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Abstract

Necessary and sufficient conditions for globally stabilizing linear
systems with bounded controls are known. However, it has been shown
in [5] that, for single-input systems, no saturation of a linear feedback
can globally stabilize a chain of integrators of order n, with n > 3. In
this paper, we proposed a nonlinear combination of saturation func
tions of linearfeedbacks that globally stabilizes a chain of integrators
of arbitrary order. The appealing feature of the proposed control is
that it is fairly easy to construct. It is linear near the origin and can
also be used to achieve trajectory tracking for a class of trajectories
restricted by the absolute bound on the input.

Keywords. Chain of integrators, bounded controls, saturation,
global stabilization, tracking.

1 Introduction

The problem of stabilizing linear systems with bounded controls has been
studied extensively. See [l], [2], [3]. Recently, in [4] from the point ofview of
nonlinear control, a (smooth) nonlinear (bounded) feedback wasconstructed
to globally stabilize all asymptotically null-controllable linear systems. A
system is null-controllable if every state of the system can be driven to zero
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asymptotically using a bounded measurable control. In some cases, a chain
of integrators for example, the construction involved a complicated recursive
argument which requires one to solve for a certain submanifold of the state
space. In [5] it is shown that a certain simple strategy, namely any bounded
function of a linear feedback, cannot possibly globally stabilize a chain of
integrators of order n, for n > 3.

In this paper we propose two bounded feedback strategies for a chain of
integrators of arbitrary order. The algorithm for constructing the bounded
control law is fairly simple. The control law is linear near the origin and
can easily be used to achieve trajectory tracking for a class of trajectories
restricted by the absolute bound on the input.

Our solutions to this linear problem were motivated by a more general
nonlinear stabilizability problem (see [6]). In the nonlinear setting, the
previous solutions to the linear problem were unable to assist us. However,
the solutions presented here are crucial to solving the nonlinear problem
solved in [6].

2 Main Result

2.1 Global Stabilization

We start with the following definition:

Definition 1 Given two positive constants L, M with L < M, a function
a : R —»• R is said to be a linear saturation for (Z-, M) if it is a continuous,
nondecreasing function satisfying

J. sa(s) > 0 for all s ^ 0

2. a(s) = s when \s\ < L

3. \<t(s)\ < M for all s € R.

In the subsequent control design, one can choose arbitrarily smooth functions
out of this class.

Now consider the linear system consisting of multiple integrators

Xi = X2

; (i)
x„ = u



We are searching for a bounded control that will globally asymptotically
stabilize (1). Our main result is

Theorem 2.1 There exist linear functions hi : Rn —• R such that, for any
set of positive constants {(.£,-, M,)} where Li < Mi for i = l,...,n and
Mi < -^- for i = l,...,n— 1, and for any set offunctions {a,} that are
linear saturations for {(£,-,M,)}, the bounded control

u = -<rn(hn(x) + <rn-i(hn-i(x) -r •••+ <ri(hi(x))) •• ♦)

results in global asymptotic stability for the system (1).

Proof. Consider the linear coordinate transformation y —Tx which trans
forms (1) into y = Ay + Bu where A and B are given by

A =

1"

B =

' 1 "

1

0
. 1 .

The recursive nature involved yields a transformation characterized by

where

lft»-t =5Z ( })Xn-i
i=o

VI

(i) j!(t-j)!
The inverse of the transformation is characterized by

*„_, =£(-!)••+'•( ')j,n_,
A suitable control law is

u = -0n(yn + <rn_i(yn_! +

which yields the closed loop system

Wyi))--0

y\ = V2 + ••• + yn -on{yn + On-\{yn-\ + --- + ffi(yi))---)
#2 = 3/3 + •••+ J/n - ^n(yn + ^n-l(2/n-l + •••+ ^lfa/l)) ' ••)

£n-l = yn-^nCyn + ^n-lCyfi-l + '^ + fflfyi))"-)
£n = -tfn(yn + <rn-l(yn-l + "-+ffl(yi))"-)

(2)

(3)



We begin by considering the evolution of the state yn. Consider the Lya-
punov function Vv n\. The derivative of Vn is given by

Vn = -2y„[a„(yn + ^a-i(yn-i + •••+ ^i(yi)) •••)]

From definition 1, condition 1 applied to an and condition 3 applied to
<rn_i coupled with the fact that Mn_i < ^, we see that Vn < 0 for all
Vn i Qn = {Vn ' \Vn\ < ^j1}- Consequently, yn enters Qn in finite time
and remains in Qn thereafter. Further, because the right-hand side of (3)
is globally Lipschitz, the remaining states yi,...,yn-i remain bounded for
any finite time.

Now consider the evolution of the state yn-\- First observe that after yn
has entered Qn, the argument of an is bounded as

Li
2

< Ln
|»n+ffn-l(yn-l + -" + ffl(yi))--OI £ ^ +^n-l

Consequently, after yn enters Qn, an operates in its linear region from con
dition 2 of definition 1. Then the evolution of yn_i is given by

y„_i = -tf„-i(yn-i + --- + tfi(yi ))•••)

Using the same argument as for yn we can show that yn_i enters an anal
ogous set Qn-i in finite time and remains in Qn-\ thereafter. Again, all
of the remaining states stay bounded. This procedure can be continued
to show that after some finite time the argument of every function crt- has
entered the region where the function is linear. After this finite time, the
closed loop equations have the form

yi = -yi

y2 = -yi - y2

yn = -y\-V2 yn

Clearly, the dynamics, after the prescribed finite time, are exponentially
stable. •

The number of saturation functions required can be decreased by stabi
lizing the states in pairs rather than one at a time. We employ a slightly
more restrictive class of linear saturation functions.

Definition 2 Given two positive constants L, M with L < M a function
a : R —• R is said to be a simple linear saturation for (L,M) if it is a
continuous, nondecrcasing function satisfying



1. so(s) > 0 for alls^O

2. a(s) = s when \s\ < L

3. \a(s)\ = M when \s\ > M.

Where before we needed n saturation functions, now we need one function for
each pair of states. If the dimension of the state space is odd, we will need
one additional saturation function for the additional state. Accordingly,
define n = n/2 if n is even and n = (n + l)/2 if n is odd.

Theorem 2.2 There exist linearfunctions hi : Rn —• R such that for any
set of positive constants {(£,-, M,)} where Li < Mi for i = l,...,n and
Mi < ,!*k for i = 1,..., n —1, and for any set of functions {a} that are
simple linear saturations for {(i,-,M,)}, the bounded control

u = -an(hn{x) + <7fi_i(/ia_i(a;) + •••+ oi(hi(x))) •••)

results in global asymptotic stability for the system (1).

Proof. Consider the same coordinate change as in the proof of the previous
theorem. We will proceed in a similar manner as before, this time showing
that the states yn-i,yn enter within finite time and thereafter remain in
a region where the function an is linear. Since the differential equation is
globally Lipschitz, the remaining states yi,..., y„_2 remain bounded. With
an operating in its linear region we can iterate to show that y„_3, yn-2 enter
and remain in a region where <7fi_i is linear. Eventually, this leads to the
conclusion that after some finite time, the closed loop equations have the
form

y\ = -yi

y2 = -y\ - y2

yn = -yi - y2 yn

which is an exponentially stable linear system.
Consider the dynamics of yn_i,yn:

yn-i = yn - <rn(yn-i +yn +<rn-i(y)) (4^
yn = -<7n(yn-i +yn + orn-i(y)) ^}

To show that y„_i,yn enters a sufficiently small neighborhood of the origin
we use the following Lyapunov-like function:

w(yn-i,yn) =\yn-i +^y2n (5)



This positive definite function is only a Lyapunov-/ifcefunction because there
will be points in the state space where W > 0. However, we will show that
the integral of W is negative over known closed form solutions of (4) in the
region where an is saturated. Further, when it is possible that an is not
saturated, W is strictly decreasing (outside a neighborhood of the origin.)

Consider the following regions of the state space:

region I: yn_! + y„ > Mn + Mn-\
region II: y„_! + yn < -Mn - Mn-\
region III: |yn_i + y„| < Mn + Mn-\

We begin by showing that any bounded initial condition in region I yields a
trajectory that enters region III in finite time. Observe that in region I (4)
is given by

yn-l = yn~ Mn
yn = -Mn

Consequently, the closed form solution of the trajectories in region I are
given by

yn-i{t) = yn-i(to) + yn(to)t - Mnj - Mnt
yn(t) = yn(to) - Mnt

Combining, we have

t2
yn-i(t) + yn(t) = yn-i(<<>) + yn(U) - 2Mnt + yn(t0)t - Mn—

We assume that

yn-l(to) + yn(to) > Mn + Mn-l

and we solve for a tf, such that

yn-i(h) + yn(h) = Mn + Mn-\

Using the quadratic formula it is straightforward to show that such a U
exists and is finite and positive. The same argument holds for region II by
symmetry.

Now consider an initial condition such that

yn-i(<o) + yn{to) = Mn + Mn-\

To enter region I, we must have

yn-i(<o) > -yn(U)



since the boundary of region I is a line of slope -1. This implies

yn(t0) > 2Ma
yn-i(U) < -Ma-rMa-i

Assume we enter region I. We show that we return to region III in finite
time tb > 0 and that W(tb) —W(t0) < 0. From the discussion above for
trajectories in region I and since

yn-i(*o) + yn(U) = yn-i(h) + yn(h)

it follows that
t2

Ma± + [2Ma-yn(to)]tb = 0

This implies

h=-^(yn{U)-2Ma)
which is positive because yn(<o) > 2Ma. Now consider

W(tb) - W(U) =\(yl_,(tb) +yl(tb) - ^_,(M - ,»(*.))
First consider

\(y2n-i(h) - yl-M)
Observe that in terms of yn-i(*o)

2
h = —(-y„_i(/0) + Ma-i - Ma)

Evaluating the closed form solution for yn-i at tb yields

yn-l(<&) = -yn-l(*o) + 2(M*_i - Mn)

A straightforward calculation then shows that

yn-iW - yl-AU) = 4yn.1(t0)(Ma - Ma-i) -I- 4(M* - Ma-i)2

Since y„-i(*0) < -Ma + Ma-i and Ma > Ma-\, it follows that yl^ih) -
y£_i(<o) < 0. Now consider



Evaluating the closed form solution for yn at tb yields

yn(tb) = -yn(U) + 4Ma

A straightforward calculation then shows that

yl(h) - y2n(U) = Syn(to)Ma + 16M?

Since yn(U) > 2Ma, it follows that y2(h) - y2(U) < 0.
By symmetry, the same analysis holds for trajectories originating on the

boundary of region II and entering region II.
Now consider trajectories in region III. We have

W = yn_i[yn - (Ta(yn-i -ryn + <ra-i(y))]
+yn[-^n(yn-i + yn + <ra-i(y))]

= (yn-i + yn)[-<ra(yn-i + yn + oa-i(y))] + yn-iyn
= (yn-i + yn)[yn-i + yn - va(yn-i + yn + ^n-i(y))]

-(yn-i +yn)2 + yn-iyn
= (yn-i + yn)[yn-i + yn- <7h(yn-i + yn + <7n-i(y))]

-§(yn-i + yn)2 - \y2n-i - \y2n
< l(yn-i + yn)\Ma-i - \yl_x - \y2n - |(y„-i + yn)2

Consider the level set

w=\t*Li
On this level set, a circle of radius Ma-\ in the yn-i,yn plane, we have

Ma-i < |yn-i+ yn\ < V2Ma-i

Consider \yn-i + yn\ = kMa-i where k € [1,^]. Then

w < -Ji«2_i-l(*^*-i)* +*wj_1
= -(l-* + Jt»)Mi_i

Since k G [l,\/2], VP < 0. Since W is bounded by a quadratic negative
definite function plus a linear perturbation in region III, W < 0 outside of
the level set W = \M^^ and inside region III. Further, if the trajectory
leaves region III, it returns in finite time and at a lower energy level W.
Consequently, for any e > 0, the trajectories of yn_i,yn enter a circle of
radius Ma-i + € in finite time and remain in that circle thereafter. If Ma-i
is chosen so that

La = V2(Ma-i + c) + Ma-i

8



(i.e. La > Ma-i(y/2 + 1)), then oa operates in its linear region after some
finite time. Once oa becomes a strictly linear function we have

yn-3 = yn-2 " <7fi-l(yn-3 + yn-2 + °a-l(y))
yn-2 = -<7n-l(yn-3 + yn-2 + ^n-2(y))

and the same analysis applies to show that yn-3,yn-2 eventually enters a
sufficiently small neighborhood of the origin. The iterative processcontinues
until it can be shown that, after some finite time, every saturation function
is operating in its linear region. After this time, the dynamics of (1) are
those of an exponentially stable linear system. D

Remark The results of [5] indicate that it is not possible to further
reduce the number of saturation functions by trying to stabilize three states
at a time.

2.2 Restricted Tracking

Consider the nonlinear system

X\ = 2?2

• i \ (6)

y = xi

Here an+1 is a linear saturation for (Ln+i,Mn+1). The task is to cause y to
track a desired reference trajectory yd given by yd^i/d, ••«>yi •

Corollary 2.1 // \ydn\t)\ < Ln+i - €for all t > t0 and for some c>0 then
there exist linear functions hi : Rn -* R such that for any set of positive
constants {(Xt,Mt)} where Mn < e, Li < Mi for i = l,...,n and Mi <
-^- for i = 1,.. .,7i - 1 and for any set offunctions {a,} that are linear
saturations for {(it-,M,)}, the feedback

U= y^ ~ °n(hn(x) +(Tn-l(hn-l(x) +•••+ ffi(Ai(5)) •••)
where x is defined as 5,- = xt- - yd*~1} for i = 1,..., n, results in asymptotic
tracking for the system (6).

Proof. In terms of x, (6) becomes

X\ = X2

in = -y^ + <7n+l{u)

9



Observe that, with the specified control law,if we chose Mn < e, then crn+i(-)
is always operating in its linear region so the closed loop system becomes

X\ = X2

Xn - -MMz) + <7n-l(/*n-l(£) + --- + <7l(hl (a))'*')

Now if {(Li,Mi)} satisfy Mi < ^- for t = 1,.. .,n - 1and <rt(-) satisfies
definition 1, then we have the conditions of the stabilization theorem of
section 2.1. Consequently, x asymptotically approaches zero. In turn, this
implies that y(t) asymptotically approaches yd(t). •

For a result with fewer saturation functions weassume, for (6), that an+i
is a linear saturation for (La+i,Ma+i).

Corollary 2.2 If\yy (t)\ < La+i-efor allt > t0 andfor some e > 0 then
there exist linear functions hi : Rn —»• R such thai for any set of positive
constants {(Li, Mi)} where Ma < e, Li < Mi for i = 1,.. .,n and Mi <
ij^/2 for ^—1, •••»» —1 and for any set offunctions {ai} which are simple
linear saturations for {(£,-, M,-)}, the feedback

w= ydn) ~ °h(ha(x) +aa-i(ha-i(x) +•••+ (?i(hi(x)) •••)

where x is defined by ii = Xi - ydl~ for i= 1,..., n, results in asymptotic
tracking for the system (6).

3 Conclusion

Two simple bounded control algorithms have been presented to globally
stabilize a chain of integrators. The algorithms are implemented with satu
ration functions that are linear near the origin and can be chosen arbitrarily
smooth. The control laws naturally extend to the task of trajectory tracking
using bounded controls.
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