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MOVING HORIZON CONTROL OF LINEAR SYSTEMS WITH

INPUT SATURATION, DISTURBANCES, AND PLANT UNCERTAINTY+

by

E. Polak* and T. H. Yang*

ABSTRACT

We present a moving horizon feedback system, based on constrained optimal control algo

rithms, for linear plants with input saturation. The system is anonconventional sampled-data system:

its sampling periods vary from sampling instant to sampling instant, and the control during the sam

pling time is not constant, but determined by the solution of an open loop optimal control problem.

In part I we showedthat the proposed moving horizon control system is robustly stable. In this paper

we show that it is capable of following a class of reference inputs and suppressing a class of distur

bances.
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1. INTRODUCTION

Model predictive control and moving horizon control arepopularin the control of slow dynami

cal systems, such as chemical process control in the petrochemical and pulp and paper industry, and

gas pipeline control (see [Gar.2]). This is the second part of a two part paper, dealing with a new,

moving horizon feedback law for linear, time invariantplants,modeled with errors, subject to distur

bances, reference inputs, and control constraints, and with the time to solve the optimal control prob

lem accounted for, that was introduced in [Pol.2]. This control algorithm is in the general class of

open loop optimal feedback laws, dating back to a 1962 seminal paper by Propoi [Pro.l], that solve

open loop optimal control problems with constraints to obtain a feedback law. This class of feedback

algorithms includes model predictive control (see [Meh.1, Pre.l, Gar.l, Gar.2]) and moving horizon

control (see [Kwo.l, Kwo.2, May.l, May.2, Kee.l]). For a very nice survey of model predictive con

trol, see [Gar.2].

Our algorithm differs from other moving horizon control laws in that it uses a free time, control

and state space constrained optimal control problem, and hence it results in a nonconventional

sampled-data system: its sampling periods vary from sampling instant to sampling instant, and the

control during the sampling time is not constant, but determined by the solution of an open loop

optimal control problem.

In part I [Pol.2] we showed that the feedback systems resulting from the use of our control algo

rithm are robustly stable in the absence of disturbances. In this part, we will examine its disturbance

rejection and reference input following characteristics. We note that our results are considerably

stronger than those found in the literature dealing with model predictive and moving horizon control,

where the state is usually assumed to be measurable, the controls are assumed to be unbounded, and

the models areassumed to be exact (see, e.g. [Qa.l, Cla.2, Kwo.2, May.l, Mic.2]).

In Section 2 we introduce our proposedmoving horizon feedback control law. In Section 3 we

study the effect of disturbances, while in Section 4, we establish a class of reference inputs thatcanbe

tracked asymptotically by our system.



2. STRUCTURE OFTHE MOVING HORIZON CONTROLLAW

We assume that the plant is alinear-time-invariant (LTI) system, with bounded inputs and an
input disturbance, described bythe differential equation

hp(t)=ApZp(t)+Bpu(t)+B§d(t), (2.1a)

H>(0 =C^>(0. (21b)

where the state §'(r) e R\ thecontrol u e U, with

U± {ueL?[0,oo)\lui„<;cu) , (2.lc)

c„e(0,oo), and the disturbance d e L™[Q,oo). Consequently, Ape1Rnxn, BpeTR!**m,
B§ e Rn x"*, and Cp e R^"1. We will denote the solution of (2.1a) at time r, corresponding to the
initial state §f at time 10, and the combined input u and d, by §'(r, t0,£rj, u ,d).

The function of the moving horizon control law is to ensure robust stability and "reasonable*'
reference signal r(r) tracking, suppress disturbances d(t), while taking into account the fact that the
plant inputs are bounded, as in(2.1c), as well as various amplitude constraints on transients.

We assume that the disturbance d(t) cannot be measured and that the matrices AP,BP,B§t and
Cp are known only to some tolerance. Hence the moving horizon control law must be developed
using a plant model, of the same dimension as (2. la),

4(0 =A%(t)+Bu (t)+Bd2 (0. (2.2a)

n(0 =C?(0. (2.2b)

where Ae R" x«, Be R" *»\ Bd € R" x"\ and Ce R*x« are approximations to Ap, Bp, B§,

and C, respectively, and 2(0 is an estimate of d(t). When d(t) can not be estimated, we set

3(0 =0. We will denote the solution of (2.2a) at time *, corresponding to the initial state x0 at time
to, and the combined input u and 2, by x(t, t0,x0,u ,2 ).

Let Qbe asymmetric, positive definite nxn matrix such that (x ,Qx Hs aLyapunov function
for the linear closed loop system obtained applying state feedback to (2.1a). The reason for this
selection will become clear in Section 3. We use this matrix to define the norm Ixl § {x ,Qx f1. We
will denote the usual Eucledean norm onR" by ll2.



Assumption 2.1. We will assume that (A ,B) and (A ,Bd) are acontrollable pair, and that (C .A)

is an observable pair. •

Let the subspace Sx c R" be defined by

Sx= {x e R" Ix e R(B),Ax e R(B)) , (2.3a)

where R QC) denotes the range space of the matrix X. Let if be a matrix whose columns are a basis

for Sx. We will show in Section 4 that, when there are no constraints onthe control u(-), given any

continuously differentiable function j(r), withvalues in Sxt there exists an input us(t) such that for

any initial state ?0. •*& ,0,^otus, 0)-j(r)l-»0 as t ->«. LetS denote the set of continuously dif

ferentiable functions s :R-»SX. Hence, the reference signals that can be tracked asymptotically,

under the best of conditions are those inthe set R k CS. We will therefore assume that the reference

signals to be tracked are in R. We will usethe following characterization ofelements r e R, because

it may help to alleviate the effects of the control constraint. Let C k CH and let G be a matrix

whose columns are a basis for the null space of C. Then any reference signal r e R can be

expressed as follows:

r(0 =Cy(0, (2.3b)

where s(t)^H(CTC)tCTr(t) (t denotes the Penrose pseudo inverse [Gol.l pp243]) is continu
ously differentiable.

We can now define the error dynamics that will beused in defining and analyzing our control

law. Suppose that a reference signal r e R is given. Let xp(t)&%p(f)-s(t)t and let

*(0 =§(0- j (0. Then the plant error dynamics are given by

xp(t) =Apxp(t)+Bpu(t)+B§d(t)+fp(t), (2.4a)

y'(0 =C*x>(0, (2.4b)

where/*(f) ^-i(r)+A'*j(0. Similarly, the model error dynamics become

x(t)=Ax(t)+Bu(t)+Bd2(t)+f(t), (2.4c)

yO) = Cx(t), (2.4d)

where/(0^-i(0+As(0.

We will denote the solution of system (2.4c), from the initial state x0 at time t0t control u and

disturbance 2 by x(t ,t0tx0,u ,2). Given any time tk we will let xk £x(tk,t0,x0,u ,2).



Assuming that the control law computation takes at most Tc time units, we can now propose a sim

ple, aperiodic sampled-data feedback law, in the form of an algorithm which, during each sampling

period, solves an optimal control problem V(xk , tk, r) of the form

F(xk,tk,r): min{*<fr.t)l*'(ii,T)£0.iait2 iu max V(u,t)Z0,
(«.t) te[h.t]

j =1,...,/2. ue U, xe [tk+Tc ,tk+f]) , (2.5a)

where 0<Tc <f <«, and the constraint functions are defined by

gtQi .Q&htQcix.tk.zt.u ,2)), t =0.1 /i-l, (2.5b)

gl\u ,z) = lx(x.tk,xk,u ,2)l2-a2lxkl2, (2.5c)

V\u .0 =h'(x(t,tk,xk,u ,2),t),j =1 /2-l, (2.5d)

$l\u ,t) =\x{t,tk,xk,u ,2)l2-p2U4l2. (2.5e)

where theconstraint functions (2.5c,e) with a e (0,1), p e [1, «>), are used to ensure robust stability

and input tracking, while the other functions, hl, h*'are convex, locally Lipschitz continuously dif

ferentiable functions thatcanbe usedto ensure other performance requirements.

We are now ready to state ourcontrol algorithm that defines the moving horizon feedback con

trol system. The algorithm uses several parameters: Tc, the time needed to solve theoptimal control

problem, which must be determined experimentally, and three parameters that are selected partly on

the basis of experimentation and partly on judgement, 7, an upper bound on the horizon, and a, p

which govern the speed of response of the system.

Control Algorithm 2.2.

Data: to =Otti =Tc,u[t0ttl](t)=Qtx0e flA. Tc and f such that 0<Tc < f <«».
p

Step 0: Set k = 0.

Step 1: At t = tk%

(a) Obtain a measurement or estimate the state x[ =xp(tk , t0, xg , u , d) and denote the

resulting value by x k.

(b) Compute an estimate, 2 (0, ofthe disturbance d{t) for t e [tk , rA+1], if possible; else,



set2 (0 =0.

(c) Set the plant error dynamics input u(0 =u[h fu^)(t)-2 (0 for t e [tk, fft+1).

(d) Compute an estimate x*+1 of the state of the plant error dynamics

xp(tk+i ,tk,xg,u ,d) according to the formula

**+i =eA{k«-u)xk+C\Ab«-ty>[Bu{ty¥Bd2 (t)]dt +fV^-'yC)*** • (2-6)

(e) Solve the open loop optimal control problem P(xA+i, tk+\, r) to compute the next sam

pling time r*+2e (f*+i+rc ,f*+i+f], and the optimal control k [&♦,, 4.d(0 e U,
* e [r*+i, f*+2);

•Sfep 2: Replace it by k +1 and go to Step 1. •

In Step 1 (a), the state of the plant has to be estimated if it is not measurable.When the model

(2.4c,d) is identical with the actual dynamics (2.4a,b), we can calculate the initial state, x{j at t = 0,

using the standard formula

x% =W0(TorljQ \CeAt)T(yp{t)-r\{t. Q))dt, (2.7a)

where T0 > 0, the superscriptT denotes a transpose, and

W0(T0) =J '(Ce^fCe^dt, (2.7b)

r\(t ,s) =C\seA «^Bu (x)dx. (2.7c)

Clearly, Wo(T0)~l exists because (A ,C) is an observable pair. Thus, when there are no modeling

errors and no disturbances, for t £ T0, the state xp(t, 0 ,x{J, u , 0), can be calculated exactly, and

hence this calculated state can be used in Control Algorithm 2.2.

The much more relevant situation occurs when there are modeling errors but no disturbances.

In this case formula (2.7a) yields an estimateof the initial statejcfj. We propose to use it in Step 1 (a)

of Control Algorithm 2.2, to obtainthe estimate xk, with the time T determined by a parameter So,

which must be chosen judiciously so as to avoid excessive ill conditioning in the observability gram-

mian W0(T0):

Step 1: (a) At fk &tk+hQ(tk+x-tk) with 6o e (0,1), estimate the state xZ by

*t =̂ o(Utk+i-tk)Tl(\ceA^Y(yp(t)-r\(t ,tk))dt. (2.7d)
•



Clearly, the fact that the plant inputs are bounded, limits the region of effectiveness of any con

trol law and the class of reference signals that can be tracked. Hence we must assume that the initial

states are confined to a ball £ Ac R" and that the reference signals belong to the set Rp, both
p

defined, as follows.

Assumption 23. We assume thatthere existsa$ e (0»») and Ry c R suchthat0 e Rv and that

A

solution. •

The following theorem generalizes a resultgiven in [Pol.l].

Theorem 2.4. Let BA c R" and r e RUt be defined as in Assumption 2.3. Suppose that (a) the
p

systems (2.4a) and (2.4c) are identical, (b) d(t)&0, and (c) the Control Algorithm 2.2 is used to

define the input u(•) for (2.4a). Then the resulting feedback system is asymptotically stable ontheset

fl^.i.e.foranyxge B^,xp(t ,0,x{j ,u ,0)->0asf ->«,.
P P

Proof. We begin by showing that for any r e Ra and for any jc0e BA, the trajectory
p

x(tk ,0, x0, u ,0) = xk, k e N resulting from the use of the Control Algorithm 2.2 is contained in

B A. In turn, this shows that such a trajectory is well defined and that it is bounded.

Suppose that x0eBA is an arbitrary initial state at t = 0. It follows from the form of (2.5c),
p

that for all it e N,

!x4+1l =\x(tM ,tktxk,u{tkt h^,0)1 £ atcAl £ a*+1l*ol. (2.8a)

Since a€(0,1), it follows that **e£A for all k € K and hence that the trajectory

x(t , 0, xq , u , 0) is well defined.

Next, from the form of (2.5e), we see that for all k e N and for any t e [tk, tk+l],

tc(r, tk, xk, u[tt, tM], 0)1 <plxj <; pa*lx0l ^ Plx0l . (2.8b)

which implies that since pee* -*0 as k ->~, we obtain that x(t, 0, x0, u ,0)->0 as t -»». Hence

the feedback system defined by the Control Algorithm 2.2 is asymptotically stable onthe setB . n
p u

We note that Theorem 2.4 did not depend on the form of the cost function g0(-, •) nor on the

form of the constraints defined by (2.5b) and (2.5d). These constraints canbe used to shape the tran

sient responses of the closed loop system. We willdescribe later a procedure for solving problems of

7

x e flA £ {x e R" ILtl£p } and for all r e RUt the optimal control problem P(x ,0,r) has a



the form (2.5a-e).

As stated, Control Algorithm 2.2 only defines a local control law. When the plant is unstable,

since the control u e U is bounded, for some initial state x0 e R", there is no control which stabil

izes the system. In this case, there is not much that one can do about it However, in the case of

stable plants (and models), it is possible to globalize Control Algorithm 2.2 making use ofthe follow

ing observation. First, it should be clear that, in the absence of modeling errors and disturbances, for

any r e R such that for all t £0, minuc v \Bu +/(r)l = 0, there exists an admissible control,

u°(t) € argminu e u \Bu +f (01 that results in the errorsatisfying the equation

i(0=Az(0. (2.9)

and hence, if A is a stable matrix, the error goes to zero exponentially, so that for any Xo€ Rnt

x(t, 0, xq, u° , 0) e B A will occur in finite time. Clearly, in this case, there may be room for a
p

more effective control law, as we will now show. Let Af and ff be symmetric, positive definite

matrices, such that ATQ +Q'A =-M\ then V(x(t)) § {x(t), ffx(t))is aLyapunov function for

(2.9). Let Ts e (7"c , f ] and suppose that xk £B A. Then, if we set tk+i = tk +Ts and we apply the
p

control u°(t), to (2.4c), for t e [tk, tk+\], then we must have that

V(x(tk+i ,tk,xk,u°))£ e'^^^'Vixit). Hence it makes sense to use instead the control defined

as the solution of the simple optimal control problem

mint{V(x(tk+i,tk,xk,u))} , (2.10)
u e U

where x (tk+l ,tk,xk,u)is determined as the solution of (2.4c).

Hence, for stable plants, we propose to modify Control Algorithm 2.2, as follows:

Control Algorithm 2.5.

Data: t0 =0, tlt u[t0th](t),x0, Ts, Tc and f such that 0< Tc <Ts S f <~.

Step 0: Set k = 0.

Step 1: Att =tk,

(a) Obtain a measurement or estimate of the state Jtjf = xp(tk , t0, *g , u , d) and denote

the resulting value by xk.

(b) Compute an estimate, 2 (r), of the disturbance d(t) for/ e [tk, tk+\], if possible; else,

set2 (0 =0.

8



(c) Set the plant error dynamics input u(t)=u[u tu^(t) - 2 (0 for t e [tk, fft+l).

(dj Compute an estimate xk+l of the state of the plant error dynamics

xp(tk+i ,tk,xg,u ,d) according to the formula (2.6)

xk+l =eA^-^xk +£" e^-'^BuW+Bj(t)]dt +£* eA^^f(f)dt.
(e) Uxk+i € B^, solve the open loop optimal control problem P(xk+\, tk+\, r) to compute

p

the next sampling time f*+2 e (rt+1 +rc , fA+i +f ], and the optimal control
* to*.h«&) e U.t e [tM.tktd.

Else set r*^ = tM +r, and mt,l4l, 4^(f) = u°(r), for all t e fo+1, fc+2).

Sfep2: Replace k by it + 1 and go to Step 1. •

We will not present acomplete analysis of the operation of the closed loop system under Con

trol Algorithm 2.5.

3. DISTURBANCE REJECTION

We will consider twodistinct situations. The first is where the disturbance d{t) is acontinuous

function, such that for some cd <«f M'+ \d{x)l2dx J £cd for all t£0. The second is where the
disturbance is the output of aknown dynamical system driven by stationary, zero mean, white noise.

We begin with the first case and assume that the disturbance d(t) cannot be estimated. Hence

Control Algorithm 2.2 sets 2(r) s 0. Since the more difficult situation occurs when the plant state is
estimated, wewill assume that this isthe case. We begin bydefining the error quantities

*l&maxlel0iffeA"-eAtl, (3.la)

A2 =W2)H^cuf max,6 {0,ffeAf,Bp-eAtBl2, (3.1b)

ff£maxlep)if]le*l, (3>lc)

where T^^iQ) denotes the largest singular value of Q.

Lemma 3.1. Consider the moving horizon feedback system resulting from the use of the Control

Algorithm 2.2, with state estimation formula (2.7d). There exist A,- <«», / =3,4,5,6, such that if

Control Algorithm 2.2 constructs the sequences [xJDZc, {**}£*. and {xk}kaQ which is the



corresponding sequence of the estimates of xf, defined by (2.7d), then forall it € N,

\xZ-xkl^A3ixk9\ + A4l (3.2a)

W+i - W * A5lxfl +A*. (3.2b)

Furthermore, when there are nomodeling errors and nodisturbances, A,- =0, i =3,4,5,6.

Proof Suppose that u(•) is the control generated by Control Algorithm 2.2 for the plant and model

trajectories associated withthe sequences {x%} kw0, {xk} £lf and {xk} £<>.

We beginwith (3.2a). For anyit e K and anyt e [tk , tk+i),yp(t) is givenby

yp(t) =CpeA'«-uhp +CpfheA'«-xXBpu(x) +B§d(x))dx

= CeAi'-tk)xk°+ [CpeA'°-tk)-CeA(f'Hk)) xp

+c(eA«-xXBu(x)+Bdd(x))dx+li lCpeA'<f-*Bp-Ce^'-^B )u(x)dx

+l{CpeA'«-<>BZ-CeA(t-i>Bd) d(x)dx. (3.3a)
By substituting (3.3a) into (2.7d), we obtain

•> jj£<c«**-*>xk=xZ +Wo(S0(tk+l-tk)rU[ {CeA{f'h))T ICPet'W-Ce*™) dt xp

+£ (CeA*-*f [ceA«-*Bdd(z)dvit

+(' (CeA«~hY £{CpeA'«-^BS-Ce^~x)Bd}d(x))dxdt

+(k\ceA«'uy Jik{CpeA'«-VBp-CeA«-*B }u(x)dxdt I. (3.3b)
It follows directly from (3.3b) that

lxP-xk\<^\xpl+A4, (3.3c)

where

10



A34cA max \C'eA'*^-CeA*'+\Mr
«€[0,fiof]

A4^CA max _\CpeA'<* ~X>BP - CeA<* '^BIjfccMr

+ max. {\CpeA'{f-*>Bp-CeA{t-x)B\1 +\CeAt\2)<^d~htfcd
/ e [0, Wl

(3.3d)

(3.3e)

with CA 4x^(0^ax, 6^.fjIW^CSor^bmn, 6[o.SpfjIC^fe. which proves (3.2a). Clearly,
when there are no modelingerrors and no disturbances, A3 = A4 =0.

Next we will establish (3.2b). Since xk+i is calculated using the estimated initial state xk, it

follows from the Schwartz inequality in L2[0,f] (i.e.,

j\(t)b(t)dt< [j07a(02<fc] [j^(02^pthat
1*4 -xk+\\ =\eA'^-^xt~eAih^"h)xk

+C\eA'{tM-x)Bp -eA{t"-x)B }u(x)dx+£*'eA'(/M~,)Bld(x)d'a

<K lxf-x*l+A1Ix;i + A3

<K {A3Ujfl + A4} +A1lx^l+A2 +
A2

= +ATI5rfl2
l>u

Vr
Jm Cfi^lmJ

= (KA3 +A0 tcjfl +KA4 +A2 +V^7
A2

VJi
=+jna<,i2^r

Cu^Tm
Cd^Aslxjfl+Afi, (3.3i)

where tf, Alt and A2 were defined in (3.1 a,b,c). Hence (3.2b) holds, and our proof is complete. D

Lemma 3.1 leads to the following result that also holds when the state is measured.

Theorem 3.2. Consider the moving horizon feedback system resulting from the use of the Control

Algorithm 2.2, with state estimation as in (2.7d). Suppose thatt\, e2>0 are suchthat

A5-£l<7^T7F' (3.4a)

11



A6<e2< & (3-4b>
^ 2 3+(2+tf)/e'.> »

where A5,A$ were defined in (3.30. and e' is defined by

e' £(1 +a)«x+K)l{\ +a+K). (3.4c)

Then there exists a pd e (0,0], such that for all x{j e Bp4f the trajectory x*(r ,0,xg ,u ,d\
t e [0, oo), is bounded, and there exists an e3 >0 such that e3 -»0 as e2 -• 0, and

hm/_>0Otc''(r ,0,j:6,m ,d)l£e3.

Pre*?/ First suppose that the optimal control problem Pfo+i, tk+\, 0), has a solution for any

x*+i e R" and tk+1 >0. Then, given any initial state xg at time r0 =0, the dynamics of the moving

horizon feedback system, using Control Algorithm 2.2, generate the sequence of states {x£} ks0,

while Control Algorithm 2.2 generates the sequence of estimates {x*}£,i, with

**+i =x(tk+l, tk ,xk ,u ,2), k=1,2,..., according to (2.6), and the sequence [x*k) £,2, with

x*k+2 =x(tk+2, tk+i, xk+\, u ,2), k =1,2,..., generated in the process ofsolving the optimal con
trol problem Pfo+i, tk+i, 0), k e N.

Now, for any k e N,

< Kbtf+1 - xk+ll +A5 Uf+11 +Ae +cdbcf+1 - x*+1l +cclx^1

<(A5 +a) lx£+11 + (JC +a)A5lx£l +(1 +a+K)d^. (3.5a)

If we let a1=A5 +ct, a2 = (K +a)As, and b =(l+a +AT)A6, then, in view of (3.4) we see

that a i, a2, b >0 and a i + a2< 1,sothat the assumptions of Proposition 6.1 satisfied. Hence, if we

let yo =Ltgl and y! =Ix?I, then it follows from (3.5a) that fory* defined by (6.1a), Ixfl £ykt and
that

— (l + a+A')A6 Alim upi Z -r-^- 4e", (3.5b)

and also that for all k e N,

Ix^y^tf+cOAslxgl +lxfl +e". (3.5c)

Since u(r) = 0, forall t e [0, t j), forA: =0, (3.2b) reduces to

12



lxfl^lxf-x1l + lx1I^A5lxgl + A6+^lxglt=(^+As)lxgl + A6. (3.5d)

It then follows from (3.5c,d) that for all it £ 2,

Ixjfl^((l + a+A')A5+^)lx6l+A6 + e". (3.5e)

Next, making use of (3.5c), we obtain that for all it € N,

U^l^lx^-x^l + lx^l^Aslxfl + Afi+ lx^l^AjyA+Afi+y^!

^(l+A5)(A:+(l + a + A:)A5)lx6l + (l+A5)A6 + A6

=Y'i^l+Y'2- (3.5f)

Since by (3.4), (1 - a)(l + a + tf)<l,we obtain that 1 + A5 < 2, and hence it follows that

1-a
y'2 = (l+A5)A6 + A6<2A6 + 1 +

1 + a+K

(l + a+K)p ^Ag +Ag

^(3 +(2 +AT)/e')A6^(3 +(2 +^)/e')e2^y2<P . (3.5g)

Let BPdk {x e D IIxl <pd} where, with^k (1 +z{)(K +(1 +a+tf)€i), pd is defined by

P^G-y^i. (3.5h)

It follows from (3.5g) that pd >0. Furthermore, weconclude that for any xg e BPd, for all it e N,

x*e B^ foraUA: > 1.
P

It now follows from Proposition 6.1 that lim,_*«,\xp{t ,0,xg ,u , rf)l£e3, where e3 is

defined by

p Ae3 =
(p + (1+tf + P)£i)(l + a+K)

+ 1+AT +P C2- (3.5i)

It is again obvious that e3 -> 0 as e2 -> 0, which completes our proof. •

We will now show that when the disturbances are of sufficiently small amplitude, we can still

use Control Algorithm 2.2 with slight modification such that when the state is close to the origin, we

switch over to LQR feedback control law to obtain the benefit of the disturbance suppression
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properties of LQR systems (see [Kwa.1]). This depends on the largest real part of the eigenvalues

\j(A -BKe) of the matrix A -BKe where Ke is a feedback matrix. Hence a design trade-off is

implied: the smaller the largest real part of the eigenvalues, the better is the disturbance suppression.

However, to obtain avery negative largest real part may require large elements in ATCf which limits

the size of the ball about the origin where the control u(t) =-Kex(t) will not violate the control

constraint.

Thus, suppose that Kc is the gain matrix resulting from the solution of an LQR problem for the

model (2.2a) and that K0 is the gain matrix for acorresponding asymptotic state estimator for (2.2a).

Since A - BKC is astable matrix, there exists apair of positive definite matrices (Q ,M) such that

(A -BKcfQ +Q(A - BKC) =-M . (3.6)

At this point it becomes clear that for bestresults, thematrix Q, used to deteimine thenorm II,

should also define a Lyapunov function (x , Qx) for the system x(r) =(A -BKe)x(t). Assuming

that we use the control determined by the gain Kc and the asymptotic state estimator determined by

the gain K0f we get the following augmented dynamics in thewellknownobserver-controller: form

x'(0 =Apxp(t)-BpKex°(t) +B§d(t)t (3.7a)

x°(0 =AT0C'x'(0 +(A -BKc-K0C)x0{t). (3.7b)

We will assume that there exists aconstant c'd < ~ such that W(r)l £ c*d for all t £ 0, and that

both c'd and the modeling errors are sufficiently small to ensure the existence of a ball

£i2/?= [xe Rnllxl^pLfi^},pIGR>0, such that if for some rA tx°(fJ e B^™, *en the control
* k

given by u(r) =-Kcx°(t) for all t > t^, with (xp(t),x*(0) determined by (3.7a,b), does not violate

the bound on the control.

Let e(t) kxp(t)-x°(t) denote the difference between the state ofthe plant and that of the
model. Then

e(t) = (Ap-K0Cp)xp(t)-(A-K0C)x0«)-(BpKc-BKc)x0(t)+B§d(t). (3.7c)

We will assume from now on thatthe system

T|(f) =ATi(0, (3/7d)

where A kdiag «A-K0C) ,&), withX is defined by

14



^
-BKe

0C A-BKC-K0C (3.7e)

corresponding to (3.7a,b,c) when there are no modeling errors and no disturbances, is exponentially
stable, and hence that there exists a symmetric, positive definite matrix Q =diag(Q0, &), with
Q0 € RnXB and QceJR2nx2n that defines aLyapunov function, {r\, Qr\) for the system (3.7d), so
that for some symmetric, positive definite matrix M =diag(M0 ,MC), with M0 e JR.nXH and
Mc e m2nx2nt wehave

ATQ +QA =-M . (37f)

We will now show for the observer-controller dynamics that when 1^(0)1 and Ml., are
sufficiently small, \e (r)l remains small for all t £ 0.

Lemma 3.3. Suppose that the state (x'(0 ,x°(0)is defined by the observer-controller dynamics
described by (3.7a,b), with (x'(0),x°(0)) arbitrary and let z(t)k(e(t) ,xp(t) ,x*(0)T. Let
A/4 , AB be defined by

AA k

0 AA -K0AC

0 AA

0 K0AC

ABKe

-ABKC

0

A5j=[A£j\ASj*,0],

whereM =A'-A,AB =BP -B% ABd =fi^-B<f,andAC =CP-C.

Ifthere exists a6e (0,0.5) such that fa) lA/fQl2 <5Xmin(A7), (ty

4V^XmM(e)Xm„(e)(l/i:cCQI2 +8Xm^^f))l5Jfil2+8X^(W))•

wherei"J=[5j,Bj,0]andQ and Mwere defined in (3.6), (c) \AB JQ l2< S^iM), and (d)

L-(0)|- ^•^Xl-2g)pIflR^llh(B)^ A
2Kn(Q)*()KcCQ \2 +fi^CW)) =* '

(3.8a)

(3.8b)

(3.8c)

(3.8d)

where \z (r)l £le (01 +lx'(OI +lx*(OI and lz(r)l2 k\e (r)l2 +lxp(t)\2 +\x°(t)\\ with
Ixl = (x , Qx )*, then \e(t)\, \xp(t)\<-ie for all tZO.

Proof Referring to (3.7a,b,c) and (3.8a,b), we see that i{t) =[A +AA ]z(t) + [B d+ABd]d(t).
Consider the Lyapunov function V(z), for the nominal system (3.7d), defined by V(r\) k {t\ ,Qr\).
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Then,

V(z(0) = <i<0, Q r(0)+ <z(0. Q HO)

^'{z(tt)tMz(t))+2{z(t)tAAQz(t))+2{(.Bd+ABd)d(OtQz(t))

Z-7^(M)\z(t)\2 + 2\AAQl2\z(t)\} + 2ld(t)l2W

£ <rKin(M) +25Xmin(Af))lz(OI22 +2^7WUIB Jfi l2+ &Km(M))\z(t)\2

^ Xmin(A7)(l-28)V(z(r))^lz(r)l2 , „ ,—ja ^-.^ , M ^.t-,,*. „0,
£ st-jt +2VmdML(l£ jfi l2+oAto^M ))lz(r)l2. (3.9)

The last inequality isobtained by Iz (f)l2 £ V(z (f))l/t/K*x(Q )**. Now, it follows from (3.8c) that

V(z(0)<
-X^Af )(1 -28)V(z(0)» Xmin(M)Xmin(M)(l -28)^X^02)

Wfi) ' 2Xm„(Q)V4XmtxG2)(W:cCj2l2+5Xtnia(M))

We can see that if V(z(r))V4>Y,Xmin(Q)^Atni3l02)V4 then V(z(r))<0. Since

y2>\zm2zV(zmKn(QyK*(.Q), V(z(0)£y2Km(QVK^fQ) for all r;>0. Since

V(z(0) ^ UffiJI'^/UB) * WQMOP/WQ). weobtain that le(r)l<Jy«, which estab

lishes the first inequality. Since lxp(t)\2 <\z(t)\2 also holds, we see from the above that the second

inequality alsoholds,which completes ourproof. •

It is worth noting that (3.9) implies that lz(OI-»0 as ML-»0, and hence that

lx°(OI, lxp(OI -> 0 as Ml, -* 0.

Now, let

ptQR &min {ye/4 ,p^/4} , (3.10a)

A ^ 1-Ct

A$<z2< min
P&?(l-ei)

3 + (2+tf)/e' ' 2

whereK and e' were definedin (3.1c) and(3.4c), respectively. Then, it follows from (3.5b)that

_b .^(l+a+ZQAfi ^(l+a+iQea A
hm lx*l£ -t IS -, *Pmh

k -><» c E

Let
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Pock (I- ej) (p&* -e2/(l -£l)] . (3.10e)
Then, it follows from (3.10a,c) that

Poc = P^/?(l - £i)- £2 >PlgrO - £i)/2 >€2. (3.10f)

For the case where the state of the plant is not measurable, we propose to incorporate this idea

into Control Algorithm 2.2 by modifying Step 7,as follows. LetTKt e [Tc , «>) be such that

2Xra„G2)(p2+(p£^)2)
.-WA/X1-28)T*/WG )< PoeKJQ)

S 1±t*o x2> ' <31°g)

|g04-^.)7-t,^a (31Qh)

Finally, we define the vector valued saturation function SAT(u)Ai(sat(ju^t...,sat(um))f where

sat(y) = y ify € [-cu , cM], and sat(y) = cusgn(y) otherwise.

Step V: kit =tkt

(a) If u(0 =-ATex°(0 for t e [**_!, tk) and max {IxVil, lx*l} £ p^, set xk =x'fo);

else if maxflxnl.lx*!} ^p,*, set x* =xk and reinitialize the observer by setting

x°(tk)=xk, else estimate the state xg= xp(tk ,t0,x§ ,u ,d) by (2.7d) and denote the

resulting value by xk.

(b) Compute an estimate, 2 (r), ofadisturbance d(t) for/ e [tk, tk+i]t if possible; else, set

3(0 =0.

(c) If max {IxVil, 1**1} >peet set the plant input u(t) =u[tkttM](t)-2(t) for

teUk.tk+iY* else reset rA+1 to the new value tk+1 = tk+TKt, and set

u(t)=-SAT(Kcx°{t)-2 (0)for/ e [tk, tM).

(d) Compute an estimate xk+l of the state of the plant xP(f*+1 ,tk,x£,u ,d) according

(2.6), i.e.,

xM =eA^-^xk+CleA^-'\B u(t)+Bd2(r))+jT eA(fM">f(t)dt.

Theorem 3.4. Suppose that fa; S, AA ,AB, ML satisfy the conditions in Lemma 3.3, (b)

\KCACQ I£ 8Xmin(Af), (cj that (3.10b,c) holds, (d) that p^n <(p«: -6^/(1+6!), where pMH was

defined in (3.10d), (e) that y« ^ pd, where ye and pd were defined in (3.8d) and (3.5h), respectively,

and (f) that we useStep V in Control Algorithm 2.2. Then there exists ae4 e (0, «>) such that for any
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xgeBp,, defined in (3.5h), the trajectory xp(t ,0,xg,u ,d) satisfies that

lxp(t ,Q,xft,u ,d)l£e4 for all f£0 and, furthermore, ^at^^xp(t ,0,xg,u ,d)-*0 as

ML-»0.

Proof. We will prove that for any trajectory xp{t, 0, xg, u ,d), with xg e Bp,t there must exist a

t such that for all t e [0, rA ), the control u(0 is defined by the solution ofthe optimal control prob

lem P(xA , tk, 0) and max {Ix I, Ix I} £ p^, i.e., that the switchwill take place in Step V (c) to

the linear feedback control law u(f) = -Kcx°(t\ with (xp(t) ,x*(0) the solution of (3.7a,b), from

the initial state (xp(t ), x°(jt )) at t = t . Then we will show that if the linear feedback control law

u(t) = -Kcx°(t) is used for re^.r*.] with T^^r , lx0(f)l£pmR holds for all
k *+i

* ^ [r^ , 7^], so that the linear feedback control law does not violate the bound on the control.
k

Then, we will consider two possibilities: (a) only one switch to the linear feedback control law takes

place (at rA),, i.e., max {Ix^l, lx*l} £ p«. for all k£%so that u(0 =-Kcx°{t) for all t £ t^,
* k

and C&J the condition max {Ix A.jl, lx*l} £ p^ fails for some k £$ and the Control Algorithm 2.2

switches back to the solution of the optimal control problem P(x*, tk, 0) which implies that the

linear feedback control law and the solution of theoptimal control problem are usedalternatively.

First, we will show that the switch to the linear feedback control law will take place. It follows

from (3.2a,b) that if the switch to the linear feedback control lawdoes not take place for anyk e N,

then

IxVil ^ ttf-i -xVJ + IxjP.! I£ (A3 + l)lx|L, I+A4 , (3.11a)

lxJ<lxi'-x*l4^l£A5lx£l +A6 +lxfl. (3.11b)

Because A3 <A5 £ ei, A4 £ A6£ e2, and pMH <(poc- £2)/(l +£i). it follows from (3.10d) that there

exists at e N such that lxA I£ p^ and lxA I£p^. Therefore the switch to the linear feedback
*-i k

control law will take place.

Now, it follows from (3.2a) that

ULXSUL -'̂ -,+u^-1,selU^-1,+e^+u"i.1,• (3-"c)
From (3.2b), we obtain that
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Ix^l^lx^-xJ +lxJ^e^l+ea+UJ. (3.lld)

From (3.1 lc,d) and (3.10e) we obtain that

k/l$-pr(e2+poe)+e2+p^ =pli2R. (3.11e)

Then, it follows from x°(f^) = xA that lx°(rA )l £ p^ £ pA™.

Next, suppose that the control u(t) = -tfcx°(0 is used for all f e [£, , 7^], where r^ is the
k k

time when the switch to the linear feedback control law takes placeandT^ £ fA . Let the Lyapunov
k+\

function V() be defined by V(x*(0) =lx°(/)l2 k (x°(0, Qx°(t)). Then, making use ofthe matrix
M defined by (3.6) and(3.7b), we obtainthat forall e [fA , T^]

k

V(x°(0) £ -Xinin(M)lxo(0l22 +2\KCACQ \2\x°{t)\l+2\e {t)\2(\KcCQ l2 +\KC ACQ l^lx*(r)l2

Xmin(M)(l-28)lx°(r)l t 2lg(QI(l/i:cCgl2+8Xmin(Af))
k°(Ol2. (3.1 If)

It now follows from (3.11e) that lx*(fjl, Ix/ISp/^* £y€/4 and that lz(OI£ l«fc)l+ k"(f )l

+ lxP((^)l£2(lx0(^)l +lx/l)£y€, which implies that for all r e [t ,7^], \e(t)\£ye, by
* * * k

Lemma 3.3. Now, it follows from (3.8d) that if lx*(OI >Plqr for any t e [t^ ,7^], then

V(x°(t))<0 for t e [t^ ,Toe]. Since lx°(r,)l£pi^, we must have that lx*(OI£p^ for all

t e [^ , roc] and therefore n(0 = -Kcx°(t) satisfies the bound on the control
k

Now let us consider the case (a). If we set TM = «>, then we conclude from the above that

ix°(t)\< puoji for t £ r„. Also,by Lemma 3.3, lx'(OI £y« for all f 11^, which implies that xp(0

is bounded. Since by Lemma 3.3, lim,., Jz(OI->0 as ML->0 we must have that

lim, _> JxP(r)l ->0 as ML -» 0, which completes the proofof(a).

Next, let us consider the case (b). Suppose that there exists a kf > t such that

u(t) = -Kcx°(t), for all t e [^ ,**], and max{IxV^I ,lx*J) >poe. Since Ix^Ol^p^ and
k

lxp(t)\ <ye for all t e [t^ ,**>], and y« <pd, we have that x'fo)e Bp,, which implies that the

optimal control problem has a solution. Hence, by the first part of our proof, there exists a £ >K
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such that the switch to the linear feedback control law again takes place. We now resort to a con

tinuity argument. If d(O =0 for all fefc.t ]f we will have mat
k' * '+1

max {lx„ I, Ix^ /+il} <p^max {a, 1/^2}. Hence, by continuity of the solution of (3.7a,b), there

must exists a c"d>Q such that if \d(t)\£c"d>Q for all r e [r ,r ], then
k' k '+1

max {lxA I, Ix I} < poc will hold, and hencethe linear control law will be retained forthe next
Jfc'+l *+2

interval, [rA , t^ ], and similarly, for all the intervals to follow, since c"d does not depend on tk.
k '+1 k '+2

Hence, if ML £ c"d% then the linear control law will be used for all t £ t , and therefore, by case

(a), we conclude that fim, _»Jxp(r )l -> 0and itcompletes our proof. •

Next we turn to the case where the disturbance is the output of a known dynamical system

driven by stationary, zero mean, white noise. To obtain bounds on the disturbance effects, we must

assume that there are no modeling errors, i.e., thatAp =A, Bp =B, B§ =BdtandCp = C, and that

the state of the plant can be measured. First we will consider the effect of disturbances which are

generated by the initial state of anunforced, linear, time invariant system thatis described by

^(0=4^(0 (3.12a)

d(t) = Cdxd(t), (3.12b)

where Ad e R"^, Cd e R^^. Since the input u() is bounded, we can only hope to reduce the

effects of bounded disturbances. Therefore, we assume that there exists a bd<°° such that

le^'l^forallr £0.

To estimate the state x<*(0. we can proceed as follows. For all k e IN and t e [tk , r*+1], let

e(t)be defined by e(t)kxp(t ,f*,x£,K ,d)-x(t ,tk,xg,u ,0). Then

e(t)=Ae(t) + Bdd(t), (3.12c)

with e (rA) = 0. Combining (3.12a,b,c),we obtain that

d_
dt

e(t)

xd{t) Ad 0 xd(0
kA

xd(f)
e{t) BdCd A e(t) e{t)

•["]
xd{t)
e(f) kc

xd(0
e«)

(3.12d)

(3.12e)

Obviously, when (C ,A ) is an observable pair, we can use a reduced order estimator to obtain an
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asymptotically converging estimate of the disturbance state xd(t). Then, assuming mat

Ik(0-2(0L£cH for all f e [tk,tk+i], where u(r) is computed by solving the optimal control

problem P(xA_!, tk-\, 0) the use of Control Algorithm 2.2 will result in asymptotically perfect distur

bance rejection.

We now give a necessary and sufficient condition for (C , A) to be observable.

Lemma 3.5. Let A and C be defined as (3.12d,e). Then (C ,A) is an observable pair if and only if

(BdCd , Ad) is an observable pair.

Proof => We will give a proof by contraposition. Suppose that (BdCd ,Ad) is not an observ

able pair. Then there exists a nonzero vector z € R* such that

BdCdA'dz =0, 1=0,1 (3.13a)

Now let z k (zr ,0)T e R*+\ Then, because of(3.13a), we have that

—, J-i . . ,
CA Jz = \ZAJ BdCdAldz =0,j = \t2,...,nd+n-l. (3.13b)

Furthermore Cz = 0. Hence (C , A ) is not an observable pair.

<= Now suppose that (C ,A) is not an observable pair. Then there must exist a nonzero

F =(z , z') e R* +\ such that CAyz =0 for j =0,1,..., nd +n -1. Since C = (0 I/), it is

clear that z' = 0 must hold. Hence (3.13b) must hold, and unraveling this expression, we find that

(3.13a) must also hold, which completes our proof. •

As an alternative to using a reduced orderobserver, at the expense of more computation, we can

get an exact estimate of2 (0 to be used to obtain perfect disturbance rejection, as follows. Let

wn(0 0
u>21(0 w22(0

= exp(AO = exp B%A)\ (3.14a)
so that wn(r)=e^ and w&b)=eM. Hence (3.12e) can be rewritten in the equivalent form

eit) = w2\(t)xd(tk) +W22(f)e(tk) = w2l(t)xd(tk). (3.14b)

Since the state of the plant is measurable, e(t) can be computed for all r e [tk , tk+{\. Hence, if
r* tJ, _$ w21C0W 2i(x) dx is always invertible for some 8>0, then we can also compute xd{tk - 8) using

the formula
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xd(tk-&)= [j^wri(x)w21(x)rfx]"1£-8w2'1(x)c(t)dx. <3-15a>

We can then use xd(tk - 8) to compute the disturbance 2 (0, for t e [tk, f*+1], using the formula:

2 (0 =Q^'-^fo - 8) 4C,*(r). (3.15b)

To establish the invertibility of the matrix jf wfj (x)w21(x)dx, for all t >tkt we need the fol
lowing lemma.

Theorem 3.6. Suppose that w21(0 is defined as in (3.14a). If (Cd, Ad) is an observable pair and

Bd has maximum column rank, then, J w2rl(x)w21(x)rfx is invertible for all t >tk.

Proof To simplify notation, let <J>(t ,x) k exp((r - x)A). Since (C ,A) is a observable pair by

Lemma 3.5, the observability grammian for the system (3.12d,e), W(t, tk)% defined by

W(t ,tk)k £0(x ,tk)TCTCWx, tk)dx (3.16a)
is nonsingular for all t > tk. By substituting the expressions for C and 0(r , tk) that arc given by

(3.12e) and (3.14a), respectively, we obtain that

W(t,tk) =
}lkwli(x)w2l(x)dx )h^l\{x)w22{x)dx

) yv\\(x)w2X{x)dx £w2"2(x)w22(x)dx
Wn(t,tk) WX2(t,tk)
Wnit.tJWvit.tt) (3.16b)

Suppose that for some t > tk$ Wn(t, tk) is a singular matrix. Then there exists a nonzero vector,

z e Rn', such that Wu(t , tk)z =0, and hence for zk(zT Of e RB-+nt

{z ,W(t ,tk)z) = (z ,Wu(f ,tk)z)=0, (3.16c)

which contradicts to the fact that W(t, tk) is positive definite matrix for all t > tk. Therefore,

W n(f, tk) is nonsingular for all t > tk> which completesour proof. D

Thus, assuming that \u (0 - 2 (OL £ c„ for all f e [tk, rA+1], where u(0 is computed by solv
ing the optimal control problem P(x*_i, tk^, 0) the use of Control Algorithm 2.2 will result in per

fect disturbance rejection.

In reality, it is not likely that the disturbance dit) is the output of a unforcedlineartime invari

ant system. It is more realistic to suppose that d (•) is the output of a linear time invariant system

driven by stationary zero-mean whitenoise,with aninitial state x<*(0), described by
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xdit) =Adxd(t)+Bwwit) (3.17a)

dit) =Cdxdit). (317b)

Let rf j(0 dCde^xdiO) kCdxdlit) and let d2it) kCd^^Bww ix) dx kCdxdlit) be the contri
bution of the white noise term in(3.17a). Ut £(§) denote the expected value of the random variable

%. Then we see that because £(w(0) =0 for all t £0, Eixdiit)) =0 for all / £0. Hence (c.f.
(3.12d,e) and (3.14a,b)) we obtain that for t e [tk.tM]9 k e N, E(e(0) =w2i('ta('*). Since
^ _5W 21 (' )w2i(r) dt is invertible for any 8>0byTheorem 3.6, we can compute the estimate ofthe
disturbance d{t)% for t e[tk, tk+l), according to

2it) =CdeA*«-'^xditk-h), (3.18)

where xditk - 8) is defined by (3.14a). Since Eixdj,t)) =0 for all t Z0, £(2 (0) =E(d(0) for all

t >0. Therefore, we have perfect estimation ofthe expected value ofthe disturbance, which implies

that \E idi) - 2())L =0. In conjunction with Theorem 3.4, this fact leads to the following result
Theorem 3.7. Suppose that (a) 8, AA ,AB dt ML satisfy the conditions in Lemma 3.3, (b)
\KcAC\2<b'\miniM), (c) that (3.10b) holds, (d) that PAf//<(Poe-e2)/(l+e1), where pMH was
defined in (3.10d), and (e) that we use Step V in Control Algorithm 2.2. Then there exists an

£5 e (0, oo) such that for any xg € Bpt% defined in (3.5h), the expected value of the trajectory
xpit ,0,xg,K,d) satisfies that YEixpit ,0,xg ,u ,d))\ZE5 for all rS>0 and, furthermore,
vSmt->^(xp(f ,0,xg,n ,d)) =0. D

4. TRACKING

We will now examine the reference signal tracking properties of our moving horizon control
system, defined by the error dynamics (2.4a,b) and Control Algorithm 2.2. At this point we must
assume that the matrix B in (2.4c) has full column rank.

Before we attempt acharacterization ofinputs which can be tracked asymptotically by our mov
ing horizon control system (with bounded controls), we will extend aresult due to Basile and Marro

[Bas.l], dealing with asymptotic state tracking of LTIsystems without control constraints.

Lemma 4.1. [Bas.l] Consider LTI system (2.2a,b), and let Sx be defined as in (2.3a). Then, Sx is
thelargest subspace among subspaces S cR" such that
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AS+S<ZR(B), (4.1)

whereAS+5 = {x e R" Ix = Xi+x2,forallxie AS ,x2e S ) and R(B) is a rangespace ofBD

Making use of Lemma 4.1, we obtain the following straightforward generalizationof a result in

[Bas.l].

Lemma 4.2. Let r e R and consider the error dynamics (2.4c,d), with 3(f)a0, and

f it) =-sit)+As it), where sit)kliiCTC)fCTrit). Then, there exists a continuous control

urit),t >0, such that for any initial statexoe R",y(0 =Cx(f ,0,Xo,«r ,0)-»0asf-»».

Proof Clearly, if there exists a control uri) such that x (f, 0, xo, ur, 0) -> 0 as t -> oof then, since

y it) = Cx (r, 0, xo, ur, 0), the desired result must hold.

We recall that by definition sit) e Sx for all 110. We will now show that we also have that

i (0 e Sx. Let z be anonzerovector in the orthogonal complement ofSx. Then forall* >0,

0= (z ,isit)-si0)))= (z ,£sit)dt). (4.2)
Since (4.2) holds for all t £ 0, we must have that (z , sit)) = 0 for all t. Therefore sit) e 5X for all

f >0.

Let Hr(0 =-Fx(0+v(0 where F is any feedback matrix such that oiA -BF)cCl (with

o(A) the set of eigenvalues of A and Ct the open left half planeof the complex plain), and v(0 is

defined by Asit)-sit)+Bvit) = 0 for all t £0. The latter is possible because sit),sit) e Sx and

ASx+SxcR(B). Then, we have that x(f ,0,x0,«r .0) ^e^^xo and obviously,

x (r, 0, x0, ur, 0) -> 0 as r -»«», which completes our proof. •

So far, we have assumed that there are no constraints on the control. We have assumed in

Assumption2.3 that for all r € Ry and x € BA, the optimal control problem P(x , 0, r) has a solu-
p

tion. To show that Control Algorithm 2.2 canbe used for input tracking as well as stabilization, we

have to prove that for trajectories emanating from the ball BA, the estimated states xk+x defined by
P

(2.6) are in the set BA. To establish this fact, we will follow the pattern set up in Section 3. First, we
p

need the following definition.

Definition 4.3. Let cs e (0, «>). We define R^ c R^ by

Ri, = {r e Ry I maxflsL. liL) £ cs ) , (4.3)

where sit) =HiCTC)fCTrit).
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•

Consider the error dynamics (4a,b) and itsmodel (2.4c,d). We assume that the disturbance dit)

cannot be estimated. Hence Control Algorithm 2.2 sets 2 eO. Since the more difficult situation

occurswhen the plantstate is estimated, we will assume that this is the case. First, we derive a result

similar to Lemma 3.1.

Lemma 4.4. Let r e Rv. Consider the moving horizon feedback system resulting from the use of

theControl Algorithm 2.2,with state estimation formula (2.7d). There exist A;<«», i =7,8,9,10,

such that if Control Algorithm 2.2 constructs the sequences {xg)kaQ, {xk) kal, and {xk}km0 is

the corresponding sequence of theestimates of x£ defined by (2.7d), then for allk e IN,

lx£-xkl <Avbtfl +A8, (4.4a)

l*£fl -**+il ^ A9lxi'l+A10. (4.4b)

Furthermore, whenthere are no modeling errors and nodisturbances, A,- =0, i =7,8,9,10.

Proof Suppose that u(•) is the control generated byControl Algorithm 2.2 for the plant and model

trajectories associated with the sequences (x£}£o, [xk)rmh and {xk)kaQ. For us to have a

similarity withLemma 3.1, let us modifytheerror dynamics (2.4a,c) as follows.

Foragivenr e Ru,letsit) = HiCTC)tCTrit). Ut

"(0 =Mi(0+w2(0. (4.5a)

where

u2it) =iBTBTlBTiAsit)-sit)). (4.5b)

Then, since fpit) = -sit)+Apsit) and/(0 =-i(0+Ar(0, (2.4a,c) becomes

xpit)=Apxpit)+Bpulit)+B§dit)+iBp-B)ulit)+iAp-A)sit)

kApxpit)+Bpulit)+B§dit)+dlit), (4.5c)

x(0 =Axit)+BUlit)+Bd2it). (4.5d)

Since max {Is L, Is L} £ cs, it is clear that \u2L is bounded. Then,

Ih !L <\uL+ \u2L =cr. (4.5e)

Next it follows from (4.5c) that
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id1\00Z\Bp-B\cr +lAp-AlcskAdl.

We begin with (4.4a). For any k e K and any t e [tk, tM], ypit) is given by

k3A'«-xXBpulix)+Bgdix))dx+Cpjt.
t

ypit) =CpeAP{f-^xp+Cpj^'-x\Bpulix)+BSdix))dx+Cpjy^'x^dlix)dx

=CeA^xZ+ {C»eA'W-CeAW) x^C\[eA^x\Buxix)^Bddix))dx

+fh{CpeA'«-x>Bp-CeA«-x'>B )M,(x)dx

+ll{C'eA'«-<>Bl-CeA<t-*Bd) d(x)d%

+CjleA^-^dlix)dx+jl{CpeA^^-CeA^-x^)dlix)dx.
By substituting (4.5g) into (2.7d), we obtain

Xk=xi+w0<b£tM-tkyrl< ju iCeA(f'h)f {CpeA,(f'h)-CeA{f'h)) dtxp

+jl\ceAit^fjlceA^t-x\Bddix)+dlix))dxdt

+(\ceA^lkYfu{CpeA^-^Bp-CeA^x^B )uxix)dxdt

+(\ceA«-hyil{CpeA'«-x)B§-CeA«-*Bd) dix)dxdt

+̂Ce^^Yj^e^-^-Ce^^^d^dxdt |.
It follows directly from (4.5h) that

Ix^-x-J^Avlxfl+Ag,

where A7= A3, where A3 was definedin (3.3d)and

A8£a'4+Ca max _ {lCpeA'«-x>-CeA«-%+\CeAtl2}SQfAd,

(4.5f)

(4.5g)

(4.5h)

(4.5i)

(4.5j)

with CA kKzxiQ^ax, e [Tc f]IWo(80r)"ll2max/ 6[0| kfjIC^fe and with A'4 replacing cu of A4
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defined in (3.3e) with cr in (4.5e), which proves (4.4a). Clearly, when there are no modeling errors

and no disturbances, A7 = A8 = 0.

Next we will establish (4.4b). Since x*+i is calculated using the estimated initial state xk, it

follows from the Schwartz inequality in L2[0,T] (i.e.,

\lait)bit)dt <; [j/flCO2*]* [j^02*)*)that
tt+i

ttf+i -**+il =U^^-^xZ-e^^xt+l eA'((u,-%(x)dx

+jU*\eA'(tM-x)Bp-eMu*l-x)B)ulix)dx+\U*eA'^^

ZKlxg-xiil+Ailxfl+A^

tk*\ tt*i

+K»*(Q)\ uW^Bl-e^^BAWMt +KM(Q)\ le^^BMdiOhdt

<K {A7lxfl+A8}+A1lxfl+A'2+
A',

cr<T
=r+K\Bd\frm Ctt^ImJ

\k+ max_leA't-eAtl\>lnnd~Adt
t te[0,T) J

k iKA-j+AJ Ixfl+^Ag+A^+VmJ
A'

=+K\BdrJ¥
:rJrm

kA9\x£l+A1Q,

Cd+*di

(4.5k)

where K, Ax were defined in (3.1a,b) and A'2was obtained by replacing cu of A2in (3.1c) with cr in

(4.5e). Hence (4.4b) holds, and our proof is complete. •

In Section 3, Theorem 3.2 was proved by making use of the results in Lemma 3.1 and Proposi

tion 6.1. In the case of tracking, it is clearthat if we replace A5with A9 and A6 with A10 in the proof

of Theorem 3.2 and use Lemma 4.4 instead of Lemma 3.1, still using Proposition 6.1, then the con

clusions ofTheorem 3.2 assume the following form.

Theorem 4.5. Let reRy. Consider the moving horizon feedback system resulting from the use

of the Control Algorithm 2.2, with state estimation as in (2.7d). Suppose that A9, Ah> satisfy the
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inequalities

^£l<77i^' (46a)

A <<. < § (4.6b)

where A9, A10 were defined in (4.5k), and e' was defined in (3.4c). Let pd be as in (3.5h). Then, for

all xg e B Pd, the trajectory xpit ,0, xg ,u ,d), t e [0, oo), is bounded, and there exists an e$ >0

such that e^O as ^-4 0, andlim/_>0Olx',(f ,0 ,x% ,u ,d)\<z^. D

Since the constants A9, A10 depend on cs and the bounds on the modeling errors, we see that

there is a trade off involved in chosing a value for cs, namely, the larger cs the smaller arethe model

ing errorsunder which (4.6a,b) will be satisfied, while the set of admissible inputs Ry grows with cs.

In a similar way, the results ofTheorem 3.4 can also be extended to the reference signal follow

ing case.

5. CONCLUSION.

Moving horizon control is a promising idea for the control of nonlinear systems. In this two

part paper we have explored the properties of a moving horizon feedback system, based on con

strained optimal control algorithms, with the simplest possible nonlinearity, namely, input saturation.

While in the first part, we have shown that moving horizon control results in a robustly stable system,

in this partwe have shown that it is capable of following a class of referenceinputs and suppressinga

class of disturbances. A possible issue in the use of the type of moving horizon control system dis

cussed in this paper, is the time needed to solve the optimal control problems. This should cause no

difficulties in controlling slow moving plants, such as in process control. For faster plants, it may be

necessary to implement the optimal control algorithms in some form of dedicated architecture, so as

to reduce to the solution time to acceptable levels.
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6. APPENDIX I.

We will nowestablish two inequalities that form thebasis of several of ourproofs.

Proposition 6.1 Consider the second order scalar difference equation

y*+2 = fliy*+i + tf2y*+& » *eN. (6.1a)

lfalfa2Z0,b >0andfl!+fl2< 1, then for all* £ 1,

y*<02yo+:vi+&/(l-tfi +02). (6.1b)

and

limjfe^ooyjk^^/a-ai +02). (6.1c)

Proof We begin by rewriting (6.1a) in first order vector form, as follows. For k e N, let

z* =(y*,y*+i)r. Thenz0 =(yo.y i)T.and

zk+l =
0 1

a2 a\ z* +

y* = [10]z4£ffz*

AFz4 +g. (6.2a)

(6.2b)

The matrix F has two eigenvalues, A*, X. =V4(a i ±Va ?+4a 2)1 with corresponding eigen
vectors, e+ =(1,\+f and e! =(1,\_f. We will now show that -1 <7l.<0< A+< 1, i.e., that

(6.2a) is an asymptotically stable system. By assumption

0<a2<\-ax. (6.2c)

If we multiply both sides Of (6.2c) by4, and add a 2 tothe both sides, we get that

a2+4a2<i2-a{)2. (6.2d)

which implies that X> =xMfl x- *>la2+4a£ >-1 and A+ =xMfl x+Va?+4a2) <1. Thus, we have
that-l<X_^A4.<l.

We can proceedto establish (6.1b,c). By the Jordan decomposition, we have that

F=E~lAE, (6.2e)

where A =diagiX+ ,X_), and E =ie+,e„) is a matrix whose columns are the eigenvectors of F.

Hence for all k > 2,
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yk=HE-lAkEz0

=̂ ^ (U^^-Ai-^o+Oi-Xfty! J+^4x7 zV*-1-,'-X+*-1-i). (6.2f)
Since 0 < X* < 1 and-1 < X^ <0, it is clear that (a) the first term in (6.2f) goes to zero as k -> <» and

(6j the last term in (6.2f) satisfies the inequality

^k±y^-xi-^^[T^-^yT-A—. (6.2g)
because(1 - a+)(1 -X^) = l-ai + a2, which proves (6.1c).

Next, for all * £ 1, X^X* and -A*£(-A_)* £-X^. Hence

{X+L^*"1 -X^"1)/^-X+) <-XhX_ =a2. Also (Xi-X^)/(A^-X+) £ 1,hence(6.1b)hold. •
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