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ABSTRACT

This report develops a compile-time algorithm for scheduling synchronous dataflow (SDF)
graphs in a manner that exploits opportunities for hoping — the successive reoccurrence of
identical firing patterns. Looping is highly desirable in static scheduling, since it allows sec
tions of the target code to be executed within loop constructs, such as "do-while", and hence it
provides reductions in program-memory requirements. The benefits are particularly pro
nounced in digital signal processing (DSP) applications, which often have many opportunities
for looping inherent inthem. Preliminary results of applying these loop-extraction algorithms
show orders of magnitude of compaction for target program code space.

1. INTRODUCTION

Among the advantages of using synchronous data flow (SDF) programming [1] to
develop digital signal processing (DSP) systems, is the facility for efficient compilatioa The
process, depicted in figure 1, involves maintaining a library of pre-defined code segments
corresponding to each possible type ofactor. A graph iscompiled by first determining an exe
cution order for the actors and then passing this ordering toacode-generator. It isoften useful
to derive from the SDF graph, its associated acyclic precedence graph (APEG), before begin
ning the compilation process.

This report focuses on the first stage of this process, scheduling the graph. We assume a
uniprocessor target architecture with a Harvard-style memory organization, orone of its vari
ants [2, 3], and we attempt to generate execution orderings which make efficient use of the
data and program memory spaces. Werestrict our domain to single processors so that wecan
focus on exploring the fundamental constraints which SDF graphs impose on buffering and
code space requirements. We expect however, that the techniques developed inthis report can
be extended to the multiprocessorcase.

Programmable DSP's normally have a limited amount of program memory and data
memory on chip. Additional memory requirements must be satisfied from off-chip memory,
from which access is usually significantly slower. It is thus highly desirable, and sometimes
necessary — if the external-memory option is not available, or economically feasible to
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Figure 1. Compiling a synchronous dataflow graph.

have the code and data for aprogram fit entirely within the on-chip memory spaces.
The uniprocessor scheduling issues are illustrated in figure 2 and table 1. Figure 2

presents an SDF graph and a uniprocessor schedule for that graph, and table 1presents a
profile — called a buffer activity profile — of the amount of data on each arc, asthe schedule
is executed. Each column in the buffer activity profile represents an invocation of a node in
the SDF graph. The invocations ofanode X are labeled Xlf X^..., Xn, where n is the number
of times X is fired inthe schedule. The rows inthe profile correspond to arcs, and the entry for
an arc a and an invocation /, denotes the number of samples residing ona immediately after
/ is fired. The row labeled total gives undereachinvocation /, the sum of the number of sam
ples existing on all arcs, immediately following / *s execution. Thus the largest value in the
total row indicates the minimum number of words of data memory which is required to sup
port the schedule.

®- 1<x>i-ri©

schedule: XYYYYZZZZZZZZZZZZ

Figure 2. A synchronous dataflow graph and a schedule for thegraph. The arcsfrom Xto
YandYto Zare labeled "a" and"b" respectively.



Arc *l ri Yz r3 ^4 Zl Zl z2 z* z4 Z*
a

b
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6

l
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9

0

8

0

7

0

6

Total 4 6 8 10 12 11 10 9 8 7 6

Arc *7 z8 Z9 Zio Zll Z12
a

b

0

5

0
4

0

3

0

2

0

1

0

0

Total 5 4 3 2 1 0

Table 1. The buffer activity profile for the graph infigure 2.

Figure 3 shows another schedule for the same graph, and table 2 shows the associated
buffer activity profile. Examination of the total row reveals that the memory requirements for
this schedule are hatf of the previous one. Thus, we see that even for avery simple graph,
scheduling choices can have alarge impact ondata memory requirements.

The impact of scheduling on program memory requirements iseven greater. This impact
occurs through the application of iterative programming constructs, or loops, to the target
code, across repetitive portions of the schedule. To illustrate this, wecan express the schedule
of figure 2in amore compact form, which we call loopedform, as x(4y)(12z). The foUowing
recursive definition makes this notation precise:

Definition: Aschedule expressed in looped form has one or more parenthesized terms, ofthe
form (N alt ax ••• ,an), where each at represents either a node in the graph, or a sub-
schedule in looped form, and (N aua2t ••• ,aH) represents the successive repetition N
times, of the firing sequence ax, a2, ..., an. For example, ABBABB can be expressed in
loopedform, as both (2ABB) and (2A(2B)). We call a schedule expressed in loopedform a

XYZZZYZZZYZZZYZZZ

Figure 3. An alternative schedule for thegraph offigure 2.
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Arc Z7 z8 z9 Zio Zll Z12
a

b

1

1

1

0

0

3

0

2

0

1

0

0
Total 2 1 3 2 1 0

Table 2. The buffer activity profile for theschedule of figure 3.



looped schedule, and we call each parenthesized subschedule a schedule loop.

The looped schedule x(4y)(12z) for figure 2 can be passed to the code generation phase
of figure 1, to produce code which contains a loop to implement each schedule loop. For
instance, if the target language is "C", thenourexample would produce an output listing with
the organization in example 1 below.

If given any actor N, we let S(N) denote the size in machine instructions, of the in-line
code segment for N, then the total program-memory requirement for the realization in exam
ple 1 is roughly1 S(X)+S (Y)+S (Z). This is adramatic reduction over translating the graph
without considering looping, which would require SQC}*4S(Y)+12S(Z) words of program
memory. Although the actual amount of improvement depends on the relative magnitudes of
5(X), S(Y) and S(Z), this example certainly illustrates that applying loops across repetitive
sections of a schedule can produceorders of magnitudeof compaction in target-machine code
space.

This report presents an evolution of scheduling heuristics for detecting and exploiting
opportunities for creating looping within a schedule. These opportunities are a common
consequence of the application of iteration, which in SDF, is defined [4] as the increase in
invocation rate which results from an upsampling along an arc. Section 2 formalizes our

Example 1

mainO {

Code segment for X

for(i=0;i<4;i++) [

Code segment for Y

}
for(i=0;i<12;i++){

Code segment for Z

}
}

Neglecting the overhead due to each loop



approach to code generation for loops which implement looped schedules. Section 3 details
our scheduling objectives and assesses the related tradeoffs. Section 4 briefly presents our
preliminary approachto the uniprocessor scheduling problem, and illustrates the grave limita
tions of this approach.The limitations arise primarily from viewing looping considerations as
a post-optimization phase, rather than having them drive the scheduling process. Section 5
presents a much more effective method based on preprocessing the graph, to isolate regions
for which it is likely that schedule loops can be constructed. After illustrating the benefits of
this technique, the section presents two shortcomings which prevent it from being a general
solution. The next section presents a third approach which remedies these shortcomings.
Finally, section 7 is devoted to concluding remarks.

2. CODE GENERATION ISSUES

Since this report focuses on exploiting opportunities for looping, it will be useful to first
examine the code-generation aspects of implementing schedule loops as loops in the target
code. Unless otherwise stated, we assume that thetarget language is assembler source for pro
grammable DSP's.

The primary code-generation issue for looped schedules is the accessing of buffers
which implement the passage of data along arcs, from within loops. The difficulty lies in the
requirement for different invocations of the same actor to have the same code. As a simple
example, consider the graph and schedule in figure 4. Both invocations Bx and B2 must
access their inputswith the sameinstruction. This requires that the output data forA be stored
in manner which can be accessed iteratively. This in turn, suggests writing the data produced
by A to successive memorylocations, and having B read this data usingthe register autoincre-
ment addressing mode— an addressing mode which was designed precisely for this purpose
of iteratively stepping through successive items of data. Code to implement figure 4 would
then have the structure outlined in figure figure 5.

This method presents two main considerations. The first consideration is that it requires
a register allocator to resolve situations when the number of address registers required in a
loop exceeds the number available in the target machine. The register allocator would be
responsible for deciding which register to swap out at a given conflict point, and for generat
ing the appropriate "spill code"to save and restore each swapped register's contents. In the
remainder of this report, we assume that sucha register allocator is available.

The second consideration is the mechanics of maintaining bufferswhich are accessed in
a loop. It canbe presented asthe following question:

Question: When is it necessary tobuffer data for an arc in successive memory locations, and

Schedule: A(2B)

Figure 4. A simple example of a looped schedule, which we use to introduce the difficulties
in generating code for loops.



Code for "A"

Code for "B

• • •

• • •

• • •

moveoutregl,buf

move outreg2, buf + 1

move #buf, R

do #2, LOOPEND

move (R)+, inreg

• • •

• • •

• • •

LOOPEND:

Figure 5. An outline of the code to implement the example of figure 4. Here "inreg",
"outreg!" and "outreg2" represent data registers; "R" represents an address register; and
"buf" represents an absolute data memory address. The statement "do #N, LABEL"
specifies the successiveexecution Ntimes, ofthe block ofcode between the "do" statement
and the instruction at location LABEL The syntax used inthis illustration is borrowed from
the assembly language for the Motorola DSP56000.

what is the procedurefor generating accesses to such contiguous buffers?

This section is devoted primarily toanswering the above question.

2.1. Modulo Addressing
Most programmable DSP's offer a modulo addressing mode which can be used in con

junction with careful buffer sizing, to alleviate the memory cost associated with requiring
buffer accesses to be sequential. This addressing mode allows for efficient implementation of
circular buffers, for which indices need to be computed modulo the length of the buffer. We
illustrate modulo addressing with an example.

Example 2: In the Motorola DSP56000 programmable DSP, a modifier register Mx is



associated with each address register Rx. Loading Mx with a value n > 0 specifies a circular
bufferof length n+ 1. The starting address of the bufferis determined by the valueVx, stored
in Rx, used io access the buffer. If we let B denote the value obtained by clearing the

log2(n + 1) least significant bits of Rx, then assuming that B <VX£B +n,m autoincre-

ment access (Rx)+ causes Rx to be updated to contain B + (Vx - B + 1) mod (n + 1).

Figure 6 illustrates the use of modulo addressing to decrease memory requirements
when sequential buffer access is needed. The schedule UUVUV would clearly require a
buffer size of 6 for iterative access if only linear addressing is available. The sequence of
buffer diagrams in figure 6 shows how only four buffer locations are required when modulo
addressing is used. W and R respectively denote the write pointer for U, and the read pointer
for V, and a"." inside abuffer slot indicates alive sample — asample which has been pro
duced, but not yet consumed. Note that the accesses of the second invocation of U and the
second invocation of V wrap around the end of the buffer.

Observe also, that the pointers R and W can be reset at the beginning of each schedule
period, to point to the beginning of the buffer, and thus the access patterns depicted in figure
6 could be repeated every period. This would causethe locations in each buffer's access to be
static — fixed for everyiteration of the periodic schedule — and hence they would be known
values at compile-time.

This illustration renders false the previous notion that for static buffering, the total
number of samples exchanged onan arc, per schedule period, must always beamultiple of the
buffer size. In actuality, the requirement holds only when there is anonzero delay associated
with the arc in question.

Before pursuing buffer size considerations any further, we develop indetail, the concept
of abuffer and the methods for implementing buffers during code generation.

2.2. Buffers

The following definition makes precise the notion of abuffer, which wehave been using
informally until now.

Definition: Leta be an arcin anSDF graph G, directed from a source node A to a sink node
B. Suppose m samples are exchanged through a during each schedule period, and let
aij>a2j> '" ><*mj denote respectively the first through mth samples produced by A to a
during schedule period j. Similarly, letblJt ••• ,bmJ successively denote the samples con
sumed by B from a during schedule period j.2 Then, assuming that code has been generated
to implement G, a buffer for a is a sequence D= {d^d^ ••• ,dN}, ofsuccessive memory
locations such that the following two conditions hold for all./;

(1) Vie {l,...,m},
(a) atj iswritten tosome *,-j e D; and
(b) bij is readfrom some y,- j e D;

(2) V i e {1,.... N], at least one of the following three conditions hold:
(a) 3 ksuch that xkj =dt; or

Observe that {V iand j, a{ j=bt j} ifand only ifthere is no delay on a
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Figure 6. An illustration of modulo addressing. "W" and "R" respectively represent the write
pointer for U and the read pointer for R.

(b) 3 ksuch that yk j =dt; or
(c) d-% contains a single livesample throughout schedule period].

Thus abuffer B for a is aset ofmemory locations such that the production/consumption
of a token to/from a corresponds to an access of B, and eachelement of B is accessed at least
once per schedule period unless it contains alivesample throughout the entire period.

The following definition presents aclassification of different types of buffers which are
useful for code generation.



Definition: Astatic buffer is a bufferfor which x(j andyiti are independent of]. Acontigu
ous buffer is a buffer {dx, d2,.... dN) such that the a\'s represent successive memory loca
tions. An iterative access buffer, abbreviated IAB, is a contiguous buffer {dx, d2,..., dN)
such that whenever l£i£m-l,dk= xu => xi+lJ =d(k+l)modN, and dt =yiJ => yMJ =
d(i+\)modN- Finally, a static, iterative access buffer, abbreviated SIAB, is a static buffer
which is an IAB.

The examples of figure 4 and figure 6 showed that an arc which is accessed from within
a loop should have successive samples stored in successive memory locations, possibly in a
modulo sense. This suggests that such an arc should be implemented as an SIAB. We intro
duce the following definition to aid us in summarizing ourobservations into a policy forcode
generation

Definition: Let Gbe a graph and let Sbea looped schedulefor G. We say that a node AofG
iscontained in a loop ifand only if there are one or more schedule loops containing invoca
tions of A. We say that an arc a is contained in a loop if and only if itssource node is con
tained in loop, or itssinknode is contained ina loop, or both.

With this terminology, wecan assert the fundamental policy which weusein code generation
for loops:

Policy: An arcwhich is contained ina loop willbeimplemented as anSIAB.

2.3. Determining the Size of a Buffer
With modulo addressing, it is clear from figure 6, that the minimum number of data

memory words required to implement an SIAB for a delayless arc is simply the maximum
number of live samples which coexist on the arc.

If however, an arc a has a nonzero delay, wemust impose the additional constraint that
the total number ofsamples exchanged along a during each schedule period is some positive
integral multiple of the buffer length. The need for this constraint is illustrated in figure 7.
Here, the minimum buffer size according tothe previous rule is four, since uptofour samples
can concurrently exist on the arc. Figure 7 shows the succession of buffer states if a buffer of
this length is used.

Now since there is a delay onthe arc, there will always be a sample in thebuffer at the
beginning of each schedule period — this is the first sample consumed by Vv For static
buffering, we need this delay sample — which is consumed in the schedule period after it is
produced — to reside in the same memory location every period. Comparison of the initial
and final buffer states in figure 7 reveals that this is not the case, since the write pointer Wdid
notwrap around to point to itsoriginal location. Clearly, Wcould have retumed to itsoriginal
position if and only if the number ofsamples exchanged onthe arc was an integer multiple of
the buffer length.

We summarize with the following theorem:

Theorem: For a given schedule, ifan arc a is to be implemented asan SIAB, then thefollow
ing conditions must be metbythebuffer size N :

I. N cannot beless than the maximum number of live samples which coexist onoc
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Figure 7. The effect of a delay on the minimum buffer size required for static scheduling.
With a buffer size of only 4, the location of the "delay sample" shifts two positions each
schedule period.

2. If a has nonzero delay, then the number of samples exchanged along a during a schedule
period must be a positive integer multiple ofN.

We denotebysa, theminimum SIAB sizefor a given by constraints 1 and2.

Observe that when an arc is not in aloop, it isby nomeans necessary to implement it as
an SIAB—in fact, data memory is often wasted by doing so. Thereason is simple: such apol
icy places unnecessary constraints on memory allocation, and such constraints can only do
harm to theefficiency of the allocation. However, this report willnotelaborate onthetopic of
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optimizing data memory allocation; it is a topic which our research has not yet explored in
detail. Instead, we make the following assumptions throughout the remainderof the report, for
calculating the data memory requirements of a schedule:

1.For a loopedschedule, all arcs are implemented as SIAB's, occupying their owncontiguous
segments in memory.

2. The memory requirement for a schedule which is not a looped scheduleis that obtainedby
applying the following fact, which is presented here without proof:

Fact: A schedule which is not a looped schedule can be implemented with a data
memory cost given by

aeA

where A denotes the set of arcs with nonzero delay, and X denotes the maximum number of
live samples which coexist on all arcs which have no delay. Note that if theoriginal graph has
no delays, then the above expression reduces to the maximum number of concurrent live sam
ples which can exist in the entire graph.

This is the policy we used in discussing figure 2 and figure 3, and we will continue to
use this policy throughout the remainderof the report

2.4. The Mechanics of Code Generation
This subsection describes the mechanics for generating code for a loop obtained from a

looped schedule. The primary issue is determining the addresses for instructions which access
arcs that are contained in loops. State variable accesses pose no special problems, since the
state variable storage for an actor is fixed across all invocations. The addressing information
required for accessing inputs and outputs can efficiently be generated by maintaining a data
structurewhichwe call the bufferprofile of a loopedschedule.

Figure 8 and table 3 illustrate the methods presented in this subsection. Figure 8
presents a multirate SDF graph and a looped schedule for this graph, and table 3 represents
the buffer profile for this schedule. Assuming thateach arc is implemented as a static buffer,
the buffer profile gives the following data for each input and output access of every invoca
tion:

1. The offset into the buffer at which the invocation accesses the arc.

2. Whether ornotthe buffer access wraps around the end of the buffer, and then performs one
or more accesses from the beginning of the buffer. Such an access would require thatmodulo
registers be set up beforehand.

The data structure is created by simulating the buffer accesses as the schedule is
traversed. After the simulation, we can create a buffer length data structure containing the
length ofeach buffer. We can then perform memory allocation, toobtain a buffer address list,
containing the starting address of each buffer.

With these datastructures — buffer profile, buffer length, and buffer address — we can
easily generate the absolute address for any arc I/O access which does not occur within a



Schedule: CA(2B(2C)BC)BCCBD

Figure 8. A muttirate graph with a looped schedule.

invocation offset modulo

A: output 1 0 no

1 0 no

2 1 no

B: input 3

4

2

3

no

no

5 4 no

6 5 no

1 3 no

2 0 no

B: output 3

4

3

0

no

no

5 3 no

6 0 no

1 0 no

2 2 no

3 4 no

4 0 no

C: input 5 2 no

6 4 no

7 0 no

8 2 no

9 4 no

1 0 no

2 1 no

3 2 no

4 3 no

C: output 5 4 no

6 5 no

7 6 no

8 7 no

9 8 no

D: input 1 0 no

12

Table 3. The buffer profile forthe scheduleoffigure 8.

loop. As figure 5 showed however, absolute addressing cannot be used in general, within
loops.
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2.4.1. Common Code Space Sets
Loops in the target code provide savings in code space by allowing differentinvocations

of the same actor to map to the same code segment. For instance, returning to example 1, we
see that asingle code segment for Yexecutes the four invocations Yx, Y2, Y3 and Y4, and simi
larly 12 invocations ofZ areimplemented with a singlecode block forZ. We summarizewith
the following definition, which will be useful in illustrating ourapproach to address genera
tion within loops.

Definition: Given an SDF graph G anda looped schedulefor that graph, letA bea node in G
which is contained in a loop. Then a common code space set, abbreviated CCSS, of A, is a
maximal set of invocations ofA, which map to the samecodesegment. We say thata CCSS is
nontrivial ifand only if it contains more than one element. Note that a node inan SDF graph
may have more than one CCSS.

From the schedule of figure 8, we see that A has no nontrivial CCSS's; B has two:
{fli,£3}and [B2,B4};mdC also has two: {C2, C3, C5, C6) and {CAtCn). These findings
are summarized in table 4. From the buffer profile of table 3 and these CCSS profiles, we can
generate addresses for all arc I/O accesses.

Forexample, we see that the members of the CCSS [Blt B3) access arc b with different
offsets. This requires that all read accesses to b within the loop containing [Blf B3)t becar
ried out with an autoincremented address register R. R can beloaded before entering die loop,
and if it must be swapped out at any point, it can be saved to a designated memory location
Breadpouaer- Code to restore Breadpointer into R must then be inserted prior to any subsequent
CCSS region for B within the loop. This readpointer thus functions as a state variable for B
through the durationof the loop.

It is not always the case however, that autoincrement addressing must be used to access
arcs within aloop. Examination of table 3reveals that the members of CCSS {B ltB3) write
to arc c from the same offset (3), so absolute addresses buf2+3 buf2+4, and buf2+5 can be
used towrite the three samples. Absolute addressing can also be used for the CCSS {B2 B4) 's
write accesses ofc, andthe CCSS {C4, C7}'s read accesses of c aswell.

[BuB3]

[B2,BA]

[C2, C4,C5, C&)

{C4,C7J

Table4. The nontrivial CCSS'sfor the schedule offigure 8.
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2.4.2. A Policy for Code Generation
The preceding discussion has developed ourpolicy forgenerating addresses to access an

arc which is contained in a loop:

Policy: Suppose we are given anSDFgraph Ganda looped schedulefor G. LetX be a node
inG, and suppose there is anarc a Uaving(entering) X. Suppose also that Visa CCSS ofX.
Then the code segment for Y can write to (readfrom) a through absolute addresses if and
only ifall elements ofT write to(readfrom) a at the same offset. If absolute addressing can
notbe used, we use register autoincrementing, possibly inmodulo-mode.

This policy uses absolute addressing whenever it can. In practice however, it is often
more efficient to use a data register or indirection through an address register (an absolute
address typically resides in a separate instruction word, resulting in a slower instruction).
Theoretically, a data register can always be used in place of absolute addressing, but this is
efficient only if the sample stored in the register is read before the register is required by
another computation. Also, if an invocation consumes several samples from a single arc, it
would be much more efficient to read those samples with an autoincrement address register
even if the locations of the samples are known at compile-time. Our future research will care
fully examine such code-optimization issues, but for the present, we adhere to the policy
asserted above, since it provides a clear and fully-developed framework for making our
scheduling examples concrete.

3. OBJECTIVES

An extremely desirable capability for auniprocessor scheduler is the ability to solve the
following problem:

Problem: Given an SDF graph Gand a target machine M—which consists ofa single CPU,
P words of program memory, and D words of data memory — let Vbe the set of all valid
schedules for Gwhich result in programsfor M, whose program and data memory require
ments are within P andD respectively. Find the element of Vwhich executes in thesmallest
amount oftime.

This problem is extremely difficult. We have therefore chosen a much less ambitious,
but nevertheless substantial, guideline for our uniprocessor scheduling efforts, as a starting
point for addressing this simultaneous consideration of data memory/program
memory/execution time optimization, and as amethod for improving the quality of ourSDF
compiler. This guideline involves, as the first priority, the compaction of code space. Our
scheduler is thus driven by the primary goal of exploiting opportunities for looping. Two con
siderations haveled us to adopt this primary goal:

• Data memory locations can often be reused to buffer data from multiple noninterfering
arcs, so in general, with an intelligent memory allocator, a compiler canmeet data memory
requirements much more easily than program memory constraints. There is no such mechan
ism, however, for having code for different regions of the graph reside in the same memory
space.

• DSP algorithms frequenfly have substantial amounts of looping inherent in them.
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We approach the problem of efficient data-memory utilization, as a secondary goal. If
two scheduling decisions produce identical code-space consumption, we will favor the deci
sion which requires the least amount of data space, and thus data memory considerations are
viewed as a tie-breaking criterion for the main goal of code-space compaction.

We ignore the direct impact of scheduling on the execution time of a program. For
example, scheduling decisions determine whetheror not invocations can find their respective
input data in machine registers, rather than having to read from memory. Conversely an invo
cation may or may not need its output copied from a register to memory, based on the
schedule. We do not elaborate on considerations such as these, in which the schedule interacts
with the efficiency of the generated code. We also ignore the execution time overhead associ
ated with loops. This overhead includes loop startup overhead, index count overhead, and
overhead due to introducing spill code to maintain buffer address registers. These forms of
overhead are minor, and often avoidable. For example, the Motorola DSP56000/96000 has a
"zero-overhead" looping mode whicheliminates the loop countoverhead, by performing the
indexing in hardware.

Figures 9-12 illustrate some of the tradeoffs discussed above. The graph in figure
9 showsthe graph of figure 2 with adownsampling of 2 appended.

Figure 10 shows a schedule for figure 9, with a summary of the associated buffering
requirements given in table 5. The program memory requirement is
SQC) +S(Y)+S (Z) +S(U), the lowest possible code space size for this graph, and the data
memory requirement is 28 words.

• Figure 11 presents an alternative schedule which exhibits the sameminimum code size,
but decreases data memory utilization by43%. The difference isdue tothe nesting of loops in
figure 11, and this is traded off by an increase in loop overhead over figure 10. Table 6 out
lines the data memory cost for this alternative schedule.

©^-r^©1^©1—^)
Figure 9. An SDF graph usedto illustrate tradeoffs involved in scheduling.

X(4Y)(12Z)(6U)

Figure 10. A looped schedulefor the graph offigure 9.

Arc Buffer Length

a

b

c

4

12

12

Total 28

Table 5. Asummary of thebuffering requirements for theschedule offigure 10.



X(2(2Y(3Z))3U)

Figure 11. An alternative looped schedule. Observe that this schedule involves several
nested loops.

Arc Buffer Leneth

a

b

c

4

6

6

Total 16

16

Table 6. The buffering requirements for the schedule of figure 11.

If we let s denote the per-loop startupoverhead, and we assume "zero-overhead*' index
ing, thenthe total overhead for each schedule is shown in table 7. While verifying the calcula
tion for table 7, observe that a loop startup overhead is incurred for every initiation of every
loop.

Finally, figure 12 presents a third schedule. Looping is not applied withinthis schedule,
and thus we cancompute the data memory requirement from the bufferactivity profile, which
is given in table 8. This requirement is found to be much lower than those of the previous
schedules. However, the absence of looping in this schedule results in a significantly larger
code spacerequirement ofS(X) + 4S(Y)+ 125(Z) + 6S(U).

With respect to ourcurrent scheduling objectives, the schedule of figure 11 is the most
desirable, sinceits code space efficiency is matched only by a schedule which consumes more
data space. The tripling in loop startup overhead is neglected in our approach, as is the
significant saving of data memoryconsumption in figure 12.

Our future research directions include investigating more thoroughly, the tradeoffs
between the three scheduling objectives of minimizing execution time, and data and program
memory requirements.

Schedule Overhead

X(4Y)(12Z)(6U)
X(2(2Y(3Z))3U)

3s

9s

Table 7. A comparison of the loop-startup overhead for the schedules of figure 10and
figure 11, assuming that the cost of initiating any loopiss.

XYZZUZYZUZZUYZZUZYZUZZU

Figure 12. A schedule for thegraph of figure 9 which does not apply looping.



Arc *1 r, Zl Z2 tf| Z;> r?, z4 tf? z^ Zfi
a

b

c

4

0

0

3

3

0

3

2

1

3

1

2

3

1

0

3

0

1

2

3

1

2

2

2

2

2

0

2

1

1

2

0
2

Total 4 6 6 6 4 4 6 6 4 4 4

Arc r< Zin tfi Zn Zio tffi
a

b

c

0

3

1

0

2

2

0
2

0

0
1

1

0

0

2

0

0

0

Total 4 4 2 2 2 0
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The total data memory requirement is 6 words.

Table8. The buffer activity profile for the schedule of figure 12.

4. PRIOR WORK

The scheduling objectives defined in the previous section evolved out of observations
based ontwo initial scheduling approaches. These approaches are described in this section and
the next

Our first approach to uniprocessor scheduling was touse asimple heuristic for minimiz
ing data memory requirements [567]. This heuristic involves deferring nodes whose immedi
ate descendants have sufficient data to fire, until all descendants have used up their input sam
ples, and are no longer firable. Furthermore, no node is scheduled twice until all other nodes
have been tried. The technique is an intuitive way to keep excess samples from accumulating
on arcs, and to thuskeep overall buffering requirements low.

Our first approach for generating looped schedules was simply to post-process the
minimum buffer-length scheduler with apattern matching algorithm, which attempted to find
successively repeated sequences of firings [8]. The scheduler then grouped such sequences
into schedule loops.

Thus in this approach, looping was not at all considered while constructing the ordering
of invocations, and as a result, opportunities for creating schedule loops frequendy went
undetected.

Our previous example in figures 9-12 illustrates very well this conflict between
minimum buffer length scheduling and scheduling to maximize looping. Figures 10-11 show
two different looped schedules which can be obtained for the graph of figure 9. Figure 12 is
the schedule obtained from the buffer minimization heuristic. Clearly this schedule fails to
extract the looping which is inherent in the graph.

Minimum buffer length scheduling fails because it does not attempt to recognize identi
cal firing patterns [8]. To improve the degree oflooping in the schedule, scheduling decisions
must be driven by agoal ofdetecting and grouping together, repetitive series ofcomputations.
The rest ofthis report describes our approaches to carrying out this scheduling goal.
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5. GROUPING CONNECTED SUBGRAPHS OF UNIFORM FRE-

The first technique for considering looping while constructing the schedule was
developed by How [8]. It involves isolating regions of the graph called connected subgraphs
ofuniformfrequency.

Before defining this term, we introduce some notation:

Notation: An SDF graph G can be expressed as a set {N, A), where N is the set of nodes in
G and A is the set of arcs in G. We say that G = {N, A). For any SDFarc a, we denote by
p (a), the number of samples produced onto a during an invocation of a's source node. Simi
larly, the number of samples consumed from a by a's sink node, is denoted c(a). Finally,
given a directed graph P, the subgraph, associated with a set of nodes M in P, is the graph
[M, 0}, where 0 is the set of arcs that connect a node in M to another node in M.

We now define a class of subgraphs for an SDF graph. This section will demonstrate
how such subgraphs can be used to produce looped schedules.

Definition: Given anSDF graph G= {N, A}, suppose M e N,and letH = {M, fl) denote the
subgraph associated with M. We say that His a connected subgraph of uniform frequency,
abbreviated CSUF, if andonly if thefollowing two conditions hold:

(1) H is a connectedgraph.

(2) V<xea,p(<x) = c(a).

//H = {M, Q} is a CSUF, wealsosayinformally, that Mis a CSUF.

Thus, a CSUF is a connected set of nodes with no sample rate changes between them.
Note that this does not necessarily mean thatp (a) and c (a) are uniform across Q. For exam
ple, the graph in figure 13 is a valid CSUF. The main point is that within any valid periodic
schedule S for G, each member of a CSUF has the same total number of invocations.

Figure 13. A CSUFwith nonuniform p(a).
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Whenever it doesn't introduce a delay-free loop in the graph, a CSUF M can be treated
by a scheduler as a supernode, which is fireable whenever all external inputs to M are avail
able. An invocation of M corresponds to firing each node inside M once, and a schedule for
this aggregate-firing can easily be constructed, since M is assumed to be connected.

Figures 14-17 illustrate how partitioning a graph into CSUF's can lead to looped
schedules. The encircled regions in figure 14outline three nontrivial CSUF's — [A, B, C},
[E,F], and {H,G). Each of these regions is initially considered by the scheduler as a single
unit, as shown in figure IS. The minimum buffer size scheduling heuristic of the previous
section, can then be applied to this clustered graph. The result is given in figure 16.

The first schedule in figure 16 shows the schedule for the clustered graph, and this
schedule is flattened — the CSUF supemodes are replaced with their respective subschedules
— to obtain the second schedule.

Note that the loops in this looped schedule are based on the three CSUF's. Had these
CSUF's not been consolidated as individual units, as in figure IS, the scheduler could have
interrupted a repetitive sequence, to invoke a fireable node from some other region of the
graph.

For example, figure 17 shows the first several firings of a valid schedule, according to
our minimum buffer size heuristic. Observe how the CSUF [A, B, C} is interrupted by the
first firing of H, and thus the looping inherent in the connection of {A,B,C} to the

Figure 14. A multirate graph with threeCSUFs — {A.B.C}, {E,F}, and {G.H}.

Figure 15. The topology that results from considering each CSUF in figure 14 as a single
node. X, Y andZ are used to represent {A,B,C}, {E.F}, and {G,H} respectively.



Schedulefor the clusteredgraph:

(2(4X)(2Y))DI(3HG)
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The flattened schedule: (2(4ACB)(2EF))DI(3HG)

Figure 16. Scheduling the clustered graph of figure 15. The first schedule considers each
cluster as an atomic unit, andthe second —"flattened" —schedule isobtained byreplacing
each appearance of a cluster in the first schedule, with a subschedule for that cluster.

downsampled inputof D, goes unexploited. The invocation of if so earlyin the schedule, also
precludes exploiting the upsampled CSUF [G, H}.

The capability of CSUF-driven scheduling is well matched toDSP algorithms, since sig
nalprocessing systems frequendy consist of single-sample-rate subsystems, with sample-rate
changes occurring only at scattered interface points. The effectiveness of the CSUF approach
was demonstrated upon its incorporation within a compiler which translates SDF graphs into
assembly code for the Motorola DSP56000 programmable DSP [8].

Although CSUF-based scheduling greatiy improves the ability to extract looping from
SDFgraphs, it has twolimitations, which prevent it from being a general solution.

The first shortcoming is illustrated in figure 18.3 Here the formation of the CSUF
[A, B, C, F} results in a deadlocked clustered graph. Thedeadlock arises because the source
node A has beensubsumed by a supemode which is no longer a source. The execution of the
graphmust beginwithA, but the supemode containing A needs externaldata to fire. A similar
situation may occur when anarc with nonzero delay is subsumed by a CSUF.

Thus (A,B, C,F} must be decomposed to retain as large a CSUF as possible, without
maintaining the deadlocked state. The desired partition is shown in figure 19, along with the
resulting looped schedule. Unfortunately, we have been unable to deduce a general solution to
theproblem of optimally decomposing a CSUF, ina deadlocked clustered graph.

The second shortcoming ofthe CSUF approach arises from its inability todetect looping
which occurs across sample rate changes. Figure 20depicts a graph with opportunities for this
kind oflooping, and figure 21 shows a looped schedule for this graph.

Although figure 21 reveals that a large amount of looping is inherent in this graph —
enough to allow an implementation with only one code segment peractor — clearly none of

ABCHEFACBEFACBACBD

Figure 17. The first several firings of a schedule for the graph of figure 14using the
minimum buffer size heuristic described in section 4.

3This example is taken from [8],
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Figure 18. The consolidation of the CSUF {A, B, C, F} introduces a directed delay-free
loop.

Schedule: (2(3ABF)D)E(6C)

Figure 19. The desired partition of the cluster in figure 18 and the resulting looped
schedule.
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Figure 20. An SDF graph which offers opportunities for looping that span sample rate
boundaries.

D(2F(E(2A))BC)

Figure 21. A looped schedulefor the graph offigure 20.

the looping results from CSUF's, since every arc involves asample rate change. In this case,
the CSUF-driven schedule is the same as what the minimum buffer size technique yields. The
result of passing this schedule through apattern-matching postprocessor is shown in figure 22.
Clearly this schedule applies significandy less looping, and requires much more code space,
than that of figure 21.

The reason is because it fails to recognize repeated firing patterns across F, E and A. As
aresult, D is allowed to fire midway through the schedule, and this breaks up the nested loop
whichcould havespanned almost theentire program.

This section has demonstrated that SCCF-based scheduling can produce large improve
ments inthe degree of looping, over scheduling techniques which do not attempt torecognize
looping while constructing the schedule. However, we have also shown that two limitations
— the possible introduction of deadlocks, and the inability to consider loops which span
regions of different sample rate — prevent this method from being a general approach. The
remainder of this report presents a generalized version of this technique, which overcomes
these limitations, and thereby, extends our ability to extract looping from SDF graphs.

F(2E(2A))FDC(2E(2A))C

Figure 22. The schedule for the graph of figure 20 which is obtained from the CSUF ap
proach. Theschedule is much lesscompact than thatoffigure 21.
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6. PAIRWISE GROUPING OF ADJACENT NODES

In this section we present an enhanced technique for hierarchically clustering the SDF
graph in order to expose opportunities for looping. This method systematically handles any
deadlocks which result from the cluster-building process. Furthermore, the technique consid
ers looping opportunities irrespective of whether or not they cross sample-rate boundaries.
This uniform treatment leads to much better performance than the CSUF-based approach for
graphs which contain many sample-rate changes. Finally, by its emphasis on hierarchical
pattern-building, this improved scheduling algorithm favors nesting loops, rather than cascad
ing them, whenever possible. As illustrated in figure 3, nesting loops requires less buffering
without increasing code-space requirements. Thus, our improved scheduler performs in
accordance with the scheduling objectives outlined in section 3.

Like the CSUF approach, the method described in this section repeatedly consolidates
groups of nodes in the SDF graph. There are two primary differences however, in the pro
cedure for selecting thenodes which are to be formed into acluster ata given step in the algo
rithm:

(1) Whereas CSUF clusters can involve an arbitrary number of nodes; our new
method forms clusters with only two nodes at a time. The primary motivations for this incre
mental approach to cluster-building are to effectively organize nested iteration andto isolate
the causes of deadlocks as they arise. We will elaborate on these considerations later in the
section.

(2) Thenodes which comprise acluster can beof mutually differing frequencies. This
allows us to exploit looping opportunities that involve sample-rate changes.

Recall that the interpretation of a cluster in the SDF graph, is a group of nodes, or sub-
clusters, which the scheduler considers as an indivisible unit to be invoked without interrup
tion. Thus, weagain require that clusters involve connected sets of nodes. It is actually possi
ble toconsider nonconnected sets ofnodes for continuous scheduling. However, doing so does
not improve our ability to conserve memory consumption, since a schedule loop involving
two nonconnected subsets of nodes Ci and C2 can be divided into separate loops for C i and
C2, without affecting the buffering requirements. The primary advantage of encapsulating
such subgraphs within the same loop is the reduction of loop startup and index count over
head, but this benefit does notrelate to our current scheduling objectives, defined in [ref]. We
expect that our future work will pursue the issue of clusters containing nonconnected sub
graphs.

Since clustering decisions in our enhanced scheduling technique involve pairs of con
nected nodes, we call the method Pairwise Grouping ofAdjacent Nodes, abbreviated PGAN.
The following definitions make precise the concept of adjacency in an SDF graph:

Definition: Ifx and y are two distinct nodes ofan SDF graph, then x is saidtobea successor
ofy iffthere is an arc directed from y to x. y is called a predecessor ofx iffx is a successor
ofy. Finally, we say that x is adjacent to y iffx is asuccessor ofy orxisapredecessor ofy.

The PGAN algorithm involves repeatedly selecting pairs of adjacent nodes to consoli
date into clusters. We referto the steps taken to choose and form a clusteras an iteration of
the algorithm, and we adopt the convention of indexing the iterations with positive integers.
We summarize the procedure of applying PGAN to an SDF graph G, with a pseudocode



24

description:

GX = G
j=l

loopforever
Attempt toforma cluster in graph GL.

If all clustering opportunities are exhausted
Then exitfrom the loop
Else

•Let Ci denote the clusterformed in this iteration;
•SetGi+i equalto thegraphthat resultsfrom replacing
in Gi the two nodesqfCi with a single node
that represents Ci.

end loop

We will illustrate the procedure for selecting clusters, and then present a more detailed
description of the overall algorithm. First however, we digress to consider looping from the
perspective of the APEG,andto relate theseconsiderations to the SDF graph.

6.1. Examining the APEG for Looping
It is instructive to view the formation of clusters in an SDF graph with respect to the

impact on the corresponding APEG. The APEG is particularly illustrative in discussing loop
ing, since it explicitly shows the repetition inherent in an algorithm. Figures 23 and 24 depict
respectively a multirate SDF graph and its associated APEG. The optimal looped schedule
with respect to the objectives defined in section 3 can easily be obtained from inspection of
the precedence graph — 2D(3A(2(3EFG)H))BC. Note that this result is much more difficult to
deduce from examination ofthe original SDFgraph.

Looping information is visually easier to extract from an APEG because looping oppor
tunities are manifested asrepeated subgraphs. These subgraphs canbe considered ashierarchi
calclusters in a manner analogous to our interpretation of clusters in the SDF graph. Figure
25, table 9 and figure 26 illustrate this process for the example of figure 23. The series of
graphs in figure 25 shows a succession of cluster formations, each involving two or more
repeated subgraphs. Table 9 lists looped schedules for the root graph, and each cluster, and
figure 26 presents the result of recursively replacing the appearance of each cluster with its
subschedule, in the rootschedule. This result agrees with the "optimal" schedule.

Graph Schedule

Root

cluster4

cluster3
clusterl

clusterl

(2D)(3cluster4)BC
A (2 cluster3)
Qcluster2)H

E clusterl

GF

Table 9. Theschedulefor each ofthe clusters depicted in figure 25.
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Figure 23. A multirate SDFgraphwhich offers severalopportunities for looping.



Figure 24. The APEG for thegraph of figure 23. Observe that the APEG representation ex
poses very clearly, the looping inherent in the original SDFgraph.
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Figure 25. A hierarchy ofclusters ofrepeated subgraphs for the apegoffigure 24.

(2D)(3A(2(3EGF)H))BC

Figure 26. Thelooped schedule suggested by the hierarchical decomposition offigure 25.

Since each of the clusters in figure 25 spans all invocations of the nodes which it sub
sumes, theyall correspond to hierarchical clusters in the original SDF graph. Figure 27 shows
theequivalent sequence of cluster formations in the original SDF graph.

An example of an APEG subgraph which does nottranslate to the SDF graph is the con
solidation of the first and second invocations of D with, respectively, the first and second invo
cations of cluster4 in figure 25. The formation of this cluster and the resulting schedule are
depicted in figure 28. Observe that the code space size is no longer one code segment per
actor, instead the code corresponding to a very large subgraph — that for cluster4 — must
appeartwice in the target program.

The large increase in code size results from the inability to encompass all invocations of
cluster4 within the newly formed schedule loop involving D and cluster4. Clearly aschedule
loop L, involving D and cluster4, could span all invocations of cluster4 only if the ratio of
appearances of D to the number of appearances of cluster4, in L, was equal to the ratio of the
total number of invocations of D to the total number of cluster4 invocations. This is precisely
the condition which relates clusters in an SDF graph to clusters in the associated APEG. We
summarize and elaborate on these points with following definition and fact

Definition: Let G = [N, A} be an SDF graph and let P denote its associated APEG (for
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Figure 27. The hierarchy of subgraphs in the SDF graph which corresponds to the organi
zation of APEGclusters infigure 25.
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cluster5

scheduie:(2 cluster5) cluster4 B C <->

(2DA(2(3EGF)H))A(2(3EGF)H)BC

Figure 28. The consolidation of a repeated APEG subgraph which does not correspond to
a cluster in the SDF graph, and the resulting schedule.

blocking factor l)f For any A e N, we define the frequency ofA, denoted v(A), to be equal
to thenumber of invocations of A appearing inP.For Ah A2 e N, we define

FCAlAj^
vCA^/gcdCvCA^MAi)),

where gcd denotes the greatest common divisor operator.

If we form a cluster with two nodes Ax and A2, we can interpret this cluster as
gcdCvCA^.vCA^) repetitions of a group of firings involving F(Alt A^ invocations of At and
F(A2, A{) invocations of A2, since FCA^A^ / F(A2,Ai) is the reduced form of the frequency
ratio between Aj and A2. The following fact expresses this observation in terms of the impact
on the APEG of forming a cluster in an SDF graph.

Fact: Let G be an SDF graph and let P be its associated APEG. LetA and B be a pair of
nodes ofG, andlet G denote the SDF graph which results from consolidating A andB into a
cluster *¥ in G. If the formation of ^¥ does not produce a deadlocked graph, andwe let r =
gcd(v(A),v(£)), then the APEG Pfor Gcan be obtained by combining

{AhA2, ...,Af(Ap),Bi,B2, ....,£F(B,A)} *
{^F(A,B>*-1' i4F(A,BH2» •••» ^2F(A,B)' 5F(B,A>fl' 5F(B,A>f2 52F(B,A)) *

^his discussion can easily be generalized to consider arbitrary blocking factors, but we refrain
from doing so for clarity.
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{^(i-l)F(A3Hl"A(i-l)F(A3H2» •••• i4fF(AJB)t fl(M)F(B,A)fl» fl (M)F(B,A>f2' —» fliF(B,A)}

into 4*!,*F2,..., *Pr respectively.

Figure 29 and table 10illustrate the significance of F(*,*), and v(*) in relating a cluster
in the SDF graph to its APEG counterpart.

m^jH®

(a) A cluster in an SDF graph.

(b) The associated APEG cluster.

Figure 29.

v(A) = 6

v(B) = 4

gcd(v(A),v(B)) = 2
= The number of invocations of the APEG cluster.

F(A3) =v(A) / gcd(v(A),v(B)) = 3
= The number of invocationsof A perclusterinvocation.

F(BA) =v(B) / gcd(v(B),v(A)) = 2
=The numberof invocations of B perclusterinvocation.

Table 10. Quantities relating the SDF cluster andthe APEG cluster offigure 29.
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Figure 28 and the above fact suggest that a large increase in code size can result from
forming a cluster in the APEG which does not have a counterpart in the SDF graph. For this
reason we do not consider the consolidation of repeated APEG subgraphs which do not
correspond to clusters in the associated SDF graph, and thus our clustering decisions can
operate direcdy on the SDF graph. However, later we will show that we can check for
deadlocks which candidate clusters may introduce more efficiently by working with the
APEG.This consideration renders the APEGmore suitable than the SDF graph for the imple
mentation ofPGAN.

The PGAN algorithm involves repeatedly selecting pairs of nodes as clusters to expose
opportunities for scheduling nested loops. Before coalescing a candidate cluster we must first
verify that its formation will not result in a deadlocked graph. In the next section we will
develop our technique for selecting candidate clusters and subsection 4 will then address the
problem of checking for deadlock.

6.2. Cluster Selection

Our development of the PGAN algorithm began with an approach that selects the two
nodes of a candidatecluster one at a time. The first node, called the base node for the cluster,
is simply the node which we consider most likely, at the current algorithm iteration, to be con
tained in the deepest level of anested loop. Choosing the second nodetheninvolves selecting
which of the nodes adjacent to the base node will be combined with it to form the candidate
cluster.

We will first present the criteria for choosing the base node and the adjacent node for
this initial approach. We will then illustrate ashortcoming of this approach whichresults from
separating the selectionof the two nodes in a cluster. Finally, we will concludethe subsection
with an improved selectioncriteria which remedies this shortcoming and forms the coreof the
PGAN algorithm.

6.2.1. Selecting the Base Node
The following policy summarizes the criterion for selecting the basenode fora cluster:

Policy: The base node at a given algorithm iteration is chosen as the highestfrequency node
which has not already been considered as a base node.

We prioritize nodes based on frequency because to recognize anested loopconstruct, the
inner — or higher frequency — loops must be coalesced before committing clusters to the
outer regions. This requirement is revealed in figures 30-32. Figure 30 shows an SDF graph
and the associated APEG for a simple example ofnested iteration.

Figure 31 depicts the result of first coalescing nodes B and C, whichbothhavelower fre
quency than D. The resulting schedule does not fully exploit the nested loop inherent in the
original graph.

Figure 32ontheother hand, shows that if we start theclustering process withthehighest
frequency nodeD, thenwe canobtain the desired nested loop structure in the final schedule.

Since the cluster hierarchy translates direcdy to the hierarchy in theloops of the result
ing schedule, the innermost clusters — the clusters which we create first — must correspond
to the desired inner loops. Since the inner loops are the most frcquentiy executed, it follows
that nodes withthe highest frequency must beinvolved inthe earliest clustering decisions.
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(a) An SDF graph...

(b) and its APEG.

Figure 30. An SDF graph which suggests a nested loop. Scheduling this graph into this
nested loop requires proper selection of the base node.
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clusterl

cluster2

Schedule:

A(2 cluster2) <-> A(2 clusterl (4D)) <-> A(2B(2C)(4D))

Figure 31. The result offirst coalescing nodes oflower frequency in the APEG of figure 30.
Thescheduledoes notexhibit the optimal nested looping.
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cluster2

clusterl

Schedule

A(2 cluster2) <-> A(2B(2 clusterl)) <-> A(2B(2C(2D)))

Figure 32. Clustering the highest frequency nodes first achieves the desired nested loop
ing.

6.2.2. Selecting the Adjacent Node
The selection of the base node reflects the section of the graph which ismost likely tobe

involved inthe inner most loop ofanested loop. Now we address the problem ofchoosing the
node adjacent to the base node, which completes the specification of a candidate cluster. We
refer to this second node as the adjacent node. Again, our aim is to detect opportunities for
nested loops, whenever they are present

Figures 33-35 present an example inwhich the detection ofnested looping depends upon
proper selection of the adjacent node. Figure 33 shows an SDF graph and its associated
APEG. From these graphs, we see that Cmust be the base node for the initial clustering deci
sion. The choice of C as the base node presents two possibilities for the adjacent node — B
andD.

Figures 34 and 35 detail the consequences of choosing B and D, respectively, as the
adjacent node, and comparison of these figures reveals — in a manner analogous to that of
figure 31 and figure 32 — that the appropriate adjacent node for achieving optimal nested
looping is the nodewith thehigher frequency, D.

This illustration at first glance, persuades usto always choose the highest frequency can
didate for the adjacent node, just as with the selection of the base node. However, more care
ful consideration reveals that we must also consider the relationship in frequency between
each candidate adjacent node and the base node. Consider figures 36-38, which present amul
tirate graph, and in same manner as figures 30-35, depict the respective consequences of
selectingeachof the two possibleadjacent nodes forthe initialbasenode C.

Observe that selecting the lower frequency node, B,results in aschedule withthedesired
nested loop, whereas the result of selecting the node of higher frequency is suboptimal. This
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Figure 33. An example used to illustrate the impact which the selectbn of the adjacent
node can have on the schedule.
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cluster2

clusterl

Schedule:

A(2 cluster2) <-> A(2 clusterl (2D)) <-> A(2B(4C)(2D))

Figure 34. Selecting the candidate of lower frequency as the adjacent node. The resulting
schedule does notfully exploit the nestedlooping suggested bythisgraph.
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cluster2

clusterl

Schedule:

A(2 cluster2) <-> A(2 B (2 clusterl)) <-> A(2B(2(2C)D))

Figure 35. Selecting the higher frequency candidate D, as the adjacent node, leads to the
desired nested looping.

©^-kD^)^®

Figure 36. This example illustrates that frequency should not be the only criterion for
selecting the adjacent node.
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cluster2

clusterl

Schedule:

A(2 cluster2) <-> A(2 (2B) clusterl) <-> A(2(2B)(4C)(3D))

Figure 37. Selection of the higher frequency candidate Ddoes not result in the nested loop
suggested by the graph of figure 36.
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cluster2

clusterl

Schedule:

A(2 cluster2) <-> A(2(2 cluster2)(3D)) <-> A(2(2B(2C))(3D))

Figure 38. Selecting the lower frequency candidate, B, results in the desired nested loop
ing.

result arises from the fact that combining C and D commits four invocations of C to each
invocation of the resulting cluster, while there isadifferent repeated subgraph involving fewer
invocations of C (per loop iteration). This in turn suggests that we revise our policy to select
the adjacent node candidate which matches up with the fewest number of base node invoca
tions within a single invocation of the resulting cluster. We use the notation developed in the
previous subsection to state this policymoreprecisely.

Policy: Suppose that we aregiven a base node b, and suppose S is the set ofall nodes which
are adjacent to b. Then we choose as the adjacent node that member of Sfor which F(b,*) is
minimum.

6.2.3. Selecting the Cluster of Highest Frequency
Policies 5 and 6 together comprise our initial approach for selecting clusters to organize

nested looping. Our development of policy 6 illustrated that for a given base node b, we
should choose as the adjacent node the candidate which minimizes F(b,*). Since F(x,y) =v(x)
/ gcd(v(x),v(y)), we see that this is equivalent to choosing the node which minimizes
gcd(v(b),v(*)). Thus among the nodes adjacent to b, we choose the one which combines with
b to form the clusterofhighest frequency.

This interpretation of policy 6 suggests an alternative criterion for cluster-selection: we
simply choose the pair of mutually adjacent nodes which results in the cluster of highest fre
quency. This policy agrees with the method above whenever the highest frequency cluster
contains the highest frequency node— but clearly this neednot be the case.

Figures 39-41 illustrate an example in which cluster selection based on the base node -
adjacent node approach fails to extract the highest frequency cluster. SinceA is the node of
highest frequency, it will be chosen as the base node for the initial, "inner", cluster, and the
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result is a cluster of frequency 2. As figure 41 shows however, first coalescing B and C into a
clusterof frequency 4 leads to the desired nested looping.

To aid in summarizing these observations, we introduce the following definition, which
introduces notation for the frequency of a pairofnodes.

Definition: Let p = (P1P2) bea pair of nodes inanSDF graph G. Then we define v(p),called

Figure 39. An example used to illustrate that cluster selection based on the base node-
adjacent node can fail to extract the highestfrequency candidate.

© ©

cluster2

......A......

clusterl

© ©

Schedule:

(2 cluster2) <-> (2 clusterl (2Q) <-> (2 (3A) (2B) (2Q)

Figure 40. This cluster hierarchy results from applying the base node- adjacent node
scheme to the APEG offigure 39. Observethat the looped schedule does not exhibit the full
amountof nesting which can be obtained from thisexample.



clusterl

Schedule:

(2 cluster2) <-> (2 (3A) (2 clusterl)) <-> (2 (3A) (2BQ)

Figure 41. This figure shows the cluster hierarchy obtained from selecting the highest fre
quency clusters for the example offigure 39. The resulting schedulefully exploits the nested
looping suggested by this graph.

the frequency ofp, by v(p) = gcdCvCpi), v(p2)).
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We now summarize with the following policy, which specifies the cluster-selection cri
teria forthe PGAN algorithm at any given algorithm iteration.

Policy: LetS be the set ofmutually adjacent pairs ofnodes which have not yet been selected
as candidate clusters. Then we choose as the candidate cluster thatmember ofS which max
imizes v(*).

6.3. Checking for Deadlock
Once we have selected a candidate cluster C, we must verify that the formation of C

does not result in a deadlocked clustered graph. One approach is to form the cluster C and
attempt to schedule the resulting graph. [9] shows that for a certain class of scheduling algo
rithms, successful completion guarantees that a periodic schedule exists, and hence that the
graph is not deadlocked. We could thus, choose onesuch scheduling algorithm, and checkthat
it indeed runs tocompletion immediately after the formation of C. If instead, it reaches apoint
when no nodes are fireable, then we must abort the consideration of C as a cluster.

Since we must check for deadlock after the selection of every candidate cluster which
subsumes a source node or a delay, this approach will be extremely time consuming. In this
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subsection, we propose analternative methodwhichverifies the feasibility of a candidate clus
ter by checking whether or not its formation introduces a cycle in the APEG. Note that we
define the PGAN algorithm as a process of repeatedly selecting base nodes and adjacent
nodes, and consolidating them whenever deadlocks don't result. The specific method for
deadlock detection is an implementation issue, and ourmethod of checking for cycles in the
APEG requires an implementation in which PGAN clustering decisions are carried out on a
hierarchically maintained APEG rather than anSDF graph.

The following definitions are fundamental to developing our scheme for efficient
deadlock detection using the APEG:

Definition: A path in an APEG G is afinite sequence p of arcs ax, a2,..., a,,, such that the
source ofai+l is the sink ofaiffor i e {1,.... n-1). We say that p is a pathfrom the source
node ofa xtothe sink node ofaH. Ifx andy are two nodes in the same APEG Gthen we define
the expression "x-*y" tobe1 if there is apath inGfrom xtoy and 0 otherwise.

Definition: Given an APEG K, we define a reachability matrix/or K, asany matrix Rwhich
satisfiesthefollowing conditions:
(a) The rows and columns ofR are both indexed by the nodes ofK.
(b) IfA andB are two nodes in K, then the entry rt[A,B] is 1 if there is a pathfrom AtoB,
and 0 otherwise. Thus, R[A,B] = A-»B, and every diagonal element ofR is0.

Figure 39 shows an APEG, and a reachability matrix for it. Note that since a reachabil
itymatrix contains boolean entries, it can be implemented with astorage cost of only one bit
per entry.

The diagonal elements of areachability matrix must all be zero since anonzero diagonal
element exists if and only if there is a cycle in the graph. Thus, we candetermine whether or
notacluster Cof nodes z lt z2,..., zN in an APEG A introduces deadlock by

(1) assuming that consolidating C results in a valid APEG A — equivalently, we
assume that C does not introduce a deadlock—and

(2) calculating the reachability matrixR forA.

If R contains any nonzero diagonal elements then our assumption (1) is false, and it fol
lows that the formation of cluster C in A introduces a deadlock. If on the other hand C is
found to be avalid cluster, then we retain A and R respectively as the APEG and reachability
matrix for the next algorithm iteration.

We show now that the reachability matrix R for the APEG which results from consoli
dating C={zu z2,..., zN} into asingle node zunder assumption (1) above, can be computed
efficiently from R, the reachability matrix for A. Our development here requires the following
notation:

Notation: Given an APEG G, we denote byN(G), the set ofnodes inG. Thus N(A) =N(A) -
C+z, the result of removing from N(A) the nodes in C, and adding the supemode z. Also,
given two entries a and b in areachability matrix, we denote bya +b, the logical or of the
binary quantities a and b,and wedenote byab, the logical and of a and b.

Now tocompute R from R, first observe that ifxand y are inN(A) and x,y * z, then R[jc,
y] =R[x, y], since the path in A from x to y does not intersect the subgraph associated with C.
This submatrix transfer is depicted inarrow p of figure 43.



Reachability Matrix

A B C D E

A 0 1 1 1 1

B 0 0 1 1 0

C 0 0 0 1 0

D 0 0 0 0 0

E 0 0 0 0 0

Figure 42. AnAPEG and a reachability matrix for that APEG.
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N(A)-C

N(A) - C

Figure 43. This figure illustrates the process of updating a reachability matrix to reflect the
formation of a cluster. The upper grid represents the original matrix; the lower grid
represents the updated matrix; "C" represents the setof indices corresponding tothe set of
nodes in the candidate cluster; "N(A) - C" represents the indices for nodes excluded from
the cluster; and "z" represents the index for the cluster's supemode. Arrows "p". "<T. "*" and
"s"each identify the process by which a region of the new matrix is derived.
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Second, if y e N(A) andy * z then R[y, z] = (y-*z{) + (y-tz^ + ... + (y-*zN). Thus or-
ing the AT column vectors R[*,z(] and then truncating the entry for each z,-, yields the entire
column R[*,z] excluding the diagonal entry R[z, z]. Similarly or-ingthe rows R[z,-,*] and
eliminating the z,- entries yields the nondiagonal elements of the row R[z,*]. These are dep
icted in arrows q and r respectively of figure 43.

Finally, the diagonal entry R[z,z] canbe computed from the observation that this path
exists if and only if there is a node p e N(A), p*z, such that there is a path from ztop and
there is a path from p to z. Thus

R[z,z]=E(z->P )</>-«).

which is simply an inner product of the vector of nondiagonal elements of R[z,*], computed
above, with, the corresponding column segment R[*,z]. The computation of R[z,z] is shown
in arrow s of figure 43. Since this element is the only diagonal element in R which is not sim-
gly transferred from R, it follows thatC introduces a deadlock if andonly if the calculation for
R[z,z] yields "1".

aAs the outline in figure 43 highlights, the only computations involved in the calculation
for R are the elementwise or-operations of arrows q and r, and the simple inner produa of
arrow s. This method is thus efficient enoughto be practical for checking that candidate clus
ters do not introduce deadlocks.

6.4. Summary
The preceding development of PGAN is summarized below with a pseudocode outline

of the algorithm. Untilnow, we havetacitly assumed the availability of a scheduler which can
exploitthe looping opportunities exposed by PGAN. In this subsection, we briefly discuss our
approach to this scheduling problem, and then we discuss the results of combining this
approach with PGAN.

6.4.1. Scheduling the Clustered Graphs
After the PGAN cluster-building phase, the root graph and the graph for each cluster

mustbe scheduled. Our scheduling algorithm attempts ateach step, to find a complete setof
invocations — all of the invocations for an actor— and schedules such a set as a schedule
loop. All of the invocations of an actor A are fired in succession if all of the invocations'
inputs are available and A does not have a successor which can have all of its invocations fired
one after the other. If a complete set cannot be found, a node which has no fireable successor
is chosen to be fired, and this selection in performed in such a way thatno actor is scheduled
twice before all other actors have been tried.

The check for fireable successors in the SDF graph must detect the possible presence of
a directed loop in which all of the nodes are fireable. Since such a loop will never yield a
fireable node without fireable successors, we arbitrarily select one of the nodes in it to
schedule.

The scheduling policy outlined above, and the tendency of the cluster-building process
to favor nested loops, are our mechanisms for carrying outthe scheduling objectives defined
in section 3.



An outlineof the hierarchical cluster-building process of PGAN.

Suppose we aregiven an SDF graph G. The following
steps describe the operation of PGAN on G:

1. Createa list L consisting ofall pairs of mutually adjacent
nodes in G, sorted in decreasing order ofv(*).

2. Loop untilL is empty

(a)Remove the element p = (pi,p2) at the headofL.

(b) If theconsolidation ofpi andp2
into a single node does not introduce a deadlock in G, then:

(1) Replacepj and p2 with a singlenodeC inG.
(2) Removefrom Lallmembers which contain either pj or p2.
(3) Foreach node Q adjacent to C, compute v((Q,Q)
and insert thepair (Q,Q intoL ina positionwhich
preserves Us sorted order.
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6.4.2. Results

We have implemented PGAN within Ptolemy, a heterogeneous platform for software-
prototyping [10]. We have found over alarge range of examples, that the resulting schedules
apply at least as much looping as the schedules that are obtained from the CSUF method. The
degree of improvement depends on the proportion of sample-rate changes in the graph. As
discussed insection 5, CSUF scheduling does not consider looping opportunities which span
sample-rate boundaries. Since PGAN uniformly considers nodes of differing frequency it does
not suffer from the same problem. Figures 44-45 depict the APEG, and the clustering
sequences and schedule, which result from applying PGAN to the graph of figure 20— the
example which was used toillustrate the inability of CSUF tohandle sample-rate changes. We
juxtapose thelessefficient CSUF schedule for comparison.

PGAN's incremental approach to avoiding deadlocks is illustrated in figure 46through
figure 48, with the same example that was used to discuss the deadlock problem of CSUF.
Observe that at eachclustering step, invocations of C cannever be considered for consolida
tion, since doing so would introduce acycle inthe APEG. Asaresult, C isnot represented in
any cluster, and the hierarchical structure reflects the desired partition of figure 19. As
expected, ourrecursive scheduling procedure yields theoptimal schedule.

The graph of figure 23also contains looping opportunities which span sample-rate boun
daries. The PGAN schedule given in figure 26 contains only one code-segment per actor. The



Figure 44. The APEG for the graph of figure 20, which was used to show the inability of
CSUF to detectlooping opportunities which occur across sample rateboundaries. We return
tothis example to illustrate how PGAN succeeds in detecting theseopportunities.
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Graph for Mcluster2":

Graph for "clusterl'

Schedule:

D(2 cluster2) <-> D(2 F (2 clusterl) C) <-> D(2F(2E(2A))C)
vs.

The CSSF Schedule:

F(2E(2A))FDC(2E(2A))C

Figure 45. The PGAN clustering sequence and the resulting schedule for the APEG of
figure 44.TheCSUF schedule isgiven also, for comparison.



Figure 46. The APEG for the graph of figure 18, which was used to illustrate the problem of
partitioning CSUPs which introduce deadlocks. We return to this example to demonstrate
that PGAN's incremental approach to cluster-building avoids the partitioning problem.
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Root Graph:

Graph for "cluster3":

[cUister2j (cluster2j (cluster2j

Graph for "cluster2":

(clusterl) (f)

Graph for "clusterl":

Figure 47. The PGAN clustering sequence forthe APEG offigure 46.
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Schedule:

(2 cluster3) E (6C) <->

(2 (3 cluster2) D) E (6C) <->

(2 (3 clusterl F) D) E (6C) <->

(2(3ABF)D)E(6C)

Figure 48. The schedule which results from the organization in figure 47.

CSUF schedule, shown in figure 49, is much less efficient.

7. CONCLUSIONS

An evolution of algorithms for extracting looping information from SDF graphs, has
been presented. The first method — postprocessing a minimum buffer-length scheduler with
a pattern-matcher — illustrated that scheduling decisions must be driven by looping-
considerations, in order to effectively exploit opportunities for looping. The method of isolat
ing connected subgraphs of uniform frequency (CSUF), and scheduling them as indivisible
units, was our first attempt at recognizing repetitive firing patterns, during the scheduling
phase. This technique exhibited a dramatic improvement over our first method. Two limita
tions surfaced, however — the problem of partitioning deadlocked clustered graphs, and the
more significant problem of not being able to recognize looping which spans sample-rate
boundaries.

These limitations were overcome by our third approach, Pairwise Grouping of Adjacent
Nodes (PGAN). The technique has been implemented within Ptolemy, a heterogeneous plat
form for software-prototyping [10], and preliminary results confirm that this approach exploits
opportunities for looping more effectively than its predecessors.

This report has also highlighted many directions for future research. These problems
include more complete consideration of scheduling tradeoffs, further examining the interac
tion between scheduling and code-generation, and extending our work to the multiprocessor
case.

(2DA(2(3EGF)H))A(2(3EGF)H)BC

Figure 49. The CSUF schedule for the example of figure 23.



52

1. Edward A. Lee and David G. Messerschmitt, "Synchronous Dataflow/* Proceedings of the
IEEE, (September 1987).

2. Edward A. Lee, "Programmable DSP Architectures: Part I," IEEE ASSP Magazine, (October,
1988).

3. Edward A. Lee, "Programmable DSP Architectures: Part II," IEEE ASSP Magazine, (January,
1989).

4. Edward A. Lee, "Recurrences, Iteration, and Conditionals in Statically Scheduled Block
DiagramLanguages," VLSI SignalProcessing III,IEEE Press,(1988).

5. Edward A. Lee, Wai Hung Ho,Edwin Goei, Jeffrey Bier, andShuvra Bhattacharyya, "Gabriel:
A Design Environment for DSP," IEEE Transactions onAcoustics, Speech, andSignal Process
ing 37(11) pp. 1751-1762(November, 1989).

6. Wai Ho, Edward A. Lee, and David G. Messerschmitt, "High Level Dataflow Programming few-
DigitalSignalProcessing," VLSI Signal Processing III, IEEEPress, (1988).

7. Wai Ho, "Code Generation for Digital Signal Processors Using Synchronous Dataflow,"
Master's DegreeReport, U.C. Berkeley, (May, 1988).

8. Stephen How, "Code Generation for Multirate DSP Systems in GABRIEL," Master's Degree
Report, U.C. Berkeley, (May, 1990).

9. Edward A. Leeand David G. Messerschmitt, "Static Scheduling of Synchronous Dataflow Pro
grams for Digital Signal Processing," IEEE Transactions on Computers C-36T2) pp. 24-35
(January, 1987).

10. Soonhoi Ha, Joseph Buck,Edward A. Lee, and David G. Messerschmitt, "PTOLEMY: A Plat
form for Heterogeneous Simulation and Prototyping," European Simulation Conference, (June,


