
Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN INDEX IMPLEMENTATION SUPPORTING

FAST RECOVERY FOR THE POSTGRES

STORAGE SYSTEM

by

Mark Sullivan and Michael Olson

Memorandum No. UCB/ERL M91/98

6 November 1991

AN INDEX IMPLEMENTATION SUPPORTING

FAST RECOVERY FOR THE POSTGRES

STORAGE SYSTEM

by

Mark Sullivan and Michael Olson

Memorandum No. UCB/ERL M91/98

6 November 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AN INDEX IMPLEMENTATION SUPPORTING

FAST RECOVERY FOR THE POSTGRES

STORAGE SYSTEM

by

Mark Sullivan and Michael Olson

Memorandum No. UCB/ERL M91/98

6 November 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
Universityof California, Berkeley

94720

An Index Implementation Supporting Fast Recovery
for the POSTGRES Storage System

Mark Sullivan

Michael Olson

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University ofCalifornia
Berkeley, California 94720

Abstract

This paper presents two algorithms for maintaining B-tree index consistency in a DBMS which does not
use write-ahead logging (WAL). One algorithm is similar to shadow paging, but improves performance by
integrating shadow meta-data with index meta-data. The otheralgorithm uses a two-phase page reorgani
zation scheme to reduce the space overhead caused by shadow paging. Although designed for the
POSTGRES storage system, these algorithms would also be useful in aWAL-based storage system as sup
port for logical logging. Measurements of a prototype implementation and estimates of the effect of the
algorithms on largetrees show that they will have little impacton datamanagerperformance.

This work is supported by National Science Foundation grant MIP-8715235

1. Introduction

The POSTGRES storage system uses no-overwrite techniques to combine support for historical data
with support for transaction management [Stone87]. Instead of write-ahead log processing, POSTGRES
recovers from failures by falling back to the latest version of its preserved historical data. Using historical
data in place of a conventional log gives POSTGRES important availability and reliability advantages over
other database management systems. Data availability improves because the DBMS can restart after a
failure in seconds. The database is always consistent without log processing, so restartneed only initialize
in-memory data structures. The no-overwrite storage system increases software reliability by eliminating
special-case recovery code from data manager. Recovery code is notoriously difficult to test and debug.
By eliminating log processing, POSTGRES providestransaction support without specialrecovery code.

To manageunkeyed (heap)relationswithout a write-ahead log, the POSTGRES storagesystem turns
tuple updates into appendoperations. On an update, a new versionof the tuple is created. Each tuple ver
sion contains the transaction identifier (XID) of the transaction that created it and the one that deleted or
updated it. A transaction statusfile is used to keep track of the commit/abort status of each transaction.
Using tuple headers and thestatus file, POSTGRES can ignore aborted orout-of-date tuples during relation
scans. A background process eventually garbage collects invalid tuples in order to reclaim disk space.

Management of indices without a write-ahead log poses several problems which were notpresent for
heap relations. Heap tuple access is synchronized using two-phase locks in POSTGRES. The need for
high concurrency in indices, however, dictates that access toindex pages besynchronized using short-term
locks. A strategy for validating updates based on XIDs will notwork with short-term locking. One tran
saction must see changes to the index causedby another as soon as the lock is released, not at commit time.
A transaction mustalso beable to update an index and abort without undoing itseffectson theindex.

A more important problem for index management is that index data structures include pointers
between disk pages. A single update to the index can change several pages and the pointer links among
them. Failing after some butnotallof the pages have been written tostable storage leaves theindex incon
sistent. In a DBMS which uses a write-ahead log (WAL) protocol for recovery, the atomicity of index
updates is guaranteed by log processing atrecovery time. POSTGRES has nolog, soit requires other solu
tions.

In [MenLan81], theDBMS maintains consistency of B-tree indices by adding extra synchronous disk
writes and by controlling write order. POSTGRES index management assumes that synchronous writes to
a single file are unordered for two reasons. First, using several synchronous writes per page split would
significantly worsen page split performance. Controlling write order in a single multi-page synchronous
write is impossible inUNIX-based operating systems and would worsen the performance of disk schedul
ing algorithms even if it were possible. A second and more important reason nottodepend onwrite order
ing for index management is thatit will not work for some commonkinds of indices. The BUnk -trees used
in POSTGRES have several paths toany B-tree leaf page. No write order sequence exists that will leave
the data structure consistent during the entire page split Anexample is given in section 3.6.

This paper presents two general techniques for maintaining index consistency without using write-
ahead logging. Although we have implemented them only for B'1"*-trees, the same techniques can beused
for R-trees [Guttman84], extensible hash indices [Fagin79], and other B-tree variants such as B* -trees
[Comer79J. In both techniques, the DBMS detects on first use any inconsistencies in the index caused by
interrupted updates. When an inconsistency inthe index isdiscovered, consistency isrestored byreexecut-
ing incomplete page split or merge operations. Again, to maintain reliability, the two techniques largely
avoid special case recovery code. The recovery operation for a page split is nearly the same as the normal
page split operation.

One technique uses a no-overwrite strategy which is similar to shadow paging [Lorie77]. The before
image of a page to be split is left intact on stable storage until the two half-pages resulting from the split
have been written out The other technique uses a two-phase page reorganization scheme to ensure that
keys moved from one page to another in a splitare always available on either the source or destination
page. Using shadows in indices but not in heap relations eliminates the properties of shadow paging that
made it perform poorly in System R [GrayEtal81]. Shadow paging makes sequentially ordered pages in
the file non-sequential on the disk, but sequential ordering is not an issue for index files. Shadow paging
also slows direct access by forcing an extra lookup (through the page map) before data can be accessed.
By storing the shadow meta-data in B-tree internal pages, we reduce its impact on performance. The

shadow paging technique, however, stillhas larger space overhead than a normal index.

The second technique, page reorganization, eliminates that space overhead, but performs poorly
when the same index page splits many times during the same transaction. A hybrid between the twoalgo
rithms could preserve the best features of each. Using shadow paging near the leaf pages where splits are
most common would improve split performance; using page reorganization nearer the root would reduce
space overhead.

The indexmanagement techniques used in POSTGRES can evenimprove theperformance andrelia
bilityof a conventional DBMS which uses logical logging to record index updates. Logical logging works
only if system failures do not make the index become structurally inconsistent B-tree index implementa
tionsoften require physical logging of the keys involvedin page splitsor merges in order to maintain con
sistency (e.g. [MohLev89]). Combining logical logging andthe POSTGRES shadow paging or pagereor
ganization indices would make the write-ahead log more compact and prevent B-tree keys corrupted by
softwareerrors from propagating into the log.

This paper is divided into five parts. The first part gives some assumptions and some background
information about POSTGRES. The second part is a detailed description of the techniques for managing
POSTGRES indices. A third section discusses the implications of the technique for logical logging in a
WAL storage system, and compares our techniques to System R's shadow paging scheme. The fourth sec
tion evaluates the performance impact of no-overwrite B-trees on the data manager, and a fifth section
gives conclusions.

2. Assumptions

As in [LehYao81], we assume that no duplicate keys are stored in indices. In POSTGRES, any key
value, V, is changed to a pair <V, OID> before it is entered into the index. Here, OID is the unique object
identifier associated with the object referred to by the index entry. Becausethe OIDs are unique, the keys
inserted into the index are unique.

In POSTGRES, all pages touched by a transaction must be written to stable storage before the tran
saction commits. For the purposes of this paper, when the DBMS syncs its pages, all modified pages are
written to disk. They are written to disk in an orderchosenby the operating system, not the DBMS. When
a crashoccurs during a sync operation, any subset of the synced pagesmay have been written to disk. We
assume that single-page disk writes are atomic. The sync system call is assumed either to block the DBMS
or to notify the DBMS when all the page writes have been completed. The sync operationcorresponds to
the support for write orderingprovidedby the UNIX operating system.

To make the index recoverable without log processing, the DBMS must ensure that currently valid
keys are visible and invalid keys are invisible to index lookup operations. The POSTGRES storagesystem
can detect and ignore records pointed to by invalid keys, so recovery only needs to ensure that valid keys
are not lost.

In POSTGRES indices, there are two possiblesources of inconsistencies: inter-page and intra-page
inconsistencies. Inter-page inconsistencies occur when a pointer to a page B is stored in a page A. A
failure could occur after A has been written to stable storage but beforeB has been. An intra-page incon
sistency happens if a pageis writtento stable storage while the DBMS is adding a key to the pageor delet
ing a key from it This can happen easily in POSTGRES if two transactions insertkeys into the same page.
If the first commits and forces the page to be written to stable storage while the second is in the middleof
an insert, the page on stable storage will be inconsistent After a crash, the DBMS must be able to detect
that the page is inconsistent and repair it.

3. Support for POSTGRES Indices

This section describes two algorithms for implementing indices in the POSTGRES storage system.
We will describe both in terms of BUnk -trees, but R-trees [Guttman84] can be managed using the same
algorithms. R-trees are like simple B-trees (not BUnk -trees) in which keys represent rectangular regions.
The differences between the two data structures will not affect the techniques we have used to maintain
index consistency. We also discuss techniques analogous to those discussed for B/,n*-trees which can be
used with extensible hashing [Fagin79].

This section describes the basic B-tree data structure, then the modifications to that data structure
required for the POSTGRES shadow and page reorganization algorithms. Separate sections highlight the
parts of thealgorithms required to support BUnk -trees, delete operations, and short term locking.

3.1. Traditional B-tree Data Structure

In a traditional B-tree [BayMc72], each page of the tree contains an array of <key,data> pairs and a
header which describes space allocation on the page (see Figure 1). The order of the keys on the page is
recordedby a line table (described in [MohLev89]). The line table entries are orderedby the key values in
the <key,data> pairs. Each entry of the line table contains an offset to the beginning of a <key,data> pair
in the page. On an internalpage, the data element associated with a key is a pointer to a child page. On a
leaf page, the data element associated with a key is a tuple identifier (TTD) - a pointer to a data page and a
line table entry on that page.

Comer [Comer79] describes B-tree data structures in some detail, but several details of the insert and
delete operations are important enough for our algorithms to summarize here. If a new key is added to a
page, the line tableentries are reordered, not the <key,data>elements storedon the page. In the simplest
B-tree,a split occurswhen the amount of free spacein a pagegoesbelow a threshold. To split a page, one
new page is allocated. Half of the <key,data> pairs from the old page are inserted into the new one and
deleted from theold. A (key,data) pair representing thenew page is added to thesplitpage'sparent

Somevariations of theB-tree data structure usea merge operation to rebalance two neighbor pages if
inserts or deletes cause one page to have many more keys than its neighbor. Merge moveskeys from the
heavy page to the lightone andadjusts the key value on the parent page to reflect the change. When the
lastkey is removed from a page, the pageis freed.

3.2. Sync Tokens and Synchronous Writes

The POSTGRES indexmanagement algorithms usea global sync counter maintained by the DBMS
to remember which pages were written out during a given sync operation. After every sync operation in
which an index splitoccurred, the DBMS increments the global synccounter. A maximum sync counter
guaranteed to be larger than the global sync counter is maintained on stable storage. If the current global
sync counter approaches the maximum, a new maximum must be chosen and written to stable storage.
Afteracrash, themaximum synccounter is usedto reinitialize the global synccounter.

A sync token is the value of the global sync counter at one pointin time. Sync tokens aresaved on
index pages to detect inter-page inconsistencies. The lastcrash sync token is the initialization value used
when the DBMS recovered from the most recent system crash. If the DBMS shuts down cleanly, theglobal
synccounter andlastcrash sync tokenare written to stable storage. Intra-page inconsistencies are detected
when two adjacent entries in the line table contain the same offset value.

Key

ChildPtr

Key

ChildPtr

Key

ChildPtr

Key

ChildPtr

Figure 1: Normal B-tree Page

3.3. Technique One: Shadow Paging

In POSTGRES shadow B-trees, every key on an internal page contains a pointer to the current and
previous version of the child page associated with thekey. Instead of an array of <key, childPtr> pairs on
the page, the shadow B-tree page is anarray of <key, childPtr, prevPtr> triples (see Figure 2).The previous
page associated with a key is a page guaranteed to be on stable storage containing the key value. If the
childPtr is ever found to be inconsistent, theprev page is used tobuild anewchild page.

When splitting a B-tree page, P, two new pages are allocated - callthemPa andPb. Halfof thekeys
from P are copied to Pa and half to Pb. During the split thekeys on P are neither modified noroverwrit
ten. When Pa andPb are initialized, the valueof the global synccounter is recorded in a syncToken field
in each page's header.

After the split P's parent page, A, mustbe updated. Page A initially contains a key Kl whichpoints
to P. The traditional B-treesplitalgorithm calls fora new key, K2, containing a pointer to Pb, to be added
toA. In the shadow paging algorithm, A is updated in the following manner

(1) The new key K2 is allocated onA. K2's childPtr field contains the page number of page Pb.
(2) If P's sync token is different from the current global sync counter, P must have been written to

stablestorage already. In this case, the prevPtrs for both K2 andKl are set to point to Py and P is added to
an in-memoryto-be-freed list After the next sync operation, P will be addedto the index freelist

(3) If P's sync token is the same as the current global sync counter, the prevPti for Kl must be
reused since P is not yet on stable storage. Kl's prevPti* is assigned to K2*s, and P is freed immediately.
This situation only occursif two splitsoccurat the samekey betweensync operations.

(4) K2 is inserted into the page A's line table.

(5) Key Kl is modifiedso thatits childPtr field contains the page numberof Pa instead otP.
If adding K2 to the page A causes A to split the same algorithm is followed unless A is the B-tree

root page. If the root page splits,a new root page is created containing two <key,data> pairs pointing to
the two halves of the old root. The first pageof the index is a meta-data pagecontaining a pointerto the
current root of the tree. Like internal page keys, the root pointermust contain a previous and current page
pointer.

In order to prevent an intra-page inconsistency, we must be careful when adding K2 to the line table.
The line table entries are intra-page pointers - offsets within the page - which point to key values. The
line table is ordered, so the line table entry following Kl's offset is selected to hold K2's offset. The line
table is extended by first copying the last entry in the line table one element beyond the line table, then
incrementing the nKeys field of the page header. Next all of the line table entriesbetween Kl's and the
last one are copied one entry to the right of their current position. Finally, K2's offset is saved in the entry
after Kl's.

Kl
\/L

prev

*\ Fold
— p

K2
cor

prev

Kl
CQBT

prev ^r\
Before After

Figure 2: Shadowing Page Split

3.3.1. Detecting Inconsistencies in the Index

A crash during a B-tree update can cause an inconsistency only if the parent A, is written to stable
storage before the crash, but not the child. In that case, A points to an uninitialized page or a page that has
been reused. If A was not written, then the new child page is inaccessible, but the parent-child link is con
sistent.

When descending from A to F, the DBMS determines from A the minimum and maximum key
values that should be on P before stepping from A to P. At P, the minimum and maximum key values actu
ally present on the page are compared to the expected key range. If the key ranges are the same, the
parent-child link is consistent and the search can continue. If the key ranges differ or if the page is zeroed,
the DBMS has detected an inter-page inconsistency. Intra-page inconsistencies are detected when two
adjacent entries in the line table contain the same offset value.

3.3.2. Repairing Inconsistencies in the Index

As soon as a broken inter-pagepointer link is discovered, the DBMS must redo the interrupted page
split operation. The prevPti* shows the page that existed before the split To reinitialize the out-of-date
child page, the DBMS uses the keys on the parent page to determine the range of keys that were on the
missing page. These keys arecopied directly to the child page from the page pointed to by prevPti*. The
sync tokenon the childpageis initialized to the current global sync counter. After the child pagehasbeen
reinitialized, the B-tree search can continue.

If therootpage is splitandthenew version of theroot is lost theprevChild page is copieddirectly to
the child page. If no root pageexisted before the failure (i.e. all keys inserted into the tree were lost), the
roothasno prevChild pageandis initialized to anempty page.

The DBMS repairs an intra-page inconsistency by deleting the duplicate entry. The DBMS copies
line table entries left until the duplicate is the last entry in the line table, then, decrements nKeys in the
page header.

3.3.3. Free Space Management

During normal operation, pages freed from an index are kept on an in-memory freelist associated
with that index. Because the freelist is in volatile storage, it does not survive system failures and must
eventually be regenerated after a failure. In a UNIX-based file system, a new page may always be allo
cated,when the freelist is empty, by extending the index file.

POSTGRES heap relations require a garbage collector as part of the storage system's archiving
feature [Stone87]. Adding index freelist regeneration toits current archiving tasks does not make garbage
collection much more expensive. If the DBMS is shutdown cleanly, the current index freelist should be
written todisk. When theDBMS isrestarted, the freelist ondisk must bedeleted before any of thepages on
the list are reallocated. Otherwise, acrash will cause the old freelist tobevalid again and allow the pages
to be allocated twice.

For shadow indices, the key range associated with each page in the freelist must be stored in the
freelist along with the page number. Key ranges are used to detect inconsistencies that occur when the
child page was notwritten to disk. If thesame page were reallocated for thesame key range, there would
be no way to tell if the new versionof the pagewere lost in a crash.

3.4. Technique Two: Page Reorganization

The B-tree modifications described above add four bytes to each key on an internal page (for a
prevPtr). If keys are small, theextra four byteswillreduce B-tree fanout and increase theheight of the tree.
Increasing the heightof the treeincreases the average costof data access.

The page reorganization algorithm reduces this loss of fanout by eliminating the prevPtr from the
<keyydata> pairs in a B-tree page. In this algorithm, however, splitting page P does notreclaim space on
the page immediately. During the split theDBMS copies halfthekeysonP to a newpage andreorganizes
P according to the algorithm described below (see Figure 3). Afterreorganization, />'s original keys are
intact on the page. Once a syncoperation successfully writes thereorganized P andits new peer to stable
storage, the spaceon pageP containing the duplicated keys is reclaimed. If the DBMS failsafter P is writ
ten to stable storage but beforePrs new peer is, nokeys are lost The reorganized page P canstillbe used

for recovery.

The page reorganization algorithm adds a field prevNKeys and newPage to the page header. If the
prevNKeys field on a page is non-zero, the page still contains backup keys to be used in recovery. If
prevNKeys is zero, the page is safe for update. Below, wedescribe asplit of page P into Pa and Pb. Pa is
the reorganized page. Pb is the page that will contain the new key that caused the split Note that Pa may
beeither the leftorthe right child after the split The newPage pointer in the reorganized page (Pa) points
to Pb; newPage in Pb is nil.

A split of pageP proceeds as follows:

(1) Two new pages are allocated. Pa is allocated in memory only; it is notbacked up on the disk.
Pb is allocatednormally.

(2) Half of P*s keysare copied to Pa and halfto Pb% just asin a normal split TheprevNKeys field
onPb is initialized to zero. OnPa, it is initialized with thenumber of keys ontheoriginal page P.

(3) The keys from Pb arenow copied to the free space area of Pa. These keys are not allocated on
the page, just copiedinto the page's free space region. A line table for the keys is set up just beyondthe
line table for Pa. Pa is guaranteed to have space enough for Pb 's keys and line table because all of this
information was storedon the original page P.

(4) The sync tokens ofPa and Pb are initializedusing the globalsync counter.

(5) Pa is remapped (in the in-memory buffer pool meta-data) to P's locationon disk.

(6) The new key whose insertion caused the splitis added to Pb. /*'s parent page is now updated to
reflect the split

If the next sync fails, one of five inconsistencies can occur

(a) only Pa is written to disk (replacing P)y
(b) only Pa and i^ are written (Pb is inaccessible),
(c) only the parent and Pa are written,
(d) only the parent and Pb are written,
(e) only the parent is written.

If only Pb is written,the treeis not inconsistent (but page Pb is lost).

In cases (a) and (b), the tree becomes consistentby regenerating P (assigning prevNKeys to nKeys
reallocates the duplicate keys). In case (c), Pb is regenerated by copying the duplicate keys saved on Pa.
In case (d), Pa is regenerated by removing the keys that are represented on Pb. In case (e), the split is

Before

After

Header

K3

Kl

K2

K4

m

Header |- 1
_+
t

K4

"K~-

K2 >

Kl

Header 1 J

t

K4 t

K3

Figure 3: Page Split For Page Reorganization

repeated to generate both Pa and Pb.

Every time a key is added to or deleted from a page, the DBMS must check whether or not the free
space on the page needs to be reclaimed. If the prevNKeys field is zero, there are no extra keys stored in
free space. Otherwise,the sync token on the page must be checked. There are three cases:

(1) If the sync token is the same as the global sync counter, no sync operation has occurred since the
page was initialized, so the duplicate keys on the page are still required for recovery. The DBMS must
block for a sync operationbefore the key can be added to the page.

(2) If the sync token is greater than or equal to the last crash sync token but different from the glo
bal sync counter, the new key can be added normally. A sync operation has definitelycommittedPa and
Pb, and the keys on Pa will no longer be needed for recovery.

(3) If the page sync tokenis less than the last crash sync token, we cannot immediately tell if the
split was committed successfully. Hie DBMS has crashed since this page was written. If the page's
sibling from the lastsplitwaslostin thecrash, thebackup keys on thispagearestillneeded for recovery.

In the last case, the newPage pointeris used to findthe sibling. If a sibling page exists and has the
samesync token as the currentpage (or a largerone), the sibling does not need to be recovered; theparent
andbothhalves of pageP madeit to stablestorage afterthesplit If thesibling is zeroor hasan oldersync
token, the sibling is out of dateand must be recovered. After a new key is inserted, the prevNKeys field
should be zeroed so wedo notcheckfor inconsistencies until thenextpagesplit

3.5. Delete, Merge, and Rebalancing Operations

Deletes arenota very interesting case for either algorithm. Delete operations remove pointers from
pages rather than store them on pages, so deleting a keycannot cause an inter-page inconsistency unless it
results in a merge operation. Intra-page inconsistencies resulting from interrupted deletes are handled in
exactly the sameway as thoseresulting from interrupted inserts. Lanin andShasha [LanSha86] show that
B-tree merge operations can be handled using an algorithm analogous to the page split algorithm. Their
observation about non-shadowed B-trees is also true for shadowed B-trees.

In general, the balancing operations required by balanced B* -trees can be handled by the recovery
algorithms in the same way as page splits. For shadowing, the prevPtrs and the key ranges on the parent
allow us to repeat the balancing operation if the updated child page is lost ina system crash. For both page
splits and balancing operations, the key ranges on the parent are used to detect inter-page inconsistencies
and to determine the contents of the lost child page. There isno need to distinguish balancing operations
from page splits at recovery time. For the page reorganization algorithm, the keys which are implicitly
freed after the reorganization may be either high orlow, since either the right orleft sibling could be out of
balance.

3.6. Secondary Paths to Leaf Pages: Bff"*-tree

In B -tree indices, the performance of indexed scans is improved with a doubly-linked peer
pointer chain between leaf pages with consecutive keys (see Figure 4). The peer pointers allow scans to
move from leaf page to leaf page without reading additional internal pages. Key inserts still traverse the
path from root to leaf. When a page is split, the left neighbor (or right and left, in the shadow page algo
rithm) of the page must bere-linked sothat the peer pointer path isconsistent.

B"*-trees have more complicated failure modes than simple B-trees. There are two paths to any
given leaf page; a key on the leaf page may be reached by either the peer pointer or the root-to-leaf path.
Techniques like those described above could be used to correct inter-page inconsistencies ineither path,
but in the worst-case failure mode, the two pathscould become inconsistent with one another. For exam
ple, inFigure 5, the root-to-leaf path contains the post-split version ofa given page (in bold), while the old
peer pointer path contains thepre-split version of thepage.

Even this worst-case failure does notactually corrupt the index unless a key is added to or deleted
from one of the duplicate pages created by the failure. The transaction whose incomplete split created the
duplicate paths did not commit (otherwise both paths would have been successfully written todisk). Until
the first insert/delete after the failure, the duplicate pages contain the same setofvalid keys.

Figure 4: Normal B^-Tree

3.6.1. Detecting Inconsistencies in the Index

During a Bfffl*-tree scan, the peer pointer path is checked for inter-page inconsistencies. Unfor
tunately, the key ranges used to detect inconsistencies in the root-to-leaf path cannotbe used for the peer
pointer path. On the peer pointer path, a page does not know its peer's rangeand cannot record it accu
rately unlesseach page is also updated when its peer splits.

To detect inconsistent peer pointer paths, we use two additional sync token fields which must be
included in the page header - one associated with each peer pointer. If PI and P2 are peer pages, Pi's
pointer to P2 and P2's pointer to PI musthave the samesync token associated with them. When the peer
pointers are reconciled during thesplit, thesynctokens for thepeerpointers on the neighbor pagesmustbe
reset also.

Comparing twopeers' synctokens during pathtraversal willdetect anyinconsistency in thepath.If a
linkis broken by a crashduring update, the synctokens on adjacent pages will not agree. An inconsistent
link is repaired by following theroot-to-leaf path to thecorrect peer. If theroot-to-leaf pathis broken, it is
repaired using one of the repair algorithms described above.

Figure 5: Worst-Case Inconsistent Bffn*-Tree

Even sync tokens do not detect the existence of two completely separate pointer paths as occurs in
Figure 3. In this case, the peer pointer path is internally consistent (and the sync tokens match), but the
peer pointer path is not consistent with the root-to-leaf path. Whenever a key is inserted into a page P, we
must ensure that P is linked into the most recent peer pointer path.

When inserting a key into page P, the DBMS first checks that P's split token is greater than the last
crash sync token. If so, we know the page is part of a consistentpeer pointer path. The path only becomes
inconsistent during a system failure. Otherwise,the DBMS must followthe peer pointerpath in both direc
tions from the leaf page targeted for insert The search stops when a page with a different sync token is
discovered (page sync token not peer pointer sync token). If the peer pointer path is consistent until this
point the leaf page inserted into is reachable along the peer pointer path. Once this is done, we can mark
the page to avoid rechecking on subsequent insertions.

3.7. Dynamic Hashing for POSTGRES

In hash indices, a hash function applied to the index key determines the address of the page (bucket)
containing a (key, TTD) pair. Dynamic hashing algorithms allow the hash table to grow as keys are added
to it Linear hashing [Litwin80] maps the value produced by the hash function directly to a bucket address.
Extendible hashing [Fagin79] uses the hash value to find a directory entry. The directory entry contains a
pointer, which is used to find the bucket address.

As a hash table grows, additional bits of the hash value are considered when mapping key to hash
bucket If a bucket overflows before it can be split a second bucket is chained from the first using a
pointer link. A bucket is split by using the extra bit of the hash value to rehash keys into either the old
bucket (new bit is zero) or a new one (new bit is one). See [SelYig91] or [EnbDu88] for surveys of
dynamic hashing algorithms.

The POSTGRES index managementschemescan be appliedto dynamichashing,but are more appli
cable to extendible hashing than linear hashing. The shadowing algorithm can take advantage of the extra
level of indirection provided by the directory in extendible hashing. Only the page reorganization algo
rithmcould be used in a direct hashingalgorithm like linear hashing. Inconsistentdirectory pointers could
be detectedby storing the bit mask and the numberof bits considered in the bucket header (rather than key
ranges as in B-trees). Inconsistencies in pointers between overflow pagescan be detectedwithsplit tokens
in the same way aspeerpointers areinB""*-trees.

The shadowing algorithm will have some performance impact on extendible hashing. Extendible
hashing requires one I/O to lookup a key value if thedirectory entry is in memory and twoif thedirectory
entry mustbe fetched from disk. The shadowing scheme doubles the size of the directory (with a prev
pointer).

3.8. Concurrency Control

The POSTGRES B-treeimplementation usesa concurrency controlalgorithm based on Lehman-Yao
[8]. In Lehman-Yao, readers andwriters mustdescend thetreefrom rootto leafto find thepagecontaining
a given key. Writers ascendagainas splitsor deletes propagate up from the leaf. Whendescending, locks
are not coupled; readers always release one lock before acquiring the next When ascending, locks are
coupled; the lock on a child page is releasedonly after the correctparentpage is acquired. As pointedout
in [LanSha86], thisalgorithm is deadlock-free, since lockcoupling is onlyusedwhen traversing the tree in
one direction.

Lehman-Yao relieson the fact that the lower-valued keysof a splitpageremain on the original page.
Since this is not true in shadow B-trees, we add a newPage pointer to the B-tree page header. The
newPage pointer on the original page is set to point to the new left page. Whenever a process visits a page
with a non-nil newPage pointer, it traverses the link to the new page. This is analogous to the horizontal
movement required in Lehman-Yao if the datum of interest was on the high half of a split page. As in
B^-tree peer pointer links, sync tokens are used to detect inter-page inconsistencies in the newPage
pointer link. In page reorganization, we follow peer pointersas in Lehman-Yao.

We introducea new locking protocol to ensure that peer pointersare adjusted correctly. The proto
col relieson a new lock called a splitlock. Splitlocks conflictonly with split locks.

If a writer finds that a page mustbe split it releases its write lock, acquires a split lock, and reac
quires thewrite lock. It then splits thepage. Finally, the write lock isreleased andpeer pointers onneigh
boring pages areupdated. The split lock isreleased once the peer pointers have been updated. Locking out
concuirent splits guarantees that we can traverse link pointers to find neighbors and update their peer
pointers. Deadlocks areimpossible since processes acquire the split lock before thewrite lock, andacquire
only one such pair in the B-tree at a time.

Concurrent access can make inter-page links temporarily inconsistent, so our algorithm must distin
guish between true errors and false inconsistencies due to a concuirent update. In order to do this, we
traverse a linka second time if we suspect an error. If the linkis unchanged, the inconsistency is genuine
and must be repaired. A temporary inconsistency between peerpointers is caused by a splitof oneof the
twosiblings. The splitterwill restore consistency before releasing its write locks, so false inconsistencies
are always repaired before we can traverse the link for the second time.

Finally, we must ensure that the page is no longer in use at the time it is reallocated. Suppose, for
example, that a reader is descending from parent to child. It is possible for the reader to save a pointer to a
child page, release the lock on the parent and lock the childonly to find that anotherprocesshas split the
parent and recycled the child page.

Our algorithm calls on the reader to pin the buffer containing the child page in memory before
releasing the parent lock. The allocatorknows not to reallocate pages in buffers with a pin count greater
than one. The reader may unpin the buffer as soon as the child's lock is released. In case of page splits, a
writermustkeep the bufferpinneduntil it reascends after the update hascompleted. This solution does not
add synchronization overhead since the buffer must be pinned in memory before use anyway. Lanin and
Shasha [LanSha86] discuss two more complex techniques for solving this problem in the case of pages
recycled after the last key is deleted.

4. Using Shadow Indices in Logical Logging

Thus far, we have discussed the index consistency techniques in terms of the POSTGRES storage
system,however, the same techniques can be used to supportlogicalloggingin a conventionalWAL-based
storage system. In operational logical logging, records containing<keyJNSERT> or <keyJ)ELETE> are
stored in the log instead of records describing the physical changes to the index caused by the insert or
delete. In System R [GrayEtal81], index insert and delete operations were recorded implicitly when the
data record insertedor deleted was logged. ARIES/IM [MohLev89] doespage-oriented logical loggingof
index updates; it records the keys insertedintoor deleted from any page. On a page split, all keys moved
from one page to anothermustbe loggedas deletes on thesource pageandinserts on the destination page.

System R's operational logging has some performance advantages over ARIES' page-oriented log
ging. The ARIES log is longer than System R's log, since ARIESstores many <key,data> pairs after a split
or a merge. The longer log means more data needs to be written to disk on commit and more log pages
need to be read from the disk during recovery. The ARIES log takes up more space on disk as well.

More importantly, because operational logging stores a higher level representation of the logged
information, it is less likely than page-oriented logging to propagate damage caused by softwareerrors. If
an internal index page is corruptedby a software error, page-oriented logging will copy the corruptedkeys
into the log.During recovery, the corrupted keys will be restored to the index. Operational logging never
copies information from the index into the log. Corruption of the index page will not be retained after a
crash unless the corrupted page is saved in a checkpoint

Another possible fault tolerance advantage in operational logging - particularly the shadowing
implementation —is that the recovery code itself is simple. In general, recovery operations required by
operational logging exercise the same code used during normal operation. An index insert operation is
undone with an index delete operation. In POSTGRES, the only recovery code requiredby the shadowing
implementation is a test to detect matched key ranges when descending the treeand thecode to repeatthe
incomplete page split or page merge.

When comparing System R to ARIES, Mohan and Levine voice several objections to operational
logging:

Deadlocks During Undo: The usual response to a deadlock is to abort one of the deadlocked tran
sactions. Sinceabortrequires an undo, thepotential fordeadlocks during undo means onlyone transaction

10

can undo its effects at a time. Deadlock-free undos are possible using the concurrency control algorithm
described in section 3.7.

Concurrency Overhead During Recovery: If several processes are used for recovery, concurrency
overhead is incurred during logical undo and redo operations. ARIES recovery requires no concurrency
control for the index.

Concurrency control overhead exists in the algorithms discussed in this paper, but the locks involved
are short term, not transaction-duration as in System R. Simulations of the concurrency control scheme
from [LehYao81] have shown that in a workload with enough buffering for 75% of the B-tree, a 100%
insert workload is VO-bound even at high degrees of multi-programming [SriCar91]. This suggests that
concurrency control overhead will not limit recovery performance.

I/O Overhead During Recovery: Additional I/O operations are required during recovery because
logical undo operations must traverse the path from the root to leaf for every operation undone or redone.
Page-oriented recovery can usually undo or redo an operation with a single read and write of a leaf page.

The added I/O costs that come from full tree traversals during logical log recovery may also be offset
by the other advantages of operational logging. The root and the upper pages of the B-tree index will be
loaded in as the first few operations are processed. Unless memory is scarce, these pages will remain in
memory (and in use) during the rest of log processing. Page-oriented recovery may not require these pages
to be brought in during recovery, but the pages will have to be brought in before any useful work is done
with the index after recovery. Also, operational logging will actually reduce the number of disk reads
required to processthe log since the log itself is muchmorecompact

B-tree Consistency After Failures: DBMS failures can leave indices inconsistent unless the file
system usesshadowpaging.Mohanand Levine's objections to maintaining indexconsistency with shadow
pages are basedon thepoorperformance of shadow paging in System R.

Because System R used shadow paging in the file system, it had to use the technique to support
recovery onboth indices and data files. Fordata files, shadow paging reduced the performance ofsequen
tial scans dramatically. Shadow paging makes sequentially ordered pages in the file non-sequential on the
disk. The techniques also force an extra lookup (through the page map) for direct access tofile pages. The
consistency maintenance techniques described inthis paper allow either no shadowing atall (page reorgan
ization algorithm), orshadowing limited to index files only. In indices, the sequential order ofthe pages on
the disk is unimportant for performance. As shown in the next section, our shadowing-based algorithm
does have an impact on performance, but not aspronounced as the impact ofshadow paging on System R's
data files.

5. Performance

5.1. Modelling the Performance Effects of Increased TreeHeights

The biggest performance concern regarding POSTGRES B^-tree indices is that the additional
space overhead they incur will increase the height of the tree, thus driving up access costs. In order to
quantify this cost we analyzed growth rates for normal, page reorganization, andshadow BUnk-trees. As
expected, normal trees grow the slowest and shadow trees grow the fastest. Page reorganization trees
grow at nearly the same rate as normal trees, so we have omitted them from ouranalysis for the sake of
brevity.

Graph 1shows the variations in height between normal B-trees and B-trees built using our shadow
page strategy. For purposes ofthe comparison, we modelled two different key sizes (four bytes and twenty
bytes) for each tree. In order to guarantee that trees grew as quickly as possible, we assumed that keys
were inserted in order. We used a pagesizeof 8KBytes, since thisis thedefault in POSTGRES. Thelines
labelled "norm 4" and "shadow 4" show the capacities ofnormal and shadow Btfn*-trees storing four-
byte keys, respectively. The lines labelled "norm 20" and "shadow 20" show the storage capacity for
keys that are twenty bytes long. Note that theYaxis inthe graph is logarithmic.

As Graph 1shows, for trees ofheight one, the worst-case number ofkeys that can bestored isessen
tially the same for both implementations. At height two, noticeable differences inthe capacities ofthe two
implementations appear. These become more pronounced asthe trees grow inheight since the differences
in fanout at each level lead toexponential differences instorage capacity.

11

Number of

Keys

le407

le>06

1040S

1O404

10403

—

—

—.

nana 4

shadow 4

norm 20

shadow 20

10402 —J

1.00 iOO 3jOO 4X0

Height

Graph 1: Height ofTree for Different Size B-trees

The graph shows an interesting relationship between key size and relative tree capacity. At height
three, the difference in capacity between the trees storing twenty-bytekeys is much smaller than the differ
ence between those storing four-byte keys. This is because the reduction in fanout caused by shadowing is
a function of the ratio of overhead to key size. Larger keys haveproportionally less overhead, and show a
proportionally smaller reduction in fanout

In practice, overhead in the POSTGRES index management algorithms is unlikely to matter very
much. Small trees have few levels of internal pages, so the overhead due to prevPtrs is negligible even
when the keys are small. Because of the way that the trees grow, the heights of larger normal and shadow
BUnk -trees will coincide for most index sizes. Significant differences intree depth would arise ifkeys were
small and if the tree had many levels, however, even with the worst-case insertion order, a B^-tree of
either variety storing four-byte keys would exceed the 2 GByte maximum size of a UNIX file before it
would reach five levels.

5.2. Measurements of the POSTGRES BtfB*-tree Implementation
To measure the cost of using shadow and page reorganization indices, we ran two tests against each

type of index. The results are shown in Table 1. The first test inserted varying numbers of keys into the
indices. We built indices of three different sizes using four-byte keys. Keys were added in ascending
order so as to give worst-case split performance. In each test we measured elapsed time and the number of
page splits for each type of index. The second test retrieved 8,000 random keys from each index created in
the insertion test Keys were distributed throughout the range represented in the index. Measurements
were made on a Decstation 5000/200 running Ultrix 4.0 and a specially-instrumented version of
POSTGRES. Times are recordedby calls to the gettimeofdayO system routine. Clockresolution is 16.667
milliseconds. Only timespentin theBttttk -tree access method, andin theroutines thatit calls,is included in
these figures. This includes time spent doing disk I/O, but does not include the cost of committingtransac
tions. Commitcost will dependon the loggingschemechosen.

The times shown in Table 1 are the means of ten repetitions of each test. In all cases, the standard
deviation of the measurements we took was less than 2.5% of the mean. For each time shown in the table,

12

Operation
B-tree Type

Size of Index in]Keys

10,000 20,000 40,000

Inserts

Normal

Page Reorg

Shadow

12.065 s

(1.000)
24.269 s

(1.000)
51.307 s
(1.000)

12.584 s

(1.043)
25.191 s

(1.038)
53.718 s

(1.047)

12.318 s

(1.021)
24.924 s

(1.027)
52.282 s

(1.019)

8,000 Lookups
Normal

PageReorg

Shadow

9.122 s

(1.000)
12.492 s

(1.000)
19.536 s

(1.000)

9.441s

(1.035)
12.879 s

(1.031)
20.259 s

(1.037)

9.368 s

(1.027)
12.892 s

(1.032)
20.200 s

(1.034)

Table 1: Insert/Lookup Performance Comparison

we provide a direct comparison to the corresponding cost for the ordinary BtfA*-tree algorithm. The
numbers in parentheses are the time for the test expressed on a normalized scale, where the time for the
same testonthestandard BUnk-tree algorithm isdefined tobeone.

The results clearly show that the shadow algorithm is within three percent of the cost of ordinary
BBak -trees for insertions. The higher cost is due to the added expense of verifying inter-page links in
traversing die tree. For reads, the shadow tree percentages are about three anda halfpercent worse than
ordinary B^"*-trees.

Costs for the page reorganization algorithm are similar. Reads are between three andfour percent
more expensive than for thenormal tree. Page reorganization insertions, however, are more expensive -
between three andfive percent higher than the cost forinsertions into anordinary B^-tree. Themain rea
son for this is thatextra work must be done toorder data onold pages during splits. Asnoted elsewhere in
thispaper, page reorganization is best suited to environmentswith low insertion rates.

The overall cost ofusing either index management strategy is likely tobevery small for many work
loads. For example, in the Wisconsin benchmark [Bitton83], POSTGRES spends only 3.6 percent of its
time in the indexed access methods. Even 4.7 percent of this - our worst performance degradation - is
smaller than the measurement error in the benchmark.

6. Summary

The POSTGRES DBMS relies on a no-overwrite storage system to avoid log processing during
recovery. Byavoiding log processing, POSTGRES recovers from failures quickly and eliminates a great
deal ofthe complex recovery code found inmost data managers. Unfortunately, concurrency requirements
and inter-page pointers make the POSTGRES storage system more worthwhile for heap relations than for
indices.

In this paper, we have presented two techniques for managing indices without using write-ahead log
processing or the no-overwrite techniques of the POSTGRES storage system. The first technique is based
on shadow paging; the second on page reorganization during splits. Both algorithms use redundant infor
mation in index pages todetect inconsistencies caused bysystem failures as they are encountered. Incon
sistencies are removed by repeating the interrupted page split or merge operations. The two techniques
will also be useful in WAL-based data managers that want toavoid physical logging during page splits.
Measurements of a prototype implementation and estimates of the effect of the algorithm on tree height
suggest thatthealgorithms willhavelittleoverall effect ondatamanager performance.

The height estimates and performance measurements also indicate that a hybrid between the two
algorithms could reduce costs while preserving the best features of each algorithm. Using shadow paging

13

near the leaf pages wouldeliminate the cost of page reorganization splits in the part of the tree in which
splits are most common. Using page reorganization nearer theroot would reduce space overhead caused
by prevPtrs in internal pagesand significantly increase fanout

Acknowledgements

We would like to thank Mike Stonebraker, David Bacon,JenniferCaetta, Nat Goodman, and Ethan
Munson for suggestions and encouragement Discussions with Margo Seltzer and Wei Hong were espe
cially helpful.

References

[BayMc72]R. Bayer, C. McCreight "Organization and Maintenance of Large Ordered Indexes," Acta
Informatica, 1(3):173-189,1972.

[Bitton83] D. Bitten, D. DeWitt, C. Turbyfill, "Benchmarking Database Systems, a Systematic
Approach," Proc. Ninth International Conf. onVery Large Databases,, November 1983.

[Comer79]D.Comer. "The Ubiquitous B-Tree,"ACM Computing Surveys, 11(4), 1979.

[EnbDu88] Enbody, R. J., Du, H. C, "Dynamic Hashing Schemes," ACM Computing Surveys,
20(2):85-113, June 1988.

[Fagin79] R. Fagin, J. Nieverrgelt, N. Pippenger, H. Strong, "Extensible Hashing -- A FastAccess
Method for Dynamic Hashing," ACAf Trans, on Database Systems,4(3):315-334, Sept 1979.

[GrayEtal81] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Putzolu, L Traiger.
"The Recovery Manager of the System R Database Manager," Computing Surveys, 13(2):223-242,
June 1981.

[Guttman84] A. Guttman. "R-Trees: A Dynamic Index Structure for Spatial Searching," Proc. ACM
SIGMOD Conference, pages 47-57,1984.

[LanSha86] V. Lanin, D. Shasha. "A Symmetric Concurrent B-tree Algorithm," Proc. Fall Joint Com
puter Conference, pages 380-389,1986.

[LehYao81] P. Lehman, S. Yao. "Efficient Locking for ConcurrentOperationson B-trees," ACM Trans,
on Database Systems, 6(4), December 1981.

[Litwin80] Witold, Litwin, "Linear Hashing: A New Tool for File and Table Addressing," Proc. Sixth
International Conf. on Very Large Databases, 1980.

[Lorie77] R. Lorie, "Physical Integrity in a Large Segmented Database," ACM Trans, on Database Sys
tems, 2(1):91-104, March 1977.

[MenLan81] D. Menasce, O. Landes. "Dynamic Crash Recoveryof Balanced Trees," Proc. Symposium
on Reliability in Distributed Software and Database Systems, pages 131-137, July 1981.

[MohLev89] C. Mohan, F. Levine, "ARIES/IM: An Efficient and High Concurrency Index Management
Method Using Write Ahead Logging," IBM Technical ReportRJ 6846,1989

[SelYig911 M. Seltzer, O. Yigit "A New Hashing Package forUNIX," Proc. of the Winter '91 Usenix
Technical Conference, January 1991.

14

[SriCar91] V. Srinivasan, M. Carey. "Performance of B-Tree Concurrency Control Algorithms," Proc.
ACM SIGMOD Conference, pages 416-425, June 1991.

[Stone87] M. Stonebraker, "The POSTGRES Storage System," Proc. Thirteenth Conf. on Very Large
Data Bases, pages 289-300, September 1987.

15

