisfies the same man
ifold equation as $(u>,0,0*), the properties of center manifolds imply that
x converges to tt(w,9). From assumption (A3), q(w) = —h{n(w,9)). Then,
from the continuity of /i,

limt—oo e(t) = limt—oo M^M) + ?(w(*))
= lim^oo h(x(t)) - h(w(w,0)) = 0.

6 Conclusion

This paper has analyzed the dynamics of a system with parameter uncertain
ties in the setting of nonlinear regulation. For small initial conditions, the
nonlinear regulator solutions were shown to be robust to parameter uncer
tainties and to slowly-varying parameters. The adaptive nonlinear regulator
solution was cast into this slowly-varying framework. It was shown then that
there exists an identifier with sufficiently small gains that, in conjunction
with a certainty equivalence control law, yielded zero error tracking in the
limit.
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