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1 Introduction

The current allocation of electric energy is based on a system of fixed prices.
In such a system the gap between marginal cost of energy generation and
the marginal value of energy consumption, hence the resulting inefficiency,
is quite large [6]. One scheme that closes this gap is that of spot pricing, [7],
[3], [2].

Spot pricing is impractical today because the necessary communications
infrastructure is not yet in place. A more practical scheme might employ
future prices: the power company announces prices a day (or week) in ad
vance and consumers then have the lead time to adjust their demand. The
announced future price would depend on forecasts of some of the determi
nants of supply (e.g. scheduled generator shutdown times) and demand (e.g.
weather).

Future prices can more easily be implemented than spot prices, see [1].
However, since a price is announced in period 1 (now) for energy to be de
livered and consumed in period 2 (later), and since significant unanticipated
fluctuations in supply and demand can occur in the interim, some consumers
will be rationed when the actual period 2 demand exceeds the supply. The
model we develop in this paper recognizes the cost of rationing borne by
frustrated consumers who have their electricity cut off.

Thus a future pricing scheme must take into account rationing loss, and
it must ration on the basis of available information. Also there must be a

balance betweenraising prices to reduce rationing-caused losses and lowering
prices to increase welfare gains from increased consumption. The interrupt
ible service contracts proposed here incorporate both aspects. These are
contingent contracts that condition service on particular events or contin
gencies. A model for the market operation can be described as a two-step
process as depicted in Figure 1. In this paper we assume the consumers are
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Figure 1: Market operation

identical ie. they have the same demand preferences. We also assume thesupplt afixed constant .>0, but the consumer demand preferences are
random with npossible sample points or contingencies u, € fl.

Steo 1 At the beginning of period 1the power company announces asetStep 1. At tne Degm g y consumer t chooses
of service contracts (pfc; #£, <*> € it), * - l, z, . "
one type of contract (PM0; **>, «€0), where PK0 is the price per kWh
of energy consumption for consumer t. The function Bt >is a0-1 valued
toctiofofWwhich specifies the contingencies under which the service wJlSeated. When contingency Woccurs the company w* dehver £e
.prvice if R^l) = 1, and the service will be interrupted if Ru, - «• *°*
e^me we may haVe acontract which ensures no interruption of service tf
™td'oIr Zperature falls in the range of 70F to 90F where the event
S outdoor temperature is in the range of 70F to 90F is one of the
contingencies in ft.

Step 2. At the beginning of period 2consumer t ""serves the ^cur^ce
of acontingency, say «. Consumer t then selects aquant tydt^Wh o
energy. (We will see how this quantity is obtained in §2.) So consumer t

j (A if ff*W - 1 Lastly, the power company has todecide which
pays p*(t)<W*) » «" - *• "*7,f',./., tot., 'rev delivered does notconsumers to ration, if any, so that (l) the total energy aeiiver
exceed the supply for each demand contingency, and(n) <** «~£J
contract is fulfilled. The latter decision is represented by the 0-1 valued



function Ru(t). The company will deliver dw(0 to consumer t if Ru(t) = 1.
If Ru>(t) = 0 consumer t will not receive the service. Hence conditions (i)
and (ii) are respectively given by:

J2 R„(t)du(t) <s for all w (1)
t

J2w(t) = R$l) for all t and for all u> (2)

The outline of other sections is as follows. The optimal contracts are
obtained by first formulating a welfare problem. We then show that the
optimum of the welfare problem can be sustained by interruptible service
contracts of the type described earlier. It turns out that the optimal solution
requires a proper ordering of the demand contingencies. The welfare problem
is formulated in §2. We obtain the structure of an optimal ordering of
demand contingencies in §3. The optimal allocation is obtained for the
special case when demand preferences are additive. This will be worked
out in §4. It turns out that the prices for the contracts are conditional
expectations of scarcity costs. Some concluding remarks are collected in §5.

2 Problem formulation

The structure of optimal contracts is obtained indirectly by first formulating
a welfare maximization problem and then by showing that the optimum
can be sustained by interruptible service contracts offered to consumers in
a decentralized market. We assume the supply is a constant s > 0, the
demand is random, and there is no variable supply cost.

We first model consumer welfare. The set of demand contingencies is
denoted by ft, and the cardinality of ft is n. A consumer is characterized
by her preference which consists of contingency dependent utility functions
Uw, a; 6 ft. It is standard to assume that Uu are strictly concave functions
with Uu(0) = 0. The demand of any individual consumer is assumed to be
infinitesimal compared with the total demand of all consumers. This permits
us to model the set of customers as a continuum indexed by t G [0, l).1
Consider a consumer who has chosen contract (p; Rw,u € ft), where R,,, is 0-1
valued. Suppose contingency u is realized at the beginning of period 2. The
consumer needs to decide her demand. If there is no service interruption,

1With this convention the total number of customers is 1, so the suppliesSi are mea
sured in average kWh per customer.



i.e. Ru, = 1, the consumer's demand in period 2, upon the realization of
contingency u>, is given by:

mzxU„(d)-pd (3)
d>0

Let <f>M := argmax^oMd) -pdhe the solution to problem (3). This
is the consumer's demand curve if contingency woccurs. It is a decreasing
function since Mp) =(0"1Cp). where U'<* denotes the derivative oi^'
Since the consumer is engaged in an interruptible service contract, her load
demand <f>„(p) will be met only if& = 1. KA- = 0, the consumer will
not plan on making any demand since she knows she will not receive the
service. Hence the consumer's decision on her demand depends on both the
reaHzation ofrandom elements and the type ofservice interruption specified
on her contract. Moreover, since the consumer decides her demand after the
realization is observed, she suffers no loss when she knows she will not get
the service because, in that circumstance, her optimal demand is zero. This
is unlike the model studied in [6] where each contract specifies a reliability
level but does not specify when the service will be interrupted. Therefore,
in that model, aconsumer suffers aloss term ifher demand is interrupted.

Suppose consumer t is allocated the pair (p(t); £«(*)»« € ft). Her welfare
is given by . .

w{t) = £ *w£,(0M*,(pM)) (4)

The total social welfare is the integral

w = f1 T, 7r„iU*)M<WpW))<ft (5)

Next we consider the allocation problem. In period 1 each t is allocated
a pair (p(t);<Rw(i),w € ft). At the beginning of period 2 a contingency
is revealed. Suppose it is w. The power company now decides which, if
any, consumers are to be rationed. This is given by a rationing function
Ru : [0,1) -• {0,1} defined as

Jo ift is rationed in contingency u>
^W"\ 1 otherwise

The rationing function must satisfy the physical constraint

f Ru,(t)<f>»(p(t))dt <s for all a; (6)
Jo



which simply says that supply meets rationed demand. The rationing func
tions must also meet contracts, that is,

Ru,(t) = R»{t) for all t and for all u (7)

The welfare maximization problem is to find functions p,Rw^ € ft subject
to constraints (6) and (7) so as to maximize the total social welfare W.
It turns out that we need a two-part tariff so that the optimal solution
can be sustained as an equilibrium in a decentralized market by no more
than n types ofinterruptible service contracts. The welfare problem can be
reformulated as an optimal control problem. To do this, we first define an
ordering of the set of contingencies ft. An ordering on ft is an one-to-one
correspondence / : ft -> {1,2, •••, n}. Suppose ft has been ordered such that
the contingencies are indexed by {1,2,-..,n}. Introduce the 'state' vector
x and the 'control' vector z,

x(t) =(*i(t)."-» *»(*)). *(*) = (*(*).*(*))

where .x

£(t) =GRi(t), ••-,*»(*)), *.•(<):= / Hr)4>iWT))dT
jo

Then the welfare problem can be reformulated as

max W= f1 w(t)dt = f1 Y, *iRi(i)H<t>i(p(tWi (8)
Jo Jo iszl

subject to
Xi(t) =Ri(t)4*W)), t 6 [0,1), »=l,-»» (9)

*,-(0) =0, *,•(!) £ 5> *= X> -»n (10)
p(*)>o, *,-(*) e {0,1} (ii)

This is a standard optimal control problem with state equations (9), state
constraints (10), and control constraints (11). The Maximum Principle [4]
gives necessary conditions for asolution of (8)-(ll). However, we are inter
ested in sufficiency which will beneeded for contract design. For each p > 0,
R=(Ru»;Rn) with Ri e {0,1}, and A=(Ai,.--,A„) with A,- >0, define
the Hamiltonian

*(P, ^ *) •= £ *A-{^W.-(P» - A«^W> (12)
i=l



The term 7r;A; is the adjoint variable associated with the supply constraint
(10). It is the scarcity cost of an additional unit of capacity in contingency
i. The following sufficiency theorem for optimality serves as the backbone
for designing the optimal contracts.

Theorem 1 (Sufficiency conditions) Suppose there exist A* e »£ and
H* > 0 such that for allp>0 and Ri € {0,1},

HfaR,\m)<Hm (I3)

Then the maximum social welfare W* satisfies
n

W* = max W< H* +s(£, *•"**) (14)
i=l

Moreover, if there is a feasible control z* =(p\Rm) which satisfies

H(p*(t), Jl'(t), A') = H* , t e [0,1) (15)

and t
AJ(* - / R*(t)<f>i(pm(t))dt) =0, i=1, •••, n (16)

then this control is optimal.

Proof. Let zbe any feasible control and x the corresponding trajectory. Let
Wbe the welfare attained when control z is applied. From (8), (9), (12),
we get

w = f1 j(p(t), £(t), \*)dt +/ £ *.-a;RiW<J>M*))dt
Jo Jo t=l

< jr+f>,-Aj*,-(i)
i=l

n

< H* +»(E»<AI) (17)
1=1

where the two inequalities in (17) follow from (13) and (10), respectively.
The second part of the assertion follows since (15) and (16) yield equalities
in (17).

Thus an optimal solution z* maximizes the Hamiltonian H{p,K,A ) lor
each t. Condition (15) means that the net benefit is the same for all con
sumers. Condition (16) is the complementary slackness condition. It implies



that at the prevailing prices the power company cannot increase its profit
by offering a different set of contracts. Hence (15)-(16) are conditions for
consumer equilibrium and supplier equilibrium.

To find the optimum of the welfare problem (8)-(ll), we need to find A*
and H* that satisfy (15) and (16). This requires a proper ordering of the
contingencies. Weexamine this question in §3. In §4weproceed to show that
the optimal solution of the welfare problem can be sustained by contracts
of the form (#,£•')» where R* = (#{,-•«,#*,) e {0,l}n, i = 1,2,---,n, is
defined by

i _ ( 0 ifm<i ( .
*"-\l if m>i (18)

Note that contract (pi,-R') guarantees a service reliability of £m>tfl"m.

3 Optimal ordering of demand contingencies

For each u 6 ft and x > 0, let

MP, *) '= Uu(<f>„(p)) - x<f>„(p) (19)

Given a set of values {Aw > 0;w e ft}, we let p° be the solution to the
algebraic equation

M?.y = o (2°)

We also let
/iw(p,Aw) > 0 for all p > 0 , *
Mp,Aw)<0forallp>0 ^ }p0.= {° *PuJ \ oo if

Now if / is an ordering of ft and i = /(w), then Ui := £/"w, fa := <^w and
p° := p°. It follows from the strict concavity of Uu that p° is well-defined.
We have the following useful lemma.

Lemma 1 Suppose 0 < p° < oo. T/ien for any p > 0 ,

p < rf =• Up) > Up*) => hfa A,) < o (22)

P > P°i =• ^(P) < *(rf) => ^.-(P, Ai) > 0 (23)

Proof. The two implications in (22) follow from the decreasing property of
4>i and the strict concavity of Z7,-, respectively. The same argument applies
to (23). •



The following lemma suggests away toorder the contingencies such that
rationing functions ofthe form given by (18) maximize the Hamiltonian. It
also implies that no more than n such contracts are needed at optimum.

Lemma 2 Let {Aw > 0;w Gft} be given. Obtain {p°;w Gft} and order the
contingencies such that

For the given A= (Ai, •••, An), let p* be amaximizer of maxp>0 #(p, R, A).
Assume H := maxK€{0,i}n H{p\R, A) >0. Then maxR6{0,i}» H(p*,R, A)
is attained by an R%.

Proof. We first note that H{p*,R, A) =£?=i *iRMP*, *•) » ^near in eax*
Ri. So optimal Ri is 1(respectively 0) if /i,(p*, A,-) is positive (respectively
negative). Let nx := min{i | p? <oo} and n2 := max{i | p? > 0}. By
Lemma 1 and since p? > •••> P°, we get the following conclusions:
(i) If p* > p°t, then hi(p*,\i) > 0 for all i > m and Rn* maximizes
H(pm,R,X).
(ii) If pq >P* >P?+i for some ni >j >n2 - 1, then /i,(p*, A,) >0 for all
i >j +\ and /i,(p*, A,-) <0for aU *<j+1. So the maximum is achieved
by £i+1.
(iii) If p* < pS2, then /i,(p*,At) <0 for all i < n2 and h{(f,A,-) >0 for
all i > n2. The maximum is achieved by #n'+1. Note that we cannot have
n2 = n and p* <p£ since fT >0. D

The next result shows that a contract which guarantees less frequent
interruption should be sold at a higher price.

Lemma 3 Let {Aw > 0;u; Gft} be given. Order the contingencies such that
(24) holds. Obtain A=(Ai, •••, An) and let pi =arflrma^>0-ff(p, R\A). Also
letl<h<i2< •- <*k<n be such that

and

Then

H(Pil, Ril, A) = •••= H(Pih, Rik, A) =: H

H(piyR\X) <H for if. {ii, ••',**}

_ Si>.-irj^ito)Ai (25)

andp^ > pi2 > ••• > Pi*.



Proof. Since maxp>05'(p,i2t',A) = majCp>0Ej>i *j[0jWi(lO) - Xj<f>j(p)] is
maximized at p,-, we get

£ »il»i(*-to))*i(w) - V;(p.)1 =o (26)
3>*

by evaluating $-H(p,R\X) = 0 at p,\ Now (25) follows from (26) since
tf>>;(p,)) =P.-P

To see the second assertion we need to show that p,-( > p,m for 1 < / <
m < k. Suppose p,-, < p,m. By Lemma 2 we see that

and

«k..^s i}jt (28)
Ourassumption p,-, < p,m gives <£j(p,-,) > <t>j{Pim) for all j. Hence by Lemma
1 and (28) we see that hj(pit,Xj) < 0 for all j < im. This contradicts (27)
since it < im. a

The specific ordering exhibited in (24) is not very useful sinceit depends
on the given set of values {Aw;w G ft}. The following lemma provides a
sufficient condition which generates the ordering given in (24) and is inde
pendent of the set of values {Aw; w G ft}.

Lemma 4 Suppose the contingencies are ordered arbitrarily. If A G 9ft"
satisfies

H(Pi, R\ X) = H>0for all i (29)

where p,- = argmaxp>QH(ptR\ A). Then we get pj> p§ >•••>p°.

Proof. Since maxp>o5"(p,i2*,A) is maximized at p,-, we must have

H > H{Pi+1, R\ A) = 7r,/il(pl+1, A,) + H(Pi+1, Ri+1, A) (30)

Since fT(pt+i,.R,+1, A) = 5", (30) gives

fc,(p,+i,A,)<0 (31)

On the other hand, we have

H = H(PiiR\X) = TcMpi, Xi) + H(PiiRi+\ A) (32)



Since JJ(pt-, Ri+1, A) < «ff, (32) gives

hi(pi,\i)>0 (33)

Then by Lemma 1, (31) and (33) imply p,- > p° > pi+\. Hence we obtain
Pi>P?>P2>P§>--->Pn>P°. °

4 Optimal Allocation for a Special Case: Addi
tive Demand Preferences

The results in Lemma 4 can be used to construct an algorithm that gives
optimal A* and H* as required in Theorem 1. We first try an arbitrary
H > 0. Suppose there is a way to find A G $t" such that (29) holds. Then by
Lemma 2 each (p,-, Rl) is a maximizer ofmax(Pt^) JJ(p,R,A), wherep,- is given
by (25). Moreover, the contracts {(p,-, R*)}?-i are optimal for consumers.
Finally, optimality for the supplier is achieved by adjusting H such that the
complementary slackness condition (16) is satisfied. In general, it is difficult
to show the existence of a vector A for which (29) holds. However, a special
situation for which this is true is to assume that the demand functions 4>i
differ by constants. This assumption implies that the demand functions do
not intersect. Such non-intersecting property is essential since it implies
that a consumer who consumes more in contingency i than in contingency
j at one price p will do the same at other prices.

4.1 A two-part tariff and optimal prices

We assume there is a strictly concave function Uo with Uo(d) —• oo as d —* oo
(i.e. Uq does not saturate), and constants 0 < c\ < c2 < ••• < cn such that
the demand curves are ordered in the following manner:

Up) = Up) - c-, <t>o = (Kr1 (34)

Since we have assumed Ui(0) = 0, the following identities are immediate
from (34).

U'i(d) = U0(d + a), l<i<n (35)

Ui(d) = U0(d + a) - U0(ci) , 1 < i < n (36)

Also since tfo is strictly concave and a < Ci+i, we get Uo(d + c,) —tfo(ci) >
U0(d + c+i) - U0(a+i) for all d > 0. By (36) this is equivalent to Ui(d) >

10



Ui+i(d) for alld > 0. Formula (36) also gives Ui(d+ ci+i - Cj) = U0(d+ a) -
U0(a) = Ui+i(d).+ Uo(ci+i) - Uo(a). By applying (36) again the previous
equation becomes

Ui+i(d) = Ui(d + ci+1 - a) - Ui(ci+1 - Ci) , for all d > 0 (37)

In other words, the curve d i-> Ui+\(d) is the truncated curve d h-> Ui(d +
Ci+i - c.) with the origin shifted to the point (cl+i - ct, I7i(ct+i - c,)). By
the concavity of Ui and (37) we infer that

Ui(ci+1 - cj) ^ gHhiW for ^ d>Q (38)
c,-+i - Ci a

Lemma 5 For p > 0 and 1 < i < n - 1, suppose <j>i+i(p) > 0. ITien

W,(p)) > fr+i(<fr+i(p)) (39)
</>,(p) " 0.+1 (P)

Proof. By (34) and (37) we get

Uj(UP)) = ^+i(^-n(p)) + ^(c,+i-ct)
Up) <t>t+i(p) + cj+i - ci

^ tf.+i(<fc+i(p))
<l>i+i(p)

, by (38)

Proposition 1 For any H > 0, t/iere ejctste A= (Ai,•••,A„) such that

Ai > A2 > ••• > An > 0 (40)

and

H(piyR\A) = H , /or aZJ i (41)

where pi = argmaxp>0H(p, R\ A) = Ej>i7ri^j/Ej>i7ri- Moreover, pi >
p2>-">pn and each (p,-,#') maximizes iT(p, JZ,Aj.

Proo/. By Lemma 4 and (25) in Lemma 3 wesee that pn = A„. So we solve
the equation

7r„{tf„(<£„(An)) - A„<£„(An)} = H

and use the assumption Uo(d) -* oo as d —• oo to obtain A„ > 0. For each
1 < i < n, let A1' := (0,---,0,A,v,An) G&£. Also for each 1 < i < n - 1,

11



let (x,Ai+1) := (0,...,0,x,A,+i,...,An) G»}. Assume Al+i > Al+2 > ••• >
A„ have been obtained and they satisfy H(pj, Rj, Xj) = H for all j > i + 1.
We will find A,- that satisfies (40), (41). By Lemma 2 and. since pi+i =
argmaxp>0if(p,i2l+1, A,+1), we must have

hi+ifa+u Xi+i) = tf,+i(&+i(Pi+i)) " Al+i^+i(p,+i) > 0 (42)

Next we get

maxJJ(p,i^(Ai+1,A'"+1)) > H(Pi+uR\(Xi+uXi+1))
p>0

= H(pi+uRi+\Xi+1)
+*i{Ui(UPi+i)) - A,+i0,(p,+i)}

= H + 7r,7it(pi+i, Ai+i)

> H

The last inequality follows from (42), (39). Since maxp>0 H(p, R\ (x,A,+1))
isdecreasing inx, there exists A,* > A,+i such thatmaxp>o H(p, R*, (A,-, A,+1))
= H. This proves the first assertion.

The formula p.- = Ej>i7rjA,/Ej>i7rj follows from (25) and the fact that
Up) ~ ^o(p) *°r *& *• The remaining assertions follow directly from Lemma
2 and Lemma 3. a

The number t,-A,* is interpreted as the scarcity cost or dual variable
associated with the demand-supply constraint for contingency i. Hence
Pi = Ej>i7ri^i/Ej>i *j is tne conditional expectation ofscarcity costs given
that the~service is uninterrupted only in contingencies t,i + 1,- •-,n. This
is different from the bid prices obtained in [6]. The expected demand for a
consumer who picks contract (pi,R*) is E>>i *j<t>j(Pi)> so ner electric bill is
PtEj>i*"j0i(Pt). Moreover, her net surplus (welfare minus electric bill) is
E;>i*;{CWi(Pi)) " Pi<t>j(Pi)}- Since Pi = E^iAj/EjwT;, it is easy to
seelhat the net surplus is different from the Hamiltonian iT(pi, R\X) = H.
By(15) in Theorem 1every consumer must end upwith thesame netsurplus
at the optimum. Hence the set of contracts {(p^R*)} cannot sustain the
optimalsolution of the welfare problem (8)-(ll). Toovercome this difficulty
we consider a two-part tariff. The two-part tariff consists of a price pi for
contract (p,-, R') and a cost C,(A) such that the net surplus for consumers
who have chosen this contract is now Ej>i Tj{^(^i(w)) ~ Pi^jiPi)} ~ C«'(A)
and equal to H. If Ci(A) is negative, it is a reimbursement for consumers
who have picked contract (pitR*). By Proposition 1 the scarcity costs

12



Ai,A2,.-.,A„ satisfy H = H(PilR\X) = E;>i*;{CWi(P.)) - A^(pi)}
for each i. Hence C,(A) are given by

C,(A) = Ci(Ai,A,+i,...,An)

:= E *j(xj ~POfaiPi) >«= 1, •••, n (43)

Thus the contracts are of the form ((pi,i2'),Ci(A)), and all consumers
have the same net surplus. Note that since p„ = A„, we get Cn(An) = 0.
Now by Theorem 1 and since each consumer has surplus JT, the contracts
are optimal for consumers. However, the prices {pj-J^-j may not be optimal
for the supplier. To obtain the equilibrium prices we need to adjust H
appropriately. This requires an examination of the dependence of A; and pt-
on H. We will show that both A,- and p,- are decreasing in H. To simplify
the notation, let cr,- := Ej>iTji 1 < * < «• We first obtain some useful
lemmas.

Lemma 6 Consider the vectors X = (Ai,--.,An) and p = (pi,---,pn) ob
tained in Proposition 1.

dp

dX
1=1 f *7*»; (44)

Proof. The partial derivatives in(44) are immediate since p,- = ^ Ej>ivS^j*
l<i<n. •

Lemma 7 (i) For each 1 < i < n, we get

£-hi(Pi, Ai) =Itf£ tj(Xj - Xi))<f>0(Pi) - <f>i(Pi) (45)

(ii) For each 1 < i < n —1 and j > i, we get

^;(p.-,A;) =£( £ 'A-a^Cw) (46)

Proof, (i) By using (44) we get

^•(p,-,Ai) = ±.{Ui(fa(pi))-Xi<f>i(Pi)}

13



= u'i(<t>i(pd)<t>'i(pi)- - Upd - A^Jta)^
= (Pi ~ A,)—<t>'o(Pi) ~ UPi) , since <t>'i(P) = t'oiP) for all i

Oi

= ^(E*i(Ai-A«-))*b(w)-w«)

(ii) The calculations are similar to those in (i). We have

l-hjfaXj) = ^{Vj(HPi))->>MPi)}
= *&**)»'fa) j- - Vi(w)£

(7, C/t

= (P»-Aj)—<f>'0(Pi)
Ox

= T( £ 'A - Ai))^(ft)
*•' *>«, ¥i

Lemma 8 For eacA 1 < i < n - 1, the numberAi defined below is zero.

A1-:=ir,-£iri(Ai-A,-) +£iri E */(*/-*;) (47)

Proo/. The second termin the right hand side of(47) for / = i is Ej>i ^i7ri(Al—
A,-), which is thenegative ofthe first summation in (47). Thus (47) becomes

* = E E 'i'KAi-A,-) (48)
j>i i>i, &j

It is now clear that Ai = 0 since the indices / and j appear symmetrically
in (48). °

Proposition 2 (i) For each 1 < i < n, fg- = -T^iUPi)- Sence §g < 0
for all i.
(ii) §£ < 0 for each l<i<n.

Proof, (i) We first show fg- = -nn<f>n(Pn) <°- By (41) H=*n{Un(pn) -
A„^„(Pn)} =7rn/in(pn,An).n Then (45) gives Jg- =-7rn<£n(pn). Next we
show the claim is also true for 1 < i < n - 1. By (41) we have

S = Y,«i{Ui(<f>i(Pj))-*MPi)}

= *ihi(pi, A,) +E vMPjy Ai)
3>i
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By using the derivatives (45) and (46), we get

Qy = M^(£*;(A;-Ai))0o(Pi)-&(P.)}
* * j>i

+E»i{3( E *i(Ai - Ai))^(p.)}
j>i °i l>i, l*j

= -*iUPi) + -T^ote)

where A,- is the number defined in (47). The claim is proved since Ai = 0
by Lemma 8.
(ii) We have §& = §£•§£ for j > i. The claim then follows from part (i)
above and Lemma 6. D

4.2 Optimal allocation and contracts

We are now ready to construct optimal A*, H*, and contracts {(p*,i2*)}?=r
We begin with a trial surplus H and find the numbers of consumers that can
be assigned to the n contracts. The sum of these numbers are shown to be
decreasing in H, hence we can tune the parameter H until this sum equals
one. When this occurs the resultant prices are optimal. The algorithm can
be described in two steps.
Step 1: Begin with an arbitrary H > 0. Obtain the numbers Ai > X2 >
• •• > A„ > 0 as given in Proposition 1. Calculate the prices

n __ Ej>jfljAj
Pi = -=^= , i = 1,• • -,n

Consider the contracts {(pi,^*)}^.
Step 2: Let Pi denote the number of consumers who are assigned to contract
(pi, R*). These quantities are obtained by solving the following n equations.

YsfcUPj) = « , «= 1,2, ••-,7i (49)

The next lemma gives an useful expression of /?,- in terms of {(3j ; j <
i - 1} for i > 2.

Lemma 9

* =*iw (so)
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ft^"'"^'-^ ,«>2 (51)
<^.(P.)

Proo/. (50) is exactly (49) when i = 1. For i > 2, we have <fr(p) = <£i_i(p) -
Ci - Ci_i if <j>i(p) > 0. Then

s = Eft^fe)

= E /W«'-i(Pi) ~ c» - c«-i) + A^.(P.)
j<i-l

= E ftW.-i(Pi))-(c.-ci-i) E ft + ft&te)
j*<»-i i<«-i

= 5- (ci - Ci_0 E ft +&&(P.) , by (49) (52)
j<«—i

It is now clear that (51) follows from (52). •

Proposition 3 Each /?,-, i = 1, ••«,n, is monotonically decreasing in H.

Proof. We show this by an induction on i. By Proposition 2 an increase in H
will decrease all pi and therefore increase <£i(pi). By (50) this will decrease
Pi. Next, by induction assumption, suppose an increase in H decreases
/?i, •«•,/?,_i; i > 2. Then by the same argument and (51) Pi will also be
decreased. This completes the proof. D

An immediate implication of Proposition 3 is that there exists a unique
H* > 0 such that Ei=i A-(JT*) = 1. We use the algorithm described earlier
to obtain A* and p* that correspond to this H*. Then the n contracts
{(p*,R*) ; i = 1,2, ••-,ti} are optimal for the consumers since by (41) and
(43) each consumer has net surplus H*. By (49) supply is equal to rationed
demand in all contingencies, so the complementary slackness condition (16)
is satisfied. We summarize these conclusions in the following theorem.

Theorem 2 There exist H* and A* such that the contracts {(p*,i2*) ; i =
1,2,•«♦,«}, where p* = Y^j>i^jXij/J2j>i1rj> are optimal. The set of con
sumers who have picked contract (p*,^*) is of Lebesgue measure Pi{H*),
and the pi's satisfy E?=i Pi(Hm) = 1. Furthermore, these n contracts sus
tain the optimum of the welfare problem (8)-(11) as an equilibrium provided
that the amount C,(A*) is charged (if C,(A*) is positive) or reimbursed (if
Ci(Xm) is negative) to consumers who have chosen contract (p*,R*). D
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5 Concluding Remarks

In this paper we have considered a two-period pricing model for an electric
power system. The power company offers a set of contracts in period 1. Each
customer picks a contract in period 1 and then decides her demand after the
random element is observed in period 2. This is a decentralized decision
problem. The supplier, on the other hand, needs to design a rationing
scheme so that the demand can be met by the supply available in period 2,
and each contract can be fulfilled. We have shown that it is possible to design
a set of contracts that induce customers and the supplier to act optimally.
Each contract consists of a price p*, a cost/reimbursement term C,(A*),
and a vector R* G {0,l}n that specifies the contingencies under which the
service will be interrupted. It is shown in §4.1 that the specification of
service interruption depends on an ordering of the demand contingencies.

The type of contracts considered in this paper is of the form (p,R),
where R G {0, l}n. This permits us to assume that consumer preferences
are characterized only by utility functions. Moreover, the welfare function is
simplified and does not contain a loss term as discussed below. In general,
demand preferences are characterized by both utility and loss functions.
This is because when there is independent random supply, a consumer will
suffer a loss when the service is cut.

Suppose there are independent supply and demand contingencies. The
supply takes random values $i < ••• < $m with probabilities %, ••-,r}m. The
market works as follows. In period 1 the power company announces a set
of contracts {(pij, Pij)}, where pij = *£,i>i Efc>j Vl^k is the probability that
a consumer who picks contract (pij,pij) will receive her service. Suppose
random demand preference k is revealed to consumer t at the beginning
of period 2, and the supply available in period 2 is s/. Then consumer fs
demand is:

arg max&oPijU^d) - (1 - pij)Lk(d) - pijd (53)

where £/* and £* are the utility and loss functions in contingency k, respec
tively. As in the model considered in §2 the company selects a rationing
function Rij(t) so that the supply constraint can be met.

The problem is complicated by the presence of the loss term in (53). In
this formulation, the contract prices are no longer given by the conditional
expectation of scarcity costs. However, the analysis becomes easier when
the demand functions corresponding to each pair (UklLk) are "horizontal"
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shifts of each other. That is, the preference functions are
Uk{d) := U(d - 7*) , Lk(d) := L(d - %) , fc =1, ••",n .(54)

u ~ ^ . ^ 'v > 0 occur with probabilitieswhere the random numbers 7i > ' > 7" f . Q Also v is
TTip functions U and L satisfy 1/(0) - L^u) - "• ™

S^^convex. ^V^Z^t.»J-^of deterministic demand preTerences ^^-^Sies W (see
SfcHlK The'nTmberVis the number of consumers who are assigned
to contract (p,j, Pij)-
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