
Stabbing Oriented Convex Polygons
in Randomized O(n2) Time

Seth J. Teller

Michael E. Hohmeyer

University of California at Berkeleyz

Abstract

We present an algorithm that determines, in expected O(n2) time, whether
a line exists that stabs each of a set of oriented convex polygons in R3 with a
total of n edges. If a stabbing line exists, the algorithm computes at least one
such line. We show that the computation amounts to constructing a convex
polytope in R5 and inspecting its edges for intersections with a four-dimensional
quadric surface, the Pl�ucker quadric.

CR Categories and Subject Descriptors: [Computer Graphics]:
I.3.5 Computational Geometry and Object Modeling { geometric algorithms,

languages, and systems.

Additional Key Words and Phrases: Linear programming, stabbing
lines, high-dimensional convex hulls, polygon traversals, Pl�ucker coordinates,
sightline visibility.

zComputer Science Department, Berkeley, CA 94720

1



1 Introduction

Consider a collection of oriented convex polygons; that is, directed planar contours in
R3. Suppose one wishes to determine whether any line simultaneously intersects every
polygon, while traversing the plane of each polygon in a speci�ed direction (Figure
1). We show how to compute whether such a stabbing line exists for a given set of
polygons, and if so, how to compute an example stabbing line. This problem is of
practical importance in some visibility computations. For example, a polygonal scene
in R3 might be partitioned into convex cells, interconnected via portals, or translucent
holes on the shared boundary between two cells. A stabbing line through a sequence
of portals could serve as a witness sightline between two non-adjacent polyhedral cells
[14]. The polygonal portals between each cell, in this case, would be oriented by the
direction in which each portal is encountered along the sequence (for example, during
a search of the subdivision adjacency graph).

Figure 1: A stabbing line through a collection of polygons in R3.

For a given set of polygons, let n be the total number of edges comprising the
set. Various stabbing line algorithms for unoriented polygons have been formulated.
Avis and Wenger presented an O(n4 lg n) time algorithm to compute stabbing lines
[2]. McKenna and O'Rourke improved this to O(n4�(n)) time [6], where �(n) is the
functional inverse of Ackermann's function. If the polygons are triangles, and together
comprise g distinct normals, an algorithm due to Pellegrini computes a stabbing line
in O(g2n2 lg n) time if one exists [8]. When g is O(n), this time bound is the same as
that due to Avis and Wenger.

For the case of input polygons consisting only of isothetic, or axis-aligned, rect-
angles and boxes, Hohmeyer and Teller presented an O(n lg n) time stabbing line
algorithm [5]. Amenta improved this with a randomized linear time algorithm [1].
Finally, Megiddo reduced the problem to linear programming, yielding a deterministic
linear time algorithm [7].

2



Here, we consider the case in which the input polygons are in general, non-axial,
convex, and oriented. We orient each polygon by selecting one of its two (antiparallel)
plane normals. (Oriented polygons arise often in real applications, e.g. from topo-
logical constraints or, as described above, during combinatorial search algorithms.)
We then search for (directed) stabbing lines that have a positive inner product with
each polygon normal. Knowing the direction in which any stabbing line must tra-
verse each of the polygons allows the formulation of a randomized O(n2) expected
time algorithm. We have implemented this algorithm, using a modi�ed version of
d-dimensional Delaunay simplicialization code supplied by Allan Wilks and Allen
McIntosh [15].

We use the Pl�ucker coordinatization of lines [12]. Directed lines in R3 are mapped
into both points and hyperplanes in �ve-dimensional projective space. We show that
�nding a solution to the stabbing line problem is equivalent to �nding a point on the
intersection of a polytope and a quadric surface (the Pl�ucker quadric) in R5. The

complexity of a polytope, described by its face graph, in Rd is O(nb
d

2
c) [4]. Thus the

worst-case complexity of a polytope in R5 will be O(n2).

2 Pl�ucker Coordinates

We use the Pl�ucker coordinatization [12] of directed lines in three space. Any ordered
pair of distinct points p = (px; py; pz) and q = (qx; qy; qz) de�nes a directed line ` in
R3. This line corresponds to a projective six-tuple �` = (�`0; �`1; �`2; �`3; �`4; �`5),
each component of which is the determinant of a 2 � 2 minor of the matrix 

px py pz 1
qx qy qz 1

!
(1)

There are several conventions dictating the correspondence between the minors of
(1) and the �i. We de�ne the �`i as:

�l0 = pxqy � qxpy

�l1 = pxqz � qxpz

�l2 = px � qx

�l3 = pyqz � qypz

�l4 = pz � qz

�l5 = qy � py

(this somewhat asymmetric order was adopted in [9] to produce positive signs in some
identities about Pl�ucker coordinates).

If a and b are two directed lines, and �a;�b their corresponding Pl�ucker mappings,
a relation side(a; b) can be de�ned as the permuted inner product �a ��b:

�a ��b = (�a0�b4 + �a1�b5 + �a2�b3 + �a4�b0 + �a5�b1 + �a3�b2)

3



a a a

b
b

b

side (a, b) < 0 side (a, b) = 0 side (a, b) > 0

Figure 2: The right-hand rule in the context of the relation side(a; b).

This sidedness relation has a geometric interpretation similar to the well-known
\right-hand rule" (Figure 2): if the thumb of one's right hand is directed along a,
then side(a; b) is positive (negative) if b goes by a with (against) one's �ngers. If lines
a and b are coplanar (i.e., intersect or are parallel), side(a; b) is zero.

Thus, the six-tuple �l can be treated either as a (homogeneous) point in P 5 or,
after permutation, as the coe�cients of a 5-dimensional hyperplane. The advantage
of transforming lines to Pl�ucker coordinates is that detecting incidence of lines in R3

is equivalent to computing the inner product of a homogeneous point (the mapping
of one line) with a hyperplane (the mapping of the other).

Pl�ucker coordinates simplify computations on lines by mapping them to points
and hyperplanes, which are familiar objects. However, although every directed line in
R3 maps to a point in Pl�ucker coordinates, not every six-tuple, interpreted as Pl�ucker
coordinates, corresponds to a real line. Only those points � satisfying the quadratic
relation

��� = 0 (2)

correspond to real lines in R3. All other points map to imaginary lines.

The six Pl�ucker coordinates of a real line are not independent. First, since they
describe a projective space, they are distinct only to within a scale factor. Second,
they must satisfy Equation 2. Thus, the six Pl�ucker coordinates describe a four-
parameter space. This con�rms basic intuition: one could describe all lines in R3 in
terms of, for example, their intercepts on two standard planes.

The set of points in P 5 satisfying Equation 2 is called the Pl�ucker quadric [12].
One might visualize this set as a four-dimensional ruled surface embedded in R5 that
is analogous to a quadric hyperboloid of one sheet in R3 (Figure 3).

Henceforth, we use the notation � : l ! �l to denote the map � that takes a
directed line l to the Pl�ucker six-tuple �l, and the notation L : �! l� to denote the
map that takes any point � on the Pl�ucker quadric and constructs the corresponding

4



R3 R5

Figure 3: Real lines map to points on, or hyperplanes tangent to, the Pl�ucker surface.

real directed line l� in R3. Finally, given a six-tuple h representing a hyperplane in
Pl�ucker coordinates, we use h+ to denote the closed halfspace bounded by h.

3 Computing a Stabbing Line

The input polygons to be stabbed have a total of n edges Ek; 0 � k < n. Each edge
Ek is a segment of a directed line ek. Since the polygons are oriented, the ek can be
directed so that if a stabbing line S exists through all of the polygons, it must have
the same sidedness relation with respect to each of the ek. That is, S must satisfy
(Figure 4):

side(S; ek) � 0 8k.

ek

S

Figure 4: The stabbing line S must pass to the same side of all the ek.

5



De�ne hk as the oriented Pl�ucker hyperplane corresponding to the directed line
ek:

hk = fx 2 P5 : �k4x0 + �k5x1 + �k3x2 + �k2x3 + �k0x4 + �k1x5 = 0g;

or
hk = fx 2 P5 : x� �k = 0g: (3)

For any stabbing line S, side(S; ek) � 0. That is, s� �k � 0, where s = �(S). Thus,
s must be above all the hyperplanes hk (Figure 5), and inside or on the boundary of
the convex polytope

T
k h

+
k . We say that such a point s is feasible with respect to the

hk.

s

hk

Figure 5: If S is a stabbing line, s = �(S) must be above all of the hk in R5.

The face graph of the polytope
T

k h
+

k has worst-case complexity quadratic in the
number of halfspaces de�ning it [4], and can be computed by a randomized algorithm
in optimalO(n2) expected time [3]. It is not su�cient merely to �nd a point inside this
polytope, since most such points will not correspond to real lines. Rather, a stabbing
line through the polygons exists if and only if there exists some point inside or on
the boundary of the convex polytope, and on the Pl�ucker quadric. Our algorithm
computes such a point, if one exists.

Before proceeding with the algorithm, we review one important fact. If any stab-
bing line exists through the polygons, some stabbing line exists that is tight, or inci-
dent, on four edges from the original polygons [11]. The set of all such lines are the
so-called extremal stabbing lines [8]. They may arise via incidence on two vertices
from di�erent polygons; from a single vertex and two skew edges from di�erent poly-
gons; or from four mutually skew edges from di�erent polygons. It is these extremal
stabbing lines which our algorithm identi�es.

Consider the structure of the polytope bounding
T

k h
+

k . Its zero-simplices, or
vertices, arise as the intersection of �ve hyperplanes hk. Its one-simplices, or edges,
arise from the intersection of four of the hk. Thus, any point on an edge of

T
k h

+
k and

on the Pl�ucker quadric corresponds (by the Pl�ucker mapping) to a real line tight on

6



four of the lines ek (by projective transformation, we can always choose the plane at
in�nity so that it does not intersect

T
k h

+
k ).

R5

Figure 6: The algorithm intersects the edges of
T

k h
+
k with the Pl�ucker quadric.

Thus, to discover a stabbing line, we need only �nd the intersection of an edge of
the polytope

T
k h

+
k with the Pl�ucker quadric (Figure 6). The combinatorial structure

of
T

k h
+
k impliesO(n2) sets of four lines chosen from the ek. Any four lines li determine

0, 1, 2, or an in�nite number of lines tight on the li. This is simply because the four
lines imply an intersection of four hyperplanes in R5, which is just a line in R5.
This line intersects the Pl�ucker quadric in 0, 1, 2, or an in�nite number of points.
(The in�nite intersection can arise due to the fact that the Pl�ucker quadric is a ruled
surface.) A procedure for computing the set of tight lines, and determining the type
of line-surface intersection, is given in [13].

For each edge of
T

k h
+
k , we examine the in�nite line containing the edge for in-

tersections with the Pl�ucker quadric. Any such intersections represent lines that are
incident on four of the ek (the lines a�ne to the polygon edges in R3). However, we
must check that the intersection point in R5 actually occurs inside

T
k h

+
k . We do so

by comparing this point to the faces (hyperplanes) bounding the convex hull edge.
This can be done in constant time for any edge of

T
k h

+
k , assuming that its face graph

is suitably represented.

4 Implementation

Our implementation is based on three \primitives": 1) a d-dimensional linear pro-
gramming algorithm; 2) a d-dimensional convex hull algorithm; and 3) an algorithm
that computes the line(s) through four lines. The implementation of the stabbing
line algorithm can be sketched as follows:

1. input the directed edges Ek

7



2. orient the edge endpoints to produce the directed lines ek

3. transform the ek to oriented Pl�ucker halfspaces hk = �(ek)

4. �nd f such that f � hk � 0 for all k
(linear programming: �nd (f,c) maximizing c subject to f � hk � c � 0)

5. if no such f exists, return; there is no stabbing line

6. if c = 0 handle degenerate input

7. dualize the hk about f to produce the point set pk =
hk

f�hk
in R5

8. compute the convex hull Conv(pk)

9. compute the dual of Conv(pk); i.e., the polytope
T

k h
+
k

10. examine the edges of
T

k h
+
k for intersections with the Pl�ucker quadric

11. if an intersection is found, check that it is in the interior of
T

k h
+
k

12. if the intersection is valid, remap via L to construct a real stabbing line.

The �rst primitive, linear programming, is implemented as a randomized algo-
rithm and runs in expected linear time [10]. The second primitive, convex hull com-
putation in R5, requires O(n2) time in principle [3]. We have implemented it, how-
ever, using a d-dimensional Delaunay simplicialization algorithm supplied by Wilks
and McIntosh [15], which is somewhat slower. The third primitive, line incidence,
runs in constant time.

Figure 7: The thirty-six extremal stabbers of three oriented polygons (n = 13).

Figure 7 depicts the algorithm in operation. The input consists of three polygons:
a square, a hexagon, and a triangle (thus n = 13). There are 270 possible extremal

8



stabbing lines; one vertex and a pair of edges can be chosen in 4�6�3�3 = 216 ways
(where the last factor of 3 is due to the fact that the vertex can be chosen from each
of the three input polygons); two vertices can be chosen in 4� 6 +4� 3+ 3� 6 = 54
ways. For this input, however, the convex hull in R5 has 130 edges (that is, only 130
of the 270 possible lines incident on four input edges satisfy all n Pl�ucker constraints).
These 130 convex hull edges yield 36 intersections with the Pl�ucker quadric, and thus
36 real, extremal stabbing lines.

Conclusion

Using a duality relationship connecting directed lines in three-space, and point-
hyperplane relationships in �ve-space, we have described an algorithm that �nds
all extremal stabbing lines through a set of oriented polygons with total complexity
n, if any exist. The algorithm relies on a convex hull computation in R5, which can
be completed by a randomized algorithm in expected O(n2) time. We argued that
only the edges of the generated polytope need be checked for a stabbing line solu-
tion. The resulting combinatorial structure has complexity O(n2) and is inspected
deterministically, yielding an expected O(n2) time algorithm.

Acknowledgments

We are indebted to Allan Wilks and Allen McIntosh of AT&T Bell Labs for supplying
code to compute d-dimensional simplicial Delaunay decompositions. We also thank
Raimund Seidel and Nina Amenta for their helpful insight and comments.

References

[1] Nina Amenta. Finding a line traversal of axial objects in three dimensions. To
appear in Proc. 3rd Annual ACM-SIAM Symposium on Discrete Algorithms,
1992.

[2] D. Avis and R. Wenger. Algorithms for line traversals in space. In Proc. 3rd

Annual Symposium on Computational Geometry, pages 300{307, 1987.

[3] Kenneth L. Clarkson, Kurt Melhorn, and Raimund Seidel. Four results on ran-
domized incremental constructions. In preparation, 1991.

[4] B. Gr�unbaum. Convex Polytopes. Wiley-Interscience, New York, 1967.

[5] Michael E. Hohmeyer and Seth J. Teller. Stabbing isothetic rectangles and boxes
in O(n lg n) time. Technical Report UCB/CSD 91/634, Computer Science De-

9



partment, U.C. Berkeley, 1991. Also to appear in Computational Geometry:
Theory and Applications, 1992.

[6] M. McKenna and J. O'Rourke. Arrangements of lines in 3-space: A data struc-
ture with applications. In Proc. 4th Annual Symposium on Computational Ge-
ometry, pages 371{380, 1988.

[7] N. Megiddo. Stabbing isothetic boxes in deterministic linear time. Personal
communication to Nina Amenta, 1991.

[8] Marco Pellegrini. Stabbing and ray-shooting in 3-dimensional space. Technical
Report 540; Robotics Report No. 230, New York University Courant Institute of
Mathematical Sciences, Computer Science Division, 1990.

[9] Marco Pellegrini and Peter Shor. Finding stabbing lines in 3-dimensional space.
In Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms, pages 24{31, 1991.

[10] Raimund Seidel. Linear programming and convex hulls made easy. In Proc. 6th

ACM Symposium on Computational Geometry, pages 211{215, 1990.

[11] Raimund Seidel. Personal communication, February 1991.

[12] D.M.Y. Sommerville. Analytical Geometry of Three Dimensions. Cambridge
University Press, 1959.

[13] Seth J. Teller and Michael E. Hohmeyer. Computing the lines piercing four
lines. Technical Report UCB/CSD 91/665, Computer Science Department, U.C.
Berkeley, December 1991.

[14] Seth J. Teller and Carlo H. S�equin. Visibility preprocessing for interactive walk-
throughs. Computer Graphics (Proc. SIGGRAPH '91), 25(4):61{69, 1991.

[15] Allan Wilks, Allen McIntosh, and Richard A. Becker. The data dual. In prepa-
ration, 1992.

10


