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Introduction

1.1 A Perspective

Radio astronomy signal processing is an active area which has potential
for numerous new applications of integrated circuits. For instance, pulsar signal
processing applications typically require racks of boards to implement these
systems. The Coherent Dispersion Removal Processor (CDRP) being developed
by the Center for Particle Astrophysics is one such system. A main component of
this system is a 1024 tap finite impulse response (FIR) filter integrated circuit
which is presented in this report.

The FIR filter is intended for data rates from 1 kHz to 4 MHz, with three

operational modes - 1024 tap, 512 tap, or 256 tap configurations (the product of
data rate and taps cannot exceed 1024 tapxMHz). Moreover, the filter is
programmable and the data and coefficients are full complex numbers. The word
lengths of data and coefficients are rather small though, the data is two bits real
and two bits imaginary, while the coefficients are three bits real and three bits
imaginary. A feature to cascade more than one chip in sequence is also provided.
This filter is a very large scale integrated (VLSI) circuit with a computation

requirement of 7.2 GOPS, where each operation is a multiply or add. In addition
to pulsar signal processing, a large tap filter such as this is also useful in a
number of other fields like radar applications and pattern recognition of faint

complex voltage signals.
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1.2 Organization of the report

A brief introduction to pulsars and the problem of dispersion removal is

given in chapter 2. This is followed by an overview of the CDRP system in

chapter 3. Discussion on specifications and design considerations for the FIR

filter is presented in chapter 4. Chapter 5 discusses quantization issues for the

coefficients and data for the FIR filter. Architecture of the chip and its

implementation is presented in chapters 7 and 8. Verification is given in chapter

9, and finally some conclusions are drawn in chapter 10.

The chip layout of the FIR filter is included in an appendix.



Introduction

to Pulsars

2.1 What are pulsars?

Once a star exhausts all its fuel, its inevitable death can have three

results. Small stars like our sun explode in a nova and degenerate into vapid

white dwarfs. Bigger stars explode in a much more spectacular super-nova and

then form neutron stars. Even larger stars are theorized to form black holes.

Neutron stars are extremely dense yet relatively small objects. Results

have been found with these stars having a radii of about 10 km and masses

comparable to the Sun's [1]. Some of these neutron stars are born with a strong

dipole field. This special class of neutron stars are called pulsars. About 500

pulsars have been discovered since 1967.

In other words, pulsars are highly magnetized rotating neutron

stars.They have the special property of emitting pulses with a striking regularity.

The pulse, or the observed beam of radio emission rotates with the neutron star,

much like the beacon of a lighthouse. We observe pulses that repeat at the star's

rotation rate as the beam sweeps past the Earth. The star is rock stable thus

sustaining a highly undisturbed and regular rotation period.

A special class of pulsars are millisecond pulsars. The distinguishing

property of these pulsars is that their rotation periods are typically in the range

of 1 to 10 ms. In comparison to long period pulsars, millisecond pulsars also have

a more stable period.
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2.2 Application of millisecond pulsars

Millisecond pulsars are very useful in a number of applications:

• Study of formation and evolution of neutron stars

• Study of evolution of binary star systems

• Probes for pulsarmagnetosphere

• Pulsar timing

Pulsar timing is one application which is of interest not only to

astronomers but also to other communities. The timing data from millisecond

pulsars can be applied to the following applications [2]:

• Celestial mechanics

• Time Coordinate definition and gravitational wave detection

• Space reference definition and spacecraft navigation

• Interstellar turbulence

Needless to say, these applications are of high value, and a large amount

of research effort is being conducted in this area.

2.3 Model for pulsar signals

The model for the pulsar signals, as we observe them, is shown in figure

1. The pulsar signal at the star can be modelled as amplitude modulated noise.

The amplitude, or the intensity of the nth pulse /„(<(>) varies chaotically within a

given pulse, and from pulse to pulse. However, a long term average of many

Pulsar

\ noise v_yWhite noise

V
n=i - -

t2

Receiver

^©-

Pulse train M '" Dispersion White noise

Figure 1: Model ofthe Pulsar Signal
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pulses develops a stable pulse profile

that is characteristic of each object.

Figure 2 shows one such pulse profile.

During its journey to the Earth, the

pulse must travel through the

interstellar medium which is

interspersed with tenuous plasma. The

tenuous plasma has an index of

refraction T\ which has a frequency

dependent term (see figure 1). The frequency varying index of refraction is
responsible for the undesirable effect of dispersion. Finally, the receiver can be
modelled as additive white noise. The noise can be substantial, and as expected,

pulsar signals are generally buried in large quantities of noise.
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Figure 2: Profile ofaPulsar Signal
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2.4 Dispersion in Pulsar Signals

The frequency dependent index of refraction of the interstellar medium

results in non-linear dispersion of the pulsar signal. Figure 3 shows this effect.

Across a narrow band BW, at radio frequency v0, the delay AtDis given by

AtD = 8.3 )is DM (pc cm3) BW (MHz)/ v03 (GHz)

where DM is the column density of electrons in the interstellar medium in

astronomer's favorite units (1 pc [parsed = 3xl016m « 3 light years).

v J11

v<r

^S.

l i' •

BW

T

Figure 3. Dispersion in Pulsar Signals



6 Design of a FIR filter forPulsar Signal Recovery

2.5 Dispersion removal techniques

For any useful pulsar timing application, the dispersion from pulsar

signals must be removed. There are two main techniques for removing dispersion

- the incoherent technique and the coherent technique.

2.5.1 Incoherent dispersion removal (Pre-detection)

The frequency dispersion incurred by the pulsar signal in the ionized

plasma along the line of sight can be removed by dividing the band Binto smaller
bands BW with a filter bank. Each signal can be detected and averaged

synchronously with the period. Dispersion betweenbands is removed by shifting
and adding [3]. This technique reaches a natural limit when 1/2BW exceeds the

desired sample time which we take as AxD:

1/ (2 BW) = AxD -> AxD2 = (8.3 DM) / 2v3

Choosing a AxD, or equivalently BW, one can find the minimum value of v. This
minimum presents a barrier which is undesirable. This is the main motivation for

the complicated yet effective coherent dispersion removal technique.

2.5.2 Coherent dispersion removal technique (Post-detection)

In [4], Hankins and Rickett develop an analytical representation of how

the dispersion only modifies the phase of the propagating electric field in a
frequency dependent manner across the spectrum, and how the original pulse

can be reconstructed by inverse filtering of the sampled voltage. Figure 4

displays the difference between the incoherent and coherent techniques and
graphically demonstrates the superiority of the coherent technique. In the
coherent technique, the sampled voltage can be passed through a finite impulse
response (FIR) prior to detection to remove the dispersion. Hankins attempted to
do this with a real-time 1-bit system during his Ph.D. research in 1970. Later

Hankins and others have used Fourier techniques in software. Recently he and

his colleagues have constructed and put to regular use a Reticon-based FIR

dispersion remover [51.
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Figure 4: Dispersion Removal Techniques

The FIR restoring function for signals in a small fractional bandwidth at a

radio frequency v0can be written as:

K«)-exp f-j^-.y \xexp(j(K/4))

Alternatively, the dispersion can be removed in the frequency domain by

taking the FFT of the input signal, multiplying it with the frequency response of

the interstellar medium and subsequently taking the inverse FFT of the product.

The narrow band frequency response is given by:

. 2kv2DH+(V0 +AV) ••**v"expra
where D (sec Hz2) =DM (pc cm"3) / (2.41 x 10"16). These approximate relations
are derived from limiting the interstellar medium transfer function taylor series

expansion to the quadratic term [4]. Although the higher terms are generally

neglected, they can be incorporated in the FIR filter if one wishes because there is

no requirement of symmetry in the coefficients. The number of samples required

for the FIR with critical sampling of the complex data at a rate BW is:
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v3o

The rapid growth of N with BW indicates that a channelization into sub-bands

approach to an FIR coherent processor is essential. A single FIR filter for a

bandwidth BW of 100 MHz at v = 1 GHz and DM = 100 requires 8x10* taps while

a bandwidth of 1 MHz requires only 8x104 taps.

After studying various requirements, the Center for Particle Astrophysics

decided upon a specification of 1024 taps FIR filter with a 1 MHz channel

bandwidth. The detailed specifications of the filter are mentioned later.

2.6 The FIR filter approach

As mentioned earlier, there are two basic methods of implementing

coherent dispersion removal. First is the FIR filter method, while the second is

the FFT method. Both have their own advantages. It may be generalized though,

that the FFT is a board level (or part of a board) solution while the FIR filter is a

chip level solution. To do an FFT of 1024 points, using commercially available

parts, about two chips would be required. Also, FFT must be complemented by

an inverse FFT doubling the number of chips. Finally a lot of memory and glue

logic portions are required. All these components make the FFT a much more

bulky solution. If we were interested in processing much more data than 1024,

FFT would definitely be the optimal solution because of the Nxlog2N

computational requirement as opposed to N2 for an FIR filter.

Comparing the various advantages and disadvantages, the Center for

Particle Astrophysics selected the FIR filter approach. Observing the massive

computational requirement of 7 GOPS, a custom integrated circuit was required.

Using current day general purpose digital signal processors, only 30-50 taps

could be implemented for a 1 MHz data rate which falls short of the 1024 tap

goal. With regards to the state-of-the-art programmable FIR filters, a 30 MHz FIR

filter with 16 taps and 8 bits quantization was reported [6]. Also, LSI Logic

markets a 20 MHz FIR filter with 64 taps and 8 bit quantization and a 15 MHz FIR

filter with 1024 taps, 1bit data, and li bit coefficients [7].



Overview of the

CDRP system

The Coherent Dispersion Removal Processor machine being developed at

the Center for Particle Astrophysics utilizes the technique described in the

previous chapter. The block diagram of this system is as follows:

In

-*c
LO

LowPass
FILTER

Figure 5: CDRP System
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The local oscillators combined with the low pass filters are used for

demodulation and channelization of the input signal. Quadrature demodulation

is used, thus yielding complex signals. Quadrature demodulation has a number

of advantages over simple demodulation [81. The main reason for complex
demodulation is that when the signal is mixed down to base-band, both positive

and negative frequencies are present. The only way to sort them is to use to

mixers, one sine and the other cosine, yielding complex data. It is possible to use

a single sideband mixer to mix the IF band to only positive frequencies, but this

is a more complicated and expensive device and one needs to sample a real

voltage at twice the rate given by the bandwidth. Hence, typically the input

signal bandwidth is 100 MHz, which is subsequently broken into 1 MHz bands.

Each band is fed to a dedicated FIR filter chip which removes the dispersion from

the band. Every band is then detected. Following this is signal averaging, which

sums a number of periods. Over the time of averaging, a pulse profile finally

develops and emerges above the noise level. The rest of the report discusses the

design of the FIR filter chip which was the focus of this research project.



Design Consider
ations for the FIR

Filter

4.1 Specifications and design goals

The main requirement for the FIR filter chip was agility. Based on this

requirement the Center for Particle Astrophysics laid out the following

specifications:

1024 taps operation with up to 1 MHz data rate :

512 taps operation with up to 2 MHz data rate

256 taps operation with up to 4 MHz data rate

Programmable non-adaptive coefficients

Ability to cascade the chips

Based on these requirements, the main design trade-off was between

speed and area. It was desirable to have a chip as small as possible but it is

useless to have a small chip with an unreasonably high clock rate. Based on

current day technology, we decided to clock the chip at 32 MHz and aim for a die

area of about 11x11 sq. mm.

4.2 Design Issues and Methodology

4.2.1 Clocking Scheme

As mentioned, the target clock speed for the chip was 32 MHz. Most of

the cell library uses a two phase non-overlapping clocking strategy. This strategy

11
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is also easiest to implement, which resulted in our selection of this scheme for the
chip.

4.2.2 LogicDesignvs. Circuit Design

An initial estimate revealed that the final chip would be core limited and

would also be an oversize device. This underlined the need to conserve silicon

and have a layout as compact as possible. Library cells provide the advantage of

extremely fast design time, but often fall short with regards to performance and

area. Considering this, both logic design and circuit design approaches have been

used in the chip. Circuit design has been done only when library cells did not

satisfy the specific requirements.

4.2.3 Static vs. Dynamic Design

In [91 Yeung mentions, "While dynamic circuits are usually superior to

their static counterparts in terms of speed and area, they are also more difficult to

integrate into the system due to their timing constraints. A static data-path cell is

easier to use and more likely to be reused than a dynamic cell of equivalent

function. In addition, the power spikes, increased clock loading and potential

timing problems associated with dynamic designs may more than outweigh its

advantages. Static design is further favored when there is no urgent need to

conserve chip area."

Looking at these trade-offs, it is clear that for simplicity, a static design is

favored. For most of the chip, therefore, a static approach was used. However, for

the shift register section (described later), where area was of paramount

importance, a dynamic C2MOS approach was used. C2MOS, as one may recall,

also has the pleasant property of being fairly insensitive to clock skews.

4.2.4 Power Consumption

By using CMOS technology and by avoiding circuit techniques that

consume large amounts of static power, power consumption of the FIR chip was

minimized. Also, for the critical portion of the chip, the shift register section,

C2MOS logic was used, which has absolutely no static power.
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4.2.5 Computer Aided Designs

To facilitate the design process,CAD tools were used extensively to assist

logic design, layout, and circuit and logic simulation.

4.2.6 Layout Strategy

Manual layout was avoided as much as possible by using the LAGER [10]
silicon compiler and a cell-based modular design. Manual layout was done only

on the cell and sub-block level, above that the layout was generated

automatically by using LAGER. Moreover, a bottom up approach was used in the

layout process so that blocks of layout were first generated and simulated before

they were assembled to form more complex blocks. Manual optimization of the

machine generated layout was also performed after complete verification of the

design.

4.2.7 Simulation

Simulation occupied a very significant portion of the design cycle.

Simulation was done mainly at three levels. The algorithm used to implement the

architecture was simulated using a high level flowgraph language - SILAGE and

the programming language C. The various cells manually laid out were simulated

using SPICE. The final transistor level simulation was done using irsim, an

interactive event-driven simulator for MOS transistor circuits.



Quantization
effects

5.1 Quantization

In order to reduce the complexity of the FIR filter, which in turn reduces

the area and the speed constraints, it is very important to have an efficient

quantization scheme. It would be desirable to have the data and the coefficients
of the FIR filter quantized to the minimum number of bits without adding

significant quantization noise. Eventually, data quantization was fixed at 2 bits
real and 2 bits imaginary, while the coefficient quantization was fixed at 3 bits

real and 3 bits imaginary.

5.2 Simulations

Extensive simulations were done to ensure that the quantization scheme

was not adding disproportionate amounts of noise. Before presenting the
quantization scheme and the simulation results, it would be useful to look at the
simulation model used. Figure 6 shows the model which was implemented in the
SILAGE flowgraph language. To understand the effect of the low-pass filter, noise

input

inter

stellar
medium

-*©*

Noise

low pass
inverse

interstellar
medium

Figure 6: Quantization Simulation Model
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was generated at 19 times the output rate. The sum of noise and the dispersed
signal was low-pass filtered and subsequently decimated to the output rate.

5.3 Coefficient Quantization

The impulse response of the interstellar medium (see chapter 3) is pure
phase with constant amplitude. This is also true for the inverse interstellar
medium impulse response. In other words, all the coefficients derived from this
transfer function are on the unit circle. This motivates a vector quantization

scheme, figure 7a, where the coefficient pair is quantized to a pair with the
shortest distance away from it. (Note that the quantized points themselves do not

all lie on the unit circle because they are forced to be integers). The simulation

results were quite promising for these quantization points. Figure 8 shows the
results. In figure 8a, result is shown when an impulse is fed to the system with no

quantization occurring in the IISM (inverse interstellar medium) FIR filter block.

-1.1Ciin

+3

+1

Out

1.1a,r In

-1

-3
where a is the standard deviation

(a) (b)

Figure 7: Quantization Schemes (a) Coefficients (b) Data

Figure 8b shows the result for the same input waveform with only the coefficients

quantized in the IISM filter. Figure 8c and 8d show results of the same test on a

narrow pulse. The additional noise for the impulse was 0.06 dB while for the

pulse was 0.11 dB (The signal to noise ratio used is peak to average). This noise

arises from two effects - the signal to noise ratio loss and dynamic range limit.

Clearly, this amount of noise is within acceptable limits.
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(a) Impulse: noquantization (b) Impulse: coefficient quantization

(c) Pulse: noquantization (d) Pulse: coefficient quantization

Figure 8: Coefficient Quantization Results

5.4 Data Quantization

The key fact used while deciding upon to the number of bits for data

quantization was that the signal is highly noise dominated. Intuitively after a
certain word length, further increase in the number of bits does not extract any

more information. The commonly used quantization length in currently used

digital correlators is two. Since the kind of data beingdealt with is the same here,
a two bit quantization scheme was used. The scheme is shown in figure 7b. The
relationship between the input and the quantizedoutput shown in the figure has
been found to be satisfactory [11]. This scheme is used for both the real

component of the data and also the imaginary.

The effects of quantization noise were studied and the results are
summarized in figure 9. Similar to figure 8, figure 9a shows the result with an
impulse fed to the system with no quantization in the IISM FIR filter. During this



Quantization effects 17

(a) Impulse: no quantization (b) Impulse: data quantization

(c) Pulse: noquantization (d) Pulse: data quantization

Figure 9: Data Quantization Results

experiment, much more noise was added than in the previous experiment to get a

more accurate picture of data quantization effects. For instance, the dispersed
signal in the previous experiment was buried in noisewith 5 times the amplitude,

while 30 times in this experiment. Figure 9b shows the result with the same

impulse fed to the system with data quantization Figure 9cand 9d summarize the
same results for a pulse, additional noise in the two cases is 0.42 dB for the

impulse case and 0.78 dB for the pulse case. As with the previous case, this noise

is a result of signal to noise ratio loss and dynamic range limit. These numbers
are acceptable and agree with the results from correlation experiments.



Architecture

of the FIR

The main trade-off while deciding upon the architecture was between

speed and area. Fewer parallel data-paths would result in smaller area, but a
higher clock rate as opposed to an architecture with more parallel data-paths. The
architecture finally selected is based on the work done by the Stanford DSP group
[111. It was decided to use a 32 MHz clock for the chip which seems like a

reasonable target considering present day technology. Since the data rate is
assumed to be 1 MHz, this constraint implied that the FIR filter chip would have

32 complex multipliers to do the 1024 multiplies required for the 1024 taps. The
architecture is shown in figure 11; thus, there are '32 blocks' each implementing
32 taps, and in total implementing 1024 taps. Each of these blocks consists of 1
complex multiplier, 32 data shift registers, and 32 coefficients shift registers.
Intercommunication between blocks is minimal. The data circulates for 31 clock

cycles and during the 32nd clock cycle it has to be transferred between blocks.
The data thus traverses in a snake like fashion. The coefficients keep circulating

at all times (except coefficient load). Figure 10 shows a simple timing diagram to
illustrate the inter-block communication. The above explanation holds for the

1024 tap case, and a number of tricks had to be introduced to keep a provision for
different filter sizes (see specifications).

1L2 -3 L« 1* :6.7:8.9^iq_llLl^_ia_l^_lS_l^_lT_iq_l?L2Q-2^2? 2425. 26 27 28 2930; 31- 32

Atdock cycle 'A', data istransferred from one block toanother. It circulates during the other cycles.

Figure 10: Simple Intercommunication Timing Diagram

18
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The 32 real and 32 imaginary results from the multipliers have to be

summed up. There are a number of ways to implement the summation, e.g. a

sequential tree, a binary tree, or a Wallace tree approach. The binary tree was

selected because it is area efficient, is easy to pipeline, and has library support. To

meet the speed requirements, the adder tree in fact has four levels of pipelining.

The sum from the adder tree is passed on to an accumulator which outputs the

data at the same rate as the input data rate. A controller and some output

circuitry is also provided to facilitate cascading of more than one chip.

Data inl

Data in2

Data
Storage

Complex
Multipliers

Adder tree

Input Mux

CTJJ

32

$Each fine represents the flowof
complex data. Control flow is not
shown.

32

Accumulator

Coefficient
Storage

cade mux

Result
in

result
out

Cascade
Adder

Figure 11: FIR Filter Chip Architecture



Implementation of
Macro-Functions

7.1 Memory

The chip requires a storage of 1024 coefficients and data. This translates

to a memory requirement of 10 Kbits. Various implementations shown in table 1

were tried for this block.

TABLE 1. Memory Block

Block Advantages Disadvantages

DRAM Library part Speed, routing and address generation

SRAM Area Routing and address generation

FIFO Librarypart Area,data management, and speed

Shift Register Simplicity Power and clock lines

The DRAM had the advantage of being a library part, and hence having a zero

design time, but had the fatal drawback that it could not function at the speed

required. The SRAM had the advantage of being very compact, but the

disadvantage that all the area saved due to a compact block size would be lost in

routing and address generator block. Another disadvantage of using an SRAM

was that considerable circuit design was required. Another structure considered

for the memory block was the FIFO. This block was fairly unsuitable, and the

only advantage was that it was a library part. Finally a shift register

implementation was considered. The advantage here was simplicity. However,

there were a number of disadvantages from a power and clock distribution point

of view since every shift register would be active during each clock cycle.

Eventually, the shift register approach was chosen because of simple design and

20
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multiplexer

Routing cell

Figure 12: Shift Register
Architecture

relatively compact area. Just to give an idea of the problems this block created,

the block is expected to consume about 0.4W and the four clock lines have a

capacitance of about 177 pF each, driving which in turn consumes about 0.9W.

A detailed architecture using this approach is shown in figure 12. For the

1024 tap mode, all three sections A, B, and C are used for circulating the data. The

uppermost 3:1 multiplexer is used to switch between circulating data and data

from the latch, which is the actually the delayed data from the previous block.

The latch stores the data for 32 cycles before injecting it into the stream again. In

the 512 tap mode, only sections B and C are used for circulation. The second 3:1

multiplexer decides between the circulating data and the data coming from

section A, which is effectively delayed data from the previous block originating

from source X. Finally, in the 256 tap mode, only section C is used for circulation

of the data and the 2:1 multiplexer selects between the circulating data and the

delayed version of data from the previous block from source Y through section B.

C programs which mimic this architecture are included in the appendix.
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O OFF*

(a) (b)

Figure 13: Circuits used (a) Shift Register cell (b) Multiplexer cell

The circuits used to implement the shift registers were of the C2MOS
family. These shift registers are compact and relatively insensitive to skews. Also,

there is no static power in this logic family. The price paid is the high clock

capacitance and dynamic storage of charge. See figure 13a for the circuit. The

multiplexers circuit used was just pass gates with outputs connected. See figure

13b for the circuit.

Once these basic cells were laid out in MAGIC and simulated using

SPICE, they were assembled into sub-blocks using MAGIC. These sub-blocks

were incorporated into the LAGER frame-work and the next level of hierarchy

was formed using automatic tools. These memory blocks were simulated using

irsim.

7.2 Multiplier Block

The requirement here is to multiply a complex data by a complex

coefficient. The block should supply this product at the prescribed 32 MHz speed.

A number of implementations were tried here too as shown in table 2.

TABLE 2. Multiplier Block

Block Advantages Disadvantages

ROM Library part Speed

PLA Librarypartand small Speed

Data-path Librarypartsand speed Area

Standard Cell Library parts, smallest, and fastest -
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The two clearly superior

implementations were the data-path

and the standard cell implementations.

Among the two, the standard cell

implementation was significantly

smaller. As opposed to a single real

multiplier of size 307x535 X generated

by the data-path compiler, the standard

cell layout was only 251x328 X. See the

appendix for a comparison of layouts.

7.3 Adder Tree

Figure 14: Pipelining in the Adder Tree
The main challenges while

designing the adder tree were that it had to be fast and compact. To meet the

speed problem, the adder tree was heavily pipelined, see figure 14, with four

levels of pipeline registers. Fast carry select adders were used where ripple

adders became too slow. To achieve a compact layout, very careful planning was

done, and judicious scaling of the bits was done. With regards to scaling of bits,

the product from the multiplier is 6 bits wide, and the adder tree grows in bit

width from 6 to 11. Note that there is no saturation or truncation in this tree.

The careful planning of the adder tree is shown in figure 15. Figure 15a

shows two half size adder trees. The one on the left is the real adder tree and the

one on the right is the imaginary one. As one can notice, the number of adders in

the top level is almost identical to the number of adders in the subsequent levels.

It is therefore logical to try and place the entire adder tree in two layers. That is

exactly what is done. In addition to this placement, the two adder trees - real and

imaginary are also interleaved. Since a two layer layout turned out to be too thin

and wide, it was folded over into four levels, figure 15b, to achieve a very

compact layout. See the layout in appendix to compare with figure 15b.
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(a) Inefficient Placement

(b) Transformed Placement

Figure 15: Layout Strategy for the Adder Tree

7.4 Controller

The controller is used to control the various modes, and to load up the

coefficients. The timing diagram of one of the modes, the 256 tap mode is shown

in figure 16. During states A, C, E, and G, the multiplexer lines for the data
storage are changed so that the circulation mode turns into pass-along for one
cycle. In states B, D, F, and H, the output of the accumulator is valid, and has to
be cleared for the next cycle. The implementation options herewere to use a PLA
or to use a standard cell implementation. Due to the slow speed of a PLA, the

standard cell implementation was used.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 2930 31 32
: • ; • i^ • lL«_i_« i_ • J_» l_ • : < : !_ •_ L L L u U tn U U "n

250 ns 500 ns 750 ns 1000 ns

A - Load data, shift cycle for all multiplexers,latch new data, generate slow-clock

B - Clear Accumulator. Latch accumulator output

C - Load data, shift cycle for all multiplexers, latch new data

D - Clear Accumulator. Latch accumulator output

E - Load data, shift cycle for all multiplexers, latch new data

F - Clear Accumulator. Latch accumulator output

G • Load data, shift cycle for all multiplexers, latch new data

H • Clear Accumulator. Latch accumulator output

Figure 16: State/Timing Diagram for the Controller in the 256 Tap Mode

7.5 Output Circuitry

The output circuitry is shown in figure 17. This was implemented using

the data-path library. This circuit is used to provide cascade ability for the FIR

filter chip.

Sum latch

5
Ext. latch

J.
Zero Mux

Carry Select Adder

(Pad)

Figure 17: Output
Circuitry (simplified)

7.6 Overall Layout

Once the structure of the adder tree was fixed, it was clear that

multipliers would have to feed it from both top and bottom sides. Hence two

banks of multipliers were laid out, and feeding the two multiplier blocks, two

memory blocks were laid out. Since one multiplier was being fed by one
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Figure 18: Overall Layout of the Chip (Main Components only)

coefficient shift -register and one data-register, it was obvious that pitch-

matching these two blocks would be highly area efficient. This is exactly what

was implemented. Figure 18, shows the layout of the overall chip (only the main

components, see appendix for the chip photograph).
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7.7 Clock generation and distribution

A two phase non overlapping clock is used. A cross coupled NOR-gate,

figure 19, clock generator is used. The chip also accepts external two phase

clocks. The two phases are routed globally while their inverses are generated

locally. The overall capacitance on each clock line, $i, $2, ?i, $2 was about 187 pF.

To drive this huge load and to ensure tolerable clock skew (<lns), careful layout

of the clock lines was done. The buffer scheme is shown in figure 20, the layout

on chip is shown in figure 21, and the spice results are shown in figure 22.

7.8 Power distribution

Since the chip has a total of about 152,000 transistors, it was necessary to

generate a well-planned power distribution tree. Care was taken to limit IR drops

and to avoid any possibilities of

electro-migration. The power network

tree can be found in figure 23.

Figure 19: Clock Generation

320/2
J30/2

2816/2
1144/2

♦1

♦2

7.9 Pads

Under normal circumstances,

only the output buffers contribute to

any ground bounce. However, in this

512/2
208/2

19320/2
7728/2

To memory

To adder tree

t These buffers ate distributed
but have been lumped i1 this
diagram for convenience

Figure 20: Clock Buffer Scheme
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Memory

Multipliers

Adder Tree
Clock

v

Multipliers Figure 22: Clock Skew
Memory

* Buffers not shown

Figure 21: Clock Distribution

case, the clock drivers were contributing significantly to the ground bounce

problem. Figure 24 shows the spice result for the ground bounce assuming that

the inductance from power line to chip is 0.5nH for the clock drivers. To avoid

this problem, power and ground pads have been liberally distributed. For every 4

signal pads, there is one ground pad and one power pad. This number is well

below the suggested conservative ratio of 6 [13].

-D
control

Memory

Multipliers

Adder Tree

Multipliers

Memory

Figure 23: PowerNetwork

OP circuit

J.—^z„

t

Figure 24: Clock Bounce (0.5 nH)
(as a result ofground bounce)



Verification

8.1 Simulations

It is futile to do a design without any simulations. For this chip,

simulation was done at various levels of abstractions. The highest level of

simulation was done in SILAGE flowgraph language and C to verify the

functionality of the quantization scheme and the architecture. The code for the
SILAGE program is included in the appendix. The next level of simulation was
done using irsim. The entire chip and all the sub-blocks were simulated at this
level. Irsim was used for verifying functionality at the chip level, and for

verifying both functionality and timing at sub-block level. Some sections of the
chip were simulated using THOR when the design was still at a fairly high level,
and some portions were simulated using SPICE, when the design was at cell

level. Figure 25 shows some IRSIM results.

To further ensure that the custom cells were functional, a tiny-chip was

fabricated containing the custom cells, (see appendix for a plot of the chip). The
C2MOS shift registers and the multiplexers worked at a 25MHz clock speed.

8.2 Testing

The chip was tested using the Tektronics 920IT Digital Analysis System.
The chip was fully functional at 20MHz, but worked at 25MHz only with a
supply voltage higher than 5 volts. The cause for its not working at above 25

MHz has been identified.

29
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(a) 512 tap mode

(b) Coefficient Loading

Figure 25: IRSIM Results
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The accumulator at the end of the adder-tree is the critical path which

fails above 25 MHz. Unfortunately this error was not detected during the design

phase. A detailed description of the critical path is shown in figure 26.

hvflOl invflOl

-M>

From an available 40 ns at 25 Mhz.6.5 are used

up in non-overlap time. 32.5ns are hence
available. The critical path takes. 30ns. which
coupled with ground-bounce problem Is too
close for comfort.

from pipeline
register

Figure 26: Critical Path

This problem can be solved in two ways. First is by adding another level

of pipeline between the zero multiplexer and the adder. The other option is to use

a 1.2 mm technology in which the problem will get solved due to a higher circuit

speed.



Summary

The chip summary is as follows:

TABLE 3. Chip Summary

Chip Area 13.2 mm x 12.2 mm

Chip Area 160.5 sq mm

Speed 25 MHz

Technology 2.0 micron pwell

Pads 132

Signal Pads 80

Transistors 152,504

Power 1-1.5 watts at 25 MHz

32
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A. Chip Photograph
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C. Other circuits
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fir.sil

/ * dwd is the number ofbits ofdata, cwd is the bits in the * /
/* coefficients, and owd is the number ofoutput bits */
/ * taps.h contains the number ofTaps required in the FIR * /
/* quant.h contains the precision ofthe data,coeffs, etc. */
/* The In file contains the input data and the Out file the */
/* Output data. The Rcoefand Icoeffiles contain the coeffs. */

#include ataps.h"
#include "quant.h"
func main(In: dwd[2]; Rcoef, Icoef: cwdfTaps]) Result: owd =
begin

Rdat = ln[0];
Idat = In[l];
Rtem[0] = owd(Rdat * RcoefTO] - Idat * IcoeffO]);
ltem[0] = owd(Rdat * IcoeflO] + Idat * RcoeflO]);
(i: 1.. Taps.l)::
begin

Rtem[i] = owd(Rtem[i-l]+owd(Rdat@i * Rcoefli]) - owd(Idat@i * Icoefli]));
Item[i] = owd(Item[i-l]+owd(Rdat@i * Icoefli]) + owd(Idat@i * Rcoefli]));

end;
Result = owd(owd(Rtem[Taps_l] * Rtem[Taps_l]) + owd(Item[Taps_l] *Item[Taps_l]));

end;

fir.com

INPUT FILE In pulsar.data;
INPUT FILE CONSTANT Rcoef iism.rc;
INPUT FILE CONSTANT Icoef iism.ic;
DISPLAY main Result fir.out;
STEP 352100;
GO;

quant.h

#define owd fix<8,0>
#define cwd nx<2f0>
#deflne dwd fix<2,0>
# define cwb 2
#define dwb 2

taps.h

#define Taps 835
#define Taps_l 834



storage_16.c

/•This program mimics the storage elements for the FIR chip • /
/•Instead of 32 shift registers in 16:8:8 configuration, * I
l*this program simulates 8.-4:4, but that should not be a • /
f*problem. There is also an extra register corresponging to * I
l*lhe 33rd extra register in the actual chip. One slow dock9 I
fin this case is therefore 16 as opposed to 32. * /

# Include <stdioJi>

mainO

lot data[3][17],coeffI3][16];
Int ij,clock,eval,num,dtmpl,dtmp2,ctmpl ,ctmp2;

l*right now just try 16 register mode
/•eval - clocks evaluated already
l*num = number to be entered as new data* I
/•initialize the coefficient columns
(•initialize the data columns to 0
/•and finally print both columns

•/
*/

*/
*/
*/

eval = 0;
num = 100;
forg^y<16;coeffll][jl=16-j.coefn21[jl=coefflll[jl+16j++);
coeffl l][0]=0;coeff[2][0]=16;
for(j=0j<17;data[l][j]=daial2][j++]=0);
primf(,M%a\i\nM,data[2][l 6]);
for(j=0;j<16a++) printf("%d>i%<N^%d^%dNn',.datall][15-jl.datal2][15-j]

.cocffll][15-j].coeffl2][15-j]);
printf("Vn");

/* enter into the normal operation * I
f* take as input the number of clock * I
I* to be executed (fast clocks) * /

while (scanf(M%d",&clock) != EOF){
for(i=clock;i>0;i—) {

/•case 1 is where the 'special' 0,1632 etc clock cycle happens* /
/•the rest are normal cycles. The normal cycle just circulates * /
/•while the special cycle interchanges data, but circulates coe* I

if((eval/16)*1000=(int)(((noat) eval) /0.016)) {
for(j=0;j<15a++) data[2][jj=daial2][j+l];
data[2][l5] = data[2][16];
data[2][16] = data[l][l];
ror(j=0;j<15a-H-) data[l](j]=datall][j+l];
data[l][15] = data[l][16];
data[l][16] = num—;
ctmpl = coeffllHOl;
ctmp2 = coeffl2][0];
for(j=0;j<15-J++) coeffTl]lj]=coeflll]|j+l];
for0=0;j<15a++) coeffl2][j]=coeff[2](j+U;
coeffll][15] a ctmpl;
coeffI2J[15J a ctmp2;
)

else {

Jul 26 16:59 1991

dtmpl = data[l][l];
dtmp2 = data[2][lj;
for(j=0;j<15u-H-) daia[l][j]=dala[l][j+l];
for(j=0;j<15u++) dataI2][j]=data[2][j+ll;
data[l][15] = dtmpl;
data[2][lS] = dtmp2;

^n

storage_16.c

main

Page 1 of storageJ6.c



40

storage_16.c storage_16.c

ctmpl o coeffll][0];
ctmp2 = coeff[2][0];
for(j=0;j<15a++) coeffllltj]=coefiftl][j+l];
for(j=0a<l5a-H.) coeffl2JU]=coeff[2][i+l];
coeff[l][15] • ctmpl;
coeffl2][15] = ctmp2;
}

eval++;

J
printfCM%<ISn\n".datal2][16]);
for(j=0;J<16u-H-) pTmtf(M%<^r%<^r^t%<^4<3M^n^dataIl][15-jl

jl.coefflll[15-j],coeffl2][15-j]);
printfCSn");
}

..main

Jul 26 16:59 1991 Page 2 of storage_16.c



storage_8.c

/•This program mimics the storage elements for the FIR chip * /
/•Instead of 32 shift registers in 16:8:8 configuration, * /
I*this program simulates 8.-4:4, but that should not be a • /
/•problem. There is also an extra register corresponging to * f
/•the 33rd extra register in the actual chip. One slow clock* I
/•in this case is therefore 16 as opposed to 32. *

# Include <stdioJi>

mainO
(
int data[3][17],coeff[3][16];
Int ij,clock,eval,num,dtmpl ,dtmp2,ctmpl ,ctmp2;

/•right now just try 8 register mode
/•eval = clocks evaluated already
/•num = number to be entered as new data* /
/•initialize the coefficient columns
/•initialize the data columns to 0
/•and finally print both columns

*l
*l

*l
*l
*l

eval = 0;
num = 100;
for^;j<8;coefni JUl^efill ]rj+8]=8-^

+8J++);
coeffl 1][0]=coeffl 1][8]=0;coeffl2][0]=coeffl2][8]=8;
for(j=0j<17;data[1][j]=datal2]u"++]=0);
printf("M%dNn\n".data[2]ll 6]);
for(j=0a<l 6;j++) primfC'%d\i%d\tNt%<N%dSn,'.dataIl][15-j],datal2][15-jl

.coeiTIl][15-jl.coefn2][15-j]);
printf("Vn");

/* enter into the normal operation
f* take as input the number of clock
I* to be executed (fast clocks)

while (scanf(M%d".&clock) != EOF){
for(i=clock;i>0;i—) {

*/

*/

/•case 1 is where the 'special' 0,8,16 etc clock cycle happens* /
/•the rest are normal cycles. The normal cycle just circulates * /
/•while the special cycle interchanges data, but circulates cot* I

lf((eval /8)*1000=(lot)(((float) eval)/0.008)) {
for(j=0;j<15a++) data[21[j]=data[2][j+l];
data[2][15] = data[l][l];
for(j=0a<15a-H-) data[l][j]=daia[lj[j+l];
data[l][15] = num—;
ctmpl = coeffl 1][0];
ctmp2 = coeffl2][0];
for(j=0;j<15a++) coeffllirj]=coeffll]0+l];
for(j=0;j<15a++) coeff[2][jl=coeffl2]u+l];
coeffl l]f15] = ctmpl;
coeffl2][15] = ctmp2;
)

else {

Jul 26 16:58 1991

dtmpl = data[l][l];
dtmp2 = data[2][l];
ror(j=0;j<15a'-H-) data[l]fj]=data[l]F>l];
ror(j=0;j<15a-H-) data[2]rj]=data[2]rj+l];
data[l][7] = dtmpl;
data[2][7] = dtmp2;
ctmpl = coeffl 1][0J;
ctmp2 = coefft2][0];
for(j=0a<15a++) coef(Il]rjl=coefiTl]rj+l];

storage_8.c

main

Page 1 of storageJS.c
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storage_8.c storage_8.c

..main

for(i=0;j<15a-H-) coeffl2]rj]=coeffl2]r>l];
coeffl 1][ 15] = ctmpl;
coeffl21[151 » ctmp2;
}

eval++;

)
prmtf(,%t%d\rito,\data[2][16J);
for(j=0a<16u-H-) P^mtf(',%(^r%d^rt&<^l%d^n^dalall][15-j^.dat42][15-

j].coefiTl][15-jl.eoeffl2][15-j]);
printf("\nH);
}

Jul 26 16:58 1991 Page 2 of storage_8.c



storage_4.c

/•This program mimics the storage elements for the FIR chip * /
/•Instead of 32 shift registers in 16:8:8 configuration, * /
/•this program simulates 8.-4:4, but that should not be a * I
/•problem. There is also an extra register corresponging to * I
/•the 33rd extra register in the actual chip. One slow clock* I
/•in this case is therefore 16 as opposed to 32. * I

# include <stdioJi>

mainO
{
Int data[3][17],coeffI3][16];
Int ij.clock,eval,num,dtmpl,dtmp2,ctmpl,ctmp2;

/•right now just try 4 register mode
/•eval = clocks evaluated already
I*num = number to be entered as new data* I
/•initialize the coefficient columns
/•initialize the data columns to 0
/•and finally print both columns

*l
*l

*/
*l
*l

eval = 0;
num = 100;

forO^;j<4;coef1Il]U]=ooeffIl]fj^]^c)efiIl]rj4<]=coefftl]rj+121=4-j.
coefn2]Ul=c»em2]U^]=<»em2]rj^l==coeffl2]U+12]=coeflll]rj]
+4J++);

coefftl][0]=coeffll][4]=coeffll]l8]=coefftl]ll2]=0;
coeffl2][0]=coeffl2][4]=coeffI2][8]=coeffI2]ll2]=4;
for(j=0a'<17;data[l]rj]=data{2]U++l=0);
primf('Ni%dVn\n".data[2]H6J);
for(j=Oa<l6U++) printf(''%d\i%d\i\i%d\t%d\n",datall][15-j],data(2][15-j]

.coeffll][15-j].coeffl2][15-jJ):
printfCV);

/* enter into the normal operation * I
I* take as input the number of clock * I
f* to be executed (fast clocks) * I

while (scanf(,,%d,,,&clock) != EOF){
for(i=clock;i>0;i—) {

/•case 1 is where the 'special' 0,4$ etc clock cycle happens* /
/•the rest are normal cycles. The normal cycle just circulates * I
/•while the special cycle interchanges data, but circulates cot* /

lf((eval /4)*1000=(!nt)(((float) eval) /0.004)) (
for(j=0y<15a++) data[2]rj]=data[2]fj+l];
data[2][7] = data[l][l];
for(j=0;j<15a++) data[ljrj]=datan][j+l];
data[l][7] = num—;
ctmpl = coeffl 1][0];
ctmp2 = coeff[2]J0];
for(j=0;j<15a++) c©efflllu>coeffll]fj+H;
for(j=0;j<l5a++) co*ffl2]G]=coeffl2][j+lj;
coeffl 1][15] = ctmpl;
coeff[2][15] = ctmp2;
)

else {

Jul 26 16:58 1991

dtmpl = data[l][l];
dtmp2 = data[2][l];
for(j=0;j<15a-H-) data[l]rj]=data[l][i+l];
for(j=0;j<15a++) data(2]0l=data[2J0+l];
data[l][3] = dtmpl;
dataJ2][3] = dtmp2;
ctmpl = coeffl1]{0];

- 43

storage_4.c

main

Page 1 of storage_4.c
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storage_4.c storage_4.c

..main
ctmpl = coeff[2][0];
for(i=0a<15a4+) <»efiTl]rj]=coefiIl]fj+l];
for(j=0;j<15a++) coeffl2][j]=coefil2][j+l];
coeffIl][15] = ctmpl;
cocffl2][15] = ctmp2;

eval++;

)
pTintf(,%i%d\nV,data[2][l6]);
for(j=0;j<16a-H.) p^mtf(,,%<^tfk^r^t%d\t9^^

j].coeffll][15-j].coeffl2][15-jl);
printfpn");
)

Jul 26 16:58 1991 Page 2 of storagej.c
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Features

• 1024 taps 1 kHz -1 MHz

• 512 taps 2 kHz-2 MHz

• 256 taps 4 kHz - 4 MHz

• Programmable coefficients

• Cascadable

• 2 |im pwell CMOS process

Logic Block Diagram

Data Inl

Data in2

Data
Storage

Complex
Multipliers

Adder tree

U

PRELIMINARY PULFIR1

1024 Tap FIR Filter

Functional Description

The PULFIR1 is a 1024 tap
FIR filter. It can also func
tion in 512 and 256 tap
modes. The maximum data
rate processed is 4 MHz,
but the product of taps x
frequency cannot exceed
1024 MHz-taps. The coeffi
cients are programmable

but not adaptive. The data
and coefficients are complex
numbers. Data is (2,2) bits
and coefficients are (3,3) bits.
The data is encoded as ±3, ±1
and the coefficients are
encoded as ±3, ±2, ±1, and 0.
It is also possible to cascade
more than one PULFIR1
chips.

tEach fine represents the flow of
complex data. Control flow isnot
shown.
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Pin Configuration

The package used is a 208 pin Kyrocera PGA package. The pin out is as follows:



1 unused
2 unused
3 unused
4 unused
5 unused
6 unused
7 unused
8 unused
9 unused
10 unused
11 substratesVdd
12 IRESlll]
13 1RESI10]
14 IRESI9]
15 GND
16 Vdd
17 IRESI8]
18 IRES[7]
19 1RES[6)
20 GND
21 Vdd
22 IRES[5]
23 1RES[4]
24 1RES[3]
25 GND
26 Vdd
27 IRES12J
28 IRES(U
29 IRES[0]
30 GND
31 Vdd
32 COEFIN10]
33 COEFINU]
34 COEFIN12]
35 GND
36 Vdd
37 COEFIN13]
38 COEFINI4)
39 COEFINI5]
40 GND
41 Vdd

42 DATA212]
43 DATA2I0]
44 DATA2I3]
45 DATA2I1]
46 unused

47 unused
48 unused
49 unused

50 unused
51 unused

52 unused

53 unused
54 unused
55 unused
56 unused
57 unused

58 unused
59 unused

60 unused
61 unused

62 unused
63 substrate=Vdd

64 DATA1[3]
65 DATA1I2)
66 DATAU1)
67 DATA1I0]
68 GND
69 Vdd
70 STATE14]
71 STATEI3]
72 STATEI2]
73 STATEll]
74 GND
75 Vdd
76 STATE10]
77 FIFOHIGH
78 INIT
79 CASCADE
80 GND
81 Vdd
82 IMODE(l)
83 IMODE(O)
84 SOURCESEL
85 LOADCOEFF
86 GND
87 Vdd

88 RO
89 SLOWCLOCK
90 DATAOUT13]
91 GND
92 Vdd
93 DATAOUT[2]
94 DATAOUTll]
95 DATAOUT10]
96 unused

97 unused
98 unused
99 unused
100 unused
101 unused
102 unused
103 unused
104 unused
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105 unused
106 unused
107 unused
108 unused
109 unused
110 unused
111 unused
112 unused
113 unused
114 COEFOUT[0]
115 substratesVdd
116 COEFOUTtlJ
117 COEFOUTI5J
118 COEFOUTI4J
119 GND
120 Vdd
121 COEFOUT13]
122 COEFOUT12]
123 RRES[17]
124 RRES[16]
125 GND
126 Vdd
127 RRES115]
128 RRES[14]
129 RRES(13]
130 GND
131 Vdd
132 RRES[12)
133 RRESlll)
134 RRES110]
135 GND
136 Vdd
137 RRES[9]
138 RRES[8]
139 RRES[7]
140 GND
141 Vdd
142 RRES16]
143 RRES15]
144 RRES[4]
145 GND
146 Vdd
147 RRES[3]
148 RRESI2]
149 unused
150 unused
151 unused
152 unused
153 unused
154 unused
155 unused
156 unused

157 unused
158 unused
159 unused
160 unused
161 unused
162 unused
163 unused
164 unused
165 unused
166 RRES[1]
167 substratesVdd
168 RRESJ0J
169 GND
170 Vdd
171 LRIN
172 REALOE
173 CKSEL
174 PHI2
175 PHI1
176 PHI2IN
177 GND
178 Vdd
179 PHI1IN
180 CLK
181 SHIFTINV
182 SHIFT
183 GND
184 Vdd
185 SCANOUT
186 SCANIN
187 LIIN
188 IMAGOE
189 GND
190 Vdd
191 IRESI17]
192 IRESI16]
193 IRESU5]
194 GND
195 Vdd
196 IRES[14]
197 IRES(13]
198 1RES[12]
199 unused
200 unused
201 unused
202 unused
203 unused
204 unused
205 unused
206 unused
207 unused
208 unused

The package dimensions are:

1.69350 ±0020 inches on each side.

Special static protection for the
user required for this chip.

Pin Description

COEFINI5-0] HI: This is the bus for
loading in coefficients. As a con
vention, the higher significant
bits are for imaginary, and lower
for real.
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DATA1(3:0J [I]: This is one of the two bus
ses to input the data.

DATA2[3:0] [I]: This is the second bus to
input data. The SOURCESEL pin controls
which of the two sources gets selected.

DATAOUT[3:0l [O]: This bus is the data
output from the memory section. It is use
ful for cascading. The output data is
latched and is stable for one entire slow-
clock. Notice that this also introduces a

'delay' of one clock cycle between chips
which must be compensated for.

COEFOUT[5:01 [O]: This bus is the coeffi
cient output from the memory section. It is
not latched and will constantly be chang
ing.

RRESI17.-01 [I/O]: This bus is the 18 bit real
bus from the chip. When the REALOE pin
is asserted, the chip outputs the 18 bit
result, while when REALOE is not
asserted, this bus is in input state. See the
output circuitry figure shown below for a
clear understanding of this bus. This bus
does not have input static protection, and
these pins must not be exposed to static.

from Accumulator

i
Sum latch

5
I

EXt.lOtCh H-faM

Zero Mux

A CASCADE

Carry Select Adder

REALOE

RRES117:01

Output Circuitry (for real result)

IRES[17:0] [I/O]: This bus is the imaginary
complement of the RRES bus.

LOADCOEFF [I]: This control signal
requests the FIR chip to load coefficients.
The request signal must be asserted high
and must be held till an acknowledgment
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is received. Also, this signal must be
pulled low before coefficient loading is
over, else the chip will re-enter the loading
state.

FTFOfflGH [OJ: This control signal an
acknowledgment in response to the
LOADCOEFF signal. This signal will be
asserted high as an acknowledgment. The
FIFO or memory providing the coefficients
must use this signal and the clock to strobe
out the coefficients.

RO [O]: This control signal is pulsed high
every time a ''new" output is available.
The value is stable internally by the rising
edge of RO, but may be available outside
the chip after some delay.

SLOWCLOCK [O]: This control signal is
pulsed high when a "new" data is read
from the data bus. In other words, the
external data must be stable during the
presence of this pulse. This pulse, or alter
natively RO may also be used to synchro
nize more than one chip. A clever design
may use RO for the same purpose as
SLOWCLOCK, and hence obviate this sig
nal.

CASCADE [I]: This input control signal is
"static" in that it must be held to a con
stant value during the entire operation
period of the chip. This signal should be
low for stand-alone and high for cascade
operation.

LRIN [I]: This input control signal (see
output circuitry) for loading in a value on
to the RRES bus for cascade operation.
This signal should be pulsed high for load
ing. Unfortunately, the latch associated
with the loading operation is synchronous
with the internal clock, which adds the
constraint that the LRIN must be asserted

for at least !•= clock cycles, which for 32

MHz translates to about 47ns.

LIIN [II: This input control signal is the
imaginary complement of LRIN.
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CLK [I]: This is the input clock. It must be
ha : a duty cycle of 50% and effects of
ci i tter are not clear as of now.

IMODEfrO] [IJ: These two pins control the
mode in which the chip will operate. It is
recommended that these pins be used as
"static control" lines as well. The various

modes are

00: 256 tap mode
01: 512 tap mode
10: 1024 tap mode
11: For test purpose only

REALOE [I]: This input control signal sets
the RRES bus in input or output mode. It is
asserted high for configuring the bus in
output mode, and low for configuring it in
input mode. See the output circuit diagram
for clarity.

IMAGOE [I]: This input control signal is
the imaginary complement of REALOE.

SOURCESEL [I]: Another "static" input
control line, this is to be kept low for
selecting data on bus DATA1 and high for
selecting bus DATA2.

INIT [I]: This signal is to pulsed high for
resetting the controller on chip. Once the
"static" control lines have been set up, this
line should be pulsed.

STATE[4:0l [O]: This bus is purely for test
ing purpose and indicated the state of the
controller.

PHI2, PHI1 [O]: These clock outputs are for
testing purpose and are the internal two
phase clocks.

CKSEL [I]: This controls the source of the
clock, i.e. when it is low, it allows external
PHI1, PHI2 inputs, when it is high, it uses
the internal clock generator and the CLK
input.

PHI1IN, PHI2IN [IJ: These clock inputs are
for testing purpose. In case there is a prob
lem with the internal clock generator, an
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external two phase clock could be sup
plied.

SHIFT, SHIFTINV, SCANIN [II: These clock
inputs are purely for testing. Shift should
be tied low, shiftinv low, and scanin low.

SCANOUT [O]: This is purely for testing.

Vdd [Supply]: These are 5 volt power lines.

GND [Ground]: These are ground lines.

Functional Description

Stand-alone mode

l:Set up the static inputs, the mode,
cascade line, and the sourcesel line.

2:Toggle the init line.

3:Make a request for loading the
coefficients through the loadcoeff line.

4:After the acknowledge through
fifohigh, remove loadcoeff request.

5:Using fifohigh and the clock,
strobe the FIFO/RAM which feeds
coefficients to the chip.

6: Ramp up the chip clock to opera
tional mode.

7:Once in normal operation, supply
stable data during slowclock.

8:During normal operation, also
read the output once RO has occurred.

Cascade Mode

1:It is possible to go through the
process of loading the coefficients
more than once, to load up more than
one chip in cascade.

2:Since there is a delay of one slow
clock cycle in the data transfer from
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one chip to the next, this must be com
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pensated in the summation of all the
results. A proposed scheme could be:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 2930 31 32

a! : j ! !b! j A: j • i !b| ! a! j i | ib| i a| I j I ;bI j
M1MM MUM! NUN; ;iiiiii

w: ix; jY| : z? w jxi sy! : z? w| jxS :y| | zi Wi IX: 1Y: \z\

250ns 500ns

A-SLOWCLOCK

B - RO, data In the sum latch (see output circuitry) is latched

W - If chip 4. latch In result. If chlp3. output result

X - Ifchip 3. latch In result. Ifchip 2. output result

Y - if chip 2. latch In result. Ifchip 1. output result

Z - If chip 4 output result

4 Chips in 256 Tap Mode

Coefficient Loading

750 ns 1000 ns

The order in which coefficients are loaded
is slightly unusual, and requires a closer
look. Assume the 1024 tap FIR filter below:

The coefficients should be loaded up as
shown in the diagrams below. The 1024
coefficients are loaded in 32 blocks of 32

input

coefficients with the last block entering
first. Within each block the loading
sequence is: N, N-31, N-30,..., N-1. For the
512 and 256 tap FIR modes the coefficients
are duplicated and quadruplicated, respec
tively, with the intra-block loading

delays

multipliers

adders

output

sequence being: N, N-15, N-14,..., N-1, N,
N-15, N-14, ..., N-1 for the 512 tap mode;
and N, N-7, N-6, ..., N-1, N, N-7, N-6, ...,
N-1, N, N-7, N-6, ..., N-1, N, N-7, N-6, ...,
N-1.
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Data and Coefficient Encoding

The encoding scheme is as follows: (Notice that the coefficients are encoded in plain
two's complement)

TABLE 1. Coding

Data Value Coefficient Value Coefficient Value

00 1 000 0 100 X

01 3 001 +1 101 -3

10 -1 010 +2 110 -2

11 -3 011 3 111 -1

50



Switching Waveforms:

1. Write

SLOWCLOCK

DATATN

2. Read

• Delay after RO

RO

RRES

I
(0

• Delay after REALOE: undetermined

• Delay after LRIN: undetermined

3. Generating strobe for coefficient FIFO

FIFOHIGH

CLK

COEFIN

PRELIMINARY PULFER1
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