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ABSTRACT

We present a moving horizon feedback system, based on constrained optimal control algo-
rithms, for linear plants with input saturation. The system is a nonconventional sampled-data system:
its sampling periods vary from sampling instant to sampling instant, and the control during the sam-
pling time is not constant, but determined by the solution of an open loop optimal control problem.
In part I we showed that the proposed moving horizon control system is robustly stable. In this paper
we show that it is capable of following a class of reference inputs and suppressing a class of distur-
bances.
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1. INTRODUCTION

Model predictive control and moving horizon control are popular in the control of slow dynami-
cal systems, such as chemical process control in the petrochemical and pulp and paper industry, and
gas pipeline control (see [Gar.2]). This is the second part of a two part paper, dealing with a new,
moving horizon feedback law for linear, time invariant plants, modeled with errors, subject to distur-
bances, reference inputs, and control constraints, and with the time to solve the optimal control prob-
lem accounted for, that was introduced in [Pol.2]. This control algorithm is in the general class of
open loop optimal feedback laws, dating back to a 1962 seminal paper by Propoi [Pro.1], that solve
open loop optimal control problems with constraints to obtain a feedback law. This class of feedback
algorithms includes model predictive control (see [Meh.1, Pre.1, Gar.1, Gar.2]) and moving horizon
control (see [Kwo.1, Kwo.2, May.1, May.2, Kee.1]). For a very nice survey of model predictive con-
trol, see [Gar.2].

Our algorithm differs from other moving horizon control laws in that it uses a free time, control
and state space constrained optimal control problem, and hence it results in a nonconventional
sampled-data system: its sampling pericds vary from sampling instant to sampling instant, and the
control during the sampling time is not constant, but determined by the solution of an open loop
optimal control problem.

In part I [Pol.2] we showed that the feedback systems resulting from the use of our control algo-
rithm are robustly stable in the absence of disturbances. In this part, we will examine its disturbance
rejection and reference input following characteristics. We note that our results are considerably
stronger than those found in the literature dealing with model predictive and moving horizon control,
where the state is usually assumed to be measurable, the controls are assumed to be unbounded, and

the models are assumed to be exact (see, e.g. [Cla.1, Cla.2, Kwo.2, May.1, Mic.2]).

In Section 2 we introduce our proposed moving horizon feedback control law. In Section 3 we
study the effect of disturbances, while in Section 4, we establish a class of reference inputs that can be
tracked asymptotically by our system.



2. STRUCTURE OF THE MOVING HORIZON CONTROL LAW

We assume that the plant is a linear-time-invariant (LTI) system, with bounded inputs and an
input disturbance, described by the differential equation

EP(t) = APEP(t)+ BPu(t)+BEd(r), @.13)

nP(t) = CPEP(1), 2.1b)
where the state £7(¢) € R", the control u € U, with
UB (uelf0,) I lul.<c,}, Q.1¢)

¢, € (0, ), and the disturbance d € L™[0,). Consequently, AP € R**", BP ¢ R" xm
Bf e R"*™,and CP € R™". We will denote the solution of (2.1a) at time ¢, corresponding to the
initial state EF at time 7, and the combined input u and d, by £P(¢ , ¢, E8,u ,d).

The function of the moving horizon control law is to ensure robust stability and "reasonable”
reference signal r(t) tracking, suppress disturbances d(¢), while taking into account the fact that the
plant inputs are bounded, as in (2.1c), as well as various amplitude constraints on transients.

We assume that the disturbance d () cannot be measured and that the matrices A? ,BP?,BE, and
C? are known only to some tolerance. Hence the moving horizon control law must be developed

using a plant model, of the same dimension as (2.1a),
E(r) = AE(e)+Bu(1)+B,4a (t), (2.22)

ne) =C&@), | (2.2b)
where A € R**", B € R"*™, By € R"*™, and C € R™*" are approximations to A?, B?, B},
and CP, respectively, and @ (¢) is an estimate of d(r). When d(¢) can not be estimated, we set
a () = 0. We will denote the solution of (2.2a) at time ¢, corresponding to the initial state x at time
to, and the combined input 4 and a, byx(t,t0,x9,u, d ).

Let Q be a symmetric, positive definite # X n matrix such that {x , Qx }is a Lyapunov function
for the linear closed loop system obtained applying state feedback to (2.12). The reason for this
selection will become clear in Section 3. We use this matrix to define the norm Ix1 4 (x ,0x YA We
will denote the usual Eucledean norm on R” by Il,.



Assumption 2.1. 'We will assume that (A , B) and (4 , B,) are a controllable pair, and that (C , A)
is an observable pair. | O

Let the subspace S, € IR" be defined by
Sx={xeR'IxeR(B)AxeR(B)}, (2.3a)

where R (X) denotes the range space of the matrix X. Let H be a matrix whose columns are a basis
for S;. We will show in Section 4 that, when there are no constraints on the control u(-), given any
continuously differentiable function s(¢), with values in S,, there exists an input u;, (f) such that for
any initial state &, 1€(t ,0,&q, 4, ,0)-s(t)I >0 ast -, Let S denote the set of continuously dif-
ferentiable functions s : IR —S,. Hence, the reference signals that can be tracked asymptotically,
under the best of conditions are those in the set R 2 CS. We will therefore assume that the reference
signals to be tracked are in R. We will use the following characterization of elements r € R, because
it may help to alleviate the effects of the control constraint. Let C 2 CH and let G be a matrix

whose columns are a basis for the null space of C. Then any reference signal r € R can be

expressed as follows:
r@@)=Cs(), (2.3b)

where s(t) An (5 ¢ )'5 Tr(t) (1 denotes the Penrose pseudo inverse [Gol.1 pp243]) is continu-
ously differentiable.

We can now define the error dynamics that will be used in defining and analyzing our control
law. Suppose that a reference signal r € R is given. Let xP(t)48P(t)-s(t), and let
x(t) 2E(t)~5(t). Then the plant error dynamics are given by

xP(t) = APxP(t)+BPu(t)+BRd(t)+fP(t), : (2.42)

YP(t)=CPxP(t), (2.4b)

where fP(t) 8 —5§(¢)+APs(¢). Similarly, the model error dynamics become
x(t) = Ax(t)+Bu(t)+ B3 () +1 (t), (2.4c)

y()=Cx(t), (2.4d)
where f (1) 2 =5 (t) +As (¢).
We will denote the solution of system (2.4c), from the initial state x at time to, control # and

disturbance 4 by x(¢ ,29,x9,u ,2). Given any time 7, we will let x; éx(tk,to.xo,u ,3).
4



Assuming that the control law computation takes at most T time units, we can now propose a sim-
ple, aperiodic sampled-data feedback law, in the form of an algorithm which, during each sampling

period, solves an optimal control problem P(x, , t; , 7) of the form

R () i = i
POy, t,,7): (l:l}l:){g (w,t)18g'(u,vs0,i 1.2,...,11.121[?.:("]@(1:,t)SO,

j=l,...,uel,tela+Tc,u+T1}, (259

where 0 < T < T < =, and the constraint functions are defined by

giw . D@, . x,u,d),i=0,1,...,1,-1, (2.5b)
g, D =x(t, t,x,u , 3 )2-lix, P, (2.5¢)
¥ u,t) éhf(x(t e, xg,u,d),0),j=1,...,15-1, 2.5d)
O ,6) = Ix(t . 1, %, u , 3PP, R, (2.5¢)

where the constraint functions (2.5¢c,e) with e (0, 1), B € [1, <), are used to ensure robust stability
and input tracking, while the other functions, k¢, h/ are convex, locally Lipschitz continuously dif-

ferentiable functions that can be used to ensure other performance requirements.

We are now ready to state our control algorithm that defines the moving horizon feedback con-
trol system. The algorithm uses several parameters: T, the time needed to solve the optimal control
problem, which must be determined experirﬁentally, and three parameters that are selected partly on
the basis of experimentation and partly on judgement, T, an upper bound on the horizon, and a, B

which govem the speed of response of the system.

Control Algorithm 2.2,
Data: to=0,t,=T¢, ll[,o'“](t)EO,XQE Ba. Tc and fsuch that 0 < T¢ < f<°°.
Step0: Setk =0.

Stepl: Att =1,

(a) Obtain a measurement or estimate the state xf = xP(t , 29, x§ , 4 , d) and denote the

resulting value by x.

(b) Compute an estimate, d (¢), of the disturbance d(¢) for ¢t e [#;, #;4], if possible; else,

5



setd (t) =0.

(c) Set the plant error dynamics input u (t) = U, ,,,,,(:)-a (t)fort € [t , tg41).

(d) Compute an estimate x,,; of the state of the plant error dynamics
xP(te41. b . XE , u ,d) according to the formula

(- 28
Xia = e 0m0E 4 [ TeAGD By (0B, E ()t + |, "eAGaf (1) gt . 2.6)

(e) Solve the open loop optimal control problem P(x,; , %41, 7) to compute the next sam-
pling time f#,;€ (G +Tc .tk+,+f], and the optimal control uy,, .. (¢t)e€ U,
t € [tesr, tee2)s

Step 2: Replace k by k +1 and go to Step 1. O

In Step 1 (a), the state of the plant has to be estimated if it is not measurable. When the model
(2.4c,d) is identical with the actual dynamics (2.4a,b), we can calculate the initial state, x§ at ¢ =0,
using the standard formula

117 AT
x§ = Wo(To) [ (CeAY P (@)= , O))dt , | @.72)
where T, > 0, the superscript T denotes a transpose, and
T.
W,(T,) = jo (Ce*)TCerar , (2.7b)
4
N .s)=C[ eA¢Bu(ndr. @.7¢)

Clearly, WO(T‘,)‘l exists because (A , C) is an observable pair. Thus, when there are no modeling
errors and no disturbances, for ¢t 2T, the state xP(¢ ,0,x§, u , 0), can be calculated exactly, and
hence this calculated state can be used in Control Algorithm 2.2.

The much more relevant situation occurs when there are modeling errors but no disturbances.
In this case formula (2.7a) yields an estimate of the initial state x§. We propose to use it in Step I (a)
of Control Algorithm 2.2, to obtain the estimate x,, with the time T determined by a parameter &,

which must be chosen judiciously so as to avoid excessive ill conditioning in the observability gram-
mian W, (T,):

Step 1: (a) At?; 8 1 +8o(tes1—1) with 8 € (0, 1), estimate the state xf by

N
Ei = WoBelten= 1), (CeAT 6P @)-n(e , 1)ds @7



Clearly, the fact that the plant inputs are bounded, limits the region of effectiveness of any con-
trol law and the class of reference signals that can be tracked. Hence we must assume that the initial
states are confined to a ball B_ € R" and that the reference signals belong to the set Ry, both

P

defined, as follows.

Assumption 2.3. We assume that there existsap € (0, =) and Ry R such that 0 € Ry and that
xe Ba A (xeR"I Ix1<P } and for all r € Ry, the optimal control problem P(x ,0,r) has a
solution. ‘ O
The following theorem generalizes a result given in [Pol.1].
Theorem 2.4. Let B‘,i c R” and r € Ry, be defined as in Assumption 2.3. Suppose that (a) the
systems (2.4a) and (2.4c) are identical, (b) d(¢)=0, and (c) the Control Algorithm 2.2 is used to
define the input u () for (2.4a). Then the resulting feedback system is asymptotically stable on the set
Ba,i.e.foranyxﬁ € Ba,xP(t v 0,x8,u,0)>0ast > oo,
Proof. ~ We begin by showing that for any r € Ry and for any xge 83' the trajectory
x(t,0,x0,u,0) =x, k € N resulting from the use of the Control Algorithm 2.2 is contained in
B 5 In tumn, this shows that such a trajectory is well defined and that it is bounded.
Suppose that xg € 86 is an arbitrary initial state at ¢ = 0. It follows from the form of (2.5¢c),
that forall ¥ € N,

il = 1X (rar s T o Xe L U, 00 O S o1 S o il . (2.82)
Since ae (0,1), it follows that x; 85 for all k€ N and hence that the trajectory
x(,0,xq9,u,0)is well defined.

Next, from the form of (2.5¢), we see that forall k € N and forany ¢ € [t , f;.44],
Dt te, Xk, Upy, .. OF S Bl < Bolx ol < Blxl (2.8b)

which implies that since o — 0 as k — =, we obtain that x(¢ ,0,x¢,u ,0)—0 as ¢t = . Hence

the feedback system defined by the Control Algorithm 2.2 is asymptotically stable on the set B, . O
P

We note that Theorem 2.4 did not depend on the form of the cost function g°(- ,*) nor on the
form of the constraints defined by (2.5b) and (2.5d). These constraints can be used to shape the tran-

sient responses of the closed loop system. We will describe later a procedure for solving problems of
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the form (2.5a-e).

As stated, Control Algorithm 2.2 only defines a local control law. When the plant is unstable,
since the control 4 € U is bounded, for some initial state xo € IR", there is no control which stabil-
izes the system. In this case, there is not much that one can do about it. However, in the case of
stable plants (and models), it is possible to globalize Control Algorithm 2.2 making use of the follow-
ing observation. First, it should be clear that, in the absence of modeling errors and disturbances, for
any r € R such that for all £ 20, min, ¢ y 1Bu +f (¢£)1 =0, there exists an admissible control,
u°(t) € argmin, ¢ y 1Bu + f (¢)I that results in the error satisfying the equation

£(1) = Ax(0), @9
and hence, if A is a stable matrix, the error goes to zero exponentially, so that for any xo € R",

x(t,0,x0,u°,0)€ Bﬁ will occur in finite time. Clearly, in this case, there may be room for a

more effective control law, as we will now show. Let M’ and Q° be symmetric, positive definite
matrices, such that ATQ’ + QA =—-M’, then V(x(¢)) & (x(t) , Q’x(¢)}is a Lyapunov function for
(2.9). Let T, € (Tc, T and suppose that x; eaa. Then, if we set t,; = #; + T, and we apply the

control  u°(), to (24c), for te[t,f4q), then we must have that
V(e te, X, u°) S e"“““(M')nV(xk). Hence it makes sense to use instead the control defined

as the solution of the simple optimal control problem
i V ’ ’ ’ ’
nin (Ve e xe, 1))} (2.10)

where x (x4, tx , Xk , 4 ) is determined as the solution of (2.4c¢).
Hence, for stable plants, we propose to modify Control Algorithm 2.2, as follows:
Control Algorithm 2.5.
Data:  to=0,ty,up,, ) X0 Ty, Tc and T suchthat 0< T < T, T < o,
Step 0: Setk =0.
Step1: Att =4,
(a) Obtain a measurement or estimate of the state xf = xP(#; , 0. x8 , u , d) and denote
the resulting value by x.
(b) Compute an estimate, @ (¢), of the disturbance d(¢) for z € [t , fx41], if possible; else,

setd (¢) = 0.



(c) Set the plant error dynamics input u (t) = u . 0a)®)— a (t)fort € [, txy).

(d) Compute an estimate x;,; of the state of the plant emor dynamics
xP(tyy1, te . xF , u , d) according to the formula (2.6)

+ +1
Xgop = e"("“-")fg +£ ! e“““")[Bu(t)-!-Bda ®))de + J: eA(hon-l)f(‘)d‘ .

(e) If x4, € B, , solve the open loop optimal control problem P(x;,; , #;41, 7) to compute
P

the next sampling time ty,3€ (1 +Tc, e +f]. and the optimal control
Uy, lu:](t) eU,te [tk+l ’ tk-i-?.)'

Else set fg42 = fry1 + Ts and uy,,,, 4.(t) = u°(@t), forall t € [te,g, t42)-
Step 2: Replace k by k + 1 and go to Step 1. O

We will not present a complete analysis of the operation of the closed loop system under Con-
trol Algorithm 2.5.

3. DISTURBANCE REJECTION
We will consider two distinct situations. The first is where the disturbance d(¢) is a continuous
function, such that for some ¢ < oo, [J;”Tld (‘t)lzd’t]% Scq forall £ 20. The second is where the
disturbance is the output of a known dynamical system driven by stationary, zero mean, v}hite noise.
We begin with the first case and assume that the disturbance d (¢) cannot be estimated. Hence

Control Algorithm 2.2 sets a (t) =0. Since the more difficult situation occurs when the plant state is
estimated, we will assume that this is the case. We begin by defining the error quantities

A8 max, o Fled” -, (3.12)
85 8 hnax(@)Vm e, T max, . o 712" BP —eABl,, (3.1b)
K &max, . o 7 le¥1, (3.1¢)

where A;,,;(Q) denotes the largest singular value of Q.

Lemma 3.1.  Consider the moving horizon feedback system resulting from the use of the Control
Algorithm 2.2, with state estimation formula (2.7d). There exist A; <e,i =3,4,5, 6, such that if

Control Algorithm 2.2 constructs the sequences {xf} 20, {x )i, and { %, } 52 which is the



corresponding sequence of the estimates of xf, defined by (2.7d), then forall ¥ € N,
Ixf —x 0 S Aslxfl + A4, (3.2a)

Ixfiy = xp 4] S AslxPl + Ag . (3.2b)
Furthermore, when there are no modeling errors and no disturbances, A; =0,i =3,4,5,6.

Proof.  Suppose that u (") is the control generated by Control Algorithm 2.2 for the plant and model

trajectories associated with the sequences {xf} fugy { X3 ) fup, and { X ) oo
We begin with (3.2a). Forany k € N and any ¢ € [t , #;.41), yP(?) is given by

YP(1) = CPeA™~Hxp 4. CP [ A" -D(BPU 1) + BIA (D)) d e
= CeA(l-n)xf_*_ (CpeA’(t-n)_CeA(t-l.)] xP
+C ]:. e2¢ ~Bu(t) +Byd(t))dt+ f {CPeA™¢ -%BP —CeAl-YB |} y(1)dT

+ j" (CPeA’C-YBp _ CeAt-9p ) d(n)dt. (3.3a)

By substituting (3.3a) into (2.7d), we obtain

Xy =x£+wo(80(tk+l-tk»-l {J:. (CeA(l-u))T {CPGA’(‘_")—CeA(‘-“)} dt xp
+ f C(CeAtmyT j: CeAl =B ,d (1) dtdt
+ f " (CeAt-myT j,’ {CPeATt-"BE_ CeAl-YB, ) d(1)dTd!

+ j: ' (CeAt—anT j: {CPeA™~YBP —CeAl-YB Ju(t)dTdt } (3.3b)

It follows directly from (3.3b) that
Ixf - Xl < A3le| +A4, (3.3¢0)

where
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A38C, max _ICPeATt ) _ CeAtt), 5 T (3.3d)
te(0,&T]

ABC,| max _ICPeA™-YBP _ CeAC-B1,Nmc, 5T

1re(0,8T)
+ max _ {1CPeA™ ~YBP —CeAC-%B I, +1Ce ), ) *ImaSofcaz] ' (3.3¢)
te[0,8) '

with C 4 8 Ap(Q)¥max, e 711Wo (Bo) Mamax, ¢ (o, 57 1Ce4' ), which proves (3.2a). Clearly,

when there are no modeling errors and no disturbances, A; = Ay = 0.

Next we will establish (3.2b). Since x4 is calculated using the estimated initial state X, it
follows from the Schwartz inequality in L,[0,T] @i.e.,

jora(t)b (t)dt < [ jora(:)zdz]“ [Lrb(t)"dt]%) that

le.n —xk+l| = leA'(““-")x _eA(llﬂ"“)x-k
hel

+1
+f 1 eA’a=Npp _pAta=p y () d1 +J:‘ eA"C-Ippa () d1l

SK Wxf-x 0+ APl + A

ko) *
+ Amax(Q )’A A leA’(""—')B},’ - eA("“-‘)Bd|2|d(t)|2dt + xmu(Q )%J: IeA("""‘)Bdlzld(t)lzdt

eNT

A =
<K {A3|Xf|+A4} +Alxfl + Ay + [ 2 + K1B4l; TM]qumd

= (K A3 +A;) Pl + KAy +Ay +Nmy [ 32__ +KI1BINT ]cd 8 Aglxpl +Ag, (3.3f)
¢, VIm .

where K, Ay, and A, were defined in (3.1a,b,c). Hence (3.2b) holds, and our proof is complete. a
Lemma 3.1 leads to the following result that also holds when the state is measured.

Theorem 3.2.  Consider the moving horizon feedback system resulting from the use of the Control
Algorithm 2.2, with state estimation as in (2.7d). Suppose that €; , €5 > 0 are such that

-Q

1
< ——
As<g < l+a+K "’ (3.42)

11



B (3.4b)
Aes&< T G+Kye

where As, Ag were defined in (3.3f), and ¢’ is defined by
g2 +o)a+K)(1+a+K). (3.4¢)
Then there exists a p; € (0,p), such that for all x§ e B,,, the trajectory xP(¢ ,0,x8,u ,d),

te[0,), is bounded, and there exists an €3>0 such that €3—0 as & —0, and
lim, , . &P(t,0,x§,u ,d)IS¢,.

Proof. First suppose that the optimal control problem P(xi;,#41,0), has a solution for any
xk+1 € R and ., 20. Then, given any initial state x§ at time ¢¢ = 0, the dynamics of the moving
horizon feedback system, using Control Algorithm 2.2, generate the sequence of states {xf} P
while Control Algorithm 2.2 generates the sequence of estimates {x;) k=1, With

Xeot =X (ear  te Xp u,d) k=1,2,..., according to (2.6), and the sequence {x';} 2y, with

X 42 = X (a2 tesl » Xeal s U a ) k=1,2,.. ., generated in the process of solving the optimal con-
trol problem P(x;,;, 841, 0), k € N.

Now, forany k € N,

Ifial S Ixfip — X paol + 10400 S iy =X gl + alxy gl
SKIfuy = xpal +Asbefy L+ Ag + alxfyy ~ Xyl + alxfyy 1
S@s+ o) xfal+ K +o)Asixfl+(1+a+K)Ag. (3.5a)

Ifweleta,=As+a, a;=(K +0)As, and b = (1 + o+ K)Ag, then, in view of (3.4) we see
thata,,a;,b 20and a + a3 < 1, so that the assumptions of Proposition 6.1 satisfied. Hence, if we
let yo = Lx§l and y; = x{l, then it follows from (3.5a) that for y; defined by (6.1a), Ixf! <Y, and
that

—_ l+a+XK
lim PI< (——)ﬁ Aer, (3.5b)
k = o0 €
and also that forall k € N,
PI<y, K + o)AsIxfl + x§l+¢” . (3.5¢0)

Since u(t) =0, forall ¢ € [0, ¢,), fork =0, (3.2b) reduces to



31§ —x o0+ bx 1 S Aglx§l +Ag+ K LBl = (K +As) IxBl+Ag. (3.5d)
It then follows from (3.5¢,d) that for all k 2 2,

PIS((1+0+K)As+K)Ixfl+Ag+€”. (3.5¢)
Next, making use of (3.5¢), we obtain that forall ¥ € N,

Lrpal S Py =Xl + Py 1 S Ashxf1 4 Ag + Py 1 S Agy, + A+ Yis
SA+A)K +(1 +a+K)As) IxBl + (1 + As)Ag + Ag

Ay 1Bl +v;. | (35D

Since by (3.4), (1 - o)(1 + o+ K) < 1, we obtain that 1 + As < 2, and hence it follows that

Y2 = (1+A5)As+ Ag <2Ag + [1+ 11&?1{] (1+Z+K2A6+A6

SB+QR+K)VeNASB+Q+K)eN A%, <P . (3.5)

LetB,, & {x € D 1 lxlSpy} where, with¥; 2 (1+e)(X +(1 +a+K)ey), pg is defined by

pa 2B =Y. (3.5h)

It follows from (3.5g) that p; > 0. Furthermore, we conclude that for any x§ € B, forallk € N,

Lol S 7/ 11xBl+ 72 SY 1pa +7 25D .

x€B, foralk 21.
P

It now follows from Proposition 6.1 that Er—r-l._,..lx"(t ,0,x8,u ,d)<e;, where g; is
defined by

+(1+K +Be)(l+a+K
g2 B+ 2) 1X )+1+K+ﬂ]s4. (3.51)
It is again obvious that €3 — 0 as €; — 0, which completes our proof. O

We will now show that when the disturbances are of sufficiently small amplitixde, we can still
use Control Algorithm 2.2 with slight modification such that when the state is close to the origin, we
switch over to LQR feedback control law to obtain the benefit of the disturbance suppression
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properties of LQR systems (see [Kwa.1]). This depends on the largest real part of the eigenvalues
A;j(A —BK,) of the matrix A — BK, where K, is a feedback matrix. Hence a design trade-off is
implied: the smaller the largest real part of the eigenvalues, the better is the disturbance suppression.
However, to obtain a very negative largest real part may require large elements in K, which limits
the size of the ball about the origin where the control u(t) = —K,x(¢) will not violate the control
constraint.

Thus, suppose that X, is the gain matrix resulting from the solution of an LQR problem for the
model (2.2a) and that X,, is the gain matrix for a corresponding asymptotic state estimator for (2.2a).
Since A - BK_ is a stable matrix, there exists a pair of positive definite matrices (Q , M) such that

(A-BK.)'Q +Q(A -BK.,)=-M . (3.6)
At this point it becomes clear that for best results, the matrix Q, used to detesmine the norm I,
should also define a Lyapunov function {(x , Qx ) for the system %(t) = (A — BK,)x(¢). Assuming

that we use the control determined by the gain K, and the asymptotic state estimator determined by
the gain K, we get the following augmented dynamics in the well known observer-controller: form

xP(t) = APxP(t)-BPK x°(t) + B5d(t), (3.7a)
x°(t)=K,CPxP(t)+(A —BK. - K,C)x°(t). (3.7v)

We will assume that there exists a constant ¢’y < e such that Id ()l < ¢’ for all ¢ 20, and that
both ¢’y and the modeling errors are sufficiently small to ensure the existence of a ball

Bror A{xeR"Ixl< PLgr }+ Prgr > 0, such that if for some ¢, x°(z, ) € B gr, then the control
k k
given by u(t) = —K.x°(t) forall ¢ 2¢_, with (xP(t) , x°(t)) determined by (3.7a,b), does not violate
k
the bound on the control.

Let e(z) 8 xP (£)—x°(r) denote the difference between the state of the plant and that of the
model. Then

e(t)=(A? -K,CP)xP(t)-(A —-K,C)x°(t) - (BPK, - BK,)x°(t) +BRd(t). (3.7¢)
We will assume from now on that the system

ne) = AnQ), (3.7d)

where A 8 diag (A ~K,C),A ), with A is defined by

14



;A ~3Ke (.7¢)
ASk,c a-Bk.-k,C|’ '

corresponding to (3.7a,b,c) when there are no modeling errors and no disturbances, is exponentially
stable, and hence that there exists a symmetric, positive definite matrix 0 = diag (Q, , Q.), with
Q, € R™ and Q. € R**%" that defines a Lyapunov function, (n, 3} for the system (3.7d), so

that for some symmetric, positive definite matrix M = diagM, ,M_.), with M, € R™ and

M, e R?2" we have

ATO+0A =-M. G.79
We will now show for the observer-controller dynamics that when le(O) and Id I, are
sufficiently small, le (¢ )} remains small for all ¢ 2 0.

Lemma 3.3. Suppose that the state (xP(¢) , x° (t)) is defined by the observer-controller dynamics
described by (3.7a,b), with (xP(0), x°(0)) arbitrary and let z(¢) 4 (e(®),xP(t),x°())T. Let
AA , AB be defined by

0 AA-K,AC ABK,

AA B0 AA -ABK, |, (3.82)
0 K,AC 0
AB ] =[aB],ABT,0], ' (3.8b)

where AA = AP —A,AB =BP —-B,AB, =B} -B,,and AC =CP -C.
If there exists a 8 e (0, 0.5) such that (a) 1A4 O I < Shpi (M ), (b)

AaninM MM )(1 ~ 28)°P1orMmin(Q)
S VA @ M@ YIK,CQ b+ ShmidM B JO 1y + 80 iu(M))

where B J = [BJ, B] 0] and Q and M were defined in (3.6), (c) IAB JG I, < Segin(M ), and (d)

Amin(M (1 = 28)p 1 op Amin(Q )% Ay
max(@)4AK CQ I + (M) ~
where L2121+ PEI+ @ and @R 1)+ PR+ 1°()R,  with
xI=(x, Qx4 thenle()l, xP(t)I <y, forall ¢ 20. '

di,

(3.8¢)

1z < (3.8d)

Proof. Referring to (3.7a,b,c) and (3.8a,b), we see that 7(r) = [A +AA Jz(t) + [B 4 + AB 4)d(2).
Consider the Lyapunov function V (z), for the nominal system (3.7d), defined by V()4 (n, 0 n).
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Then,

V@) = (), Qz(t))+{z() , @ £(2))
=={2() . M 2())+2(2(r) , AL @ 2(£)}+ 2{(B 4 + AB ) (r), 0 (1))
S —A (M)Iz ()12 + 21A4 G LIz (012 + 21d (LB JO 1, +1AB JQ Wz ()l
< (= Ain(M ) + 28hin(M Nz (13 + 2Nmgld V(1B JO by + Shmin(M N2 ()
< _ a1 = 28)V G ()2 ()

Amax(Q )%
The last inequality is obtained by Iz (¢)ly 2 V (z (1)) % Aqa(Q )% Now, it follows from (3.8¢) that

~Menin X1 =28V @ N  Doin M ia M )1 = 287D 00 Amin @)
Aemax(Q) 2Aax(2) Amax(@ YUK CQ lp + By (M)
We can see that if VGEE)”?> Y Amin(@) Aau(@)” then V(z(s))<O0. Since
V22120 2V O Amin(@VAmx(@)s V@) S ¥PAia(@VAmex(@) for all £20.  Since
V(1)) 2 Anin(@ N2 (¢ P Aan(Q ) 2 Aenin(@ e (£)1/A0ax(Q ), We obtain that le (¢ )1 < ¥,, which estab-
lishes the first inequality. Since Lx?(¢)I2 <1z (¢)1? also holds, we see from the above that the second
inequality also holds, which completes our proof. O

+ 2VmAd 1 (1B JO 1y + SAginM Nz ()N, . (39)

V@) s ]lz ;.

It is worth noting that (3.9) implies that 1z(¢)l -0 as Idl,— 0, and hence that
(), xP@)l = 0asldl,— 0.

Now, let
pfor A min {Y./4, prop/d) (3.102)
1-a

< —

As<g < T+a+K’ (3.10b)

: P PLor(1-€y) (3.10c)

< .

Ag S € <min 3T Q+K)E 2 ’ .

where K and ¢’ were defined in (3.1c) and (3.4c), respectively. Then, it follows from (3.5b) that

_— 1+a+K)Ag 1+a+K
klim Ix 1< ¢ p ) < ¢ 7 ez épyy . (3.10d)
-~} oo

Let
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Poc 21 =81) [pLon ~ex(1-e)]. (3.100)
Then, it follows from (3.10a,c) that
Poc = Plpr(1—€)—€3> plor(1-€))2>¢€,. (3.10f)

For the case where the state of the plant is not measurable, we propose to incorporate this idea
into Control Algorithm 2.2 by modifying Step 1, as follows. Let Tk, € [Tc , =) be such that

2
~ActaM X1 = 28)T 2@ ) Pochmin(Q)
: * Y02+ 0P G109

le @ -BRTey < (3.10h)
Finally, we define the vector valued saturation function SAT(u)é(sat(u D,...,sat(u™)), where
sat(y)=y ify € [~c,,c,], and sat(y) = ¢, sgn(y) otherwise.
Step1I': Att =1,
(a) fu(t)=-K.x°(t)fort € [y, ;) and max { L€, 41, L1} Sp,., st X = x°(5,);
else if max { Xy, gl} <p,., set X; =x; and reinitialize the observer by setting
x°(t) = xi, else estimate the state xf = xP(t; ,29,x§,u ,d) by (2.7d) and denote the

resulting value by x ;.

(b) Compute an estimate, d (t), of a disturbance d(t)fort € [t , t;,1]), if possible; else, set
d@)=0.

(c) If max{leyl,Ixl) >p,, set the plant input u(t) = u[,h,ml(t)—a (¢) for
t €t ty); else reset fy to the new value f#,3=8+Tk, and set
u(t) =-SAT(K.x°(t)-2 (t)) fort € [t , ts1)-

(d) Compute an estimate x;,y of the state of the plant xP(fy,;, & ,xF,u ,d) according
(2.6),i.e.,

ey o)
Xppy = eA00g 1 [ TeAG0@ u @) +B,2 )+ f eAGr=If e)de . 0

Theorem 3.4. Suppose that (@) 8, AA ,AB, Idl, satisfy the conditions in Lemma 3.3, (b)
IK:ACQ 1 < 8hin(M), (c) that (3.10b,c) holds, (d) that ppy < (Poc —€2)/(1 +€;), Where pyy Was
defined in (3.10d), (e) that ¥, < py, where ¥, and p; were defined in (3.8d) and (3.5h), respectively,
and (f) that we use Step I’ in Control Algorithm 2.2. Then there exists a €4 € (0, o) such that for any
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xf§ € Bp,, defined in (3.5h), the trajectory xP(¢t,0,xf,u ,d) satisfies that

xP(¢,0,x8,u ,d)iSeq for all ¢+ 20 and, furthermore, Lim, _,.x?(t,0,x8,u ,d)—0 as
Idl,—0.

Proof. We will prove that for any trajectory x?(¢ ,0,x8 , u , d), with x§ € B ,, there must exist a
% suchthatforall ¢ e [0, “E ), the control u (¢) is defined by the solution of the optimal control prob-
lem P(x; , t; , 0) and max { h?2 -1' . lxsl } €pPoe» i€, that the switch will take place in Step 1’ (c) to
the linear feedback control law u(t) = —-K.x°(t), with (xP(t) , x°(t)) the solution of (3.7a,b), from
the initial state (xP(tt) , x"(t£ Datt = ‘t . Then we will show that if the linear feedback control law
u()=-K.x°@) is used for te [t2 v Toe] with T,. 2 t; o x°()N<pror holds for all

te [t ,T,], so that the linear feedback control law does not violate the bound on the control.
k

Then, we will consider two possibilities: (a) only one switch to the linear feedback control law takes

place (at ¢ ), , i.e,, max { Ix I, Ix;1} <p,. forall & 2% so that u@)=-K.x°@)forall t2¢_,
k k

and (b) the condition max { bx 1, Ix;1} < p,. fails for some 2% and the Control Algorithm 2.2
switches back to the solution of the optimal control problem P(x; ,#; ,0) which implies that the

linear feedback control law and the solution of the optimal control problem are used altematively.

First, we will show that the switch to the linear feedback control law will take place. It follows

from (3.2a,b) that if the switch to the linear feedback control law does not take place for any k € NN,
then

IX 1< Ixf_y "'x.k—ll + le_l ISA;+ 1)'1{_] 1+A,, (3.11a)

Ll < Ixf - x,1 + IxPU < AshxPl + Ag + IX[L . (3.11b)
Because A3 S As< €, AyS Ag< €, and pyy < (Poc —€)/(1 +€y), it follows from (3.10d) that there
exists a X € N such that I¥ 2 xl S Po and lxz 1<p,.. Therefore the switch to the linear feedback
control law will take place.

Now, it follows from (3.2a) that

kP ISP —%,  1+1f_
k

ISgix? l+e+Ix |,
k-1 k-1 %=1 l;-l 2 2 (3.11¢)

-1 -1

From (3.2b), we obtain that
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PISIxP —x l+Ix ISelx? 1+ep+1x |, (3.11d)
k k k k k-1 k

From (3.11c¢,d) and (3.10¢) we obtain that

&
Pl
% 1-¢

(€24 Poc) + €2+ Poc = pZQR . (3.11¢)
Then, it follows from x°(t, ) = Jt,'2 that Ix°(t; NS poc S PLpr-
x
Next, suppose that the control u(¢) =-K.x°(t) is used for all ¢ € [t,,2 » Toc], where t‘i is the

time when the switch to the linear feedback control law takes place and T, 2¢, . Let the Lyapunov
k+1

function V () be defined by V(x°(1)) & .x°(¢ )2 4 (x°(t) , Qx°(¢)). Then, making use of the matrix
M defined by (3.6) and (3.7b), we obtain that forall € [t; y Tocl

V(2 ()) € = AinM)Ix° (¢ )12 + 20K, ACQ L Ix° (1)1 + 2le ()1,(1K. CO Iy + 1K, ACQ b)Ix° (1)),

< Amin(M )(1 =28)x° (1)1 . 2le ()IIK . CQ1, + 8hyis(M))
)"mu(Q )” A'l'l'nu(Q )”

It now follows from (3.11e) that Ix°(¢, ), IxP1< Pfor S Y./4 and that Iz(¢ )< le(e N+ kO )
k k k k k

@), . (3.111)

+Ix1”((t2 )Isz(lx"(t; )l+lx{l)$y,. which implies that for all ¢ e [ti‘ +Toc)s le(@)<y,, by
Lemma 3.3. Now, it follows from (3.8d) that if Ix°(z)I> pror for any t e [t2 , T,.], then
V(x"(t))<0 fort e [ti , To.]. Since lx"(tz N <prgr, we must have that x°()N <prpp for all
te [tz » To] and therefore u(t) = — K x°(t) satisfies the bound on the control.

Now let us consider the case (a). If we set T, = e, then we conclude from the above that
(@) <pygr fore 2 t; . Also, by Lemma 3.3, xP(¢)1 <y, forall ¢ 2 t; ,» which implies that x?(t)

is bounded. Since by Lemma 3.3, lim, . lz(¢)1>0 as ldl.—0 we must have that
lim, _, IxP (1)1 - 0 as Id 1, — 0, which completes the proof of ().

Next, let us consider the case (b). Suppose that there exists a ¥ >% such that
u(t)=-K.x°@t), for all ¢t € [t ,ty], and max {Lfpy I, xgl} >p,.. Since lx°{#)l Sp.pp and
k

xP(e)l<¥y, forall t e [z, ,1y], and ¥, <p,, we have that xP(ty) € B po» Which implies that the
k

optimal control problem has a solution. Hence, by the first part of our proof, there exists a R >v
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such that the switch to the linear feedback control law again takes place. We now resort to a con-

tinuity —argument. If d(t)=0 for all refr ,z. ], we will have that
k' k4

max { lf; 1 ,lxt '+1I } €pocmax {a, 12 }. Hence, by continuity of the solution of (3.7a,b), there

must exists a c¢”;>0 such that if M(@NSc”;>0 for all teft, ,t, ], then
k’ k'41

max {Ix, 1, Ix A ,+2l } < poc Will hold, and hence the linear control law will be retained for the next
k‘+1

interval, [t, ¢ ], and similarly, for all the intervals to follow, since ¢”; does not depend on f,.
k'+1 k42

Hence, if 1d). < ¢4, then the linear control law will be used for all ¢ 2¢_ , and therefore, by case
k 4

(a), we conclude that li_rr-l, - «lx?(¢)l = 0 and it completes our proof. O

Next we tum to the case where the disturbance is the output of a known dynamical system
driven by stationary, zero mean, white noise. To obtain bounds on the disturbance effects, we must
assume that there are no modeling errors, i.e., that AP = A,B? =B, B} = B;,and C? = C, and that
the state of the plant can be measured. First we will consider the effect of disturbances which are
generated by the initial state of an unforced, linear, time invariant system that is described by

Xg(t) = Agxa(t) (3.12a)

d(t) = Caxy(t), (3.12b)

where A; € R™*™, C; € R™™. Since the input u (") is bounded, we can only hope to reduce the
effects of bounded disturbances. Therefore, we assume that there exists a by <eo such that
leA'1<S by forall t 20,

To estimate the state x4(t), we can proceed as follows. Forall k € IN and ¢ € [t , f;41] , let
e(t) be defined by e (¢) 3 xP(¢ , t, ,xP . u ,d)—x(t .t . xP,u ,0). Then

€(t) = Ae(t)+Byd(t), (3.12¢)

with e(#;) = 0. Combining (3.12a,b,c), we obtain that
d 1xa@) | _ | Ax 0| |xa@®) | A 5 |xa(®)
dt [e(t) } - [Bdcd A ] {e(t) ] =A [e(‘) ] (3.12d)

o= [o01] | %0]

Obviously, when (C ,A) is an observable pair, we can use a reduced order estimator to obtain an

>

= | *xa(t)
C [e(‘) ] (3.12¢)

20



asymptotically converging estimate of the disturbance state x4(¢). Then, assuming that

lu (t)—3 ¢N.<c, for all ¢t € [t , t;41]), Where u(t) is computed by solving the optimal control
problem P(x;y , - , 0) the use of Control Algorithm 2.2 will result in asymptotically perfect distur-
bance rejection.

We now give a necessary and sufficient condition for (C , A) to be observable.

Lemma 3.5. LetA and C be defined as (3.12d,e). Then (C ,A) is an observable pair if and only if

(B4Cq4 ,Ag) is an observable pair.

Proof. => We will give a proof by contraposition. Suppose that (B;C, ,Ay) is not an observ-

able pair. Then there exists a nonzero vector z € IR™ such that
B;C4Alz =0, i=0,1, .... (3.13a)

Nowlet7 8 zT,0)T € R™*". Then, because of (3.13a), we have that
— 1. ,
CA'T = T AI7-1B4C4Aj2 =0, j=1,2,...,ng+n-1. (3.13b)
i=0

Furthermore CZ = 0. Hence (E , A ) is not an observable pair.

<= Now suppose that (C ,A) is not an observable pair. Then there must exist a nonzero
Z=(z,7)e R¥*", such that CA’ =0 for j =0,1,...,ny+n 1. Since C =(011), it is
clear that z” = 0 must hold. Hence (3.13b) must hold, and unraveling this expression, we find that
(3.13a) must also hold, which completes our proof. O

As an altemative to using a reduced order observer, at the expense of more computation, we can

get an exact estimate of d (¢) to be used to obtain perfect disturbance rejection, as follows. Let

win(t) 0 A e A2 0
[wmr) waalt) ] = exp(dr) = exp { [Bdcd Afq (3.142)
so that wy(t) = e and woy(r) = e4. Hence (3.12¢) can be rewritten in the equivalent form

e(t) =wa(t)xa(te) + waa(t)e (t) = wa(t)xa(te) . (3.14b)

Since the state of the plant is measurable, e(t) can be computed for all ¢ € [t , t;41]. Hence, if
. .

j“ 3 w1 (Dw (1) d is always invertible for some & > 0, then we can also compute x;(t; — 6) using

the formula
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-1
xy(te —8) = [j: _swfx Twz(7) d‘t] j’: -sz‘ Me(®)dz. (3.15a)

We can then use x4(z, — 8) to compute the disturbance d (¢),fort € [t , tx41], using the formula:
a (t) = Cae™ Dy (s, ~5) A Cux,(1) . (3.15b)

To establish the invertibility of the matrix Lw{l (w1 (1) d7, for all ¢ > ¢, we need the fol-

lowing lemma.

Theorem 3.6. Suppose that w(¢) is defined as in (3.14a). If (C4, A4) is an observable pair and

B4 has maximum column rank, then, J: wl, (Owa(v)dis invertible for all ¢ > .

Proof. To simplify notation, let 5(: ,‘r)é-exp((t —'t)Z). Since (5 ,Z ) is a observable pair by
Lemma 3.5, the observability grammian for the system (3.12d,e), W(t , t;), defined by

W, 1,8 J: O, 1) CTCO(t,4)dr (3.16a)

is nonsingular for all ¢ >1,. By substituting the expressions for C and @t , #,) that are given by
(3.12¢) and (3.14a), respectively, we obtain that

Jwhewa@ar [ whawamads

Wi, )=

W, n) Wi "k)] (3.16b)

f. w Iz Twu(tde J: w ZZ(t)sz('t) dt Wit . ) Walt, )

Suppose that for some t > t;, Wq1(t , ;) is a singular matrix. Then there exists a nonzero vector,
z € IR™, such that W,(t , t;)z = 0, and hence for 7 8 z7 0)T € R¥*",

(Z,W(,5)iv=(z , Wyt ,4)z2}=0, (3.160)
which contradicts to the fact that W(¢ , 1) is positive definite matrix for all ¢ >¢,. Therefore,

W (¢, 1) is nonsingular for all ¢ > 1, which completes our proof. O

Thus, assuming that lu (t) — d ()l < ¢, forall ¢ € [, ;,1]), where u(¢) is computed by solv-
ing the optimal control problem P(x;_;, f;-1 , 0) the use of Control Algorithm 2.2 will result in per-

fect disturbance rejection.

In reality, it is not likely that the disturbance d(t) is the output of a unforced linear time invari-
ant system. It is more realistic to suppose that d(*) is the output of a linear time invariant system

driven by stationary zero-mean white noise, with an initial state x,4(0), described by
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X4(t) = Agxy(t) + B, w(t) (3.17a)

d(t) =Caxa(t). (3.17b)

Let d(t) 8 Cae*x4(0) & Cyxy (1) and let do(r) A C, L'e“o ~9B,,w(1)d 14 C x,4(¢) be the contri-

bution of the white noise term in (3.17a). Let E () denote the expected value of the random variable
€. Then we see that because E(w (¢))=0 for all £ 20, E(x,,(t))=0 for all £ 20. Hence (c.f.
(3.12d,e) and (3.14a,b)) we obtain that for ¢t € [, 1), k € N, E(e(t)) = wa(t)xs(t,). Since
j:_ N T1(t)way(2) dr is invertible for any 8 > 0 by Theorem 3.6, we can compute the estimate of the

disturbance d(t), fort € [t , t;.), according to
d (1) = Cae™* 1y (1, - §), (3.18)

where x;(t - ) is defined by (3.14a). Since E (x4,(t)) = 0 for all ¢ 20, E(d (t)) = E(d(t)) for all
t 20. Therefore, we have perfect estimation of the expected value of the disturbance, which implies

that IE(d (") - a (M = 0. In conjunction with Theorem 3.4, this fact leads to the following result.

Theorem 3.7.  Suppose that (a) 8, AA ,AB 4» M1, satisfy the conditions in Lemma 3.3, (b)
IK.AC 1 < 8Apin(M), (c) that (3.10b) holds, (d) that PuH < (Poc —€D/(1 +€,), where pyy was
defined in (3.10d), and (e) that we use Step I' in Control Algorithm 2.2. Then there exists an
&5 € (0, ) such that for any x§ e B, defined in (3.5h), the expected value of the trajectory
xP(t,0,x§,u,d) satisfies that 1E(xP(t ,0,x§,u +d)I<es for all £ 20 and, furthermore,
lim, _, LE(xP(¢ ,0,%8,u ,d)) =0. ‘ O

4. TRACKING

We will now examine the reference signal tracking properties of our moving horizon control
system, defined by the error dynamics (2.4a,b) and Control Algorithm 2.2, At this point we must
assume that the matrix B in (2.4c) has full column rank.

Before we attempt a characterization of inputs which can be tracked asymptotically by our mov-
ing horizon control system (with bounded controls), we will extend a result due to Basile and Marro
(Bas.1], dealing with asymptotic state tracking of LTI systems without control constraints,

Lemma 4.1. [Bas.1] Consider LTI system (2.2a,b), and let Sy be defined as in (2.3a). Then, S, is
the largest subspace among subspaces § < IR” such that



AS+SCR@®), @
whereAS +S = {x e R" | x =x;+x,,forallx; € AS ,x; € S } and R(B) is a range space of B [J

Making use of Lemma 4.1, we obtain the following straightforward generalization of a result in
[Bas.1].

Lemma 4.2. Let r €e R and consider the emor dynamics (2.4cd), with d (t)=0, and
F@)=—=5(@)+As(t), where s¢)3H(CTC)CTr(t). Then, there exists a continuous control
u,(t), t 20, such that for any initial state xoe IR*,y(t) 2 Cx(¢ ,0,%¢, % ,0)—>0as ¢t —> oo,

Proof. Clearly, if there exists a control u,(*) such that x(¢ ,0, xo, 4, , 0) =0 as ¢ — oo, then, since
y(@)=Cx(,0,x9,u,,0), the desired result must hold.
We recall that by definition s(¢) € S; for all £ 20. We will now show that we also have that

5(t) € S;. Let z be a nonzero vector in the orthogonal complement of S;. Then forall z >0,
!
0={z,(s@)=sO))=(z, [ s(@)ar). @2)

Since (4.2) holds for all ¢ 20, we must have that {z ,s(¢)}= 0 for all ¢. Therefore s(t) € S, for all
t20.

Let u,(t) A_Fx (¢)+v(t) where F is any feedback matrix such that c(4A —BF)cC?2 (with
o(A) the set of eigenvalues of A and C2 the open left half plane of the complex plain), and v () is
defined by As(¢)~s(t)+Bv(t) =0 for all # 20. The latter is possible because s(¢),5(t) € S, and
AS;+S;CR(B). Then, we have that x(t,0,xo,u4,,0)=e® 2 ¥x; and obviously,
x(,0,x9,u,,0)— 0as ¢ — o, which completes our proof. O

So far, we have assumed that there are no constraints on the control. We have assumed in

Assumption 2.3 that for all r € Ry and x € B, , the optimal control problem P(x , 0, ) has a solu-
P

tion. To show that Control Algorithm 2.2 can be used for input tracking as well as stabilization, we

have to prove that for trajectories emanating from the ball B, , the estimated states x;,; defined by

P
(2.6) are in the set B 5" To establish this fact, we will follow the pattern set up in Section 3. First, we
need the following definition.
Definition 4.3. Letc, e (0,). We define Ry < Ry by
Ry = {r € Ry | max(Is),,, I51.) S ¢, } » 4.3)

where s(t) = H(C TC)Y'CTr ().



(]
Consider the error dynamics (4a,b) and its model (2.4c,d). We assume that the disturbance at)

cannot be estimated. Hence Control Algorithm 2.2 sets @ =0. Since the more difficult situation
occurs when the plant state is estimated, we will assume that this is the case. First, we derive a result
similar to Lemma 3.1.

Lemmad44. Letre ﬁu. Consider the moving horizon feedback system resulting from the use of
the Control Algorithm 2.2, with state estimation formula (2.7d). There existA; <es,i =7,8,9, 10,
such that if Control Algorithm 2.2 constructs the sequences {xf}feg, {x) o, and { £, ) 2o is
the corresponding sequence of the estimates of xf, defined by (2.7d), then forall k € N,

Ixf—% 1 S A7lxPl+Ag, (4.4a)

Ixfo =xpql < AglxPl+Aqp. (4.4b)
Furthermore, when there are no modeling errors and no disturbances, A; =0,i =7,8,9, 10.

Proof.  Suppose that u (") is the control generated by Control Algorithm 2.2 for the plant and model
trajectories associated with the sequences {xf}fuo, {Xx)fa1, and { X} f2. For us to have a

similarity with Lemma 3.1, let us modify the error dynamics (2.4a,c) as follows.

Foragivenr € Ry,lets(t) = H(CTC ) CTr(r). Let

u() =u (t)+uxt), (4.53)
where
uyt)=BTBY'BT(As(1)-5(t)). (4.5b)

Then, since fP(t) =—5(t)+APs(t) and f (t) = -5 (¢)+As (t), (2.4a,c) becomes

xP(t) = APxP(t)+BPu (¢)+BEd(t)+(BP ~B)u,(t)+(AP —A)s(t)

B APxP(1)+BPu (t)+BEd(t)+d (1), @4.50)

x(t) = Ax(£)+Bu,(t)+B,4d (t). (4.5d)
Since max {Isl,,Isl.} <c,, itis clear that lu,l,, is bounded. Then,
l gl € lulo+lusl B, . (4.5¢)

Next it follows from (4.5¢) that



Id ||, S 1BP-Blc, +1AP -Alc, 8 Ay,. @.50

We begin with (4.4a). Forany k € Nand any ¢ € [t;, ;,1], yP(t) is given by

yP(t) = CPeA xpicr L:e“'(' ~™XBPu ,(1:)+B§d(‘t))dt+C"J':e"(‘ ~d,(t)d=
= CeAU™xpt (CPeATtW_CeAt-W) xpiC j:e'“' ~(Bu \(t)+B4d (1)) dT

+ [ {CPeAt=9BP _CeAt-Dp ) yy(r)dv

+[ (CPeAe-9Bp_CeAt=9B,) d@)dn

t '
+C[ et 0y dr+ [ (CPeA’t-I-CeAt-9) a m)dr. (4.5g)
By substituting (4.5g) into (2.7d), we obtain

1
Eic = 3P+ Wo(olten 1) {L. (CeAC)T (CPeATt--CeAl-W) g xp

s

+], (CeAt=wyT J;:Ce‘(‘ ~NByd (v)+d (1)) d1dt
Oi

+], ety | (CPeAt=BP _CeAt—B )y (drde
0 t

+[, €A [ (CPeA™t-YBp_CeAt 9B, ) d(r)drdt

8
+ ], (Cert "")TJ,: (CPeA"t=N—-CeAt-9)d (v)ddr } (4.5h)

It follows directly from (4.5h) that
Ixf-x,1< Alxfl +Ag, (4.5i)

where A7 = A3, where A; was defined in (3.3d) and

4.5)

AsdAN+C, %aygo 7 {1CPeA™t=D_CeAt -, 4 1Ce L, ) SOFA,,,] ,
t € '

with C 5 & Anex(@)*max, ¢ (7, . 7IW, (8ot) My max, ¢ o &7iCe”'l; and with A’4 replacing c, of A,
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defined in (3.3¢) with ¢, in (4.5e), which proves (4.4a). Clearly, when there are no modeling errors
and no disturbances, A7 = Ag = 0.

Next we will establish (4.4b). Since x;.,; is calculated using the estimated initial state X, it
follows from the Schwartz inequality in L,[0, T) G.e.,

T T “BWrer %
[ja@b@)d: < [jo a(t)zdt] [j‘o b(:)zd:] ) that
B
le+l -xk+ll = leA'(lhl"h)xg_eA(hd-h)x'k_‘_'[“ leﬁ’(&ol-l)d I(T)d't
[T} L&+
+], {eATa=Npgp _oAtu-Tp }ul(‘t)dt+j“ eA"a=pRg (1) d1i
SK IxP—% 1+ APl +4%,

e B
A @] 1A A 1 (1)t + D@V, NeACT NN ()t

fae fae
+ Amu(Q )’AJ"‘ ‘IeA'(“".‘)Bf—eA("‘"_')Bdb'd(t)lzdt +}‘mu(Q)%L. lleA(""")Bdbld(t)lgdt

A’ =
SK {(AIxPl+Ag) +A 1+ A+ [ \/2?4—1( IB4\NTm ]cd\lmd
c

r

+ [K+ max_le"‘—e"'l]‘lfmd ,

te[0,T)
A ' N | A2 N
S (KA7+A) Ixf1+ K Ag+A"y+Nmy |——=—=+KIB4NT catlg,,
¢, ‘JTm
A AgIxPl+Ayg, (4.5k)

where K, A; were defined in (3.1a,b) and A’; was obtained by replacing ¢, of A, in (3.1c) with ¢, in
(4.5¢). Hence (4.4b) holds, and our proof is complete. a

In Section 3, Theorem 3.2 was proved by making use of the results in Lemma 3.1 and Proposi-
tion 6.1. In the case of tracking, it is clear that if we replace As with Ay and Ag with A, in the proof
of Theorem 3.2 and use Lemma 4.4 instead of Lemma 3.1, still using Proposition 6.1, then the con-

clusions of Theorem 3.2 assume the following form.

Theorem 4.5. Letr e ﬁu. Consider the moving horizon feedback system resulting from the use
of the Control Algorithm 2.2, with state estimation as in (2.7d). Suppose that Ay, Ajq satisfy the
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inequalities

1-a

<g < ——2_
Bo<&1< T o+K

(4.6a)

< 4.6b)
Ao<&< o Ky (

where Ay, Ao were defined in (4.5k), and €’ was defined in (3.4c). Let p, be as in (3.5h). Then, for
all x§ € B, the trajectory xP(¢ ,0,x8 ,u ,d), t € [0, =), is bounded, and there exists an 6> 0
such that eg— 0 as £,— 0, and lim, _, . Ix?(t ,0,x ,u4 ,d)I S €. m]

Since the constants Ag, A;g depend on ¢; and the bounds on the modeling errors, we see that
there is a trade off involved in chosing a value for ¢;, namely, the larger ¢, the smaller are the model-

ing errors under which (4.6a,b) will be satisfied, while the set of admissible inputs fiu grows with c,.

In a similar way, the results of Theorem 3.4 can also be extended to the reference signal follow-

ing case.

5. CONCLUSION.

Moving horizon control is a promising idea for the control of nonlinear systems. In this two
part paper we have explored the properties of a moving horizon feedback system, based on con-
strained optimal control algorithms, with the simplest possible nonlinearity, namely, input saturation.
While in the first part, we have shown that moving horizon control results in a robustly stable system,
in this part we have shown that it is capable of following a class of reference inputs and suppressing a
class of disturbances. A possible issue in the use of the type of moving horizon control system dis-
cussed in this paper, is the time needed to solve the optimal control problems. This should cause no
difficulties in controlling slow moving plants, such as in process control. For faster plants, it may be
necessary to implement the optimal control algorithms in some form of dedicated architecture, so as
to reduce to the solution time to acceptable levels.



6. APPENDIX L.
We will now establish two inequalities that form the basis of several of our proofs.

Proposition 6.1 Consider the second order scalar difference equation

Y2 =@ kst a2y +b, ke N. (6.13)
Ifa;,a,20,b20anda;+a;<1,thenforallk 21,

YeSayo+y;+bl(l-a, +ay), (6.1b)
and |

limg Loy <b/i(1-a; +ad). (6.1c)

Proof. We begin by rewriting (6.1a) in first order vector form, as follows. For k£ € N, let

2t = Ok, Yea)"- Thenzg = (¥o,y1)7, and

Zee1 = [a°2 all] 2t + [2] 8Fzy+g, (6.22)

Ye = [10]z & Hz, . (6.2b)

The matrix F has two eigenvalues, A,,A_='%(a; £ \‘alz +4a,), with corresponding eigen-
vectors, e, =(1,A)7 and e; =(1,A)". We will now show that —1 < A0S, <1, ie., that
(6.2a) is an asymptotically stable system. By assumption

0<ajz<l-a;. (6.2¢c)
If we multiply both sides Of (6.2c) by 4, and add a { to the both sides, we get that
al+4a,<2-ay)?, (6.2d)

which implies that A_ = Ya(a; -Vaf +4a)>~1and A, = Va(ay +Vat +4a,) < 1. Thus, we have
that-1<A_<SA, <1,

We can proceed to establish (6.1b,c). By the Jordan decomposition, we have that
F =E7AE, (6.2¢)

where A =diag(A,,A), and E = (e, e.) is a matrix whose columns are the eigenvectors of F.
Hence forall k 22,
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yi = HE\AFEz,

k-1 . .
" 1 Aﬂ- { M(M-l = M_l))’o + (M = wy 1 ] + LE k-l- go(u_l" - M_l-‘) . (6,20

Since 0 <A, <1 and -1 <A_ <0, it is clear that (a) the first term in (6.2f) goes to zero as £ — e and
(b) the last term in (6.2f) satisfies the inequality

L (VL P L 1.0 (6.28)
A=A A=A |1-A 1-A | 1-aj+ay’ <8
because (1 = A, )(1 -A) = 1-a, + a,, which proves (6.1c).

Next, for  all k21, Af<A,  and Ak s-Al Hence
{AAQET =251yl = A) S=AAl = ay. Also K= A5/ -A,) €1, hence (6.1b) hold. 0

7. ACKNOWLEDGEMENT

The authors are grateful to Prof. David Q. Mayne and Dr. Hannah Michalska for their helpful

comments and suggestions.

8. REFERENCES.

[Bas.1] G. Bassile and G. Marro, "Luoghi caratteristici dello spazio degli stati relativi al controllo
dei sistemi lineari", L’ Elettrotecnica Vol. 55, No. 12, pp. 1-7, 1968.

[Che.1] C. C. Chen and L. Shaw, "On receding horizon feedback control", Automatica Vol. 18,
pp.349-352, 1982.

[Cla.1] D. W. Clarke, "Application of generalized predictive control to industrial processes", IEEE
Control System Magazine, pp. 49-55, April, 1988.

[Cla2] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, "Generalized predictive control. Part I: The
basic algorithm", Automatica, Vol. 23, pp. 137-148, 1987.

[Gar.1] C. E. Garcia, "Quadratic dynamic matrix control of nonlinear process. An apprication to a

batch reaction process", AIChE Annual Mtg, San Francisco, California, 1984.

[Gar.2] C.E. Garcia, D. M. Prett, and M. Morari, "Model Predictive Control: Theory and Practice -
a Survey", Automatica”, Vol. 25, No. 3, pp. 335-348, 1989.



[Kee.1]

[Kwa.1]

[Kwo.1]

[Kwo.2]
(May.1]

[May.2]

(Meh.1]

[Mic.1]

[Mic.2]

[Poi. 1]
[Pol.2]

[Pre.1]

S. S. Keerthi and E. G. Gilbert, "Moving horizon approximations for a general class of
optimal nonlinear infinite horizon discrete-time systems", Proceedings of the 20th Annual
Conference on Information Sciences and Systems, Princeton University, pp. 301-306, 1986.

H. Kwakemaak and R. Sivan, Linear Optimal Control Systems, John Wiley & Sons, Inc.
1972.

W. H. Kwon and A. E. Pearson, "A modified quadratic cost problem and feedback stabiliza-
tion of a linear system", IEEE Trans. on Automatic Control, Vol. AC-22, No. 5, pp. 838-
842, 1977.

W. H. Kwon, A. N. Bruckstein, and T. Kailath, "Stabilizing state feedback design via the
moving horizon method", Int. J. Control, Vol. 37, No. 3, pp. 631-643, 1983.

D. Q. Mayne and H. Michalska, "Receding horizon control of nonlinear systems", /IEEE
Trans. on Automatic Control, Vol. AC-35, No. 7, pp. 814-824, 1990.

D. Q. Mayne and H. Michalska, "An implementable receding horizon controller for stabili-
zation of nonlinear systems", Proceedings of the 29th IEEE Conference on Decision and
Control, Honolulu, Hawaii, December 2-5, 1990.

R. K. Mehra, R. Rouhani, J. Eterno, J. Richalet, and A. Rault, "Model Algorithmic Control:
review and recent development”, Engng Foundation Conf. on Chemical Process Control II,
Sea Island, Georgia, pp. 287-310, 1982.

H. Michalska and D. Q. Mayne, "Receding horizon control of nonlinear systems without
differentiability of the optimal value function", Proceedings of the 28th IEEE Conference
on Decision and Control, Tampa, Florida, 1989.

H. Michalska and D. Q. Mayne, "Approximate Global Linearization of Non-linear Systems
via On-line Optimization, Proceedings of the first European Control Conference, Grenoble,
France, pp. 182-187, July 2-5, 1991.

E. Polak and D. Q. Mayne, "Design of Nonlinear Feedback Controllers"’ /IEEE Trans. on
Auto. Control, Vol. AC-26, No. 3, pp. 730-733, 1981.

E. Polak and T. H. Yang, "Moving Horizon Control of Linear Systems with Input Satura-
tion, Disturbances, and Plant Uncertainty: Part I", submitted for publication.

D. M. Prett and R. D. Gillette, "Optimiztion and constrained multivarible control of cata-
lytic cracking unit", Proc. Joint Auto. Control Conf., San Francisco, California, 1979.

) |



[Pro.1] A. I Propoi, "Use of LP methods for synthesizing sampled-data automatic systems”, IfIAu-
tomn Remote Control, 24, 1963.

32



