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Abstract

Given four distinct lines in R3 there exist zero, one, two, or various in�ni-
ties of lines incident on the given lines. We wish to characterize and compute
the set of incident lines in a numerically stable way. We use the Pl�ucker co-
ordinatization of lines to cast this problem as a null-space computation in R5,
and show how the singular value decomposition (SVD) yields a simple, stable
characterization of the incident lines. Finally, we enumerate the types of input
degeneracies that may arise, and describe the solution set of lines in each case.
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1 Introduction

The line is an important primitive element in the geometry of three-space. Lines,
however, do not behave as simply as, say, points and planes. For example, three
generic points specify a plane by incidence, and three generic planes specify a point;
determining either incidence is a linear computation in the input coordinates. In
contrast, four generic lines are required to specify two further lines by incidence
(Figure 1). Moreover, computing line incidence is an inherently quadratic problem.

Figure 1: Four (generic) lines determine two further lines by incidence.

We present here an implemented algorithm that, given four arbitrary lines, com-
putes the line or family of lines incident on the input lines in a numerically stable
fashion. Generically, four lines induce exactly two incident lines. In practice, however,
various input degeneracies may result in zero, one, two, or various in�nities of incident
lines. We characterize the degeneracies in each case, and describe the computation
of the resulting set of lines.

2 Pl�ucker Coordinates

We review the Pl�ucker coordinatization of directed lines in three space [4]. Any
ordered pair of distinct points p = (px; py; pz) and q = (qx; qy; qz) de�nes a directed line
` in R3. This line corresponds to a projective six-tuple �` = (�`0; �`1; �`2; �`3; �`4; �`5),
each component of which is the determinant of a 2 � 2 minor of the matrix

 
px py pz 1
qx qy qz 1

!
: (1)

There are several conventions dictating the correspondence between the minors of
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(1) and the �i. We de�ne the �`i as:

�`0 = pxqy � qxpy

�`1 = pxqz � qxpz

�`2 = px � qx

�`3 = pyqz � qypz

�`4 = pz � qz

�`5 = qy � py

(this somewhat asymmetric order was adopted in [3] to produce positive signs in some
identities about Pl�ucker coordinates).

If a and b are two directed lines, and �a;�b their corresponding Pl�ucker mappings,
a relation side(a; b) can be de�ned as the permuted inner product

�a ��b = (�a0�b4 + �a1�b5 + �a2�b3 + �a4�b0 + �a5�b1 + �a3�b2): (2)

This sidedness relation has a geometric interpretation analogous to the well-known
\right-hand rule" (Figure 2): if the thumb of one's right hand is directed along a,
then side(a; b) is positive (negative) if b goes by a with (against) one's �ngers. If a
and b are coplanar (i.e., intersect or are parallel), side(a; b) is zero.

a a a

b
b

b

side (a, b) < 0 side (a, b) = 0 side (a, b) > 0

Figure 2: The right-hand rule in the context of the relation side(a; b).

Thus, the six-tuple �l can be treated either as a (homogeneous) point �` =
(�`0 : : :�`5) in P 5 or, after permutation, as the coe�cients of a 5-dimensional hyper-
plane (�4; �5; �3; �0; �1; �2). The advantage of transforming lines to Pl�ucker coordi-
nates is that detecting incidence of lines in R3 is equivalent to computing the inner
product of a homogeneous point (the mapping of one line) with a hyperplane (the
mapping of the other).

Pl�ucker coordinates simplify computations on lines by mapping them to points
and hyperplanes, which are familiar objects. However, although every directed line in
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R3 maps to a point in Pl�ucker coordinates, not every six-tuple of Pl�ucker coordinates
corresponds to a real line. Only those points � satisfying the quadratic relation

��� = 0 (3)

correspond to real lines in R3. The remainder of the points correspond to imaginary

lines.

The Pl�ucker coordinates of a real line are not independent. First, since they
describe a projective space, they are distinct only to within a scale factor. Second,
they must satisfy Equation 3. Thus, the six Pl�ucker coordinates describe a four-
parameter space. This con�rms basic intuition: one could parametrize all lines in R3

in terms of, for example, their intercepts on two standard planes.

The set of points in P 5 satisfying Equation 3 is called the Pl�ucker quadric [4].
One might visualize this set as a four-dimensional ruled surface embedded in P 5 that
is analogous to a quadric hyperboloid of one sheet in R3 (Figure 3).

R3 R5

Figure 3: Real lines map to points on, or hyperplanes tangent to, the Pl�ucker quadric.

Henceforth, we use the notation � : l ! �l to denote the map � that takes a
directed line l to the Pl�ucker point (hyperplane) �l, and the notation L : �! l� to
denote the map that takes any point � on the Pl�ucker quadric and constructs the
corresponding real directed line l� in R3.

3 Computing the Incident Lines

Suppose we are given four lines lk; 1 � k � 4 in R3, and wish to compute all further
lines that are incident on, or intersect, the lk. By the sidedness relation above, we wish
to �nd all lines s such that side(s; lk) = 0 for all k. Each line lk, under the Pl�ucker
mapping, is mapped to a hyperplane �k in P 5. Four such hyperplanes intersect in a
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line L in P 5. In Pl�ucker coordinates, L contains the images under � of all lines, real
or imaginary, incident on the four lk. To �nd the real incident lines in R3, we must
intersect L with the Pl�ucker quadric (Figure 4). As in three space, a line-quadric
intersection may contain 0, 1, 2, or (since the quadric is ruled) an in�nite number of
points.

P5

Π4

Π2

Π1

Π3

L

Figure 4: The four �k determine a line to be intersected with the Pl�ucker quadric.

Thus the incidence computation has two parts. The �rst is an intersection of four
hyperplanes �k, to form a line (the null space) of the �k. The second is an intersection
of this line with a quadric surface to produce a discrete result. We have implemented
this computation in the C language using a FORTRAN singular value decomposition
package from Netlib [1]. Figure 1 depicts the algorithm applied to four generic lines.
Note that the input lines (thick) are mutually skew, and that each of the two solution
lines (thin) pierces the input lines in a distinct order.

We formulate the �rst part of the problem as a singular value decomposition.
Each of the lines lk corresponds to a six-coe�cient hyperplane �k under the Pl�ucker
mapping. Thus, we must �nd the null-space of the matrix

M =

0
BBB@

�04 �05 �03 �00 �01 �02

�14 �15 �13 �10 �11 �12

�24 �25 �23 �20 �21 �22

�34 �35 �33 �30 �31 �32

1
CCCA :

By the singular value decomposition theorem [2], this 4 � 6 real matrix can be
written as the product of three matrices, U 2 R4�4, � 2 R4�6, and V 2 R6�6, with
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U and V orthogonal, and � zero except along its diagonal:

M = U�VT =

0
BB@

u00 � � � u03
...

...
u30 � � � u33

1
CCA
0
BBBB@

�0 0 0

�1 0 0 0
�2 0 0

0 �3 0 0

1
CCCCA

0
BBBBBBB@

v00 � � � � � � v05
...

...

...
...

v50 � � � � � � v55

1
CCCCCCCA
:

The �i can be ordered by decreasing magnitude, and comprise the singular val-

ues of M; the number of non-zero �i equals the rank of M. Each zero or elided �i
corresponds to a row of V; collectively, these rows form the null space of M.

If �3 6= 0 then the null space of M is spanned by the vectors comprising the last
two rows of V. Call these rows F and G.

Consider the map � : P! P5 de�ned by

�(t) � F + tG:

The null space property implies that

�(t)��k = 0; 0 � k � 3;8t:

Since � is injective, it is an isomorphism between P and the set of all lines (real and
imaginary) tight on the lk. Thus there is a one-to-one correspondence between the
real lines incident to the lk and the roots of

�(t)��(t) = 0:

This is a quadratic equation in t:

F �Ft2 + 2F �Gt+G�G = 0;

or
at2 + 2bt+ c = 0;

where a = F� F, b = F�G, and c = G�G. This is an \even" quadratic with the
discriminant b2 � ac, rather than the more familiar b2 � 4ac [5].

If a2 + b2 + c2 = 0, all t are solutions, and the null-space line in P 5 lies in the
(ruled) Pl�ucker quadric. In this case any linear combination of F and G corresponds
to a real line incident on the lk.

If b2 � ac < 0 there are no real lines incident on the lk. If b2 � ac = 0, there is a
single line incident on the lk given by L(t); t = �b

a
. If b2 � ac > 0 there are two real

lines corresponding to

t =
�b�pb2 � ac

a
: (4)
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It may be the case that some of the �i are zero. If n of the �i are zero, then
the set of real and imaginary lines incident on the lk are spanned by the vectors
comprising the last n + 2 rows of V. This set of lines can be parametrized by Pn+1.
The real lines in this set must satisfy the Pl�ucker relationship (Eq. 3), inducing a
quadratic constraint on Pn+1. This is a quadratic equation on the line for n = 0; a
conic in the plane for n = 1; and a quadric surface in projective space for n � 2.
The solution to the quadratic equation can be all of Pn+1, empty, reducible or, when
n > 1, irreducible. If it is reducible, each component can be parametrized by Pn;
otherwise it is irreducible, and the entire set of lines can be parametrized by Pn. In
the following we consider the various special cases that arise.

If �3 = 0 and �2 6= 0 then M has rank three. That is, only three rows of M are
linearly independent. In this case, the set of lines incident on the lk are those lines
whose Pl�ucker coe�cients are orthogonal to the �rst three rows of V. Thus, by the
SVD, the last three rows of V span the space of lines (real and imaginary) incident
on the lk. Consider the map �(u; v) : P2 ! P5 given by

�(u; v) = uF+ vG+H

where F, G and H are the last three rows of V. �(u; v) parametrizes the real and
imaginary incident lines. The real lines incident on the lk must satisfy

��� = 0:

This is a quadratic equation q(u; v) = 0 in the variables u and v. If the solution is a
pair of lines, the set of lines incident on the lk comprise two 1-parameter families of
lines. Otherwise the conic can be parametrized by a single variable t. Thus if u(t); v(t)
satisfy q(u(t); v(t)) = 0, the incident lines are given by L(u(t)F+ v(t)G+H).

If �3 = 0, �2 = 0, and �1 6= 0, the set of real and imaginary lines incident on the
lk can be parametrized by

�(u; v; w) = uF+ vG+ wH+ I;

where F, G, H and I are the last four rows of V. Again, the real lines satisfy a
quadratic equation q(u; v; w) = 0 in P3. The zero surface of this equation can be
parametrized by the projective plane.

4 Implicitizing a One-Parameter Line Family

Four lines are in general position if no two are coplanar, no three are coconical or
cocylindrical, and the four are not cohyperbolic, i.e., do not lie on the same ruled
quadric surface.

A common one-parameter line family, the regulus (or hyperboloid of one sheet),
arises often in line computations, either because four input lines are found to be cohy-
perbolic, or because only three line constraints are active, implying a one-parameter

7



family �(t) of incident lines as in the previous section. In either case, three lines are
the \generators" for a regulus (Figure 5). If line segments pq, rs, and tu de�ne the

p

q

r

s

t

u

Figure 5: Three generator lines and part of the induced regulus of incident lines.

three lines, the implicit equation of the regulus through the lines is [4]:

jpqrxj jstuxj � jpqsxj jrtuxj = 0 (5)

where x = (X;Y;Z; 1) is the unknown point, and the expression jabcdj denotes the
determinant of a 4 � 4 matrix.

This can be rewritten in a more familiar way as the quadratic form

�
x y z 1

�
0
BBB@

A B C D
B E F G
C F H I
D G I J

1
CCCA
0
BBB@

x
y
z
1

1
CCCA = 0;

or

Ax2 + Ey2 +Hz2 + 2Bxy + 2Cxy + 2Fyz + 2Dx + 2Gy + 2Iz + J = 0;

where

A = �X�X � 
X�X

E = �Y �Y � 
Y �Y

H = �Z�Z � 
Z�Z

B = (
X�Y + 
Y �X � �X�Y � �Y �X)=2

C = (�X�Z + �Z�X � 
X�Z � 
Z�X)=2

F = (
Y �Z + 
Z�Y � �Y �Z � �Z�Y )=2

D = (
X�1 + 
1�X � �X�1 � �1�X)=2

G = (�Y �1 + �1�Y � 
Y �1 � 
1�Y )=2

I = (
Z�1 + 
1�Z � �Z�1 � �1�Z)=2

J = �1�1 � 
1�1;
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and where the matrices �; �; 
; � correspond, respectively, to the terms in Equation
5, and subscription denotes the determinant of the relevant 3� 3 minor; e.g.,

�X =

�������
py pz 1
qy qz 1
ry rz 1

������� ; �Y =

�������
sx sz 1
tx tz 1
ux uz 1

������� ; 
Z =

�������
px py 1
qx qy 1
sx sy 1

������� ; �1 =

�������
rx ry rz
tx ty tz
ux uy uz

������� :

When the three generator lines are not mutually skew, the coe�cients degenerate
to those of a cylinder or double plane.

Conclusion

Using a duality relationship connecting directed lines in R3 and hyperplanes in R5,
we have described an algorithm that computes, in a numerically stable fashion, the
set of lines incident on four given lines. The computation amounts to a null-space
determination of the line incident on four hyperplanes in R5, and an intersection
of this line with a quadric surface. The null-space determination can be cast as a
singular value decomposition. The line-quadric intersection amounts to �nding the
roots of a quadratic equation. Finally, we describe the types of incident line families
that result from degenerate input.
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