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Abstract

This paperdescribes anew technique to implementoperations on compresseddig
ital video images that allowsmany imagemanipulationoperationsto be performed
50 to 100 times faster than the corresponding algorithms operating on uncom
pressed images. This is accomplishedby performingthe operationsdirectly on the
compressed data in the DCT domain. In this paper, we show how to transform
image spaceoperations into DCT spaceoperations, we describe severalrepresen
tative algorithms in the DCT domain and reporttheir performance.

1. Introduction

Multimediaapplications that operate on audio andvideo data will enablemany new applica
tionsofcomputers. Forexample,a collaborative work systemcanincludevideo conferencing win
dows, or a hypermedia training system can include audio and video instructional material. While
most research on multimedia applications has focused on compression standards ([3], [9], [10],
[14]), synchronizationissues ([11], [12]), storage representations ([12]), software architectures ([2],
[8], [11]), and application design ([13], [15], [16]), littleworkhasbeen reported on techniques for
manipulating digital video data in real time, suchas implementing special effects andimage com
position. The difficulties encountered in this problem areastem from several sources: the volume
ofdata to be manipulated, the computational complexityofimagecompression anddecompression,
and video data rates (i.e.,27 MBytes/sec) allcombine to maketraditional algorithms, whichoperate
on uncompressed images, infeasibleon current workstations. Forexample, an algorithm to imple
ment brightening ofacompressed imagemight decompress the image,modify eachpixel value, and
compress the resulting image. Such algorithms arebruteforce algorithms.

This paperdescribes a new technique to implement operations on digital video datathat allows
many traditional image manipulation operationsto be performed 50 to 100 times faster than the cor
responding brute force algorithms. This is accomplished by performingthe operations directly on
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the compressed data in the DCT domain. Since the volume of data has been significantly reduced
by compression, typically by factors of 25 or more, algorithms in this family can run much faster
than the corresponding brute force algorithms. Along with the speedup resulting from the smaller
data volume, most of the computation associated with compression and decompression is elimi
nated, and the traffic to and from memory is reduced.

This paper describes how to apply this technique and evaluates the performance of some repre
sentative algorithms. Section 2 describes the compression model and introduces associated termi
nology. Section 3 shows how the algebraic operations of pixel-wise and scalar addition and
multiplication, which are the basis for many image transformations, can be implemented on com
pressed images. Section 4 uses these operations to implement two common video transformations:
dissolving one video sequence into another and subtitling. The operations have been implemented
and their performance is compared with the brute force approach. Lastly, section 5 discusses the
limitations of the technique, extensions to other compression standards, and the relationship of this
research to other work in the area.

2. Compression Model

This section describes the compression model used in transform based coding. A detailed
description ofthe CCITT Joint Photographic Expert Group (JPEG) proposed standard for transform
based coding is available elsewhere ([3], [4]). A detailed description of image formats is presented
by Foley and Van Dam [5].

The discussion presented here is simplified by choosing a specific source image format Sup
pose the source image is a 24 bit image 640 pixels wide by 480 pixels high, and is composed of
three components, one luminance (Y) and two chrominance(I and Q) components. That is, for each
pixel in the source image, we associate a triplet of 8 bit values (YJ,Q). Since each component is
treated similarly, we will describe the algorithm for only one component (e.g., the Y component).

The Y component and can be broken up into contiguous squares 8 pixels wide and 8 pixels high
called blocks. Each block is an 8 by 8 matrix of integers in the range0...255. The first step of the
algorithm, called the normalizationstep, brings all values into the range -128... 127 by subtracting
128 from eachelement in the matrix (this step is skippedon the / andQ components since they are
already in the range -128... 127). Let the resulting matrix be y[ij], where ij e 0...7. Figure 1
illustrates the relationshipofy[ij] to the whole image.
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Figure 1. Definition ofy[ij).



The second step in the algorithm converts this 8 by 8 matrix into a new 8 by 8 matrix using the
two dimensional discrete cosine transform (DCT) [6]. This step is called the DCT step. If we call
the new matrix Y [u, v], with ut v e 0.. .7, we have by definition

Y[u, v] =i £ £C (i, u) C(/, v) y[i,j] (EQ1)
4< ;

where

C0, m) = A(u) cos-—^—
lo

fj_ forw =0A(u) =j^
^ 1 fori<*0

The third step in the algorithm divides each element of Y [u, v] by an integer and rounds the
result. This step, called quantization, is defined by

Y\u vlYQ[u,v] = IntegerRound{ ^' ) u,ve 0...7 (EQ2)

The matrix ofintegers q[u,v] is calledthe quantization table (QT). In most images, different QTs
areused for the luminance and chrominance components. The choice ofthe QT determines both the
amount ofcompression and the quality ofthe decompressed image [4].The JPEG standard includes
recommended luminance and chrominance QTs. Very often, different image qualities are obtained
by scaling thevalues ofthedefault QTs: inother words, given twoimages withQTs qx [u, v] and
?2 ["'v]»then forallu,vand someconstant gamma, it is veryoftenthe case that

<7i[m,v]

q^Ju~v\ ~ y

We will use this fact later.

Step four of the algorithm converts the 8 by 8 matrix Yq [u, v] into a 64 element vector
Yzz [jc] using the "zig zag** ordering shown inFigure 2 below. The vector Y^ is called the zig
zag vector, and this step is called the zigzag scan step. By definition, the function ZigZag(u,v)
returns the zig-zag ordered index of the pair (u,v). For example, ZigZag(0,0)=l, and ZigZag(0,
3)=6.
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Figure 2: Zig Zag Scan Ordering

Inmost images, the zig-zag vector Yzz willcontain alarge number of sequential zeros, sothenext
step in the algorithm, called the partial compression step, run length encodes the zeros into an array
of {skip, value) pairs. Skip indicates how manyindices in the Yzz vectorto skip to reach the next
non-zero value, which is stored in value. By convention, the pair (0,0) indicates that the remaining
values in Y^ are all zero. We call theblockatthis point asemi-compressed (SQ block. A (skip,
value) pairis called an SC value, and sequences ofSC values that represent a zig-zag vector is called
an SC block. TheSCblock isdenoted Ysc [x], with YSc[x].skip and Ysc[x].value denoting theskip
and value of the 2th element in the array. Our algorithms will operate on SC blocks.

In the final step, a conventional entropy coding method such as arithmetic compression or
Huffman coding compresses the SC blocks. Figure 3 graphically displays all the steps in the
processing of one block.
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Figure 3: Compression of a Block

The process is reversed to decompress the data.The first step ofdecompression recovers an SC
block from the entropy coded bit stream. By making a single passthrough the SC block Ysc[x], we
recover the zig-zag vector Y^x]. From Yj^x\ we recover Yq[u,v] by inverting the zig-zag scan.
Thenwemultiply each element of Yq[u,v] by q[u,v] from theappropriate QTto recover an approx
imation of Y[u,v). In the final step, we obtain the image block y[ij] from Y[u,v] using the inverse



DCT(IDCT):

yUJ] =iL Zc tt *>c C/. v> y [«.v] (EQ3)

Note that equation 3 is very similar to equation 1, but the summation is over u and v rather than i
and;'. Figure 4 graphically depicts this process.

Using this method, the compression ratio can be adjusted by altering the values in the Qls.
Experience indicates that a compression ratio of about 24 to 1 (i.e., one bit/pixel) can be achieved
without serious loss of image quality. At a compression ratio of 10 to 1, the decompressed image is
usually indistinguishable from the original. The entropy coding reduces the data size by about 2.5
to 1, so the data size of the SC blocks is typically 10 times smaller than that of the original image,
ifwe assume 25 to 1 overall compression.

Compressed
Image

Entropy Expansion Zig Zag Dequantization TDCT
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Figure 4: Decompression of aBlock

3. Algebraic Operations

This section shows how the four algebraic operations of scalar addition, scalar multiplication,
pixel-wise addition and pixel-wise multiplication oftwo images are performed on SC blocks.

In the calculations that follow, we will be deriving equations of the form

&SC ~ ♦ (^sc> &sc)

where Fsc and Gsc are the SCrepresentations of theinput images, Hsc is theSCrepresentation
of the output image, and (J) is a real-valued function. In an implementation, the values stored in the
Hsc data structure would be integers, so thevalue returned by the function § mustbe rounded to
the nearest integer. To simplify the notation in the calculations that follow, this rounding will be
implicit.

To further simplify the notation, we perform all calculations on the quantized arrays
Fq [u,v], Gq [u, v] and Hq [u,v]. Since an SC block is adata structure that represents these
arrays, the denved equations will be valid on SC blocks provided the appropriate index conversion
is performed.

Finally, we will use capital letters such as F,G and H indexed by u, v and w to represent com
pressed images and lower case letters such as/, g, and h indexed by i,j and k to represent uncom
pressed images. Greek letters such as a and Pwillbeused for scalars, qH [u, v] willstand for the



QT of the compressed image H, and the letters x, y, and z will represent zig-zag ordered indices.
Often we will index QT's by a single zig-zag index (such as x). In such cases the conversion to indi
ces such as [u,v] is implied and will be clear from context

Scalar Multiplication

Consider the operation of scalarmultiplication of pixel values. In this operation, if the value of
a pixel in the original image is f[i,j], the value of the corresponding pixel in the output image
h[i,j] is given by

h[i,j] =af[i,j] (EQ4)

Using equations (1), (2) and (4), the quantized coefficients in the output image are

//2["'Vl =4J^v)XXC«>u)CU>v)h[i'j]
a

--j^^Xlc(i'u)CU'v)f[i'n

= -^7 7- (i—t—sYYC (i, u) C(J, v)f[i,j])qH(u,v) v4<7F(K,v)4-4rf v" "i"J'

where qF(u, v) and qH(u,v) are the QTs of the inputand output images, respectively. Recog
nize that the term inparentheses isthe quantized coefficients ofthe input image, FQ [u, v], so this
becomes

HQ [k, v] = *7 ' *F0 [u, v] (EQ 5)

with the final integer rounding of the right hand side implicit In other words, to perform the oper
ation of scalarmultiplication on a compressed image, we can perform it directly on the quantized
coefficients, as long as we take the QTs of the images into account Note that if the Qls of both
images are proportional with proportionality constant y, the equation simplifies to

HQ[u,v] = ayFQ[utv]

If the quality of the input and output images arethe same, we have the common special case where
7^1. Note alsothatif avaluein the input,Fq [uy v], is zero,the corresponding valuein the output,
Hq [u,v] , is also zero. Thus, we can implement this operation on an SC block bysimply scaling
the values in the data structure- there is no need to reconstruct the quantized array or even the zig-



zag vector. When implemented this way, useless multiplies where Fq [u, v] is zero are avoided.
For these reasons, the operation is very fast

Scalar Addition

Now consider the operation of scalar addition. In this operation, if the value of a pixel in the
original image is / [i, j], thevalue of thecorresponding pixelin theoutput image h [i, j] is given
by

h[ij] =/[i,/] +p (EQ6)

Using equations (1), (2) and (6), the quantized coefficients in the output image are

"e["'v] =4qHlu,V)^c^u)CU'v)hli'J]

= -^7 r {Fn i"> v] +-A—r—tYYC (i, u) C(/, v)) (EQ 7)

The last term can be summed explicitly. If we use the result

2£C(U)C(/,v) = 328(i05(v)
« j

where

1 " = 0

0 K*0

we can simplify equation 7 to

Hq lu, v] = —t r-F,, [k, v] + / ,8 (w) 5(v) (EQ 8a)

If the QTs of both images are proportional, with proportionality constant y, this equation



assumes a particularly simple form expressed in the equations:

iffl[ftO] =yFfi[0,0]+^5y (EQ8b)
HQ [u, v] = yFQ [u, v] (EQ 8c)

Again we see that the operation of scalar addition can be performed directly on the quantized coef
ficients. More importantly, in the common case where y*=l, i.e., when the quality ofthe output image
is the same as the quality of the input image, this operation involves much less computation than
the corresponding operation on uncompressed images, since only the (0,0) coefficient of the quan
tized matrix is affected.

Pixel Addition

The operation of pixel addition is described by the equation

h[i,j] =fU,j]+g[i,j] (EQ9)

Using equations (1), (2) and (9), the quantized coefficients in the output image are

*«[*vl =4^fcrX2C(^)C^v)/i[ '̂]

= —7 rrrt [u> v] + —-. r-Gn [m, v] mr. 1Av<7ff(w,v) 2L ^//(w,v) 2 (EQlOa)

Once again we see that if we account for the QTs of the images, the operation can be performed
directly on the quantized coefficients, and that if the Qls for all the images are proportional (with
proportionality constants yF and yG), the equation is simplified to:

HQ [u, v] = ypFQ [w, v] +yGGQ [ut v] (EQ 10b)

Pixel Multiplication

Finally, the operation of pixel multiplication is expressed in the equation

h[i,J\ = OLf[i,j]g[i,j] (EQ11)



where a is a scalar value. The scalar oc, although mathematically superfluous, is convenient to scale
pixel values as they are multiplied. This formulation is used, for example, when the image g con
tains pixel values in the range [0..255] and we want to interpret them as the range [0..1), as is the
case when g is a mask. This operation is realized by setting a to 1/256.

Let F (Vj, v2), G(wv w2) and H(uv u2) be the quantized values of the compressed
images for/, g, and h, respectively. Then using equations (1), (2) and (11), we can compute the value
of H (uv u2) as follows:

-3^5T??CttMl)CC/i,,a)
<lE XC <'• vi>C (A v2> *F l>i> vj F(vlf v2))

VI V2

(t£ SC ('» Wl^ Ct/> W2> ?G twl» w2^ G(wl» w2»
'i "^

X F(v1,v2)G(w1,w2)Wj2(v1,v2,w1,w2,M1,tt2) (EQ12)
Vj, Vj, wlt w2

where

we(vi»v2»wi»w2»Mi»M2)

qgF[vi,v2]gGK^2]TT,/ ,_,, .= 64^^,^] Wiu^wJWiu^wJ
with

W(u, v, w) = £C (/, k) C(l, V) C(l\ w)

We can compute this rather lengthy sum efficiently by noticing several facts:

(1) for typical compressed images, G (wj, w2) and F (Vj, v2) are zero
for mostvalues of (v1? v2) and (wv w2).

(2) Of the 256K elements in the function WQ (vv v2,wv w2, uv u2),
only about 4% of the terms are non-zero. In other words, the matrix



Wq isvery sparse.
When we implement this method, care must be taken to evaluate only those terms that might

contribute to the sum. We take advantage of (1) when we implement this method on SC blocks,
since the zeros are easily skipped. To take advantageof (2), the data structure described in the fol
lowing paragraphs is used. Since the algorithm operates on SC blocks, the zig-zag ordered indices
are used to reference data elements. By convention, we will let x, y and z represent the zig-zag
ordered indices of the pairs (vjtv2), (wj,W2) and (uj,U2), respectively. With this substitution, equa
tion 12 can be written as

H(z) = £F (x) G(30 WQ (Vl, v2, wv w2, uv u2) (EQ 13)

with the sum running for jc and y running from 0 to 63.

We introduce the following data structure to compute equation 13 efficiently. A combination
element is a pair ofnumbers z and W, where z is an integer and Wis a floating point value. A com
bination list is a list of combination elements. A combination array, is a 64 by 64 array of combi
nation lists. The C code shown in figure 5 initializes the combination array comb [x, y ]. The array
contains empty lists when the code is entered. The function AddCombElt (z, w, com-
b [x, y ]) appends the combination element (z, W) to the combination list stored in the global com
bination array comb [x,y] and returns the modified combination list The arrayw[ 8] [8] [8] is
assumed to be initialized with the values of the W function of equation 12.

Using the initialized combination array, the C code shown in figure 6 efficiently implements
equation 13 on two SC blocks f and g. We call this algorithm the convolution algorithm. Notice
that comb [ ] is a constant in the code; it need only be computed once for the given QTs.

The code operates as follows: The arrayhzz, which represents a zig-zag vector, is assumed to
be all zero. For each pair of SC values in the two input images f and g, we compute the zig-zag
indices x and y, and the product oftheir datavalues, which is stored in tmp. We then use the z value
ofeach combination element in the combination list stored in comb [x, y ] to determine which ele
ments in the output arrayhzz are affected and accumulate the product w*tmp into each element.
In this way, only the multiplies which result in non-zero products accumulate in hz z. When used
in a program, a final pass is needed to run-length encode the zeros, perform integer rounding, and
construct the resulting SC block.
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Convolvelnit (alpha, fQT, gQT, hQT)
float alpha, *fQT, *gQT, *hQT;

{
int ul, u2, vl, v2, wl, w2;
int x, y, z;
float tl, t2;

for (ul=0; ul<8; ul++)
for (vl=0; vl<8; vl++)

for (wl=0; wl<8; wl++)
if ((tl = W[ul][vl][wl]) != 0.0)

for (u2=0; u2<8; u2++)
for (v2=0; v2<8; v2++)

for (w2=0; w2<8; w2++)
if ((t2 = W[u2] [v2] [w2]) != 0.0)

{
x = ZigZag(ul, u2);
y = ZigZag(vl, v2);
z = ZigZag(wl, w2);
W «= tl*t2*alpha*fQT[x]*gQT[y]/hQT[z];
comb[x,y] = AddCombElt (z,W,comb[x,y]);
}

}

Figure 5: Initialization of the Combination Array

Convolve (f, g, hzz)
SC_Block *f, *g;
float *hzz;

{
int x, y, z;
float W, tmp;
SC_BLOCK *gtmp;
COMB__LIST *cl;

for (x«0; f != NULL; J
x += f->skip;
for (y=0, gtmp = g;

y += gtmp->skip;
tmp = f->val*gtmp->val;
for (cl «= comb[x,y]; cl !

z = cl->z;
W = cl->W;
hzz [z] += tmp*W;

}
}

/* The input images */
/* Array of 64 elements */

= f->next) {

gtmp != NULL; gtmp = gtmp->next) {

NULL; cl = cl->next) {

Hgure 6: Implementation of the Convolve Function

11



Summary of Operations

This section showed how pixel addition, pixel multiplication, scalar addition, and scalar multi
plication can be implemented on quantized matrices. As noted earlier, these transformations can be
implemented using zig-zag ordering, so they can operate directly on SC blocks. Table 1 summarizes
the mapping of image operations into operations onSC blocks, hi the table, the symbol yF H(x)
is defined as

_ Qf M _ 4f ["»y]

and the function Convolve (F, G, a, qF, qG, qH) is defined in equation 13and implemented
in figures 5 and 6.

Operation
Image Space

Definition for h [ij]
SC

Definition for Hzz [x]

Scalar Multiplication af[i,j] aYF,//WFzzW

Scalar Addition ra/i+p
/xr . , 8|35(jc)

Pixel Addition flUJl+glM yFtH (*) fZzw +yG, hw Gzzw
Pixel Multiplication f[i>j]g[ij] Convolve (F, G, ex, qF, qG, qH)

Table 1: Mapping of Operations

4. Applications

'video data is typically transmitted as a sequence of compressed images. While the entropy
encoded data cannot be directly manipulated, section 3 showed how pixel or scalar addition and
multiplication can be performed on SC blocks. Thus, ifwe entropy decode the images, perform the
operation, andthen entropy encode the result,we canshortcutthe restofthe decoding andencoding
of the images which will be a faster algorithm.

These simple operations can be combined to form more powerful operations such as dissolve
(the simultaneous fade out and fade in of two sequences of images)and subtitling. The implemen
tation of these operationstypically involves the computationofanoutput image that is an algebraic
combination of one or more input images. One way to perform the combination on a pair of SC
blocks is to use zig-zag vectors as the intermediaterepresentation to compute the expression. Thus,
to multiply two SC blocks and add a third, we would zero the zig-zag vector, call the Convolve
function of figure 6 on the first two SC blocks (the zig-zagvector is hz z in the figure), addthe third
SC block to the zig-zag vector, andthen performthe partial compressionandentropy coding steps.
Figure 7 graphically depicts our strategy.

12
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Figure 7: Strategy for Manipulating Images

The remainder of this section presents two examples that illustrate this strategy and compares
the performance of these new algorithms with the brute force algorithm.

The Dissolve Operation

The entropy encoding and decoding steps will be omitted to simplify the presentation. Suppose
a sequence ofimages S1[t] is to be dissolved into a sequence ofimages S2[t] in a time At (typically
0.25 seconds). In other words, at t=0 we should display S1[0], at t=At, we should display S2[At],
and in between we want to display the linear combination of the images:

D[t] = a(t)Sl[t] + {l-a(r)}S2[f] (EQ14)

where a (r) is a linear function that is 1 at t=0 and 0 at t=At

Using table 1, we can map this operationinto the correspondingoperation on SC blocks as fol
lows. From the table, we know that the scalarmultiplies can be performed directly on the SC blocks
if the coefficient a is changed to <xysi D(x) inthe first halfof the expression and asimilar sub
stitutionis performed for the multiplicationby {1 - a} . Also from the table, we know we can add
the coefficients together directly to get the desired result, since the QTs of these two new SC blocks
are the same, namely qD (x) . Thus, theexpression in equation 14can beimplemented as

E>zz M = <xySi,d (*> S1zz M + {1 - <*} Y52,d W S2zz M

We can implement this equation efficiently by noticing that the SC format of the data will skip
over zero terms. The C code to implement this operation on an SC block is shown in figure 8. The
function Zero zeros the array passed to it, and the function PartialCompress performs the
partial compression step into h. The arrays gammal and gamma2 have the precomputed values

13



defined by

gammal [x] = ayShD(x)

gammal [x] = (l-a)yS2tD(x)

These values can be precomputed once for each image or sequence of images with the same QTs,
whereas the Dissolve function is called for each SC block in an image.

Dissolve (f, g, h, gammal, gamma2)
SC_Block *f, *g, *h;
float *gammal, *gamma2;

{
float hzz[64];
int x;

Zero (hzz);
for (x=0; f != NULL; f = f->next)

{
x += f->skip;
hzz[x] += gammal[x]*f->value;
}

for (x=0; g != NULL; g = g->next)
{
x += g->skip;
hzz[x] += gamma2[x]*g->value;
}

PartialCompress (hzz, h);
}

Figure 8:CImplementation oftheDissolve Operation

To test the performance ofthis implementation, we wrote programs that executed both the brute
force and the SC algorithm on images resident in main memory and compared the performance.
Both algorithms were executed on 25 separate pairs ofimages on a sparcstation 1+ with 28 MBytes
of memory. The test images were 640 X 480, and 24 bits per pixel. A sample image pair is shown
in Hgure 9. The images were compressed to approximately one bit per pixel (24 to 1 compression).
Table 2 summarizes the results. As can be seen from the table, the speedup of the semi-compressed
algorithm is more than 100 to 1 over the brute force algorithm.

Time (sec)

Algorithm Mean Std Dev
Brute Force 36.86 0.01

Semi Comp. 0.34 0.00

Table 2: Performance Measurements of Dissolve Operation

14



Figure 9: Two sample images and their mixing with a = 0.5 using
a) the brute for algorithm, and b) the semi-compressed algorithm

(A)

(B)

The Subtitle Operation

The second example operation is subtitle, which overlays a subtitle on a compressed image/.
Although a workstation could support this operation in many ways (such as displaying the text of
the subtitle in a separate window), we chose this operation because it is a common operation which
most people are familiar with and it serves as a specific example of the common operation of image
masking, which is used when a portion ofone image is to be combined with another image. Another
example where this technique is commonly used is in the chroma-key operation. In this operation,
a foreground image (e.g., a weather forecaster) is overlaid onto a background image (e.g., a weather
map). The mask is generated by positioning the foreground object (i.e., the weather forecaster) in
front of a bright blue or green screen. Only the non-blue (or green) pixels of this image are present
in the mask.

The subtitle is assumed to be a compressed image of white letters on a black background
denoted S, with white and black represented by pixel values 127 and -128, respectively (these are
the values obtained from the luminance component of an image). The output image can be con
structed by adding together S and an image obtained by multiplying/by a mask that will blacken
the areas on/where the text should go. Such a mask, m, can be constructed from S if we define
m [i, j] = 127 - s [i, j] . The output image with subtitling, h, is then given by:

h[i,j] =s[i,j] +2^(128 -s [i,j])f[i,j] (EQ15)

Using table 1, we see that the corresponding operation on an SC block is symbolically represented

15



as

H= \ hS +Convolve (M, F, ^g, qF> qs, qH)
with

10248 (jc)
M[x\ = -5[jc] +

IslW

The C code in figures 10a and 10b implements this operation. The code is divided into two
phases, the Subtitlelnit function, which is called once when the QTs are defined for the
image or sequence of images, and the Subtitle function, which is called for each SC block in
the image. Like the dissolve operation, the Subtitle function uses a zig-zag vectorhzz to stored
the intermediate results.

Subtitle (s, f, h, fQT, sQT, hQT)
SC_Block *s, *f, *h;
float *fQT, *sQT, *hQT;

{
float hzz[64];
SC_Block *tmp;
int x;

Zero (hzz);
for (x=0, tmp=s; tmp != NULL; tmp = tmp->next)

{
x += tmp->skip;
hzz[x] += gammaSH[x]*tmp->value;
tmp->value = -tmp->value;
}

/* Convert S into mask... */
if (s->skip) /* No (0,0) value! */

{
s = NewSC_Block(s->next); /* Insert a 0 value */
s->skip =0;
s->value = 0;
}

s->value += Round(1024.0/sQT[0] );
Convolve (f, s, hzz);
PartialCompress (hzz, h);
}

Figure 10a: C Code Implementation of Subtitle Function

As with the dissolve operation, the performance of programsthat implemented the brute force
algorithm and the SC algorithm on images resident in main memory were compared. The test
parameters were the same as with the dissolve operation. Table 3 summarizes the results, showing
a speedup of nearly 50 to 1 over the brute force algorithm.
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static gammaSH[64];

Subtitlelnit (fQT, sQT, hQT)
float *fQT, *sQT, *hQT;

{
int x;

Convolvelnit (1/256.0, fQT, sQT, hQT);
for (x=0; x<64; x++)

gammaSH[x] = sQT[x]/hQT[x];
}

Figure 10b: C Code Implementation ofSubtitlelnit Function

Time (sec)

Algorithm Mean Std Dev
Brute Force 33.84 0.64

Semi Comp. 0.68 0.13

Table 3:Performance Measurements ofDissolve Operation

5. Discussion

This section describes the problems encountered when we tried to extend the technique to other
basic operations, our attempts to circumvent these problems, and suggested areas for further
research. It also discusses related work.

Much work has been done on image processing techniques in the spatial domain to perform
image enhancement (e.g., [18]). Most of these techniques can be extended into the DCT domain
using the results of sections 3 and 4. Duff and Porter [1] suggest that a channel composition is an
effective technique for compositing digital images. The results of sections 3 and 4 show how a
channel techniques can be applied to compressed images.

In the area ofDCT domain image processing, Chitprasert and Rao [17] presented a convolution
algorithm for the DCT, and showed how it could be used for image processing in certain special
cases. His technique is concerned mainly with high and low pass filtering, and doesn't adapt well
to the block by block encoding nature of most compression technologies.

Chang [7] apparently independently discovered a technique similar to the one presented this
paper for compositing images in the DCT domain. His work is a special case of the results ofsection
3, and does not contain experiment results. However, it also presents the solution to a related prob
lem. When two images are to be composited and are not correctly aligned, one image may require
translation. Chang shows how such a translation operation can be performed in the DCT domain.

Limitations

Although the algebraic primitives discussed in section 3 represent a solid mathematical basis
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for basic operations on images, many operations cannot be computed as a combination of additions
and multiplications. For example, consider the operation of contrast adjustment In this operation,
the value of the luminance component of a pixel in the output image, h[ij], is a function § of the
value ofthe luminance component ofthe corresponding pixel in the input image, f[i,j]. The function
<t> is shown in figure 11 below. As can be seen from the figure, if the luminance component of a pixel
is below the threshold value tl, it is mapped to black, if it is above the threshold value t2, it is
mapped to white, and if it between the two values, it is linearly scaled. Although this operation is
straightforward on uncompressed images, when we applied the techniques used in section 3 to find
the corresponding operation on compressed images, the non-linearity of the mapping function <J>
induced mathematical problems to which we could find no simple solution.

<l>(f[ij])

Figure 11:Mapping Function for Contrast Adjustment

To circumvent these difficulties, we tried the following strategy. We know the function <|> is
piecewise linear. If we could quickly determine the rangeof pixel values in a block, and if those
values lay within one ofthe linear sections of <J>, then we coulduse the results of section 3 apply the
appropriate linear function to the block. If, however, the rangeofvalues ofthe block spannedlinear
sections of the mapping function, then we could fall back on the more expensive brute force
approach to apply the operatioa We expect this strategy would work well since, in most pictures,
the pixels within most 8 by 8 blocks aresimilar, and so the rangeofvalues within the block is small.
Indeed, this is one of the reasons that transform basedcodingmethods compressdata well.

To quickly find the range of values in a block, we used the following method, which we state
without proof: the rangeofvalues in a block is within the rangedefined by

DC AC

8 " 4

where DC is the value F[0,0], and AC is the sum of the absolute values of the terms F[ij], where
U> j] * [0, 0]. The DC value is the mean value of the block, derived from direct current, which

is the mean value of an electrical signal. Similarly, the AC values are the deviation from the mean
value, derived from alternating current, which is the deviation from the mean value of an electrical
signal. AC can be computed with a single pass over the SC block with a small number of adds.

When we implemented"this method, we found that it ran only 2-4 times faster than the brute
force method, dependingon the image.The reason is thateven if75% of the blocks have a range of
pixelsvaluesthatallowanSC algorithm to be applied, the remaining 25%must still go through the
time consuming compression and decompression of the brute force algorithm. The execution time
of decompression and compressionis much larger than any other partof the computation, so we
would expect the overall execution time to be fourtimes faster if 25% of the datamust go through
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this computation, which is what we found. The situation is analogous to memory systems with a
cache where cache misses are much slower than cache hits, and the hit rate is 50% to 75%: most of
the time in the system is spent resolving cache misses.

Therefore, the problem of efficiently computing nonlinear operations is still open.

Global Image Operations and Extensions To Other Compression Stan
dards

Another area for future research lies in extending the class ofoperations that can be performed
on compressed images. For example, scaling, rotating, translating, shearing, and perspective trans
formations would all be useful operations to perform on compressed images. Although the block
oriented nature oftransform based coding presents difficulties, we have found the basis ofa general
solution which we believe captures most ofthe nuances ofthis problem. Our results will be reported
in a later publication.

Finally, there is the problem of extending these methods to the motion video compressing stan
dards such as the CCITT H.261 standard (often called p x 64), and the proposal of the ISO Motion
Picture Experts Group (MPEG). Since these standards use motion compensation, the extension is
not as straightforward as could be hoped.
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