
Highly resilient correctors for polynomials

Peter Gemmell
�

Madhu Sudan
y

Abstract

We consider the problem of correcting programs that compute multivariate polynomials
over large �nite �elds and give an e�cient procedure to transform any program that computes
a multivariate polynomial f correctly on 1=2+ � fraction of its input (� > 0) into a randomized
program that computes f correctly on every input with high probability. This shows that
program computing polynomials are \resilient" to a high fraction of errors. The resilience
shown in this paper is better than those of the previously known correction procedures [1, 4],
and is close to the information theoretic optimum. The running time of the correction procedure
is polynomial in the degree of f , the number of variables, and 1

�
, where calls to the incorrect

program are assessed a unit cost per call. An important consequence of this result is that the
n� n permanent is resilient to errors of up to 1=2� p(n) for any polynomial p(n).

Keywords: Theory of computation, Program correction, Multivariate polynomials, Permanent.

1 Introduction

The study of self-correcting programs was independently started by [2] and [5] as a mechanism to
transform programs that are usually correct into randomized programs which are always correct,
with high probability. In this paper, we consider the problem of self-correcting programs which
compute multivariate polynomials. Formally, the problem we consider here is the following:

Problem 1

Given:
1. A program P that computes, on all but an � fraction of inputs from the domain Fn, some

multivariate polynomial f of degree at most d on its input (where F is some �nite �eld).
2. b1; b2; � � � ; bn 2 F

Question: What is f(b1; � � � ; bn)?
The main question investigated in this paper is how large � can be so that the problem can still
be solved e�ciently (for large enough �nite �elds F). In the terminology of Gemmell et.al. [4] this
is the resilience of the class of multivariate polynomials of degree d. Gemmell et. al. show that
multivariate polynomials are resilient to an error close to 1=4. The running time of their algorithm
appears sensitive to the structure of the �nite �eld; in particular, the time bound that they prove
depends on the order of certain primitive roots of unity in the �eld. This paper improves upon their

�University of California at Berkeley. Research supported by NSF Grant CCR 88-13632.
yUniversity of California at Berkeley. Research supported by NSF PYI Grant CCR 8896202.

1

result in two ways: our self-corrector can tolerate an error arbitrarily close to 1=2 and its running
time does not depend in any way upon the structure of the �nite �eld over which the computation
is performed. We do require though that the �nite �eld be large enough i.e., its size must be at
least It may be noted that this resilience is almost optimal, in the sense that if the parameter �
becomes equal to half then there might be two polynomials which agree with the program at half
the inputs and hence the answer is not uniquely speci�ed.

The resilience is achieved by �rst reducing the problem of correcting multivariate polynomials to
that of correcting univariate polynomials. This reduction is similar to the reduction of Beaver and
Feigenbaum [1] in that both restrict their attention to the program's computation over a smaller
subdomain, where the function can be expressed as a univariate polynomial in some input. The
main improvement in our result is achieved by ensuring that on the smaller domain the program is
erroneous on approximately the same fraction of the inputs as on the entire input space. Section 3
describes the details of the reduction. The second part of the correction procedure, correcting
univariate polynomials when the error of the program computing the polynomial is close to half, uses
an elegant technique of Berlekamp and Welch [3], which they present as part of a new mechanism
for correcting Reed-Solomon codes. The main advantage of the Berlekamp-Welch mechanism is
that it removes, from the running time analysis, any dependence on the structure of the �nite �eld.
We include a description of this procedure in the Appendix.

2 De�nitions

Notation : We use x 2R D to denote that x is chosen uniformly at random from D.
De�nition 2.1 A Program P �-computes f on the domain D if

Pr
x2RD

[P (x) 6= f(x)] < �

De�nition 2.2 An �-self-corrector for f on a domain D is a randomized algorithm C that uses
P as a black box, such that if P �-computes f on D, then

8x 2 D Pr
h
CP (x) = f(x)

i
� 2=3

(Here the probability is estimated over the random coin
ips of C.)

De�nition 2.3 A function f is �-resilient, over a domain D, if there exists an �-self-corrector
for f on domain D.

3 Self-Correcting Multivariate Polynomials

For � > 0 and d a positive integer, let F be a �nite �eld of size
((1
�
+ d)2). Let f : Fn 7! F be

a multivariate polynomial of degree at most d. We restate the problem to be solved here:

Problem 2

Given : P that (1=2� �)-computes f and b1; b2; � � � ; bn 2 F .

2

Output : f(b1; b2; � � � ; bn).
In this section we describe a randomized reduction from Problem 2 to a problem of univariate
self-correction.

We construct (by careful sampling from Fn) a domain D � Fn parametrized by a single variable
x (i.e., the points in the domain D are given by fD(x)jx 2 Fg), such that D satis�es the following
properties:

1. The function f 0(x) � f(D(x)), is a polynomial of degree at most 2d in x.

2. b̂ �< b1; � � � ; b2 >2 D; In fact we will ensure b̂ = D(0).

3. With high probability, P computes f on approximately the same fraction of inputs from the
domain D as from the domain Fn.

The three properties listed above help us as follows: The �rst property ensures that we are looking
at univariate polynomials over the domain D, while the second property makes sure that this helps
us �nd f(b1; � � � ; bn). The last property ensures that we do not lose too much information about f
during the process of the reduction.

The properties 1 and 3 are contrasting in nature. Property 1 requires the domain D to be nicely
structured while Property 3 is what would be expected if D were a random sample of Fn. In order
to get both properties we pick D to be a pairwise independent sample of Fn. In particular the
following sampling scheme works nicely.

Pick �̂ and �̂ uniformly and randomly from Fn

D
�̂;�̂

(x) � �̂ � x2 + �̂ � x+ b̂

D
�̂;�̂

� fD
�̂;�̂

(x)jx 2 Fg

It is clear that D
�̂;�̂

as picked above satis�es properties 1 and 2 listed above. (Each coordinate of

D
�̂;�̂

(x) is a polynomial of degree 2 in x; hence f 0 is a polynomial of degree at most 2d in x. Also

D
�̂;�̂

(0) = b̂.) The following claim establishes that D
�̂;�̂

forms a pairwise independent sample of
Fn.

Claim 1 For a �nite �eld F , â1; â2 2 Fn, and for distinct x1; x2 2 F n f0g,

Pr
�̂;�̂

[D
�̂;�̂

(x1) = â1 and D
�̂;�̂

(x2) = â2] =
1

jF j2n

Proof: For each coordinate i 2 [n], there exists exactly one degree 2 polynomial pi in x, such
that pi(0) = bi, pi(x1) = (â1)i and pi(x2) = (â2)i. Thus when we pick a random polynomial pi
such that pi(0) = bi for the ith coordinate, the probability that pi(x1) = (â1)i and pi(x2) = (â2)i,
is 1

jF j2 . Since the events are independent for each coordinate, we have

Pr
�̂;�̂

[D
�̂;�̂

(x1) = â1 and D
�̂;�̂

(x2) = â2] =
1

jF j2n

3

2

The above claim establishes that any set S of the form S � fD
�̂;�̂

(x)jx 2 F n f0gg is a pairwise in-
dependent sample of Fn. The following lemma gives a well-known property of pairwise independent
spaces; for completeness we include its proof in the appendix.

Lemma 2 If S is a pairwise independent sample of elements from some domain D and I maps
elements of D to the range f0; 1g. Then for positive c

Pr

�
jEx2RS [I(x)]� Ex2RD[I(x)]j � c=

q
jSj
�
� 1=c2

Corollary 3 If S � Fn is a pairwise independent sample of t elements from Fn, and P (1=2� �)-
computes f over the domain Fn, then the probability that P computes f on at least t(1=2+ �)�cpt
points from S is at least 1� 1

c2
.

Proof: Follows from Lemma 2 by setting I as follows

I(x) =

(
1 if P (x) = f(x)
0 otherwise

2

Let k denote the number of points from S where P does not compute f . Then, if t > (c
�
+d)2, with

probability at least (1�1=c2), we have that k < (t+d)=2. Thus with high probability, we can reduce
the problem of self-correcting f at b̂ to the problem of �nding f 0 (recall that f 0(x) = f(D(x))) and
evaluating f 0 at 0. Formally, we wish to solve the following problem:

Problem 3

Input: t pairs (xi; yi) such that for all but k < (t+d)=2 values of i, yi = f 0(xi), for some univariate
polynomial f 0 of degree at most 2d.

Output: f 0

This problem arises in various ways in coding theory and can be solved e�ciently. If the xi are
of the form !i, such that !t = 1, then the problem becomes one of correcting generalized BCH
codes. If the xi's are all the elements of F , then the above is the error correction problem for
Reed-Solomon codes. In the general form as it is stated above (with no constraints on the forms
of the xi's), the problem can still be solved e�ciently and directly due to an elegant method of
Berlekamp and Welch, a description of which is included in the appendix. Combining the solution
of Berlekamp and Welch with the reduction given above, we get the following theorem.

Theorem 4 For � > 0, if F is �nite �eld of size
((1
�
+d)2), and if f is a multivariate polynomial

in n variables over F , then f is (1=2��)-resilient. The time taken by the self-corrector that achieves
this resilience is polynomial in n, 1

�
and the degree f .

By using Lipton's [5] observation that the permanent of an n�n matrix is a multivariate polynomial
in n2 variables of degree n, we get the following corollary :

Corollary 5 The n�n permanent is resilient (in time polynomial in n) to errors of 1=2� 1=p(n)
for any polynomially growing function p(n).

4

4 Acknowledgments

We would like to thank Elwyn Berlekamp for his interest and the time he spent with us describing
his error-correcting techniques and for his permission to include details of the technique here. We
also wish to thank Manuel Blum and Umesh Vazirani for their interest which motivated most of
the work here and for their time and patience in listening to our ideas. We are also thankful to
Elwyn Berlekamp, Diane Hernek and Umesh Vazirani for their valuable comments on this writeup.

References

[1] D. Beaver and J. Feigenbaum. Hiding Instance in Multioracle Queries. In Proc. Symposium
on Theoretical Aspects of Computer Science, 1990.

[2] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to Numerical
Problems. In Proc. 22th ACM Symposium on Theory of Computing, 1990.

[3] E. Berlekamp and L. Welch. Error Correction of Algebraic Block Codes. US Patent Number
4,633,470.

[4] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, A. Wigderson. Self-Testing/Correcting for
Polynomials and for Approximate Functions. In Proc. 23rd ACM Symposium on Theory of
Computing, 1991.

[5] R. Lipton. New directions in testing. In Proc. DIMACS Workshop on Distributed Computing
and Cryptography, 1989.

5

A The Berlekamp-Welch Decoder

This section presents the solution to the following problem �rst introduced by Berlekamp and Welch
as part of a novel method for decoding Reed-Solomon codes.

Problem 4

Given : m pairs of points (xi; si) 2 F �F such that there exists a polynomial K of degree at most
d such that for all but k values of i, si = K(xi), where 2k + d < m.

Question : Find K

Consider the following set of equations:

9W;K deg(W) � k; deg(K) � d;W 6= 0; and 8i W (xi) � si = W (xi) �K(xi) (1)

Any solution W;K to the above system gives a solution to Problem 4. (Notice that we can cancel
W from both sides of the equation to get si = f(xi), except when W (xi) = 0, but this can happen
at most k times.) Conversely, any soluion K to Problem 4 also gives a solution to the system of
equations1. (Let B = fxijsi 6= f(xi)g. Let W (z) be the polynomial

Q
x2B(z � x). W;K form a

solution to the system 1.) Thus the problem can be reduced to the problem of �nding polynomials
K and W which satisfy (1). Now consider the following related set of constraints

9W;N deg(W) � k; deg(N) � k + d;W 6= 0; and 8i W (xi) � si = N(xi) (2)

If a solution pair N;W to (2) can be found which has the additional property that W divides N ,
then this would yield K and W which satisfy (1). Berlekamp and Welch show that all solutions
to the system (2) have the same N=W ratio (as rational functions) and hence if equation (2) has
a solution where W divides N , then any solution to the system (2) would yield a solution to the
system (1). The following lemma establishes this invariant.

Lemma 6 Let N;W and L; U be two sets of solutions to (2). Then N=W = L=U .

Proof: For i, 1 � i � m, we have

L(xi) = si � U(xi) and N(xi) = si �W (xi)

) L(xi) �W (xi) � si = N(xi) � U(xi) � si
) L(xi) �W (xi) = N(xi) � U(xi) (by cancellation)

(Cancellation applies even when si = 0 since that implies N(xi) = L(xi) = 0.) But both L �W
and N �U are polynomials of degree at most 2k+ d and hence if they agree on m > 2k+ d points
they must be identical. Thus L �W = N � U) L=U = N=W 2

All that remains to be shown is how one obtains a pair of polynomials W and N that satisfy (2).
To obtain this, we substitute unknowns for the coe�cients of the polynomials i.e., let W (z) =Pk

j=0Wjz
j and let N(z) =

Pk+d
j=0 Njz

j . To incorporate the constraint W 6= 0 we set Wk = 1. Each
constraint of the form N(xi) = si �W (xi), i = 1 � � � ; m becomes a linear constraint in the 2k+d+1
unknowns and a solution to this system can now be found by matrix inversion.

It may be noted that the algorithm presented here for �nding W and N is not the most e�cient
known. Berlekamp and Welch [3] present an O(m2) algorithm for �nding N andW , but proving the
correctness of the algorithm is harder task. The interested reader is referred to [3] for a description
of the more e�cient algorithm.

6

B Pairwise Independent Sampling

For a real valued random variable Z, let E[Z] denote its expected value
and let V [Z] � E[(Z �E[Z])2] denote its variance.

Lemma 7 If S is a pairwise independent sample of elements from some domain D and I maps
elements of D to the range f0; 1g. Then for positive c

Pr

�
j
P

x2S I(x)

jSj �E[I(x)]j � c=
q
jSj
�
� 1=c2

Proof: Since S is a pairwise independent collection of elements from D we have

E

�P
x2S I(x)

jSj
�
= E [I(x)] and V

�P
x2S I(x)

jSj
�
=
V [I(x)]

jSj
By Chebychev's inequality, we have for any random variable Y

Pr

�
jY �E(Y)j > c

q
V (Y)

�
� 1=c2

Applying this inequality to the variable

P
x2S

I(x)

jSj , we get

Pr

�
j
P

x2S I(x)

jSj �E[I(x)]j � c=
q
jSj
�
� 1=c2

2

7

