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Abstract: Currently, programming languages that support COMPLEX
arithmetic as well az  REAL ocblige cowpilers to implement certain
obrscure optimirations lest Brpressions mixing REAL with COMFPLEX
variables ergender superflucus or cven barmful computation. This
can be avoided if the language provides, for the compiler = use,
& third IMAGINARY data-type about which the programmer need know

orily the nawme of the language’' s imaginary unit t or I or .

Aind on computers conforming to  IEEE 724/834, the scheme proposed
here honors camplex conjugation in ways that other schemes cannot.

Current Practice

A COMFLEY number Z is wsually rendered as & pair 2Z = (X, Y}
of  REAL numbers X and Y . Doing 80 is urnwise betause confusing
an object with its representation usually spawns subtle nuisances.
This practice leads to extra work when COMFLEX expressions mix
with REAL 3 & REAL R has to be toerced to COMFLEX (R, )
berore it can participate in complex arithmetic. Besides wasting
timg upon manipulations of o this practice sometimes caorrupte
“Esults unnecessarily., For example, if R*{(X, Y) must first be
coerced to (R, M *(X, ¥) before it yields ( R¥X-0%xY, R¥Y+OxX )
irstead of simply ( R#*X, R*Y ) , then SaO® {0, B.0) will yield
not (0, 13.0)  but (oo, Naily in arithmetic conforming to IEEE
standards 754/8%4 for tloating-point arithmetic. Similarly a
sum R + (X, ¥) that should vield (R+X, Y) gets coerced instead
to { R+X, O+Y ) |  Which changes the sign of Y if it i=s -0O.0
arnd thus spoils computations of conformral meps oFfF slitted domaino.
We shall ses two examples of maps spoiled this way at the end.

To some extent thess nuisances can be ameliorated by preciuding
Premature cosrcions;  the compiler can ke instructed to corsult a
table of special formulas for mixtures of REAL with COMELEX
FLpressions, This expedient does rot do Justice to pure imaginary
Expressions Y that must be represented as pairs (O, YY) with
that annoying zero. For example, no way exists for iWz}? to be
computed as - instead of (=0, MNah) Without wasteful tests at
run—time for zerc operands in Complex arithmetic operations. To
Jo better, we have to Fecognize IMAGINARY as a data-type,.

One Pure IMAGINARY Constant

Consider & programming language with one REAL data-type but rot
yEt encumbered with a COMPLEX data-type. ODur task now is to add
COMFLEX to the syntax of the language in a way that matches it
most closely to the desired traditicnal mathematical semantics,
even it we have to build & structure more elaborate tham some
programming languages have used in the past. A measure of opur
success will be the ease with which & mathemstician carn read and
wnderstand & program written to do exactly what he or she intends.
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We start with the declaration
IMAGINARY ¢

which mames the imaginary unit t that satisfies f%r = 2 = -1
The language’ s arbiters of taste and fashion can choose any other
name, like J§ or J§ or Wi , sc long as it is the same for all
uzers of that language; this accord lets programs share COMELEX
data in ASCII files without first finding out what name the data
used for t . FPrograms that perform  COMFLEX arithmetic must use
thig declaration to inform the conpiler that the name for T is
herceforth not to be used to name an integer ror anything else but
the imaginary unit, Without this deglaration, t could stand for
a varliable, or (e n) a tunction,. The best way to avoid errors
of this kind is to use ¢ only as & suffix, language permitting.

s

R oprogrammer need never declare anvthing else to be IMAGINARY .

Variables and functicns may be declared REAL or GCOMPLEX in the
usual way. Then the language classifies exprészions as REAL,

N

TMAGINARY  or COMFLEX according to the following rules:

REAL expressions and constants are recognized as usual. Also,
products or guotients of even numbers of IMAGINARY expressions
are RE#AL, as are values of certain functicons like AEBS(...) |,
REALG. L) and  IMAG(...) that can take arguments of all three
tYyDES., The product/quotient rule will be explained further later,

Anything of the form % (REAL Expression) orF (REAL. Expression)*i
31 t(REAL Expresesion) or (REAL Expression) e { this is best )
12 IMAGINARY ; moreover, REAL literal constants may be either
followsd by t as a suffix or multiplied by r to become of type
IMAGINARY, as are the examples ¢ , 1 , 1% , t*l 1.0EO0¢ .
And products or guotients of ¢ perhaps no } REAL  expressions with
ocdd numbers of IMAGINARY expressions are IMAGINARY. Like REAL
numbers, IMAGINARY numbers occupy one floating-point register or
one memory cell of adequate width. Although an expression like

¥ (REAL Expression) looks formally like a product, it is never
actually multiplied but merely promoted to (REAL Expression) i or
t(REAL Expression) of type IMAGINARY, It'e like & cast in C .

The order of formal multiplication by ¢ should not matter; all
tour expressions exY |, Y¥g , z(Y) and (Y}t amount to the same
thing, but may get there by different routes at compile time.

COMPLEX = REAL + IMAGINARY

Every COMFLEX  esxpression is & formal sum of orne REAL  and ore
IMAGINARY  eupression stored in adjacent cells. There is no need
to write X+ #Y as (X, Y} , =50 the latter is left available
tfor the language to use as & tuple or list. In other words, any
Expression of type (REAL: + (IMAGINARY) ie not actually added
but merely promoted to type COMPLEX. And the rules for mixing
COMFLEX with COMFLEX, REAL or IMAGINARY expressions are
expressed in that form using & decomposition like I = Ze + (Zg5) 2
for every COMFLEX variable or esxpression Z . { Accidently either
im oOr Zr could vanish, leavimg the COMFLEX variable 2Z with
& pure 1maginary or real valug respectively but not turned into an
expression of IMAGSINARY or REAL type: neither does the REAL
¥ o= 2.0 inherit the type INTEGER From its integer value.)

-
-
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Apparently, all comples rational arithmetic except division by =&
COMFLEX  number has tae be built irnto the language’'s grammar; the
rest can be handled visa procedure-calls, possibly in-line.

Im what follows, R, U, X are FREAL expressions or variables;
3, IV, Y are abbreviations for IMAGINARY expressions (5)
et derived from products %5 etce.y and bold T, W, Z are
CUMPLEX  expressions with T = R+ 18 s W= U+ v, Z = X+ gy

formallv, CONJ (X + t¥Y) = X + 2(~Y) is the comples conjugate
cperaticong all rationmal opersticonzs must be =0 implemented that
they commute with it despite roundotf, as for instance doecs

multiplication: CONJ(W*Z) = CONJ (W) *CONJ(Z) . CONJ (X} = X +for
REAL X and CONJ{zY) = ¢(-Y) far IMAGINARY zY « Of course.

Here are tables that describe a girammar for compley evaluation:

X Y L = X + vy

Multiply I
R T T P W W Y. ) l R VR VL T VL VI V. VL W W W P Pl P A P P L P Py Ay Ay By PN P P P P P P P P e P AL Py A P G ey Py
N | R o= U=X IS5 = U=y T 1= (U*X) + z(UU=Y)
i
1 3Y) | 5 = (VXD Roi= =aY T = (=VU*Y) + (VX))
i
W=U+ v | T &= T := T = (UxX ~ VUxY) +
| X + g(VxX) —~V*Y + z(U*xY) LCL*Y + Ux¥)
Adctd i X Y I = X + ¥
PP P P A PN AL, ! P P Mo P P P P P e T Ry R P W T P P P T Y P N P B g P O P P P NG B P Ry, iy,
L l R = U+X T 1= U + &y T = U+X + ¥
|
VvV | T = X + v 25 = VY T 1= X + g{V+Y)
{
|

W= U+ v

T o= U+X + v T = U + 1(V+Y) T i= U+X + g(V+Y)

Subtraction i similar.

Division by a COMFLEX number talls appropriate
subroutines that are described below.

Divide [ X ey Z =X + ¥
B e T T T W) l P N PP AL A A e R AL A, Pt Por Pr B e o P P P R P A Py R R Y L R TR L TR VY V. VP W O W 9
U | R = Xsu S 1= Y/ T o= AX/U) + v/l
f
tV Pot§ = 2(=X/W R 1= v/v T 1= (¥Y/V) + (=X/)
!
W = U+ v | T = X/W T = WY/W T = Z/W
!
!

Assignments and Arguments of Functions

An assignment like " Z = r(Y) " must create a COMPLEY value
for Z I!= 0 + 'Y just as " Z = X * must create 2 = X + 0Oz .
Frogramers who wish to avoid those extra zeros can do the same for
pure IMAGINARY variables a5 would be done for REAL ;3 retain
Just that REAL value and postpone its binding into a COMFLEX
context for as long as possible. This strategy is most valuable
for arguments of furmctionhs that cost much more to evaluate for

srbitrary  COMFLEX  arquments than for FREAL  or pure  IMAGINARY.
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expizY: = cos(¥}: + sini{¥i¢ ,

sin{zY) = sinh (YY) and sinf(eY) = sirn(Y)1: .
costIY) = gouhiyY) and cosh (YY) = cos(Y .
tami¥Y) = tanhi(Y) ¢ arg tannt{eY) = tan(Y)t s
arcain(iY) = arcsinh(Y) 1 arng arceinh{t¥Y) = arcsin(¥i+z ,
arctan (dY) = arctanh{Y)*=z¢ ariol arctanh(IY) = arctani(¥Y)e .

© ho similarly =zimple identity relates arccos and  arcoosh L)

A ocompiler for a language that, like Fortran, possesszes GENERIC
SRTRINGIC AFunctiorns couwld ideally sxpedite this strategy of delay
Oy anvioking substitutions like thosze above automatically whenever
i recognized  IMAGINARY  arguments. This cannot always he sasy,
progeammers ahould rot demeardd too much help from the compiler.
compller can resclve ambiguities that arise when functions are

L sOontinuous acrosse slits, &S are  arcsin(yY) and arctanh(Y)
Y& =1, and  ¥s for w5 O, Lonsequently, . identities
shiove for  arcsinh{iY) and arctan(iY) vyield IMABINARY wvalues
orily if Y is a constant and -1 i Y4 1 . énd only for constant
s 0 may compllers suostitute Y o= yY{-uw) 2 safely; ¥  should
zignal invalid at run—~time for a REAL wvariable = < 0O .

Some Subtleties

A onumber of subtleties complicate compler: arithmetic. SomMe Come
from the plethora of infinities that can descend from division by
zero or from decerved overftlows in practically any operaticn: a
Taler traatment of these infinities must be deferred to some other

OCCESI O Other subtletiesz corcern the avoidance of undessrved

and harnful over/underflows that render unsatisvactory +or complex

division (X + Y) /iy o+ vy say, & traditional formuls like
( CX#LE + Y%V + 2 (Y*U — X*V) ) /L U2 o+ =2 )

Lecause its denominator can too sasily over/underflow prematiurely,

The procedures presented below will avoid most undeserved over s
underfiows and also avold the worst conzequences of roundoff, &
third subtlety, F fourth concerns the sign of zero: this will be
trested well encigh below to justify the attention paid above to
the preservaticn of zero s sign despite tradition to the contrary.

dnly in complex souare root will explicit attention be paid to the
zigrn of zero; elsewhere its correct handling is implicit in the

Fules for arithoetic cond orming to  IEEE TE4/8%4, or impossible
I cither arithmetice, Conseqguiently, CONG  commutee with SORT

anly for  IEEE TS54/8%4, not for other arithmetics. The same is
=0 for inveree functiors lite I, arctan, arctanh, arceinm, ...,
but they will not be discussed further here. The coint here ic
that the IMAGINSRY type has bees introduced rot merely to save a
few arithmetic operations with zeros but more to help enswe that
EvEery cobipie. operation ehall corform to all applicable standarde.
Later, twe esamples Wwill z2how how far aWwry simple calculations

Cam go if rerc’s =sign die not handles as IEEE 754/8%4 stipulates.

Some Subroutines
Robert Smith’'s  algorithm for Computing

R+ 25 = (X +@v)y/ (U + V)
Wit Er U+ v 2 0+ o goes &z f0oliows:
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I jul > (vI  then
F o= VU Simpler versions
8 = U + V*F of this algorithm
R 1= (X + Y¥F) /3 ; must be derived
8 = (Y = X*F) /0 and used in those
else cases when it is
Foi= U/ g known at compile-
8 .= UxF + V 3 time that X = 0
R = (X% + Y)/0 ; or that Y = ¢ ;
S = (Y¥F -~ Xi/0 see table above.
end if.

Un machines with relatively slow division, another algorithm that
scales the denominator U + iV before using the unsatisfactory

but simpler formula given earlier, then scales the quotient, can
run faster and just as reliably.

To compute R = ABS(X + z¥Y) = ¢( X2 + Y2 ) without severe darmsge
from premature over/underflow: _

If Xt < |Yl then swap( X, Y ) end if H

I+ X =0 then R =0 else R = y((Y/X)"2 + 1)*{Xt end if.

Ideally complex square root should never overflow, but perfection
is more costly than is needed for our examples. Instead we tender
an algorithm valid if (X + tY)#(1+¢y2)2'  would not over/underflow.
To compute R + &8 = SRRT(X + 1Y) := Y{X + oY) »

R = ¢( (ABS(X + aY) + IX{)/2 ) 3 ... over/underilow hurts here.
I+ R=0 then S =Y _
else if X > O then S != (Y/R)/2
else
= CopySign (R, Y) i
= (Y/5)Y /2

The function CopySign is specified for arithmetics that conform
to IEEE 754/8%54 CopySigni{R, ¥} has the sams magnitude as K
but the same sign bit as Y even if Y is +0 . This implements
the sguare root s discontinuity along the negative real axis in
such & way as ensures that CONJ(SORT(Z)) = SERT(CONI(Z)Y )Y  For all

COMFLEX Z including Z < © . For example CONJ{(-4 + Q) = -4 - Og
and SERT{(-4 + Oz) = 0 + 2 respectively. { No such identity can
fiold 14 the computer’'s arithmetic lacke ~0O ot mishandles it in
that cace CopyRigmtr, 0) might &as well agree with Fortran s

SIGN(R, 0.0) = +|R| &s if 0.0 had a "+ " sign by convention,

though that will roil conformal maps like the two examples below. )

The algorithms above are not accurate enough to produce Gaussian
integers exactly, but they are accurate enough for our exnamples,

Apropos of algorithmic &Cccuracy, 1t is worth noting briefly that
Z2 and, for integers N > 2 » higher powers IN often computed
by repeated squaring, are usually obtained more accurately from
(X + 1Y)2 (= (X-Y)*(X+Y) + p(X*Y + X#Y)
in two multiplications anmd three add/subtractions than from
(X + 2Y)2 = X2 - ¥2 + p{X*Y + X#Y)
1rn three multiplications and two add/subtractions.

£n
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Two Examples: Eluding Flow past a Disk, and Borda's Mouthpiece
Let (2 = (Z - 17y /2 and glh) =W — W{rW=-1) y(tW+1) .

Do mot " simplify " g(W) to W - ¢/ (-W3-1) nor to W - yW=2+1)
since they behave differently. Though F(gW)) = W for a1l W s
gifiZ))y = I only for all I1Z} 1 and some |Zf = 1 ; otherwise
géfiZy)y = —-1/2 . Deducing where these identities hold is tricky.
Az a conformal map, W = f(Z) maps the complex Z-plane twice,
once for [Z{ > 1 and once for [Z{ < t , onto the complex W-
plane, mapping the unit circle (Z| = 1 to a slit along the
imaginary axis from W = -7z to W = +2 . The inverse map is the
ohe Wwe wish to ploty I = g(W) maps the whole W-plane slitted
along W = -z to W= +: onto the outside of the I-plane’ =

unit circle (Z{ > 1 . Vertical lines in the W-plane map to the
stream—lines of a vertical 'eluding” flow around the unit circle

in the Z-plane. We wish to exhibit those stream—lines.

To smooth the plot near stagnation points gi{+r) where g’ (+1)
is infinite, we parameterize the vertical W-lines in a way that
plots points more densely near the stagnation points than far away

from them: the real function fi{g) = (3% - 1083 + 155)/8 does
this by satisfying hi(-s) = -h(s) , h’(s) =20 . hi{t) = 1  and

h* (1) = O . Then for any fived real r sy W I=r + thi(s) traces
out & vertical straight line segment as s runs through some
interval, say =-1.5 < s < 1.% , in small steps like &Hs = F/32 4
and Z = g(W) traces out a stream—line past the circle.

To plot several stream-lines, we run r through some interval,
say O < r 4 0.&6 , in several steps, say of size & = 0,05 .,
For each such r we plot two stream-lines, Z = g(r + thi(s)) to
the right of the circle and Z := gi{-r + th{e)} to the left. The
kind of result we expect is shown in Figure 1 , and that is what
does happen if -0 ig respected. But machines that lack -0  ar
spoil it plot two coincident stream-lines around the right-hand
arc of the circle and rone arcund the left, as Figure Z shows.

Of course, some fiddling with tiny perturbatians ( but not too
timy lest they get lost in rounding errors ) can bring back the
complete circleg but why should that be necessary? As problems

get more complicated, the effects of omitting -9 get more
bizarre. Try plotting Z = 1 + W2 + Wy (W3+1) + In(W2 + Wy (W2+1))
&5 W runs on radial straight lines through ©  in the right

half-planme, including the imaginary axis., The flow, called
"Borda’s Mouthpiece", should lock like Figwe T 3 but Figure 4
shows what happens without -0 n[or fiddling. Car vou suplain 1it7

For more details about the phercamena in guestion, and for more
Carefully coded ocrocedures to compute the above comples inverse
elementary functions, see " Bracch Cute for Comples: Elementary
Fumctions, or Much Ado sbout the sign of Zero " by W. Kahan,
ch. 7 in  The State of the Art in Numer fcal Analysis ed. by
Tzerles & Fowsll (1287, Quford Univ. Fress. Updated versions of
this documsrt are relesszed from time to time by its author.
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