Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN INDEX IMPLEMENTATION SUPPORTING
FAST RECOVERY FOR THE POSTGRES
STORAGE SYSTEM

by

Mark Sullivan and Michael Olson

Memorandum No. UCB/ERL M91/98

6 November 1991

AN INDEX IMPLEMENTATION SUPPORTING
FAST RECOVERY FOR THE POSTGRES
STORAGE SYSTEM

by

Mark Sullivan and Michael Olson

Memorandum No. UCB/ERL M91/98

6 November 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

AN INDEX IMPLEMENTATION SUPPORTING
FAST RECOVERY FOR THE POSTGRES
STORAGE SYSTEM

by

Mark Sullivan and Michael Olson

Memorandum No. UCB/ERL M91/98

6 November 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

An Index Implementation Supporting Fast Recovery
for the POSTGRES Storage System

Mark Sullivan
Michael Olson

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, California 94720

Abstract

This paper presents two algorithms for maintaining B-tree index consistency in a DBMS which does not
use write-ahead logging (WAL). One algorithm is similar to shadow paging, but improves performance by
integrating shadow meta-data with index meta-data. The other algorithm uses a two-phase page reorgani-
zation scheme to reduce the space overhead caused by shadow paging. Although designed for the
POSTGRES storage system, these algorithms would also be useful in a WAL-based storage system as sup-
port for logical logging. Measurements of a prototype implementation and estimates of the effect of the
algorithms on large trees show that they will have little impact on data manager performance.

This work is supported by National Science Foundation grant MIP-8715235

1. Introduction

The POSTGRES storage system uses no-overwrite techniques to combine support for historical data
with support for transaction management [Stone87). Instead of write-ahead log processing, POS:I‘GR.ES
recovers from failures by falling back to the latest version of its preserved historical data. Using historical
data in place of a conventional log gives POSTGRES important availability and reliability advantages over
other database management systems. Data availability improves because the DBMS can restart after a
failure in seconds. The database is always consistent without log processing, so restart need only initialize
in-memory data structures. The no-overwrite storage system increases software reliability by eliminating
special-case recovery code from data manager. Recovery code is notoriously difficult to test and debug.
By eliminating log processing, POSTGRES provides transaction support without special recovery code.

To manage unkeyed (heap) relations without a write-ahead log, the POSTGRES storage system turns
tuple updates into append operations. On an update, a new version of the tuple is created. Each tuple ver-
sion contains the transaction identifier (XID) of the transaction that created it and the one that deleted or
updated it. A transaction status file is used to keep track of the commit/abort status of each transaction.
Using tuple headers and the status file, POSTGRES can ignore aborted or out-of-date tuples during relation
scans. A background process eventually garbage collects invalid tuples in order to reclaim disk space.

Management of indices without a write-ahead log poses several problems which were not present for
heap relations. Heap tuple access is synchronized using two-phase locks in POSTGRES. The need for
high concurrency in indices, however, dictates that access to index pages be synchronized using short-term
locks. A strategy for validating updates based on XIDs will not work with short-term locking. One tran-
saction must see changes to the index caused by another as soon as the lock is released, not at commit time.
A transaction must also be able to update an index and abort without undoing its effects on the index.

A more important problem for index management is that index data structures include pointers
between disk pages. A single update to the index can change several pages and the pointer links among
them. Failing after some but not all of the pages have been written to stable storage leaves the index incon-
sistent. In a DBMS which uses a write-ahead log (WAL) protocol for recovery, the atomicity of index
updates is guaranteed by log processing at recovery time. POSTGRES has no log, so it requires other solu-
tions.

In [MenLan81], the DBMS maintains consistency of B-tree indices by adding extra synchronous disk
writes and by controlling write order. POSTGRES index management assumes that synchronous writes to
a single file are unordered for two reasons. First, using several synchronous writes per page split would
significantly worsen page split performance. Controlling write order in a single multi-page synchronous
write is impossible in UNIX-based operating systems and would worsen the performance of disk schedul-
ing algorithms even if it were possible. A second and more important reason not to depend on write order-
ing for index management is that it will not work for some common kinds of indices. The B*™ -trees used
in POSTGRES have several paths to any B-tree leaf page. No write order sequence exists that will leave
the data structure consistent during the entire page split. An example is given in section 3.6.

This paper presents two general techniques for maintaining index consistency without using write-
ahead logging. Although we have implemented them only for B -trees, the same techniques can be used
for R-trees [Guttman84), extensible hash indices [Fagin79], and other B-tree variants such as B’ -trees
(Comer79]. In both techniques, the DBMS detects on first use any inconsistencies in the index caused by
interrupted updates. When an inconsistency in the index is discovered, consistency is restored by reexecut-
ing incomplete page split or merge operations. Again, to maintain reliability, the two techniques largely
avoid special case recovery code. The recovery operation for a page split is nearly the same as the normal
page split operation.

One technique uses a no-overwrite strategy which is similar to shadow paging [Lorie77). The before
image of a page to be split is left intact on stable storage until the two half-pages resulting from the split
have been written out. The other technique uses a two-phase page reorganization scheme to ensure that
keys moved from one page to another in a split are always available on either the source or destination
page. Using shadows in indices but not in heap relations eliminates the properties of shadow paging that
made it perform poorly in System R [GrayEtal81]. Shadow paging makes sequentially ordered pages in
the file non-sequential on the disk, but sequential ordering is not an issue for index files. Shadow paging
also slows direct access by forcing an extra lookup (through the page map) before data can be accessed.
By storing the shadow meta-data in B-tree internal pages, we reduce its impact on performance. The

shadow paging technique, however, still has larger space overhead than a normal index.

The second technique, page reorganization, eliminates that space overhead, but performs poorly
\yhen the same index page splits many times during the same transaction. A hybrid between the two algo-
rithms could preserve the best features of each. Using shadow paging near the leaf pages where splits are

most common would improve split performance; using page reorganization nearer the root would reduce
space overhead.

The index management techniques used in POSTGRES can even improve the performance and relia-
bility of a conventional DBMS which uses logical logging to record index updates. Logical logging works
only if system failures do not make the index become structurally inconsistent. B-tree index implementa-
tions often require physical logging of the keys involved in page splits or merges in order to maintain con-
sistency (e.g. [MohLev89]). Combining logical logging and the POSTGRES shadow paging or page reor-
ganization indices would make the write-ahead log more compact and prevent B-tree keys corrupted by
software errors from propagating into the log.

This paper is divided into five parts. The first part gives some assumptions and some background
information about POSTGRES. The second part is a detailed description of the techniques for managing
POSTGRES indices. A third section discusses the implications of the technique for logical logging in a
WAL storage system, and compares our techniques to System R’s shadow paging scheme. The fourth sec-
tion evaluates the performance impact of no-overwrite B-trees on the data manager, and a fifth section
gives conclusions.

2. Assumptions

As in [LehYao81], we assume that no duplicate keys are stored in indices. In POSTGRES, any key
value, V, is changed to a pair <V, OID> before it is entered into the index. Here, OID is the unique object
identifier associated with the object referred to by the index entry. Because the OIDs are unique, the keys
inserted into the index are unique.

In POSTGRES, all pages touched by a transaction must be written to stable storage before the tran-
saction commits. For the purposes of this paper, when the DBMS syncs its pages, all modified pages are
written to disk. They are written to disk in an order chosen by the operating system, not the DBMS. When
a crash occurs during a sync operation, any subset of the synced pages may have been written to disk. We
assume that single-page disk writes are atomic. The sync system call is assumed either to block the DBMS
or to notify the DBMS when all the page writes have been completed. The sync operation corresponds to
the support for write ordering provided by the UNIX operating system.

To make the index recoverable without log processing, the DBMS must ensure that currently valid
keys are visible and invalid keys are invisible to index lookup operations. The POSTGRES storage system
can detect and ignore records pointed to by invalid keys, so recovery only needs to ensure that valid keys
are not lost.

In POSTGRES indices, there are two possible sources of inconsistencies: inter-page and intra-page
inconsistencies. Inter-page inconsistencies occur when a pointer to a page B is stored in a page A. A
failure could occur after A has been written to stable storage but before B has been. An intra-page incon-
sistency happens if a page is written to stable storage while the DBMS is adding a key to the page or delet-
ing a key from it. This can happen easily in POSTGRES if two transactions insert keys into the same page.
If the first commits and forces the page to be written to stable storage while the second is in the middle of
an insert, the page on stable storage will be inconsistent. After a crash, the DBMS must be able to detect
that the page is inconsistent and repair it.

3. Support for POSTGRES Indices

This section describes two algorithms for implementing indices in the POSTGRES storage system.
We will describe both in terms of B“*-trees, but R-trees [Guttman84] can be managed using the same
algorithms. R-trees are like simple B-trees (not B“" -trees) in which keys represent rectangular regions.
The differences between the two data structures will not affect the techniques we have used to maintain
index consistency. We also discuss techniques analogous to those discussed for B“**-trees which can be
used with extensible hashing [Fagin79].

This section describes the basic B-tree data structure, then the modifications to that data structure
required for the POSTGRES shadow and page reorganization algorithms. Separate sections highlight the
parts of the algorithms required to support B“* -trees, delete operations, and short term locking.

3.1. Traditional B-tree Data Structure

In a traditional B-tree [BayMc72], each page of the tree contains an array of <key,data> pairs and a
header which describes space allocation on the page (see Figure 1). The order of the keys on the page is
recorded by a line table (described in [MohLev89]). The line table entries are ordered by the key values in
the <key,data> pairs. Each entry of the line table contains an offset to the beginning of a <key, data> pair
in the page. On an internal page, the data element associated with a key is a pointer to a child page. Ona
leaf page, the data element associated with a key is a tuple identifier (TID) -- a pointer to a data page and a
line table entry on that page.

Comer [Comer79] describes B-tree data structures in some detail, but several details of the insert and
delete operations are important enough for our algorithms to summarize here. If a new key is added to a
page, the line table entries are reordered, not the <key,data> elements stored on the page. In the simplest
B-tree, a split occurs when the amount of free space in a page goes below a threshold. To split a page, one
new page is allocated. Half of the <key,data> pairs from the old page are inserted into the new one and
deleted from the old. A (key,data) pair representing the new page is added to the split page’s parent.

Some variations of the B-tree data structure use a merge operation to rebalance two neighbor pages if
inserts or deletes cause one page to have many more keys than its neighbor. Merge moves keys from the

heavy page to the light one and adjusts the key value on the parent page to reflect the change. When the
last key is removed from a page, the page is freed.

3.2. Sync Tokens and Synchronous Writes

The POSTGRES index management algorithms use a global sync counter maintained by the DBMS
to remember which pages were written out during a given sync operation. After every sync operation in
which an index split occurred, the DBMS increments the global sync counter. A maximum sync counter
guaranteed to be larger than the global sync counter is maintained on stable storage. If the current global
sync counter approaches the maximum, a new maximum must be chosen and written to stable storage.
After a crash, the maximum sync counter is used to reinitialize the global sync counter.

A sync token is the value of the global sync counter at one point in time. Sync tokens are saved on
index pages to detect inter-page inconsistencies. The last crash sync token is the initialization value used
when the DBMS recovered from the most recent system crash. If the DBMS shuts down cleanly, the global
sync counter and last crash sync token are written to stable storage. Intra-page inconsistencies are detected
when two adjacent entries in the line table contain the same offset value.

Header >] #T*bl
= |
/ Key
ChildPtr
Key Key Key Key
ChildPtr | ChildPtr | ChildPtr | ChildPtr

Figure 1: Normal B-tree Page

3.3. Techmnique One: Shadow Paging

In POSTGRES shadow B-trees, every key on an intemal page contains a pointer to the current and
previous version of the child page associated with the key. Instead of an array of <key, childPtr> pairs on
the page, the shadow B-tree page is an array of <key, childPtr, prevPtr> triples (see Figure 2). The previous
page associated with a key is a page guaranteed to be on stable storage containing the key value. If the
childPtr is ever found to be inconsistent, the prev page is used to build a new child page.

When splitting a B-tree page, P, two new pages are allocated — call them P, and P,,. Half of the keys
from P are copied to P, and half to P,. During the split, the keys on P are neither modified nor overwrit-
ten. When P, and P, are initialized, the value of the global sync counter is recorded in a syncToken field
in each page’s header.

After the split, P’s parent page, A, must be updated. Page A initially contains a key K1 which points
to P. The traditional B-tree split algorithm calls for a new key, K2, containing a pointer to P,, to be added
to A. In the shadow paging algorithm, A is updated in the following manner:

(1) The new key K2 is allocated on A. K2's childPtr field contains the page number of page P,.

(2) If P’s sync token is different from the current global sync counter, P must have been written to
stable storage already. In this case, the prevPirs for both K2 and K1 are set to point to P, and P is added to
an in-memory to-be-freed list. After the next sync operation, P will be added to the index freelist.

(3) If P’s sync token is the same as the current global sync counter, the prevPtr for K1 must be
reused since P is not yet on stable storage. K1’s prevPtr is assigned to K2's, and P is freed immediately.
This situation only occurs if two splits occur at the same key between sync operations.

(4) K2 is inserted into the page A’s line table.
(5) Key K1 is modified so that its childPtr field contains the page number of P, instead of P.

If adding K2 to the page A causes A to split, the same algorithm is followed unless A is the B-tree
root page. If the root page splits, a new root page is created containing two <key,data> pairs pointing to
the two halves of the old root. The first page of the index is a meta-data page containing a pointer to the
current root of the tree. Like internal page keys, the root pointer must contain a previous and current page
pointer.

In order to prevent an intra-page inconsistency, we must be careful when adding K2 to the line table.
The line table entries are intra-page pointers — offsets within the page — which point to key values. The
line table is ordered, so the line table entry following K1’s offset is selected to hold K2’s offset. The line
table is extended by first copying the last entry in the line table one element beyond the line table, then
incrementing the nKeys field of the page header. Next, all of the line table entries between K1’s and the
last one are copied one entry to the right of their current position. Finally, K2's offset is saved in the entry
after K1’s,

P bl
=V\° K2 —
K1 M p
pov oar
ANJ K1 ><
prev P,

Before After
Figure 2: Shadowing Page Split

3.3.1. Detecting Inconsistencies in the Index

A crash during a B-tree update can cause an inconsistency only if the parent, A, is written to stable
storage before the crash, but not the child. In that case, A points to an uninitialized page or a page tl)at has
been reused. If A was not written, then the new child page is inaccessible, but the parent-child link is con-
sistent.

When descending from A to P, the DBMS determines from A the minimum and maximum key
values that should be on P before stepping from A to P. At P, the minimum and maximum key values actu-
ally present on the page are compared to the expected key range. If the key ranges are the same, the
parent-child link is consistent and the search can continue. If the key ranges differ or if the page is zeroed,
the DBMS has detected an inter-page inconsistency. Intra-page inconsistencies are detected when two
adjacent entries in the line table contain the same offset value.

3.3.2. Repairing Inconsistencies in the Index

As soon as a broken inter-page pointer link is discovered, the DBMS must redo the interrupted page
split operation. The prevPtr shows the page that existed before the split. To reinitialize the out-of-date
child page, the DBMS uses the keys on the parent page to determine the range of keys that were on the
missing page. These keys are copied directly to the child page from the page pointed to by prevPtr. The
sync token on the child page is initialized to the current global sync counter. After the child page has been
reinitialized, the B-tree search can continue.

If the root page is split and the new version of the root is lost, the prevChild page is copied directly to
the child page. If no root page existed before the failure (i.e. all keys inserted into the tree were lost), the
root has no prevChild page and is initialized to an empty page. :

The DBMS repairs an intra-page inconsistency by deleting the duplicate entry. The DBMS copies
line table entries left until the duplicate is the last entry in the line table, then, decrements nKeys in the
page header.

3.3.3. Free Space Management

During normal operation, pages freed from an index are kept on an in-memory freelist associated
with that index. Because the freelist is in volatile storage, it does not survive system failures and must
eventually be regenerated after a failure. In a UNIX-based file system, a new page may always be allo-
cated, when the freelist is empty, by extending the index file.

POSTGRES heap relations require a garbage collector as part of the storage system’s archiving
feature [Stone87]. Adding index freelist regeneration to its current archiving tasks does not make garbage
collection much more expensive. If the DBMS is shutdown cleanly, the current index freelist should be
written to disk. When the DBMS is restarted, the freelist on disk must be deleted before any of the pages on
the list are reallocated. Otherwise, a crash will cause the old freelist to be valid again and allow the pages
to be allocated twice. ’

For shadow indices, the key range associated with each page in the freelist must be stored in the
freelist along with the page number. Key ranges are used to detect inconsistencies that occur when the
child page was not written to disk. If the same page were reallocated for the same key range, there would
be no way to tell if the new version of the page were lost in a crash.

3.4. Technique Two: Page Reorganization

The B-tree modifications described above add four bytes to each key on an internal page (for a
prevPir). If keys are small, the extra four bytes will reduce B-tree fanout and increase the height of the tree.
Increasing the height of the tree increases the average cost of data access.

The page reorganization algorithm reduces this loss of fanout by eliminating the prevPtr from the
<key,data> pairs in a B-tree page. In this algorithm, however, splitting page P does not reclaim space on
the page immediately. During the split, the DBMS copies half the keys on P to a new page and reorganizes
P according to the algorithm described below (see Figure 3). After reorganization, P’s original keys are
intact on the page. Once a sync operation successfully writes the reorganized P and its new peer to stable
storage, the space on page P containing the duplicated keys is reclaimed. If the DBMS fails after P is writ-
ten to stable storage but before P’s new peer is, no keys are lost. The reorganized page P can still be used

for recovery.

The page reorganization algorithm adds a field prevNKeys and newPage to the page header. If the
prevNKeys field on a page is non-zero, the page still contains backup keys to be used in recovery. If
prevNKeys is zero, the page is safe for update. Below, we describe a split of page P into P, and P,,. P, is
the reorganized page. P, is the page that will contain the new key that caused the split. Note that P, may
be either the left or the right child after the split. The newPage pointer in the reorganized page (P,) points

to P, ; newPage in P, is nil.
A split of page P proceeds as follows:

(1) Two new pages are allocated. P, is allocated in memory only; it is not backed up on the disk.
P, is allocated normally.

(2) Half of P’s keys are copied to P, and half to P,, just as in a normal split. The prevNKeys field
on P, is initialized to zero. On P,,, itis initialized with the number of keys on the original page P.

(3) The keys from P, are now copied to the free space area of P,. These keys are not allocated on
the page, just copied into the page’s free space region. A line table for the keys is set up just beyond the
line table for P,. P, is guaranteed to have space enough for P,’s keys and line table because all of this
information was stored on the original page P.

(4) The sync tokens of P, and P, are initialized using the global sync counter.
(5) P, is remapped (in the in-memory buffer pool meta-data) to P’s location on disk.

(6) The new key whose insertion caused the split is added to P,. P’s parent page is now updated to
reflect the split.

If the next sync fails, one of five inconsistencies can occur:
(a) only P, is written to disk (replacing P),
(b) only P, and P, are written (P,, is inaccessible),
(c) only the parent and P, are written,
(d) only the parent and P,, are written,
(e) only the parent is written.

If only P, is written, the tree is not inconsistent (but page P, is lost).

In cases (a) and (b), the tree becomes consistent by regenerating P (assigning prevNKeys to nKeys
reallocates the duplicate keys). In case (c), P, is regenerated by copying the duplicate keys saved on 1",3 .
In case (d), P, is regenerated by removing the keys that are represented on P,. In case (), the split is

Header

Before | X3 __ ¢
K1 -

K4

Header I

5

Header 11

K4
K3 - [4
K2 L 3 K4 v
K1 K3

Figure 3: Page Split For Page Reorganization

repeated to generate both P, and P,,.

Every time a key is added to or deleted from a page, the DBMS must check whether or not the &ee
space on the page needs to be reclaimed. If the prevNKeys field is zero, there are no extra keys stored in
free space. Otherwise, the sync token on the page must be checked. There are three cases:

(1) If the sync token is the same as the global sync counter, no sync operation has occurred since the
page was initialized, so the duplicate keys on the page are still required for recovery. The DBMS must
block for a sync operation before the key can be added to the page.

(2) If the sync token is greater than or equal to the last crash sync token bug different fgom the glo-
bal sync counter, the new key can be added normally. A sync operation has definitely committed P, and
Py, and the keys on P, will no longer be needed for recovery.

(3) If the page sync token is less than the last crash sync token, we cannot immediately tell if the
split was committed successfully. The DBMS has crashed since this page was written. If the page’s
sibling from the last split was lost in the crash, the backup keys on this page are still needed for recovery.

In the last case, the newPage pointer is used to find the sibling. If a sibling page exists and has the
same sync token as the current page (or a larger one), the sibling does not need to be recovered; the parent
and both halves of page P made it to stable storage after the split. If the sibling is zero or has an older sync
token, the sibling is out of date and must be recovered. After a new key is inserted, the prevNKeys field
shouid be zeroed so we do not check for inconsistencies until the next page split.

3.5. Delete, Merge, and Rebalancing Operations

Deletes are not a very interesting case for either algorithm. Delete operations remove pointers from
pages rather than store them on pages, so deleting a key cannot cause an inter-page inconsistency unless it
results in a merge operation. Intra-page inconsistencies resulting from interrupted deletes are handled in
exactly the same way as those resulting from interrupted inserts. Lanin and Shasha [LanSha86) show that
B-tree merge operations can be handled using an algorithm analogous to the page split algorithm. Their
observation about non-shadowed B-trees is also true for shadowed B-trees.

In general, the balancing operations required by balanced B’ -trees can be handled by the recovery
algorithms in the same way as page splits. For shadowing, the prevPtrs and the key ranges on the parent
allow us to repeat the balancing operation if the updated child page is lost in a system crash. For both page
splits and balancing operations, the key ranges on the parent are used to detect inter-page inconsistencies
and to determine the contents of the lost child page. There is no need to distinguish balancing operations
from page splits at recovery time. For the page reorganization algorithm, the keys which are implicitly
freed after the reorganization may be either high or low, since either the right or left sibling could be out of
balance.

3.6. Secondary Paths to Leaf Pages: B“** -tree

In B®*.tree indices, the performance of indexed scans is improved with a doubly-linked peer
pointer chain between leaf pages with consecutive keys (see Figure 4). The peer pointers allow scans to
move from leaf page to leaf page without reading additional internal pages. Key inserts still traverse the
path from root to leaf. When a page is split, the left neighbor (or right and left, in the shadow page algo-
rithm) of the page must be re-linked so that the peer pointer path is consistent.

B“*trees have more complicated failure modes than simple B-trees. There are two paths to any
given leaf page; a key on the leaf page may be reached by either the peer pointer or the root-to-leaf path.
Techniques like those described above could be used to comect inter-page inconsistencies in either path,
but, in the worst-case failure mode, the two paths could become inconsistent with one another. For exam-
ple, in Figure 5, the root-to-leaf path contains the post-split version of a given page (in bold), while the old
peer pointer path contains the pre-split version of the page.

Even this worst-case failure does not actually corrupt the index unless a key is added to or deleted
from one of the duplicate pages created by the failure. The transaction whose incomplete split created the
duplicate paths did not commit (otherwise both paths would have been successfully written to disk). Until
the first insert/delete after the failure, the duplicate pages contain the same set of valid keys.

Figure 4: Normal B“*.Tree

3.6.1. Detecting Inconsistencies in the Index

During a B“*.tree scan, the peer pointer path is checked for inter-page inconsistencies. Unfor-
tunately, the key ranges used to detect inconsistencies in the root-to-leaf path cannot be used for the peer
pointer path. On the peer pointer path, a page does not know its peer’s range and cannot record it accu-
rately unless each page is also updated when its peer splits.

To detect inconsistent peer pointer paths, we use two additional sync token fields which must be
included in the page header — one associated with each peer pointer. If P1 and P2 are ‘peer pages, P1’s
pointer to P2 and P2’s pointer to P1 must have the same sync token associated with them. When the peer

pointers are reconciled during the split, the sync tokens for the peer pointers on the neighbor pages must be
reset also.

Comparing two peers’ sync tokens during path traversal will detect any inconsistency in the path. If a
link is broken by a crash during update, the sync tokens on adjacent pages will not agree. An inconsistent
link is repaired by following the root-to-leaf path to the correct peer. If the root-to-leaf path is broken, it is
repaired using one of the repair algorithms described above.

Figure 5: Worst-Case Inconsistent B“**-Tree

Even sync tokens do not detect the existence of two completely separate pointer paths as occurs in
Figure 3. In this case, the peer pointer path is internally consistent (and the sync tokens match), but the
peer pointer path is not consistent with the root-to-leaf path. Whenever a key is inserted into a page P, we
must ensure that P is linked into the most recent peer pointer path.

When inserting a key into page P, the DBMS first checks that P’s split token is greater than the last
crash sync token. If so, we know the page is part of a consistent peer pointer path. The path only becomes
inconsistent during a system failure. Otherwise, the DBMS must follow the peer pointer path in both direc-
tions from the leaf page targeted for insert. The search stops when a page with a different sync token is
discovered (page sync token not peer pointer sync token). If the peer pointer path is consistent until this
point, the leaf page inserted into is reachable along the peer pointer path. Once this is done, we can mark
the page to avoid rechecking on subsequent insertions.

3.7. Dynamic Hashing for POSTGRES

In hash indices, a hash function applied to the index key determines the address of the page (bucket)
containing a (key, TID) pair. Dynamic hashing algorithms allow the hash table to grow as keys are added
to it. Linear hashing [Litwin80] maps the value produced by the hash function directly to a bucket address.
Extendible hashing [Fagin79] uses the hash value to find a directory entry. The directory entry contains a
pointer, which is used to find the bucket address.

As a hash table grows, additional bits of the hash value are considered when mapping key to hash
bucket. If a bucket overflows before it can be split, a second bucket is chained from the first using a
pointer link. A bucket is split by using the extra bit of the hash value to rehash keys into either the old
bucket (new bit is zero) or a new one (new bit is one). See [SelYig91] or [EnbDu88] for surveys of
dynamic hashing algorithms.

The POSTGRES index management schemes can be applied to dynamic hashing, but are more appli-
cable to extendible hashing than linear hashing. The shadowing algorithm can take advantage of the extra
level of indirection provided by the directory in extendible hashing. Only the page reorganization algo-
rithm could be used in a direct hashing algorithm like linear hashing. Inconsistent directory pointers could
be detected by storing the bit mask and the number of bits considered in the bucket header (rather than key
ranges as in B-trees). Inconsistencies in Fointers between overflow pages can be detected with split tokens
in the same way as peer pointers are in B*** -trees.

The shadowing algorithm will have some performance impact on extendible hashing. Extendible
hashing requires one I/O to lookup a key value if the directory entry is in memory and two if the directory
entry must be fetched from disk. The shadowing scheme doubles the size of the directory (with a prev
pointer).

3.8. Concurrency Control

The POSTGRES B-tree implementation uses a concurrency control algorithm based on Lehman-Yao
[8]. In Lehman-Yao, readers and writers must descend the tree from root to leaf to find the page containing
a given key. Writers ascend again as splits or deletes propagate up from the leaf. When descending, locks
are not coupled; readers always release one lock before acquiring the next. When ascending, locks are
coupled; the lock on a child page is released only after the correct parent page is acquired. As pointed out
in [LanSha86], this algorithm is deadlock-free, since lock coupling is only used when traversing the tree in
one direction.

Lehman-Yao relies on the fact that the lower-valued keys of a split page remain on the original page.
Since this is not true in shadow B-trees, we add a newPage pointer to the B-tree page header. The
newPage pointer on the original page is set to point to the new left page. Whenever a process visits a page
with a non-nil newPage pointer, it traverses the link to the new page. This is analogous to the horizontal
movement required in Lehman-Yao if the datum of interest was on the high half of a split page. As in
B“™*.tree peer pointer links, sync tokens are used to detect inter-page inconsistencies in the newPage
pointer link. In page reorganization, we follow peer pointers as in Lehman-Yao.

We introduce a new locking protocol to ensure that peer pointers are adjusted correctly. The proto-
col relies on a new lock called a split lock. Split locks conflict only with split locks.

If a writer finds that a page must be split, it releases its write lock, acquires a split lock, and reac-
quires the write lock. It then splits the page. Finally, the write lock is released and peer pointers on neigh-
boring pages are updated. The split lock is released once the peer pointers have been updated. Locking out
concurrent splits guarantees that we can traverse link pointers to find neighbors and update their peer
pointers. Deadlocks are impossible since processes acquire the split lock before the write lock, and acquire
only one such pair in the B-tree at a time.

Concurrent access can make inter-page links temporarily inconsistent, so our algorithm must distin-
guish between true errors and false inconsistencies due to a concurrent update. In order to do this, we
traverse a link a second time if we suspect an error. If the link is unchanged, the inconsistency is genuine
and must be repaired. A temporary inconsistency between peer pointers is caused by a split of one of the
two siblings. The splitter will restore consistency before releasing its write locks, so false inconsistencies
are always repaired before we can traverse the link for the second time.

Finally, we must ensure that the page is no longer in use at the time it is reallocated. Suppose, for
example, that a reader is descending from parent to child. It is possible for the reader to save a pointertoa -
child page, release the lock on the parent, and lock the child only to find that another process has split the
parent and recycled the child page.

Our algorithm calls on the reader to pin the buffer containing the child page in memory before
releasing the parent lock. The allocator knows not to reallocate pages in buffers with a pin count greater
than one. The reader may unpin the buffer as soon as the child’s lock is released. In case of page splits, a
writer must keep the buffer pinned until it reascends after the update has completed. This solution does not
add synchronization overhead since the buffer must be pinned in memory before use anyway. Lanin and
Shasha (LanSha86] discuss two more complex techniques for solving this problem in the case of pages
recycled after the last key is deleted.

4. Using Shadow Indices in Logical Logging

Thus far, we have discussed the index consistency techniques in terms of the POSTGRES storage
system, however, the same techniques can be used to support logical logging in a conventional WAL-based
storage system. In operational logical logging, records containing <key,INSERT> or <key, DELETE> are
stored in the log instead of records describing the physical changes to the index caused by the insert or
delete. In System R [GrayEtal81], index insert and delete operations were recorded implicitly when the
data record inserted or deleted was logged. ARIES/IM [MohLev89] does page-oriented logical logging of
index updates; it records the keys inserted into or deleted from any page. On a page split, all keys moved
from one page to another must be logged as deletes on the source page and inserts on the destination page.

System R’s operational logging has some performance advantages over ARIES’ page-oriented log-
ging. The ARIES log is longer than System R’s log, since ARIES stores many <key,data> pairs after a split
or a merge. The longer log means more data needs to be written to disk on commit, and more log pages
need to be read from the disk during recovery. The ARIES log takes up more space on disk as well.

More importantly, because operational logging stores a higher level representation of the logged
information, it is less likely than page-oriented logging to propagate damage caused by software errors. If
an internal index page is corrupted by a software error, page-oriented logging will copy the corrupted keys
into the log. During recovery, the corrupted keys will be restored to the index. Operational logging never
copies information from the index into the log. Corruption of the index page will not be retained after a
crash unless the corrupted page is saved in a checkpoint.

Another possible fault tolerance advantage in operational logging — particularly the shadowing
implementation - is that the recovery code itself is simple. In general, recovery operations required by
operational logging exercise the same code used during normal operation. An index insert operation is
undone with an index delete operation. In POSTGRES, the only recovery code required by the shadowing
implementation is a test to detect matched key ranges when descending the tree and the code to repeat the
incomplete page split or page merge.

When comparing System R to ARIES, Mohan and Levine voice several objections to operational
logging:

Deadlocks During Undo: The usual response to a deadlock is to abort one of the deadlocked tran-
sactions. Since abort requires an undo, the potential for deadlocks during undo means only one transaction

10

can undo its effects at a time, Deadlock-free undos are possible using the concurrency control algorithm
described in section 3.7,

Concurrency Overhead During Recovery: If several processes are used for recovery, concurrency
overhead is incurred during logical undo and redo operations. ARIES recovery requires no concurrency
control for the index.

Concurrency control overhead exists in the algorithms discussed in this paper, but the locks involved
are short term, not transaction-duration as in System R. Simulations of the concurrency control scheme
from [LehYao81] have shown that, in a workload with enough buffering for 75% of the B-tree, a 100%
insert workload is I/O-bound even at high degrees of multi-programming [SriCar91). This suggests that
concurrency control overhead will not limit recovery performance.

/O Overhead During Recovery: Additional I/O operations are required dul:ing recovery because
logical undo cperations must traverse the path from the root to leaf for every operation undone or redone.
Page-oriented recovery can usually undo or redo an operation with a single read and write of a leaf page.

The added I/O costs that come from full tree traversals during logical log recovery may also be c_)ffset
by the other advantages of operational logging. The root and the upper pages of the B-tree index wx!l be
loaded in as the first few operations are processed. Unless memory is scarce, these pages will remain in
memory (and in use) during the rest of log processing. Page-oriented recovery may not require these pages
to be brought in during recovery, but the pages will have to be brought in before any useful work is done
with the index after recovery. Also, operational logging will actually reduce the number of disk reads
required to process the log since the log itself is much more compact.

B-tree Consistency After Failures: DBMS failures can leave indices inconsistent unless the file
system uses shadow paging. Mohan and Levine’s objections to maintaining index consistency with shadow
pages are based on the poor performance of shadow paging in System R.

Because System R used shadow paging in the file system, it had to use the technique to support
recovery on both indices and data files. For data files, shadow paging reduced the performance of sequen-
tial scans dramatically. Shadow paging makes sequentially ordered pages in the file non-sequential on the
disk. The techniques also force an extra lookup (through the page map) for direct access to file pages. The
consistency maintenance techniques described in this paper allow either no shadowing at all (page reorgan-
ization algorithm), or shadowing limited to index files only. In indices, the sequential order of the pages on
the disk is unimportant for performance. As shown in the next section, our shadowing-based algorithm

does have an impact on performance, but not as pronounced as the impact of shadow paging on System R’s
data files.

5. Performance

5.1. Modelling the Performance Effects of Increased Tree Heights

The biggest performance concern regarding POSTGRES B“*-tree indices is that the additional
space overhead they incur will increase the height of the tree, thus driving up access costs. In order to
quantify this cost, we analyzed growth rates for normal, page reorganization, and shadow B%™* -trees. As
expected, normal trees grow the slowest, and shadow trees grow the fastest. Page reorganization trees

grow at nearly the same rate as normal trees, so we have omitted them from our analysis for the sake of
brevity.

Graph 1 shows the variations in height between normal B-trees and B-trees built using our shadow
page strategy. For purposes of the comparison, we modelled two different key sizes (four bytes and twenty
bytes) for each tree. In order to guarantee that trees grew as quickly as possible, we assumed that keys
were inserted in order. We used a page size of 8KBytes, since this is the default in POSTGRES. The lines
labelled “‘norm 4°* and *‘shadow 4’ show the capacities of normal and shadow B“"*-trees storing four-
byte keys, respectively. The lines labelled *“‘norm 20’* and “‘shadow 20°° show the storage capacity for
keys that are twenty bytes long. Note that the Y axis in the graph is logarithmic.

As Graph 1 shows, for trees of height one, the worst-case number of keys that can be stored is essen-
tially the same for both implementations. At height two, noticeable differences in the capacities of the two
implementations appear. These become more pronounced as the trees grow in height, since the differences
in fanout at each level lead to exponential differences in storage capacity.

11

Number of

Keys -—
10407 ---
PEE—————
10406 ==~
10405 -~
1404 ==
norm 4
shadow 4
le#03 -~ norm 20
o3
le+02 -1
1.00 2.00 3.00 4.00
Height

Graph 1: Height of Tree for Different Size B-trees

The graph shows an interesting relationship between key size and relative tree capacity. At height
three, the difference in capacity between the trees storing twenty-byte keys is much smaller than the differ-
ence between those storing four-byte keys. This is because the reduction in fanout caused by shadowing is
a function of the ratio of overhead to key size. Larger keys have proportionally less overhead, and show a
proportionally smaller reduction in fanout.

In practice, overhead in the POSTGRES index management algorithms is unlikely to matter very
much. Small trees have few levels of internal pages, so the overhead due to prevPtrs is negligible even
when the keys are small. Because of the way that the trees grow, the heights of larger normal and shadow
B“™* _trees will coincide for most index sizes. Significant differences in tree depth would arise if keys were
small and if the tree had many levels, however, even with the worst-case insertion order, a B“*-tree of

either variety storing four-byte keys would exceed the 2 GByte maximum size of a UNIX file before it
would reach five levels.

5.2. Measurements of the POSTGRES B“* -tree Implementation

To measure the cost of using shadow and page reorganization indices, we ran two tests against each
type of index. The results are shown in Table 1. The first test inserted varying numbers of keys into the
indices. We built indices of three different sizes using four-byte keys. Keys were added in ascending
order so as to give worst-case split performance. In each test, we measured elapsed time and the number of
page splits for each type of index. The second test retrieved 8,000 random keys from each index created in
the insertion test. Keys were distributed throughout the range represented in the index. Measurements
were made on a Decstation 5000/200 running Ultrix 4.0 and a specially-instrumented version of
POSTGRES. Times are recorded by calls to the gettimeofday() system routine. Clock resolution is 16.667
milliseconds. Only time spent in the B“**-tree access method, and in the routines that it calls, is included in
these figures. This includes time spent doing disk I/O, but does not include the cost of committing transac-
tions. Commit cost will depend on the logging scheme chosen.

The times shown in Table 1 are the means of ten repetitions of each test. In all cases, the standard
deviation of the measurements we took was less than 2.5% of the mean. For each time shown in the table,

12

Operation Size of Index in Keys
B-tree Type 10,000 20,000 40,000
Inserts
Normal 12.065s | 24.269s | 51.307s
(1.000) | (1.000) | (1.000)
PageReorg | 12.584s | 25.191s | 53.718s
(1.043) { (1.038) | 1.047
Shadow 12.318s | 24924s | 52.282s
(1021 | 1.027) | (1.019

8,000 Lookups

Normal 9.122s | 12492s | 19.536s
(1.000) { (1.000) | (1.000)
Page Reorg 9441s | 12879s | 20259s
(1.035) (1.031) | (1.037)
Shadow 9.368s | 12.892s | 20.200s
(1.027) | (1.032) | (1.034)

Table 1: Insert/Lookup Performance Comparison

we provide a direct comparison to the corresponding cost for the ordinary B“*-tree algorithm. The
numbers in parentheses are the time for the test expressed on a normalized scale, where the time for the
same test on the standard B“** -tree algorithm is defined to be one.

The results clearly show that the shadow algorithm is within three percent of the cost of ordinary
-trees for insertions. The higher cost is due to the added expense of verifying inter-page links in
traversing the tree. For reads, the shadow tree percentages are about three and a half percent worse than
ordinary B“* _rees,

Costs for the page reorganization algorithm are similar. Reads are between three and four percent
more expensive than for the normal tree. Page reorganization insertions, however, are more expensive —
between three and five percent higher than the cost for insertions into an ordinary B“** -tree. The main rea-
son for this is that extra work must be done to order data on old pages during splits. As noted elsewhere in
this paper, page reorganization is best suited to environments with low insertion rates.

The overall cost of using either index management strategy is likely to be very small for many work-
loads. For example, in the Wisconsin benchmark [Bitton83), POSTGRES spends only 3.6 percent of its
time in the indexed access methods. Even 4.7 percent of this — our worst performance degradation — is
smaller than the measurement error in the benchmark.

Blink

6. Summary

The POSTGRES DBMS relies on a no-overwrite storage system to avoid log processing during
recovery. By avoiding log processing, POSTGRES recovers from failures quickly and eliminates a great
deal of the complex recovery code found in most data managers. Unfortunately, concurrency requirements
and inter-page pointers make the POSTGRES storage system more worthwhile for heap relations than for
indices.

In this paper, we have presented two techniques for managing indices without using write-ahead log
processing or the no-overwrite techniques of the POSTGRES storage system. The first technique is based
on shadow paging; the second on page reorganization during splits. Both algorithms use redundant infor-
mation in index pages to detect inconsistencies caused by system failures as they are encountered. Incon-
sistencies are removed by repeating the interrupted page split or merge operations. The two techniques
will also be useful in WAL-based data managers that want to avoid physical logging during page splits.
Measurements of a prototype implementation and estimates of the effect of the algorithm on tree height
suggest that the algorithms will have little overall effect on data manager performance.

The height estimates and performance measurements also indicate that a hybrid between the two
algorithms could reduce costs while preserving the best features of each algorithm. Using shadow paging

13

near the leaf pages would eliminate the cost of page reorganization splits in the part of the tree in which
splits are most common. Using page reorganization nearer the root would reduce space overhead caused
by prevPtrs in internal pages and significantly increase fanout.

Acknowledgements

We would like to thank Mike Stonebraker, David Bacon, Jennifer Caetta, Nat Goodman, and Ethan

Munson for suggestions and encouragement. Discussions with Margo Seltzer and Wei Hong were espe-
cially helpful.

References

[BayMc72] R. Bayer, C. McCreight. “‘Organization and Maintenance of Large Ordered Indexes,” Acta
Informatica, 1(3):173-189, 1972.

[Bitton83] D. Bitton, D. DeWitt, C. Turbyfill, “‘Benchmarking Database Systems, a Systematic
Approach,” Proc. Ninth International Conf. on Very Large Databases,, November 1983,

[Comer79] D. Comer. ‘“The Ubiquitous B-Tree,”” ACM Computing Surveys, 11(4), 1979.

[EnbDu88] Enbody, R. J., Du, H. C., ‘“‘Dynamic Hashing Schemes,”” ACM Computing Surveys,
20(2):85-113, June 1988.

[Fagin79] R. Fagin, J. Nieverrgelt, N. Pippenger, H. Strong, ‘‘Extensible Hashing -- A FastAccess
Method for Dynamic Hashing,’” ACM Trans. on Database Systems, 4(3):315-334, Sept. 1979.

[GrayEtal81] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Putzolu, L. Traiger.

‘“The Recovery Manager of the System R Database Manager,”” Computing Surveys, 13(2):223-242,
June 1981.

[Guttman84] A. Guttman. ‘‘R-Trees: A Dynamic Index Structure for Spatial Searching,”” Proc. ACM
SIGMOD Conference, pages 47-57, 1984,

[LanSha86] V. Lanin, D. Shasha. ‘‘A Symmetric Concurrent B-tree Algorithm,”” Proc. Fall Joint Com-
puter Conference, pages 380-389, 1986.

[LehYao81] P. Lehman, S. Yao. ‘‘Efficient Locking for Concurrent Operations on B-trees,”” ACM Trans.
on Database Systems, 6(4), December 1981.

[Litwin80] Witold, Litwin, “‘Linear Hashing: A New Tool for File and Table Addressing,”’ Proc. Sixth
International Conf. on Very Large Databases, 1980.

[Lorie77] R. Lorie, ‘‘Physical Integrity in a Large Segmented Database,”” ACM Trans. on Database Sys-
tems, 2(1):91-104, March 1977.

[MenLan81] D. Menasce, O. Landes. *‘Dynamic Crash Recovery of Balanced Trees,”” Proc. Symposium
on Reliability in Distributed Software and Database Systems, pages 131-137, July 1981.

[MohLev89] C. Mohan, F. Levine, *ARIES/IM: An Efficient and High Concurrency Index Management
Method Using Write Ahead Logging,”’ IBM Technical Report RJ 6846, 1989

[SelYig91] M. Seltzer, O. Yigit, ‘A New Hashing Package for UNIX,”* Proc. of the Winter '91 Usenix
Technical Conference, January 1991,

14

[SriCar91] V. Srinivasan, M. Carey. ‘‘Performance of B-Tree Concurrency Control Algorithms,’” Proc.
ACM SIGMOD Conference, pages 416-425, June 1991.

[Stone87] M. Stonebraker, ‘‘The POSTGRES Storage System,”” Proc. Thirteenth Conf. on Very Large
Data Bases, pages 289-300, September 1987.

15

