
Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



STATISTICAL MEMORY MANAGEMENT FOR

DIGITAL SIGNAL PROCESSING

by

Farshid Moussavi

Memorandum No. UCB/ERL M91/68

23 July 1991



STATISTICAL MEMORY MANAGEMENT FOR

DIGITAL SIGNAL PROCESSING

by

Farshid Moussavi

Memorandum No. UCB/ERL M91/68

23 July 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



STATISTICAL MEMORY MANAGEMENT FOR

DIGITAL SIGNAL PROCESSING

by

Farshid Moussavi

Memorandum No. UCB/ERL M91/68

23 July 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



STATISTICAL MEMORY MANAGEMENT
FOR DIGITAL SIGNAL PROCESSING

Farshid Moussavi

Professor David G. Messerchmitt

Department of Electrical Engineering andComputer Sciences

UC Berkeley

ABSTRACT

As processing throughput increases thanks to advancements in architecture and
technology, memory bandwidth has increasingly emerged as abottleneck in many digital
signal processing tasks. In most cases so far, application specific solutions were found to
improve memory bandwidth. Where locality existed, small amounts ofcache would pay
off significantly [24]. In other cases where high bandwidth was needed only for short
periods of time and accessing was predetermined, lookahead techniques proved useful.
Sometimes when neither ofthe above held, the entire main memory was implemented in
fast(and expensive) technology. This study looks at memory interleaving as anarchitec-
ture level solution to the main memory bandwidth bottleneck. By properly allocating
data items in various banks, significant speedup can be achieved. Four algorithms for
data allocation are presented and analyzed. The improvement achieved by these algo
rithms is shown to be a function of various system parameters, e.g. number of banks,
bank size, and cache size; as well as the nature of the memory access. Of these four
algorithms, two are shown to be particularly useful due to their superior performance,
simplicity, and utility for real time applications.
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1. INTRODUCTION

Recent years have witnessed dramatic increases in processing speeds thanks to advance

ments in architectures, algorithms, and technology. With these improvements, newer and

more complex digital signal processing tasks have become feasible [1-5]. In some of these

tasks, reasonable amounts ofdata need to be handled, or there at least exists some locality in

memory access, hence data can beaccessed quickly and efficiently. However, inmany appli

cations such as speech and video where large amounts ofdata are handled, memory bandwidth

quickly emerges as the bottleneck. Various solutions have been used, including the use of

large amounts of fast and expensive technology to implement main memory (brute force solu

tion). Where locality existed inthe data access patterns, memory hierarchies and cache have

been very helpful [6,7,8,24]. Unfortunately however, in some applications, e.g. speech, none

of the above holds. In such cases, an efficient scheme is needed to access a large main

memory quickly if the design is to remain economical.

This study looks at memory interleaving as a solution to this problem. By allocating

data items to the right banks, and allowing for possible duplication, considerable speedup can

be achieved without the use of faster, more expensive technology. This idea is particularly

suitable for special purpose applications (such as speech recognition) where the data access

pattern statistics are more predictable. Several algorithms are proposed for the proper alloca

tion ofdata items, and the results ofthese algorithms are presented and analyzed.



The remainder of this reportis organized as follows. Section 2 outlines and describes a

problem in speech recognition which motivated this study. Section 3 presents the memory

interleaving approach as a potential solution tothis problem. In section 4, several algorithms

for data allocation in an interleaved memory system are described in detail. The results of

using these algorithms in different situations are presented in section 5. Finally, section 6

summarizes andconcludesthe report.

2. MOTIVATION AND BACKGROUND

2.1. Introduction

The original motivation for this study came from aproblem inspeech recognition. The

particular system involved was a 20,000 word real time continuous speech recognizer

developed by IBM. We wanted to find ways to speed up acertain task within this system.

The bottleneck of this task was memory bandwidth. After some thought, we decided to look

at the problem in amore general sense. In this section, we will present the original problem to

illustrate apotential application ofour techniques.

2.2. Speech Recognition System

The system, whose block diagram is shown in figure 1, is composed ofan acoustic pro

cessor and alinguistic decoder [9,10,11]. The acoustic processor receives speech and encodes

it into asequence of acoustic labels, y, using LPC analysis and vector quantization [16,17].

The linguistic decoder conducts amaximum likelihood search to find the most probable word

string w, given the acoustic label string y was received. This search isbased on Hidden Mar

kov Models (HMM's) of the words, and the apriori probabilities ofthe words having been

uttered, known asthe language model
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Figure 1 (prop31). Speech Recognition System Block Diagram

2.2.1. The Linguistic Decoder

The linguistic decoder uses astack algorithm to recover the original word string. In this

algorithm, the acoustic label string is segmented into substrings, and each substring is

matched to aword based on amaximum likelihood search. Naturally, the segmenting of the

acoustic labels mayneed to bechanged and backtracking is required.

Even for a moderate vocabulary size, searching through the entire vocabulary for the

most probable word would be an enormous task. To overcome this problem, there is a search

hierarchy with three levels of pruning (See figure 2). First, the fast match preselects 500

words which have similar initial phones to those indicated by the given acoustic label sub

string. The second level of pruning comes from the language model which selects words

based on their probability of having been spoken in the English language. The language

model narrows the search down to 50 words. Finally, the detailed match calculates P(y Iw),

the probability that the acoustic label substring y was created given the word w was uttered,

for each of the 50 words being searched. P(y\w) is also called the acoustic match, and is

needed in the main algorithm to conduct the maximum likelihood search for the most prob

able word string [9,10,11].

Therefore, the detailed match can be thought of as asubroutine called upon bythe main

algorithm to calculate acoustic matches for different acoustic label substrings. Meanwhile, the

candidate words to be searched for each computation are fed in from the fast match and the

language model, which prune the search to reduce the computational load.
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Figure 2 (hierarchy). Hierarchyfor Pruning the Search

Our original concern was to find ways to speed up the operation of the detailed match,

which happens tobe bounded in speed by memory bandwidth, aswe will see shortly.

2.2.2. Operation of the Detailed Match

As mentioned before, the detailed match takes anacoustic label substring from the main

algorithm, and 50 words proposed by the language model, and calculates P(y\w), the acous

tic match for each of those 50 words. It returns this information for 20 of the most likely

words to the main algorithm, which continues its maximum likelihood search.

The calculation of the acoustic match for each word is based on the word's Hidden Mar

kov Model (HMM). The Hidden Markov Model is shown in figure 3. It is very similar to the

regular discrete parameter Markov process. The difference is that outputs, not states, are

observed (hence the word "hidden"). There is a probabUity mass function associated with

each state that determines the outputs which occur in that state. In HMM speech recognition,

the outputs are acoustic labels [10-12].

Each word's model has roughly 100 states, which may vary for different words. These

states may be organized into a column, shown in figure 4. The word models are left to right,
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i.e. transitions are allowed only from higher states to states of the same or lower level. For

each transition, there is atransition probability, and an acoustic label output. This output is



specified byaprobability mass function. For each state, there are as many output probabilities

as acoustic labels. In this particular system, there are roughly 200 acoustic labels.) [10,11] At

each time increment, the states are updated as shown in figure 5. To simplify the transition

structure, state transitions from higher to lower states are allowed at a given time. However,

such atransition creates no output. These transitions are called null transitions [10], and are

depicted by dotted lines. The resulting transition structure is shown for one time increment in

figure 6.

Based on these concepts, atrellis structure can beconstructed for each word withtime as

the horizontal dimension and state as the vertical dimension, as shown in figure 7. In this

structure, each state is the target and the origin of3transitions. It is also possible for any state

to reach astate ofequal or lower level in the next time increment. The trellis is completely

defined if the transition probabilities and the output probabilities are defined for all states.

TIME

STATE

Figure 5(dmatch1-4a). Updating the Column of States for One Time Increment.
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Figure 6 (dmatch1-4b). Modified Structure for Updating the Column ofStates.

The detailed match calculates the acoustic match as follows. For each word proposed to

the detailed match, it looks up the word's HMM states and model data. Therefore, it con

structs one trellis for each candidate word. Atthe left side of the trellis there isastarting dis

tribution obtained from the previous trellis calculation. Thedetailed match then uses thetran

sition probabilities and the output probabilities to calculate the probabilities of each state

recursively from those ofits surrounding states. The necessary transition probabilities depend

only on the word, whereas the necessary output probabilities depend on the word and the

current acoustic label. The required data is stored in lookup tables. The calculation is ter

minated once the end of the acoustic label substring isreached.

At this point, the detailed match calculates the probability that that the acoustic label

substring y was observed. This quantity is P(y Iw), the acoustic match. Looking at the trellis
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Figure 7 (trellis). The Trellis Used by the Detailed Match for Computation of the Acoustic
Match.

structure, and neglecting some paths which were discarded because oftheir low probability, it
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can be seen that for each path from the initial state to the final state, there exists a possibility

that the acoustic label sequence y resulted from the word w. The probability for this event is

the product of the transition probabilities and the appropriate output probabilities along the

path from the initial state to the final state of the trellis. Summing this probability over all

possible paths from the initial to the final state yields P (y Iw), the acousticmatch.

For this calculation, 300 transition probabilities are required, which can be initially

loaded and reused throughout the trellis computation. In addition, for each time increment,

200 output probabilities are required and must be accessed from main memory. The memory

location of these probabilities depend on the candidate word (the choice of states), and the

acoustic label atthat given time. The structure of the memory containing output probabilities

is shown in figure 8. Therefore, for each word whose acoustic match is to be calculated, the

appropriate states are found. Then, during each time increment in the trellis computation, the

output probabilities for these states and the acoustic label in the given time increment are

accessed. This continues until the end of the trellis is reached, at which time a new word is

put forward, and different states are chosen. This is illustrated in figure 9, which shows

state

I

acoustic label
>

Figure 8 (dmatch_org). Output Probability Memory Organization
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"snapshots" of the output probability memory access. The access of output probabilities is the

memory bottleneck of the detailed match. Since there is not necessarily any temporal locality

inthe arrival of the acoustic labels, acache would beoflittle help here. Also, since there are a

large number of states and each one has 200 output probabilities, the memory required for the

output probabilities is huge. To implement this in a fast technology would notbe economical.

Therefore, an architecture level solution must be found toimprove the speed of this procedure.

In this study, we propose memory interleaving as a solution to this and similar types of

problems. By dividing main memory into R banks and interleaving the access, a worst case

speedup of unity and a best case speedup of R are achieved. If duplication is introduced,

overall speedup can be improved. For a desired speedup S, duplication need be atmostS. It

might be possible to achieve close to such a speedup with considerably less duplication, if

allocation is done inaclever way. This problem isintroduced more formally in the next sec

tion.

acousticjabel label 1 label 2
state I

acousticjabel

state|

• 1 • •
F~n—F-——1 r— "~n—1

word 1 word 1

label k+1 label k+2

i
i

word 1 word 2

label k

1-
J-^-^
i -

word 1

label n

word 2

Figure 9(dmatch_access). Snapshots of the Output Probability Memory Access
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3. THE MEMORY INTERLEAVING APPROACH

3.1. Introduction

This section introduces and formulates amemory interleaving problem for high speed

digital signal processing systems which are bounded by the system's memory input/output

bandwidth. Specifically, the problem ofdata allocation to different memory banks based on

data access statistics is addressed. The solution to this problem could be useful for avariety

ofapplications, such as speech recognition, video communications and signal processing, vec

tor quantization, and any other memory i/o bound DSP problem.

3.2. Problem Formulation

The problem to be solved is shown graphically in figure 10. There is some processing

element which performs operations at ahigh speed. The operations require the accessing of

reference data from main memory, i.e. there needs to be asteady flow ofdata from main

memory to the processing element There is also afast cache memory capable of operating at

the processor speed. It is assumed that the processing speed is several times higher than the

main memory speed. Accessing only one memory bank by the processor for each required

data item would create abottleneck. One way of increasing the rate ofdata flow is to organize

main memory into several banks, each containing some of the data items of main memory,
and to interleave the accessing of data items from these banks.

Assume there are R banks ofmemory. The goal is to speed up the data flow rate as

much as possible by properly distributing data items among these banks. The speedup

achieved cannot be larger than R unless cache is used. For the case where the data item

sequence to be accessed is predetermined for all time, the placement ofdata items into the R

banks is trivial. However, for random data sequences, ascheme is needed to allocate data to

the various banks based onthe data sequence's statistics.
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Figure 10 (memint). A System Using Memory Interleaving.

The data in the speech recognition problem was organized into columns according to a

natural structure of the computation (the structure of the trellis). In general, this may notbe

true, and data might notbe previously organized into columns. However, for this study, we

assume that data has previously been organized into columns by some scheme, and it is the

columns of data, not the individual data, that we seek to allocate. The reason for this is that in

any practical implementation of memory interleaving, there must be some mechanism of

keeping track of the locations of the data to be accessed. The locations of a relatively small

number of columns can be kept track of muchmore easily than the locations of allthe indivi

dual data. In fact, keeping track of the locations of individual data would require a separate

memory at least as large as the main memory itself, which is unacceptable.

Following is amore detailed formulation of the problem:

Given:

A computational system which uses memory interleaving to access data in a random

manner,

A setofR memory banks B = {b xp2t JbR};
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An alphabet Arepresenting / columns from which data items are accessed randomly A=

{1,2,..../} (The members ofA are called labels, and the columns referred tobythe labels are

called data columns, orsimply columns. The assumption is that all the data has already been

pregrouped intothese columns, and the label determines thecolumn access.);

A "training sequence" of data accesses which are from A and which are statistically

representative of realdata accesses by the system;

A ratioof processing speed/memory speed = P;

Adesired memory access speedup S, which is upper bounded by Min(RJP) (except when

cache is used);

A maximum allowable cache size c; and

A maximum allowable amount of overall duplication, i.e. actual overall memory

size/minimum memorysize,d.

NOT Given:

Any probabilistic information about the process which generates the sequence for data to

be accessed, except that itis possibly stationary in the short term (as in speech).

Wanted:

Amapping, orassignment M: A—> B(allowing for duplication) such that the desired

speedup Sis achieved. In other words, we would like to divide the set Ainto (possibly over

lapping) subsets bxthrough bR such that the probability of any bt occurring less than Pincre

ments oftime after its last occurrence isminimized (See figure 11.)

To illustrate the problem further, assume the main memory organization shown in figure

12. Both row and column accesses are random. Now, divide the memory into columns, as

shown in figure 13. Every time alabel arrives, asubset of the corresponding column must be

accessed. This subset changes with time. Agood example of this is the access example in
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A

Figure 11 (partition). Partitioning ofMain Memory into Possibly Overlapping Subsets

figure 9. Now, by splitting main memory into smaller banks, and interleaving the accessing of

these banks, we hope to increase memory bandwidth. The division is made only along the

column boundaries, and columns can be used more than once, as long as the overall memory

size limitation is not exceeded.

{1 if data item j is in bt

0 otherwise (2)0

For example, if bank 1were to contain columns 1and 3, the first row ofM would be [1

0 * 1- II can be seen that the total number ofcolumns stored in main memory would be

lilMij and the total duplication d would be ££W,-.//. In this context, the problem can be
' j i J

viewed as designing the matrix M to minimize contention between banks when banks are

accessed at the processor rate.
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Figure 13(mem_org2). Division ofMain Memory into Columns

In this study, for the purpose of address space efficiency and simplicity, we shall limit

ourselves to cases where thenumber of banks is apower of 2.

Before attempting to solve this problem, several facts must be noted:

1. In general, for an analytical solution, the Slh order statistics of the process are

needed. Since we are interested in cases where Sis larger, duplication is allowed, and no pro

bability information about the process is assumed, the problem is extremely difficult to solve
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analytically.

2. Different solutions may pay attention to the banks* average access behavior through

all time, their instantaneous accessbehavior, or both.

3. P(bi) is the probability that b{ is accessed. The sum over all bC% of this quantity

must naturally beunity. A similar condition exists for P(j), the probability that an item from

column j is requested. Therefore, it can be written that

PftWOH (3)(l)
1=1 y=l

It should also be noted that the probability of any given bank being accessed is less than or

equal to the sum of the probabilities of the member items of the bank being accessed. This

can be represented by:

PiP^M^Pij) (4)(I)
The equality holds if there is no duplication, i.e. if each column is allocated only to no more

than one bank.

4. If each memory bank contains m data columns, the banks can be viewed as amatrix

ofRm columns, which are rearranged, or skewed from their original pattern. IfR columns are

to be accessed without waiting, no more than Rprocessor cycles are required. These columns

constitute avector. There are (^] possible Rvectors, whereas any skewing scheme will
allow us to access at most mR distinct vectors. It can be shown using Stirling's formula that

the ratio of the total possible number of vectors to the number of vectors we can access

without waiting is approximately [13]:

r ^1
1 2 R

which is greater than unity. Therefore, it is impossible to avoid waiting cycles altogether,

since arbitrary R vectors cannot be accessed without wait states.
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5. It can be shownthat if R£P and if periodic access is possible, periodic bank access

facilitates maximum speedup, that is, minimizes the numberof wait states. Of course, since

any arbitrary R vector cannot be acquired in R cycles, wait states in general are unavoidable.

Also, memory is most efficiently utilized when the probability of access of all memory banks

are equal.

The approaches that we considered generally fall into two categories. The first looks at

overall average access behavior, e.g. P(3), and ignores instantaneous and temporal behavior,

e.g. P(3,9). The second category pays attention to instantaneous activity, and tries to minim

ize contention. The first class is simpler, and gives abetter idea about how much duplication

is required. The second class is more complicated (higher order statistics required), but gives

abetter idea ofhow data should be partitioned.

In the next section, we introduce four algorithms we investigated. These algorithms fall

into either or both of the above categories. We then will present results of the simulation of

these algorithms andtheirsignificance.

4. ALLOCATION ALGORITHMS

4.1. Introduction

In this section, we present four algorithms that we investigated. We also show a"gen

eric" aUocation algorithm for comparison purposes. The first algorithm only looks at first

order statistics. The next three all pay attention to instantaneous access behavior, and there

fore fall into the second category. We start the descriptions with the generic algorithm, which

is the simplest ofall.
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4.2. Generic Algorithm

The generic algorithm is presented merely for comparison purposes. In this algorithm,

the banks are filled inwith columns corresponding to successive labels inthe alphabet. When

the end ofthe alphabet is reached, the allocation starts over from the beginning of the alpha

bet. Also, any time abank is filled, allocation resumes at the beginning of the next bank. This

process repeats until all banksare full. Here is anexample for / = 16, d=2, andR=4:

&! = {1,2,3,4,5,6,7,8}

b2= {9,10,11,12,13,14,15,16}

b3= {1,2,3,4,5,6,7,8}

b4= {9,10,11,12,13,14,15,16}

4.3. Huffman Code Based Algorithm

An example of the first class of algorithms is one based ontheHuffman code. The Huff

man code minimizes the code word length ofakeyword based on the keyword's probability of

occurrence [14,15]. In this scheme, each data item (which represents a column in main

memory) corresponding to alabel in the alphabet Ais listed with its probability ofoccurrence,

and organized into aHuffman tree. Then, memory assignment and duplication are determined

by the number ofbanks and the depth of the tree and its sub branches. Here is an example
(see figure 14):

/=4,

R=4,

P(l) = 0.6, P(2)=0.2, P(3)=P(4)=0.1

*i = l; b2=l; b3= 2; 64=3,4;
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yl 0.6

y2 0.2

y3 0.1

y4 0.1

Figure 14 (tree). Data Allocation Based on a Huffman Tree.

Note that there is anice definitive scheme for duplication, and only simple a priori pro

babilities are required. However, now the memory banks are used in avery disproportionate

way. Bank 1 and bank 2 are accessed 30 percent of the time, while banks 3 and 4 are each

accessed only 20percent of the time. Also, if 4 occurs after 3 very often, putting these two in

different banks would significantly improve speedup. This method does not recognize this

opportunity at all.

Therefore, in thismethod, the first order probabilities of the data columns, the numberof

banks, and the processor to memory speed ratio are specified, and the algorithm determines

the duplication and partitioning ofthe columns. The banks in this scheme may not necessarily

be ofequal size.

4.4. Sequential Access Algorithm

Inthe sequential access algorithm, allocation is optimized for sequential access of the R

memory banks. If R is less than or equal to P, it can be shown that periodic access of the

banks results in the least number of wait states (See section 3.) Periodic access is best suited

to a deterministic process, where the sequence of data to be accessed is predetermined. An

example of such a process is a Markov process in which the states are the data columns to be

accessed, and whose transition matrix is:



0 1 0 0
0 0 1 0
0 0 0 1

1 0 0
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(6)0

A process which is not deterministic, but whose behavior is not completely random, might be

described by the followingtransition matrix:

0.1 0.7 0.05 0.03
0.05 0.1 0.65 0.02
0.05 0.1 0.1 0.8

0.7 0.1 0.1 0.1

In the first (deterministic case), the best allocation scheme is simply to put the necessary data

columns in one bank after the other, starting over when there are no more banks. In doing so,

we implicitly take advantage ofthe fact that the probability ofstate i+1 following state i is 1.

In the sequential access algorithm, we take advantage of similar characteristics of the second

(non-deterministic) case. The algorithm assumes a fixed number ofbanks, a fixed bank size,

and atraining sequence from which first and second order probabilities have been estimated.

The algorithm placesdata as follows:

i) SetMij =0 for all i, j. j=l.

ii) Insert an arbitrary item with label i (which is in A) in bank j. Mt •=1.

iii) For each label k in A, evaluate £M,vP(i is followed by k). The item *max which
i=i

maximizes this sum goes into bank (j+1) mod R.

iv)j =(j+1) mod R. ^,^=1.

v) If banks are notfull yet, go tostep (iii).

vi) Check for unallocated columns. Take the aUocated item in the first bank which has

the lowest probability of occurrence. If this item is allocated in more than one place, replace

0.1
0.05
0.02

0.72
0.01

(7)0
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it with the first unallocated item. Else, repeat checkfor allocated item withnext lowestproba

bility of occurrence. Repeat until unallocated item i is allocated, or if no item in current bank

canbe replaced. Afl%/=1, where j is bank holding newlyallocated item.

vii) If there are still unallocated columns, go tonextbank and repeat step (vi).

As you can see, this algorithm optimizes allocation for those processes which have

nearly deterministic patterns. Even if the transition matrix does nothave the specified form, it

maybe possible to obtain this form by properly permutating thealphabet.

The sequential access algorithm relies onboth first order and second order probabilities.

Recall that knowledge of these probabilities are not assumed, and they must beestimated from

the training sequence. For large alphabet sizes, good estimation of second order probabilities

will require avery long training sequence. This isone disadvantage of this method.

In addition, if the transition matrix of the process does not have a clear maximum in

each row, and if it cannot be changed to the desired form, this method may not be suitable,

since the situation which motivated its development will no longer hold. However, if the pro

cess does have the desired form, this method would result in considerable speedup and require

only very simple addressing schemes.

Therefore, in this method, the number of banks, the duplication, and the processor to

memory speed ratio are predefined, and the algorithm determines the distribution of the

columns. All of the banks will have the same size.

4.5. Score Based Algorithm

The general goal of proper allocation is to minimize contention. This suggests the sim

ple approach ofdefining the event Etj as the event that label j occurred inPincrements or less

after label i in the training sequence. Then define a"score" for this event which gives an indi

cation ofhow likely it is to happen. Such ascore could be asimple count (or weighted count)
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of these events occurring in the training sequence. Then, an attempt is made to place data

columns in pairs with the highest scores in different memory banks. The algorithm is given

below:

i) Create a stack of all the labels in A.

ii) Take the item whose label is at the top of the stack, and update the stack. For each

bank, evaluate themaximum score that would result between any twomember columns of the

bank if the new item were tobe added. Call this score BankScore (j), where 1£/£R.

iii) Place thenewitemin thebank j which corresponds to thelowest BankScore.

iv) Repeat steps ii) and iii) until all columns corresponding to the labels in the stack

have been allocated.

This method directly attacks the problem ofmemory bank contention, and is not depen

dent on exact values for the second order probabiUties. (It does not even look at first order

probabUities.) However, it has no scheme for duplication, that is, it only partitions the data

columns. DupUcation can be achieved by simply repUcating the scheme obtained from this

method an integer number of times. Therefore, if adupUcation d and anumber of banks R are

desired, one can start this algorithm assuming int (R/d) banks, and then duplicating the results

d times.

Therefore, this method needs apredetermined number ofbanks, processor to memory

speed ratio, and (integer) duplication, and results in a partitioning scheme, in which the

memory banksmay not necessarily havethe same size.

4.6. Training Algorithm

In this method, aUocation isdone directly from the training sequence. This isincontrast

to the previous methods where first, certain parameters (e.g. probabilities or scores) had to be

estimated from the training sequence, and aUocation was then based on those parameters. The
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aUocation method is as foUows:

i) Determine amaximum wait, i.e. a number of cyclesbeyond which we wouldnot Uke

to wait between any two data accesses.

ii) InitiaUze the avaUable times of aU banks to 0. Initialize first cycle.

iii) Receive the current label from the training sequence. Determine the earUest bank

avaUable from which the corresponding item can be read (if it has already been aUocated), and

the earliest bank to which the item can be written.

iv) If the item has not yet been aUocated, write it to the next avaUable write location.

ThenextavaUable time for this location ismax(current time, ready time(location)) +P.

v) If the item has been aUocated{

If thenext available read location is ready longer than themaximum wait from

now, and if thenext avaUable write location is ready earlier than thenext avaUable read loca-

tion{

write the itemto thenext avaUable write location. The nextavailable time for this loca

tion isupdated to max (current time, ready time (location)) +p.}

Else{

The next avaUable time for the next avaUable read location isupdated to max (current

time, ready time Gocation)) +P.}

}

vi) Increment cycles by 1. Ifthere are stiU labels in the training sequence, go to step iii).

This algorithm does not directly use first or second order probabiUties, but impUcitly

takes the data accessing statistics into account, provided the training sequence is long enough.

It precisely defines the amount of duplication and the partitioning of data in the interleaved
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banks. Like the score based algorithm, it directly addresses memory contention at every

instant in time.

Therefore, this algorithm presumes no first or second order statistics. Itonly requires the

training sequence, number of banks, and processor tomemory speed ratio, and determines the

dupUcation and distribution of the data columns. The resulting scheme does not necessarily

have banks of the same size.

It can be seen that both classes of algorithms have their strengths and weaknesses. It is

possible to complement one class with another, e.g. use the first class for dupUcation and the

second class for partitioning. In other words, one can specify anew, third class of algorithms

which takes into account both the time average and the instantaneous behavior of the statistics

within the same algorithm.

5. RESULTS

In this section, we present the results of tests made on the algorithms presented in sec

tion 4using artificiaUy generated data. We compare and contrast the algorithms with the help

of these results. In most cases, we generated strings of acoustic labels based on Markov

models with syntheticaUy generated transition probabiUties (which were normaUzed to meet

the proper criteria.) This procedure seemed reasonable since in most modern speech recogni

tion systems, the EngUsh language is modeled by Hidden Markov Models. We wrote pro

grams to generate a Markov transition matrix, and to generate a stream of acoustic labels

using arandom number generator and the Markov matrix. The alphabet size was 128, and the

label sequence was typicaUy 20,000 labels long. We then wrote aprogram to simulate access

of memory banks. This program does not assume any particular order of bank access. The

locations of each item are read and stored in atwo dimensional array. Labels are then read

from adata sequence. Ifany ofthe locations ofthe requested item is not busy, no wait states
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areneeded and the next item is read. Otherwise,the item must be waited for, slowing the pro

cess down. This process is continued until the end of the sequence is reached. The program

outputs the number of cycles, the number of cycles spent waiting, the overaU speedup, the

dupUcation, and the maximum wait period detected. The method of obtaining test results is

shown in figure 15.

The figure of meritby whichaU the methods were evaluated is the overaU speedup. The

speedup was measured while changing various system parameters, such as the number of

banks R, dupUcation d, and processor to memory speedratio P. It must be remembered that in

aU cases except when cache is used, an upper bound for speedup is min(R,P). Also, the

minimum speedup weexpect from any data aUocation is d, since duplication of main memory

d times guarantees a speedup of roughly d. These upper and lower bounds are plotted with

some of the graphs foreasiercomparison.

•"Sijsss^.

Figure 1S(procedure). Method for Obtaining TestResults.
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The speedup is also a function of the type of process generating the sequence of labels.

Therefore, the nature of the process used to obtain the test results must be kept in mind,

namely that it is first order Markov. To gain some insight into this effect, wegenerated label

sequences from two different Markov processes. The first process has random transition pro

babiUties normaUzed to meet the necessary conditions for a Markov transition matrix. The

second Markov process has atransition matrix of the form shown in equations 6 and 7 in sec

tion 4.4. The transition probabUities were first made to decay exponentiaUy with a factor of

0.1 from the maximum value ineach row of the transition matrix, and were then normaUzed to

meet the necessary conditions ofaMarkov transition matrix. NaturaUy, more is to be gained

with the second process, since we can take advantage ofthe fact that certain label sequences

are more likely to occur than others.

Test results for the second method, which optimizes for sequential access, are not shown

for the first process. This is because the sequential access method was not intended for

processes like the first one, and therefore does not result in significant performance gains.

5.1. First Process

The first process is aMarkov process with rather evenly distributed transition probabiU

ties. The transition matrix for this process was created by generating random numbers, and

normaUzing the random numbers in each row of the transition matrix such that their sum is

unity. In this subsection, aU algorithms described previously except the sequential access

algorithm are tested using alabel sequence created using this process. For better comparison,

the generic algorithm was also tested (See section 4.2.)

5.1.1. Generic Algorithm

For comparative purposes, the generic algorithm's performance was tested. This algo

rithm fiUs the banks with successive columns, and starts over when it reaches the end of the
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columns. This action is repeated until aU the banks are fuU. We aUocated data using this

algorithm, and simulated the memory access to obtain speedup plots vs. processor/memory

speed ratio, number of banks, and duplication. These results are shown in figure 16, figure 17,

and figure 18.

speedup
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P

Figure 16 (genericvsPI). Speedup as a Function of Processor/Memory Speed Ratio for
the First Process (Generic Algorithm)
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Figure 17(generlcvsRI). Speedup as a Function of Number of Banks for the First Process
(Generic Algorithm)
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Figure 18(genericvsdl). Speedup as a Function of Duplication for the First Process (Gen
eric Algorithm)

The speedup seems to be a function of P only below certain values of P. This is not

surprising since at lower values of P, less speedup is possible. Beyond acertain P, however,

memory contention becomes the main factor in speedup, and having larger values of P does

not help aUeviate the contention bottleneck.
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5.1.2. Huffman Code Based Algorithm

The next algorithm is the Huffman code based algorithm. For a fuU description of this

algorithm, please see section 4.3. To evaluate the performance of this algorithm, we recorded

the resulting speedup vs. processor to memory speed ratio and number of banks. The results

are shown in figure 19 and figure 20. Speedup increases with both of those quantities just as

one would expect. As mentioned before, this method does not pay attention to temporal

conflicts. Therefore, two columns might have low probabUity of occurrence overaU, and

therefore get grouped into one bank. If these two columns occur within P cycles of each

other, however, they wiU create contention. If the probability of these two particular columns

is low enough, this does not become much ofafactor. However, if abank happens to be fuU

ofcolumns which have temporal conflicts, the contention is significant even if the probabUity

ofoccurrence ofeach ofthe columns is low. In the case ofour test, the random process gen

erating the stream oflabels is a first order Markov process with rather evenly spread transition

probabUities, and the temporal conflicts mentioned above are not very significant. That is,

there is not much to be gained from observing the higher order statistics to separate columns

withhighprobabUity of foUowing one another.

Once again, the effect ofPon the speedup is felt only at lower values of P, after which

speedup is fairly independent ofthe processor to memory speed ratio.

This algorithm not only shows no improvement, but in fact is inferior when compared to

the generic algorithm. This is not surprising considering the nature of the process. Intuitively,

every time alabel arrives, Uttle can be predicted about which label comes next, leaving little

to exploit during aUocation. In addition, the generic algorithm is amore "neutral" method in

terms ofaUocation. Departing from that aUocation could either improve or deteriorate perfor

mance. In short, the performance gain for such aprocess is very limited regardless ofthe aUo

cation we use.
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Figure 20 (huffvsR). Speedup as a Function of Number of Banks for the First Process
(Huffman Code Based Algorithm)

5.1.3. Score Based Algorithm

The third algorithm is score based, and is completely described in section 4.5. This

algorithm produces solutions with integer duplication. We wrote aprogram to implement this

algorithm, and recorded the speedup resulting from this method. The plots in figure 21, figure

22, figure 23, and figure 24 show the variation ofspeedup with processor to memory speed

ratio, number of banks, and dupUcation. From these plots it is evident that the number of

banks has alarge effect on the speedup. The score used in this measurement was asimple

count. That is, the number ofoccurrences for label i within Ptime increments oflabel j is
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counted. A weighted score may also be used, in which larger weight factors are assigned to

occurrences which are closer together. Surprisingly, using such weighting did notimprove the

speedup significantly, if at aU.

In this algorithm as weU, speedup is affected by changes in P only for lower values of P

After a certain point, P does not affect the speedup. To iUustrate this, the plot in figure

24shows that doubUng R has agreater effect onspeedup than quadrupUng P.
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Figure 21 (scorevsPI). Speedup as a Function of Processor/Memory Speed Ratio for the
First Process(Score Based Algorithm, R=16)
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Figure 22 (scorevsP8). Speedup asa Function of Processor/Memory Speed Ratio for the
First Process(Score Based Algorithm, R=8)
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Figure 23 (scorevsRI). Speedup as a Function of Number of Banksfor the Rrst Process
(Score Based Algorithm)
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Figure 24 (scorevsdl). Speedup asa Function of Duplication for the First Process (Score
Based Algorithm) x

Once again, acomparison to the generic algorithm shows tittle improvement (and some

times even adegradation) in performance using the score based algorithm. This is attributed

to the process generating the labels. There is tittle inherent information in this process, mak

ing it difficult to improve speed bydifferent aUocation schemes.

5.1.4. Training Algorithm

The last algorithm is the training method. In this method, no statistics are needed to

aUocate columns. Items are taken directly from the training sequence and aUocated. This
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method is described more thoroughly in section 4.6. Once again, the speedup was observed as

we changed the number of banks, the dupUcation, and the processor to memory speed ratio.

Unlike the two previous methods, this algorithm determines the dupUcation. When running

the algorithm, the user sets a numberof cyclesbeyond which it is not desirable to wait. This

number of cycles is caUed max wait, andhas a significant effect on the aUocation. A smaUer

max wait wtil demand more duplication, andvice versa.

The plots in figure 26, figure 27, and figure 28 show the variation of speedup with pro

cessor to memory speed ratio, number of banks, and duplication. As in the previous algo

rithms, Phas little effect on the speedup after acertain point The duplication resulting from

the algorithm changes with respect to the specified max_wait These changes are shown in

figure 25. This plot shows howmax_wait affects duplication after it reaches a certain value.

As max_wait approaches P (processor to memory speed ratio), no dupUcation is required,

since the maximum time abank can be busy is P processor cycles anyway. An interesting

trend happens in the dupUcation dictated by the algorithm whenthenumber ofbanks R varies.

This is shown in figure 29. In this simulation, max_wait was held constant asR was varied.

First, duplication demanded was higher, but this dupUcation decreased above R=16.

It is evident from the plots that there is improvement is some areas. For example, the

variation of speedup with dupUcation is slightly better in the case of the training algorithm.

Nonetheless, there issttil no tremendous improvement over the generic algorithm.

5.1.5. The Use of Cache

So far, the assumption has been that the use of high performance (and high cost)

memory technologies is to be avoided, hence the development of interleaving algorithms to

improve the bandwidth ofmain memory. The result ofthese methods is improved speed at

the cost of some possible duplication, and more complex addressing, rather than the use of
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Figure 25 (traindvsrnax_wait). Duplication asa Function of the User Specified "max wait"
in the Training Algorithm —
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Figure 26(traln1vsP1). Speedup as a Function of Processor/Memory Speed Ratio for the
FirstProcess (Training Algorithm)
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Figure 27 (trainlvsRI). Speedupas a Function of Number of Banks for the Rrst Process
(Training Algorithm)
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Figure 29(trainvsRI). Speedup and Duplication as a Function of Number of Banks when
max_wa'rt is Held Constant

large amounts of fast memory technologies. However, the tradeoff between technology and

memory interleaving is not absolute. That is, smaller amounts of fast technology (cache) can

beused inconjunction with memory interleaving toimprove overall bandwidth.

In this section, we illustrate the qualitative effects ofcache size on speedup. We chose

to do this only for the score based and training methods, since they are superior to the others.

In these tests, the size ofthe cache refers to the number ofcolumns the cache can hold. So, if

the cache size is equal to the alphabet size, the entire main memory is in effect implemented
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as cache. In simulating the cache, a very simple model wasused. The cache access time was

assumed to be one processor cycle regardless of cache size, and the replacement scheme was

chosen as the least recently used (LRU) scheme. So, if the requested item was not in the

cache, it would be written over the least recently used item inthe cache from main memory.

It should be noted that the maximum speedup possible when using cache isnot min(R,P), but

rather (P*processor cycle time)/cache access time. In our simple model, this quantity is sim

ply P, since the cache access time is equal to the processor cycle time. Also, by not taking the

effect ofcache size on access time into account, the simulation results in an optimistic figure

forspeedup, especially for larger cache sizes.

An indication of the effectiveness ofthe cache is the slope of the curve of speedup vs.

cache size. A higher slope shows that the additional amount ofcache used results in alarger

amount of speedup, making the additional amountof cacheworthwhile.

The variation of speedup with cache size is shown in figure 30. The speedups were

measured only for cache sizes which are a power of 2. The case where R=l and d=l

corresponds to no interleaving, that is, an SISD architecture where the only speedup attained

is through the use ofcache. As you can see, the speedup gained by using cache drops dramati

cally as the cache size is reduced from that ofthe whole memory (using fast technology for

the whole memory.) Also, the slope of the curve is low at small cache sizes, and the big

improvement comes when cache is large. This defeats the purpose ofhaving cache in the first

place, which is that asmall amount ofcache could result in substantial speedup. It seems that

cache is slightly more useful at higher duplications for both methods, but still not very effec

tive. Once again, these results are dependent on the nature ofthe process. The label sequence

used in these experiments was generated by a first order Markov process with evenly distri

buted transition probabilities. Therefore, there is no bias in favor ofusing certain labels more

often than others, and for this kind of process, it is not surprising that the cache is not very
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useful.

The results in this section have shown that for the first Markov process, i.e. one with

rather evenly distributed transition probabilities, no one algorithm stands out as achieving

much betterspeedup. In fact, noneof the algorithms we have put forward forcleverdata allo

cation is any better than a regular generic algorithm. It was also seen that the

processor/memory speed ratio affects the speedup when it has smaller values, and has little

effect after a certain point. In the next section, welook at the improvement achieved by our

speedup
32

(b)

112u . 128
cache size

96 n&ches&8

Figure 30 (cachel). Speedup as a Function of Cache Size for the First Process for (a)
Score Based Algorithm, and (b) Training Algorithm
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algorithm when the process generating the label sequence does not have evenly distributed

transition probabilities.

5.2. Second Process

The second process for generating label sequences is also aMarkov process, buthas the

form of equations 6 and 7 in section 4.4. Within each row, the transition probabilities were

generated by first putting 1inthe position with the maximum probability (the upper diagonal

positions). The other positions decayed exponentially from the maximum position with a

decay factor of 0.1. The numbers in each row were then normalized to make the row sum

equal to 1. Naturally, inthis process, there is more inherent information to take advantage of.

Some label sequences will occur more than others, and allocation can be optimized for these

sequences. Once again, for better comparison, the generic algorithm was also tested.

The speedup achieved using the Huffman code based algorithm deteriorates inthis pro

cess because the instantaneous conflicts are more significant, resulting inmore wait states on

the average. For this reason, the results of the huffman code based method are not shown for

the second process.

5.2.1. Generic Algorithm

Once again, the generic algorithm was used for allocation. The resulting configuration

was then used in a memory access simulation to obtain plots of speedup versus number of

banks, dupUcation, and processor to memory speed ratio. Note the difference in performance

between this case and that ofthe same algorithm for the first process (figure 16, figure 17, and

figure 18 )The process now has more more bias towards certain events, and hopefully there is

more room for improvement For this process, there is some predictability as to which label

comes next, and taking advantage of this can create substantially better performance.
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Figure 31 (genericvsP2). Speedup as a Function of Processor/Memory Speed Ratio for
the Second Process(Generic Algorithm)
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Figure 33 (genericvsd2). Speedup as a Function of Duplication for the Second Process
(Generic Algorithm)

5.2.2. Sequential Access Algorithm

The sequential access algorithm optimizes for sequential access. For a full description,

please see section 4.4. As described before, this method is suited for processes which arc

"almost" deterministic, i.e. the sequence of columns to be accessed is almost repetitive. To

create such a sequence, the transition matrix of the Markov process had to be modified. In

each row of the transition matrix, the transition probabilities decay exponentially as they
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occupy further and further positions from the off diagonal elements. The factor of this

exponential decay can be easily varied. Naturally, the elements are all normalized to satisfy

the necessary criteria for a Markov transition matrix.

Once again, toevaluate the performance of this algorithm, we generated the sequence of

columns, allocated the columns in the banks based on the transition probabilities of this

stream, and simulated the memory access and recorded the speedup achieved. We recorded

the changes in speedup with respect to processor/memory speed ratio, number of banks, and

dupUcation. These results are plotted in figure 34, figure 35, and figure 36. Obviously, a

steeper decay in the Markov matrix results in more speedup (The process approaches the

deterministic case.)

A major drawback of this scheme is the difficulty in obtaining the necessary statistics

from the stream of columns. For a small alphabet size, a training sequence of reasonable

length will result in fairly accurate estimation of the transition probabilities. For a large

alphabet size, however, the length ofthe training sequence must grow dramatically. In figure

37, we plotted the average errors resulting from the calculation oftransition probabiUties from

atraining sequence. The transition probabiUties were calculated by counting the number of

times label i would foUow label j in the sequence, and dividing by the total number of times

that two labels foUow each other, i.e. sequence length -1. The error calculation was then made

by comparing the calculated transition probabilities to the actual transition probabilities. As

you can see, it does not take avery large alphabet size to need atremendously long training

sequence.

The kind ofperformance seen in this method is considerably better than that ofthe gen

eric algorithm. Speedups are consistently greater for various cases. This is natural, since the

inherent information in the process is being taken advantage ofmore in the sequential access

algorithm. Also, the process happens to be favorable to the sequential access algorithm.
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Figure 37(average_error). Average Percentage Error in Estimation ofTransition Probabili
ties as a Function ofAlphabet SizeandSequence Length

Nonetheless, the performance does not even come close to the upper bounds, as seen in

figure 35. Therefore, we should look for further improvement. As we have seen before, the

effect ofP is felt only below certainvalues.

5.2.3. Score Based Algorithm

The score based algorithm was also used to allocate columns to various banks for the

second process. The resulting scheme was used in amemory access simulation, and speedup

was plotted for changing processor/memory speed ratio, number of banks, and dupUcation.

(figure 38, figure 39, and figure 40. ) Like the previous cases, processor/memory speed ratio
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affects the speedup only when it is less than a certain value. Once again, this is illustrated in

figure 38 as well as figure 40, where doubling R improves speedup more than quadrupling P.

In contrast to the first process, the speedups achieved by this algorithm are consistently

much higher than those using the generic algorithm (figure 31, figure 32, and figure 33.) It

should be noted that the scores used in the algorithm were simple, non-weighted counts of

labels following other labels within P cycles of each other. Adding weights to the counting

process did not improve speedup significantly, if at all. This result reiterates the concept that

the nature of the process greatiy affects the performance of the allocation algorithm. Where

there is more bias and more inherent information, there ismore to be gained interms of per

formance.

It is also interesting to see the effect of changing the process on the same algorithm.

Changing the process does not even nearly effect the score based method (figure 21, figure 38,

figure 23, figure 39, figure 24, and figure 40) as much as itdoes the generic algorithm (figure

16, figure 31, figure 17, figure 32, figure 18, and figure 33) This suggests that the algorithm is

adapting the allocation to the process, and ismore robust than the generic algorithm.

5.2.4. Training Algorithm

The training algorithm was also used for the second process. The resulting allocation

was tested by the memory access simulation, and the results are shown in figure 41, figure 42,

and figure 43. From these plots, it is safe to conclude that the training method is in fact con

sistently much better than the generic algorithm. Once again, itis also interesting to compare

the same methods for different processes. The plots in figure 26, figure 41, figure 27, figure

42, figure 28, and figure 43 all show that changing the process does not affect the perfor

mance of the training algorithm nearly as much as it does the generic algorithm (figure 16,

figure 31, figure 17, figure 32, figure 18, and figure 33.)
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Figure 38 (scorevsP2). Speedup as a Function of Processor/Memory Speed Ratio for the
Second Process (Score Based Algorithm)
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Figure 39 (scorevsR2). Speedup as a Function of Number of Banks for the Second Pro
cess (Score Based Algorithm)

57



speedup

8

7 I—

6 —

5 —

4 —

3 —

2 —

1 ' _-^—^^y?
_ /~~^'''/z' -

/ '"'' s/^
/ ** *" .s^ ♦''*^r /•* ^X ,•"

^r / ^^ /
X / ^^ •"

^™ ^r / ^r y' .^m
/ / j/r y

r / /"^ /'
/ / ^r ..*'

/ / y*^ ,«'
/ ' y' •'"/ / y' /'

^^ / / x ''' ^™"
/ ' y'

/ ' X «*'*
/ ^ ^^ •'

/ t / ••*"
/ ' v^ /'*

/ ' I
^™ 1 * / /' "~

/ f / •'*'/// / R=16.P=8
' i /

/

'/ / R=8.P=32 —

R=P=8

^^

lower bound

/ i i i

58

0 2 4 6 8

d

Figure 40 (scorevsd2). Speedup as a Function of Duplication for the Second Process
(Score Based Algorithm)

Again, this suggests greater robustness in the training algorithm, and that the training algo

rithm adapts the allocation to the process.

5.2.5. The Use of Cache

Cache was simulated for the second process with the score based and training methods

as well. Speedup is plotted as a function of cache size for different situations for the score

based and training algorithms in figure 44. When there isno duplication, we see once again
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that cache is not very helpful unless itis used in large amounts. We see aslight improvement

over the first process for the case with duplication of4. The larger slope indicates that addi

tional amounts of cache are more worthwhile in terms of providing greater speedup. The

slope is increasing, however, indicating that one must have large amounts ofcache to begin

with before the additional amount ofcache is worthwhile. Some improvement is expected in

general for the second process because there is more likely to be temporal locality in the
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access. However, the temporal locality is not enough to justify the use of cache. This is

exactly the type of process where memoryinterleaving andproper allocation are called for.

speedup
32

R=Ld=l

24

16

8 —

speedup
32

24

16

cache size

(b)

Figure 44(cache2). Speedup as a Function of Cache Size for the Second Process for (a)
Score Based and (b) Training Algorithms
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5.3. Summary and Comparison

From the above results, it is evident that the score based and training methods are supe

rior. The Huffman code based method is very elegant and simple, but its rigid scheme for

duplication and failure to address temporal conflicts make it undesirable in some applications.

Meanwhile, although it can achieve substantial speedup, the sequential access method is lim

ited to a very particular group of processes, and its performance is heavily dependent on the

process. Furthermore, the second order statistics needed to perform the allocation are not reli

ably obtainable, especially with large alphabet sizes and/or short training sequences.

Nonetheless, these methods should be viewed as valuable tools which greatly increase our

insights into the problem.

Regardless ofthe algorithm used, the effect ofincreasing the processor to memory speed

ratio, P, was the same. Speedup increased with increasing P, and leveled off after P achieved

a certain value.

The last two methods achieve good results and donot demand information whichis hard

to come by. The score based method directly addresses the temporal conflict issue, and there

fore is suitable for a wider range of processes. The training method takes yet amore direct

approach byallocating columns from the training sequence as they arrive, making itamenable

to real time applications. The derivation of these algorithms did not assume any particular

kind ofprocess (although the tests were run using afirst order Markov process.)

It must be remembered that both the score based and training algorithms provide an allo

cation with varying bank sizes. Ifthis aUocation is determined before the system is designed,

the memory requirement is simply the sum of the bank sizes. However, if the system is

designed with anumber of banks with fixed size before the allocation ismade, there isbound

to be some wasted memory space and/or slower performance. The former case isseen more in

the design of special purpose DSP systems, whereas the latter case is encountered in more
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general purpose applications.

A very important observation from the simulations is that the possible improvement in

bandwidth from an interleaved memorysystemis heavily dependent on the nature of the data

access. Naturally, where there is a bias towards some sequences, i.e., there is more inherent

information in the data access, there is more room for optimization. The algorithms we

presented are an attempt toimprove this bandwidth as much as possible. Other techniques can

be usedin conjunction with thisto improve memory bandwidth further.

6. CONCLUSIONS

Inthis study, we tried to take a closer look at memory interleaving and allocation algo

rithms to optimize the interleaving process. We started with four algorithms, and concluded

that the last two, namely thescore based method and the training method, are the mostuseful

and productive of all. The training method performs quite well, but does notofferdirect con

trol of duplication. The score based method performance compares to that of the training

algorithm, and allows theuser to specify exactly how much duplication shall beallowed. The

training method, however, does not require any parameter estimation. It is capable of allocat

ing columns to memory as each label from the training sequence arrives, making it amenable

to real time applications. Both methods have the advantage that in their development, no

information about the process generating the sequence of labels is assumed. Even though the

tests in this study used a first order Markov process to generate thelabels, this was notneces

sary for the use of these algorithms. The prime reason for their superiority over the Huffinan

and sequential access algorithms is the fact that theydonot limit themselves to first or second

order effects. At the same time, they do not require information which is difficult to obtain,

such as high order probabilities.
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As a result of this study, we have two algorithms which provide a clear significant

improvement in i/o bandwidtii of main memory by allocating columns to different banks in a

particular fashion. These algorithms are suited for special purpose DSP applications, where

the task to be performed is rather well defined, and the memory access pattern has some

repetition and inherent information. The testing of these algorithms will be continued in the

future real label sequences obtained from a speech processing system. Unfortunately, this

sequence is not available at the time of writing.

It should be noted that in the problem formulation, the allocation of columns of data,

rather than actual individual data, was addressed. Although this was motivated bythe speech

recognition problem, it is desirable to allocate data in groups simply because of the complex

ity in keeping track of the locations of data during run time. A relatively small number of

columns can bekept track of much easier than the entire set of data. The size of any transla

tion buffer containing the locations of the columns would beatmost R*/. Therefore, asmaller

/ means less complexity in addressing at run time, but also less degrees of freedom in aUoca

tion, and less speedup. The grouping of data into columns itself is aproblem similar to aUo-

cating the different columns into different banks. In order to prevent having to keep track of

individual data columns, the columns should not be skewed from the original arrangement of

data(e.g. columns ofoutput probabilities corresponding to acoustic labels). If, however, there

is no implicit original arrangement, data can be arranged into columns using algorithms simi

lar tothe ones presented here. In either case, the choice of / (the number of columns in which

data should beorganized) isacrucial system parameter.

The performance of the various algorithms was examined as a function ofvarious sys

tem parameters, e.g. number of banks, processor to memory speed ratio, and cache size.

Although these factors are important, performance is also very dependent on the nature ofthe

process generating the sequence of labels for the system to access. In a process where more
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can be predicted about which label arrives given the current label(s), aUocating columns one

way or another could make a big difference in overaU memory bandwidtii. In the extreme

situation where aU labels have the same probability of occurrence regardless of the current

label, there is notmuch to be gained from the aUocation algorithms presented here. A possi

ble area for future study is the dependence of the various algorithms' performances on the

nature of the process. In such a study, it wouldbe quitehelpful to determine certain measures

which indicate the "randomness" of the process, and help to give a more accurate and quanti

tative understandingof this dependence.
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Word Description and Source Code for:

Label Sequence Generation
Memory Access Simulation

Generic Algorithm
Huffman Code Based Algorithm

Sequential Access Algorithm
Score Based Algorithm

Training Algorithm
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matrixgen.c

markovgen.c

error.c
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Label Sequence Generation

These programs are used togenerate label sequences. "Matrixgen.c" generates a

Markov transition matrix. "Markovgen.c" generates the actual label sequence, and

"error.c" calculates the error between calculated and actual transition probabilities.

"Matrixgen.c" generates a Markov transition matrix for the two processes

described in section 5. It first asks the user todetermine the process tobe used. Then

it generates the transition matrix one row ata time. If the first process is desired, the

transition matrix elements are generated by a random number generator. Otherwise,

the maximum position in each row is chosen to be a 1, and the other positions decay

exponentially with a factor also put in by the user. The larger this factor is, the closer

the process approaches the deterministic case. In both cases, the row sum is accumu

lated, and once the entire row has been generated, the row elements are normalized to

the row sum to make the matrix meet the necessary criteria for a Markov process.

This procedure is repeated until all the rows ofthe matrix have been generated. The

matrix is then written to the file "markov_matrix" one row at a time.

"Markovgen.c" reads the transition probabilities from the file "markov_matrix"

and uses a random number generator to create two label sequences of any length for

training and testing. Italso estimates first and second order probabilities at the end of

sequence generation. First, the program reads the elements of the transition matrix
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"Q". It then initializes "norm" and "count", two arrays of count variables, to 0. Next,

the combined length of the sequences to be generated is requested from the user. In

this program, the output equals the state. However, in a Hidden Markov Model, the

states are not observed. This decision was made because of the need to have control

over the nature of the process. The programarbitrarily sets the first state and the first

output to 1. The next state (and output) is determined by generating a number from a

random process uniformly distributed over [0,1). This interval is partitioned accord

ing to the transition probabilities in the ith row, where i is the current state. The

interval in which the random number falls determines the next state. This determina

tion is made in a simple for loop. At this point, the current state is written to the

appropriate file ("markov_output.out" for the first halfof the sequence, or the training

sequence, and "outputl.out" for the test sequence), and the appropriate count vari

ables are incremented. This procedure is repeated until the label sequence is as long

as the user specified it to be. Finally, the first and second order probabilities are

estimated from the appropriate count variables and are put out to separate files

("statsl.out" and "stats2.out").

"Error.c" is a simple program to calculate the average and maximum error

between estimated and actual second order probabilities. It simply accumulates the

absolute values of the differences between the estimated values from "stats2.out" and

the actual transition probabilities from "markov_matrix", and divides this sum by the

number of terms, that is, the alphabet size squared. During the evaluation of these

terms, it also keeps track of the maximum error.
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Memory Access Simulation

memsim.c

This program simulates the access of an interleaved memory system. It reads

item locations from a file named "allocation.data". It then reads along label sequence

from a file named "markov_output.out". As each label occurs, it searches for the first

available bank which has the corresponding item. Each bank has a "ready time"

which is constantly updated to account for the bank's latency. Time is measured in

terms of processor cycles, and is simply called "cycles". There are also count vari

ables to keep track of numberof times a bank was accessed, numberof times a bank

was waited for, and how much duplication there is in the allocation scheme. In the

beginning of the program, everything is initialized. The cache is filled with arbitrary

items. The program first asks the user to determine whether cache should be used.

Then, allocation of data is determined. The locations array is determined from the

file "allocation.dataH. The locations array in this program is called "Bank". The loca

tion determination process moves to the item corresponding to the next label in the

alphabet either when the number of locations read equals the number of banks, or a-1

is encountered in the file "allocation.data". Once the locations array is filled, the pro

gram requests the value of "datajengtii", or the length of the label sequence desired

to be used in the simulation. Now, the program isready to start simulation.

There are two possible sources for labels: the main sequence of labels in the file

"markov_output.out", and an internal "stack". A variable named "wait" indicates

whether data is in the stack or not, and therefore where the next label should be read
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from. Once the label is read, another variable named "stack_flag" indicates the ori

gin of the current label. The variable "input_time" indicates the when data was

entered into the stack. If data is read from the stack, the variable "wait" is decre

mented, indicating an empty stack. Before the search for the proper item begins, a

check is made to see if the cache should be updated. This procedure will be

explained shortly. Once the current label is specified, the next step is to search for

the corresponding item.

The search for the appropriate item begins in the cache, if cache is being used.

If cache is not being used or the search in the cache was fruitless, the search contin

ues in main memory. A "read" from cache is simulated by setting the variable

"in_cache" equal to 'y\ indicating that the item is in fact in the cache. Also, the last

time the particular cache location was used isupdated for later use indetermining the

LRU. The variable "datacount" is also incremented, indicating that one more label

has been processed and the simulation is ready for the nextlabel. The search in main

memory is simulated with the help of the locations array, known in the program as

"Bank". Each location is tried. If the current time is before the time the location is

ready (i.e. the location is busy), the next location is tried. If all locations with the

desired item are busy, the label is placed in the "stack", and "wait" is incremented to

indicate that there is data in the stack. This in effect, halts the input of labels from

the main label sequence andintroduces a wait state. The wait for the current item can

be found by subtracting the input time, i.e. the time the label entered the system from

the main sequence, from the current time, and adding 1to count the current cycle.

This wait is always calculated to keep track of the maximum wait occurring in the
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simulation. The total wait is also incremented each time this occurs. The total wait

is kept track of for later use. If one of the locations being checkedis in fact available,

a "read" from the main memory is simulated. This is achieved by simply increment

ing "datacount", incrementing "count", which keeps track of how many times the

location was accessed, and updating the next available time for the location.

Before moving to the next processor cycle and label search, it must be deter

mined whether or not to place the current item in cache. If the current item is not in

cache, it is written to the least recently used, or LRU position in cache. The LRU is

determined by a simple for loop. The LRU is labeled, but it is not written to immedi

ately, due to the latency of the main memory. Three arrays are used to assist in this

delayed write: "days_are_numbered", "time_of_request", and "temp_contents".

"Days_are_numbered" indicates if a location in cache is targeted for a write.

"Time_of_request" indicates the time this determination was made.

"Temp_contents" holds the data to be written to the cache location once the latency

period is over. In thebeginning of the process, acheck is made to seeif acache loca

tion isto be overwritten. This check is simply made by comparing the current time to

time ofrequest +ratio, and also checking for the flag variable "days_are_numbered".

The simulation terminates once datacount equals data length, the simulation

length specified by the user. At the end of the simulation, the overall number of

cycles is adjusted to account for the memory banks' latencies. If main memory was

not used at all (everything happened to be in cache), the cycles are not changed. Oth

erwise, the cycles are incremented by ratio -1 to account for the memory latency.
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Finally, the program putsout the final results. The outputs are the overall simu

lation length in number of labels, total number of processor cycles, total number of

waiting cycles, maximum wait, speedup, duplication, and the number of times each

individual bank was either accessed ortried butbusy.



77

Generic Algorithm

randomall.c

This program allocates item according to the "generic" algorithm described in

section 4.2. In this algorithm, items are successively inserted into banks, continuing

at the next bank when the current bank is filled. When there are no more items, allo

cation starts over at the first item. This processcontinuesuntil all banks are full. The

bank size must divide into the alphabet size, and the bank size times the number of

banksmust be an integer multiple of the alphabet size.

The program starts by asking the user for the amount of duplication required.

Since the number of banks and alphabet size are already known, the individual bank

size can then be easily calculated. After this calculation, the program begins alloca

tion. Allocation is made using a locations array, and it is easily seen that the loca

tions for each item i are integer(i/ bank size) + (j*number of banks/duplication),

where j is an integer varying from 0 to duplication -1. If duplication is not equal to

the number of banks, a -1 must be insertedat the end of the locations of each item to

maintain the format required by the simulation program "memsim.c". The program

in fact takes all these actionsand writes the results to the file "allocation.data".
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delim$$

Huffman Code Based Algorithm

huffman.c

This program allocates data items according to the Huffinan code based algo

rithm described in section 4.3. For this purpose, it needs toconstruct abinary tree as

shown in figure 0- The variable structure "node" is defined in the beginning of the

program. The elements of this structure are anumber indicating the node probability

called score, a character indicating whether the node is a source node , which will be

described later, an integer called label, another integer called source_no, a left child,

a right child, and a previous node. In a Huffman tree, there are two kinds of nodes:

leaves and internal nodes. Leaves have parent nodes butnochildren. All other nodes

are called internal nodes. A node is a source node if all the leaves originating from

that node are in one bank. Also, it is helpful to know that in a Huffman tree, if there

are / leaves, there are / internal nodes. In the beginning of the program two arrays of

typenode are declared. One of these arrays represents the leaves, and has size /. The

other represents the internal nodes, and has size / -1.

During initialization, all nodes are isolated. That is, they are their own children

as well as their own parent. They are also assigned a very high score of 10. These

will be changed during the constructionof the Huffman tree.

The Huffman tree is constructed in / -1 iterations. There is an "active list" of

nodes being considered in each iteration for their individual scores. The size of this

list decreases with more iterations, but this is taken care of by filling in the unused
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positions in the active list with "dummy" nodes. The dummy nodes have a high score

and are guaranteed not to be chosen. First, an array of scores of nodes in the active

list is created. Then, this array is sorted. The first two elements of the sorted array

have the lowest score, and are the children of the new internal node. After determin

ing whether the two children are internal nodes or leaves, the proper connection

assignments are made regarding the appropriate node's left and right child, and the

parent node. The new internal node's score is calculated by adding the scores of the

two children. The first two nodes in the active list are replaced by the new internal

node and a dummy node, and the next iteration begins. As mentioned before, there

are/-l iterations.

At this point, it is necessary to determine the "source nodes". A node is called a

source node if all the leaves originating from that node reside in the same bank. This

determination is made by looking at the depth of the node in the Huffman tree. For

this purpose, the leaves array and the internal nodes array are combined into one

large array. The depth of each node is then measured by counting how many nodes

mustbe passed before reaching theroot node. The depth of theroot node is set to 0.

At this point, all nodes which have a depth of $log sub 2 R$, where R is the number

of banks, are considered to be a source node. This change is made in the original

separate arrays of leaves and internal nodes. If the depth of aleaf is less than $log sub

2R$, that leaf will be duplicated in the allocation. The amount ofduplication isR/$2

supdepth$, where depth is the depth of the leaf.

Now, the allocation is conducted directly from the Huffman tree. A pointer is

put on each leaf. It traverses the tree upward until it encounters a source node. The
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numberof that source node is the bank location of the leaf. This is repeated for each

leaf. If a leaf is duplicated, several locations are assigned to it, according to its dupli

cation. Finally, the program outputs the locations array to the file "allocation.data" in

the format required by the file "memsim.c".



81

Sequential Access Algorithm

seq_organize.c

seq_aIlocate.c

interleavex

The allocation for the sequential access method is done by the files

"seq_organize.c" and "seq.allocate.c". "Allocate.c" is the main routine, and calls

upon "seq_allocate.c" to do the actual allocation. The allocation is defined by two

approaches. The first one is to define a two dimensional array containing the loca

tions of each item. One dimension of this array is the alphabet size and the other is

the number of banks. The other approach is to define atwo dimensional array show

ing the contents of each bank. The dimensions of this array are the number of banks

and the maximum bank size. The first approach is needed for use by the main simu

lation program "memsim.c". However, we have written a separate program to simu

late sequential access called "interleaves", and this program requires the second for

mat

In "seq_organize.c", these two arrays are called banks and in_banks. Some of

the elements of these arrays are empty during or after running of the program. The

convention is that "empty" elements are assigned a value of -1. The first part of

"seq_organize.c" initializes all array elements to -1 (empty), and reads the (estimated)

transition probabiUties from the file "statsZout". Then, the file "seq_allocate.c" is

called upon to actually allocate the items using the sequential access algorithm.

Next, "seq_organize.c" checks each bank for any duplicated items within that bank (
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This is a troubleshooting step). Finally, it puts out the locations array to the file

"allocation.data", and the contents array to the file "contents.banks".

The file "seq_allocate.c" actually implements the sequential access algorithm.

In this file, the contents array is called "contents", and the locations array is called

"locations". The file starts working with the locations array, and initializes all its ele

ments to -1 (empty). The other key variables are "testprobs", which is an array of

probabilities evaluated for each item from step iii of the algorithm (section 4.3), and

"flag", a two dimensional array of flags indicating whether a given item exists in a

given bank. Obviously, the flag array can be evaluated from the locations array and

vice versa. Another array called "number_of_entries" keeps track of how many items

have been allocated to each bank. These variables are also initialized.

The first entry in the first bank is set to the item with highest probability of

occurrence. To evaluate the first entry in the next bank, "testprobs" is evaluated, and

the item with the highest "testprobs" is allocated to the next bank. Before this is

done, however, acheck is made to see whether the item already existed in the bank.

If so, the item with the next highest "testprob" is put in (provided it is not already in

the bank). This check is made with a simple while loop. When the contents are

"written", the corresponding "number_of_entries" and "flag" variables are also

updated. When the number of banks is reached, the next "row" is processed starting

at the first bank. This boundary condition is handled in a similar way to the normal

case, keeping in mind that the previous bank is the last bank, and the next bankis the

first bank. To avoid boundary complications, the last iteration is also handled

separately.
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At this point, the locations array is derived from the contents array. If all items

were guaranteed to have been allocated, allocation would be complete. However,

there may be some unallocated items, which the program checks for next. After

determining the unallocated items, the program rounds up all the items in the first

bank, and sorts them in order of their probability of occurrence. Then, it checks each

one starting with the least probable item to see if it is located elsewhere. If so, it is

replaced with the current unallocateditem. Otherwise, to searchcontinues to the next

to least probable item, and so on. Only one unallocated item is allowed to be written

in a bank ata time. The process is repeated for the next bank, and soon,until all the

unallocated items have been allocated.

Finally, the locations array isupdated using the contents array. It is easily seen

that the locations array can be obtained from the contents array and vice versa.

The program "interleave.c" is a special program written to simulate memory

accessing for the sequential access algorithm. The memory locations are no longer

determined by a locations array, but instead from acontents array. The dimensions

of this array are number of banks and bank size. This array is read from the file

"contents.banks". Like the program "memsim.c", this program also prompts the user

for the length of the label sequence to be simulated. Then, the other quantities in the

program are also initialized. "Flag_empty" is a flag variable whichindicates whether

the bank encountered has the desired item ornot. "Total_wait" is the total number of

cycles the processor had to wait for items to be accessed. "Wait" is an array indicat

ing the total number ofwait states for each bank. "Ready_time" is an array ofavail

able times for each bank. "Bank" simply is the current bank being tried, "cycles" is
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the time measured in processor cycles, and "count" indicates how many items have

been retrieved so far.

The simulation begins at the first bank. Each cycle, the bank is chosen sequen

tially. If no item is currently being waited for, the next label is read from the file

"markov_outputout". "Flag_empty" is automatically set to 1. If the current bank is

available, and if thecurrent bank contains the desired item, "flag_empty" is reset to0,

the ready time of the bank is updated, and "count" is incremented. If the desired item

was not obtained in this cycle, the wait variables are incremented, and the simulation

moves on to the next iteration. This process continues all the items corresponding to

all the labels in the main sequence have been obtained. At the end of the simulation

is calculated. Finally, the program outputs the total number of cycles, the individual

and total number of wait states, the speedup, and the overall duplication.
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Score Based Algorithm

analyze.c

score_based.c

The file "analyze.c" analyzes the label sequence in the file "markov_output.out"

and calculates the scores necessary for the score based method. The program initial

izes all the count variables and time variables. Then it reads the labels one by one.

As it does this, it compares the last time of occurrence of each of the labels, and if it

is within P cycles of the current time, the appropriate count variables are incre

mented. Also, the last time of occurrence of the label that was just read is also

updated. Then, the count matrix is made symmetric by first adding the symmetric

elements together and setting the symmetric elements equal. Therefore, the score

calculated isa simple count. Finally, the score matrix isoutput to the file "score.out",

ready for use by the program "score_based.c".

The actual allocation is done by the program "score_based.c". As described in

section 4.5, the score based method only allocates for duplications of 1. Higher

duplication can be achieved by using fewer banks, and then duplicating the scheme.

The program first requests the allowed duplication from the user. It then reduces the

number of banks accordingly. Initialization takes place next. All the count variables

are set to 0,all the contents are set to -1 (empty), and the locations array isalso set to

-1 (empty). "Max_count", which keeps track of the maximum bank size is set to 0.

"Item" refers to the current item under consideration, and it is also set to0. Then, the

program reads in the scores forallpossible pairs in the alphabet.
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At this point, the allocation starts. Allocation is done item by item. As each

item is considered, a test is run on all the banks. For each bank, the maximum score

resulting from adding the new item is evaluated. These maximum scores are stored

in the array "temp", and the bankindices are stored in the array "index". These arrays

are sorted, and the bank with lowest maximum score is chosen as the location for the

current item. The nextelement in thecontents matrix for thechosen bankis assigned

as the current item, and the proper count variable is incremented. At this point, the

maximum bank size is kept track of in the variable "max_count", and allocation

moves the next item.

At theend of the allocation, themaximum bank sizeis putout,and the locations

array is derived from the contents array. Finally, the locations array is put outto the

file "allocation.data" in a slightly modified way. The modification takes place to

accomodate the duplication required atthebeginning.
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Training Algorithm

training.c

The training algorithm is implemented by the program "training.c". This algo

rithm is described thoroughly in section 4.6. During the allocation, the program

keeps track of various quantities, such as the number of locations assigned to an item

so far, the first available read location for an item, the first available write location for

an item, and the next available time for all the banks. There are also some flag vari

ables indicating whether an item has been allocated (the array "allocated"), and

whether all banks are full ("all_banks_full"). In the beginning, all of these parameters

are initialized. In this program, both locations and contents arrays exist, and they are

also initialized to all -1 's inthe beginning. Next, the program asks the user to specify

a "maximum wait" beyond which waiting is not desired. A lower maximum wait

results in more duplication.

At this point, the simulation begins. The first step is to sort the banks in terms

of their ready times. This is to facilitate determining of earliest read and write loca

tions later. Next, a label is read from the training sequence. The next available loca

tion that the corresponding item can read from is determined in a nested while loop.

The flag "already.there" is assumed to be equal to 'n\ until a search through the

banks in their sorted order shows otherwise. Ifthis happens, the flag isset to 'y\ and

the next available read location and its next available time are kept track of. A simi

lar procedure is used to find the next available write location for the desired item as

well as the corresponding time. A search is conducted through all the banks in order
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of their availability using a while loop and a for loop. The last iteration had to be

separated from the main while loop to avoid exceeding array argument bounds.

This information allows the program to proceed with the necessary decision

making. There are three cases: the item has not yet been allocated, the item has been

allocated but must be waited for too long and the next available write location hap

pens earlier than the next available read location, or the item has been allocated and

does nothave to be waited for too long. In the first case, the itemmustobviously be

allocated to the soonest available bank. This is indeed what the program does. It

assigns the item to the contents array, and the new location to the locations array, and

it increments the necessary count variables. It also increments the ready time of the

bank according to the current time and the previous ready time of the bank. If it was

ready before the current time, the new ready time is simply Pcycles from now. Oth

erwise, the current time must be updated to the ready time of the bank (resulting ina

wait period), and the new ready time is the old ready time +Pcycles. This ready

time is also the next available read time of the item since it is located nowhere else.

Finally, the "allocated" flag is asserted to avoid repeating this case in future itera

tions.

The second case is exactly like the first case, except that the "allocated" flag

need not be changed, and a checkmustbe made to seeif thenext available read loca

tion is available later than the next available write location. If so, awrite is initiated.

Otherwise, the current time is simply updated to the ready time of the next available

read location, and the wait is recorded.
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The third case requires no write operation, and the necessary steps are taken to

simulate a read operation. In the final part of each iteration, the maximum wait

("longest_wait") is updated, and acheck is made to see if all banks are full yet. This

entire process is continued until all banks are full, or the end ofthe training sequence

is reached. Finally, the locations array is put out to the file "allocation.data" in the

format required by the program "memsim.c".


