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Abstract

RATD-IT (RAID the second) is a scalable high-bandwidth network file server for heterogeneous
computing environments characterized by a mixture of high-bandwidth scientific, engineering
and multi-media applications and low-latency high-transaction-rate UNIX applications. RAID-II
is motivated by three observations: applications are becoming more bandwidth intensive, the
I/O bandwidth of workstations is decreasing with respect to MIPS, and recent technological
developments in high-performance networks and secondary storage systems make it economical
to build high-bandwidth network storage systems.

Unlike most existing file servers that use a bus as a system backplane, RAID-II achieves
scalability by treating the network as the system backplane. RAID-II is notable because it phys-
ically separates files service, the management of file metadata, from storage service, the storage
and transfer of file data; stripes files over multiple storage servers for improved performance and
reliability; provides separate mechanisms for high-bandwidth and low-latency 1/O requests; im-
plements a RAID level 5 storage system; and runs LFS, the Log-Structured File System, which
is specifically designed to support high-bandwidth I/O and RAID level 5 storage systems.
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1 Motivation

RAID-II (RAID the second) is a scalable high-bandwidth network file server being developed at
the University of California at Berkeley as part of a project to study high performance, large
capacity and highly reliable storage systems. RAID-II is designed for the heterogeneous computing
environments of the future consisting of diskless supercomputers, visualization workstations, multi-
media platforms and UNIX workstations. The primary purpose of RAID-II is to serve as a vehicle
for research of storage architectures and file systems for the future.

RAID-II incorporates the fruits of two novel research projects. First, as the name of the proto-
type implies, the storage system is based on RAID [9], the Redundant Arrays of Inexpensive Disk
technology developed by the RAID group at Berkeley. RAID replaces large expensive disks with
many small inexpensive disks to provide higher performance and reliability at a lower cost. Second,
RAID-II will run LFS [10], the Log-Structured File System, developed by the Sprite operating
system group at Berkeley. LF'S is a file system specially optimized to support high-bandwidth I/0O
and fast crash recovery. RAID and LFS are synergistic technologies that together obtain far greater
performance than when either is used alone.

The development of RAID-II is motivated by three key observations. First, we notice a trend
toward bandwidth-intensive applications: multi-media, CAD, object-oriented data bases and scien-
tific visualization. Even in well established application areas such as scientific computing, reductions
in the cost of secondary storage and the introduction of faster supercomputers have caused a rapid
growth in the size of datasets, requiring faster I/O systems to transfer the increasing amounts of
data.

Second, experience with RAID-I [3], our first prototype, shows that most of today’s workstation-
based file servers are incapable of supporting high-bandwidth I/O. Moreover, the future I/O per-
formance of server workstations is likely to degrade relative to the overall performance of their
client workstations even if applications do not become more I/O intensive. This is because today’s
workstations achieve high performance by using large fast caches without significantly improving
the performance of the primary memory and I/O systems. Table 1 is paraphrased from a paper by
Ousterhout [8] that discusses why operating system performance is not scaling with microprocessor
performance. It illustrates the trend of decreasing memory system performance relative to MIPS
in workstations.

The third key observation is that recent technological developments in networks and secondary
storage systems make it possible to build high-bandwidth supercomputer file servers at workstation
prices. Until recently, anyone wishing to build a high-bandwidth supercomputer I/O system had to
invest millions of dollars in proprietary high-bandwidth network technology and expensive parallel-
transfer disks. But with the standardization of high-performance interconnects and networks such
as HIPPI and FDDI, and the commercialization of the RAID technology, high-bandwidth networks
and secondary storage systems have suddenly become affordable. What is lacking, and the point
that RAID-II addresses, is a storage architecture that can exploit these developments.

This paper describes RAID-II, a scalable high-bandwidth network file server for heterogeneous
computing environments. We focus primarily on the hardware components of the system, although
the software is also discussed where relevant. The paper starts with a brief survey of existing file
server architectures. The survey is followed by the architecture and implementation of RAID-II.
We end the paper with our current status, summary and conclusions.



| [ MB/s | MIPS | (MB/s)/MIPS |

MicrovaxIl 3.3 0.9 3.67
sun-3/75 5.5 1.8 3.06
IBM RT-APC 5.9 2.5 2.36
VAX 8800 16.0 6 2.67
Sun-4/280 5.0 8 0.63
SPARCstation-1 6.9 10 0.69
DECstation 3100 5.4 12 0.45
H-P 9000-835CHX 6.2 14 0.44
DECstation 5000 12.6 18 0.70
MIPS M2000 20.0 20 1.00

Table 1: Memory Bandwidth vs. Mips. Throughput for a bcopy procedure when copying o block
of data that is much larger than the CPU cache. Note the decreasing trend in (MB/s)/MIPS as
MIPS increases.

2 Existing File Server Architectures

In this section, we examine several existing file server architectures. The material in this section
will serve as a background for the discussion of various aspects of RAID-II in the sections to follow.
First we examine RAID-I, a workstation-based file server we modified to provide high-bandwidth
file service. Next we look at the Auspex NS5000 file server which is highly successful in providing
scalable high-performance NF'S file service. Finally, we examine several mass storage systems (MSS)
currently used by supercomputing centers for high-capacity shared storage.

2.1 RAID-I

RAID-T [3] (RAID the first) was designed to test the ability of workstation-based file servers to
provide access to the high bandwidth and high I/O rates supported by disk arrays. The prototype
was constructed using a Sun 4/280 workstation with 128 MB of memory, 28 51/4 inch SCSI disks
and four dual-string SCSI controllers.

Experiments with RAID-I show that it is good at sustaining small random I/0O’s, performing
approximately 300 4 KB random I/Os per second. However, RAID-I has proven woefully inadequate
for high-bandwidth I/0, sustaining at best 2.3MB/s to a user-level application on RAID-I. In
comparison, a single disk on RAID-I can sustain 1.3 MB/s.

There are several reasons why RAID-I is ill-suited for high-bandwidth I/O. The most serious
is the memory contention experienced on the Sun 4/280 server during I/O operations. The copy
operations performed in moving data between the kernel DMA buffers and buffers in user space
saturate the memory system when I/O bandwidth reaches 2.3 MB/s. Second, because all I/O on the
Sun 4/280 goes through the CPU’s virtually addressed cache, data transfers experience interference
from cache flushes. Finally, high-bandwidth performance is limited by the low bandwidth of the
Sun 4/280’s VME system bus. Although nominally rated at 40 MB/s, the bus becomes saturated
at 9 MB/s.

The above problems are typical of many ”CPU-centric” workstations that are designed for good
processor performance but fail to support adequate I/O bandwidth. In such systems, the memory



system is designed so that the CPU has the fastest and highest-bandwidth path to memory. For
busses or backplanes farther away from the CPU, the available bandwidth to memory drops quickly.
This is in sharp contrast to mainframe computers where the memory system is designed specifically
to support high-bandwidth I/0.

To summarize, our experience with RAID-I indicates that the memory systems of workstations
are in general poorly suited for supporting high-bandwidth I/O. In the design of RAID-II, our
second prototype, we have given this careful consideration.

2.2 Auspex NS5000

The Auspex NS5000 [6] is designed for high-performance NF'S file service. NFS is the most common
network file system protocol for workstation-based computing environments. NFS is designed to
efficiently support operations on small and medium sized files, but because NFS transfers files in
small individual packets, it is inefficient for large files.

In the NS5000, the network processing, file system management, and disk control are handled
by separate dedicated processors. This functional multiprocessing, in contrast to symmetric mul-
tiprocessing, makes synchronization between processes explicit and allows the performance of the
file server to easily scale by adding processors, network attachments and disks. This is in contrast
to a typical NFS file server that performs all functions on a single processor. In such systems,
performance can be scaled to only a very limited degree by adding additional network attachments
and disks because the processor will quickly become a bottleneck.

Although the NS5000 is good at supporting small low-latency NFS requests, it is unsuitable for
high-bandwidth applications. The use of a single 55 MB /s VME bus to connect the networks, disks
and memory significantly limits the aggregate I/O bandwidth of the system. More importantly,
NFS is very inefficient for large files because it always breaks up files into small packets which
are sent individually over the network. This results in fragmentation of the available network
bandwidth and forces the receiving system to handle a large number of interrupts.

2.3 Supercomputer Mass Storage Systems

Almost all supercomputer mass storage systems use a mainframe as a high-performance file server.
The mainframe maintains the file system metadata, and provides a high-bandwidth data path
between its channel-based I/O system and supercomputer clients via a high-performance channel
or network interface. Because most supercomputer mass storage systems are designed primarily
for capacity, very few support data transfer rates over 10 MB/s. For performance, supercomputer
applications rely on directly attached parallel-transfer disks. Supercomputer mass storage systems
also are not designed to service a large number of small file requests, and are rarely used as primary
storage systems for large numbers of client workstations. The following briefly describes the MSS-1I,
NCAR and LSS mass storage systems.

MSS-II [11], the NASA Ames mass storage system, uses an Amdahl 5880 as a file server. MSS-II
achieves data transfer rates up to 10 MB/s by striping data over multiple disks and transferring
data over multiple network channels.

The mass storage system at NCAR [7], the National Center for Atmospheric Research, is im-
plemented using Hyperchannel and an IBM mainframe running MVS. The NCAR mass storage
system is unique in that it provides a direct data path between supercomputers and the IBM main-



frame’s channel-based storage controllers. On a file access, data can bypass the mainframe and be
transferred directly between the storage devices and the supercomputers.

The Lawrence Livermore National Laboratory’s LINCS Storage System (LSS) [5], is closely
modeled after the Mass Storage System (MSS) Reference Model. The (MSS) Reference Model [4]
identifies and defines the function and software interfaces for six elements of a mass storage system:
name server, bitfile client, bitfile server, storage server, physical volume repository and bitfile mover.

A client file access in LSS begins at the name server, which maps a human readable name
to a bitfile ID. The bitfile server uses the bitfile ID to perform authentication checks and main-
tain/lookup metadata related the file, such as the logical volume and bitstream offsets at which the
bitfile is stored on the storage server. The storage server maps the logical volume and bitstream
offsets to physical device and block offsets and retrieves the requested data. If the data is stored
on an unmounted storage media, the physical volume repository is instructed to mount the media.
The bitfile mover then transfers the data between the storage server and the client.

A notable aspect of LSS is that control and data messages are always transmitted independently.
This allows the control and data messages to take different paths through the system. For example,
a control message requesting a write would be sent to the bitfile server but the data itself would
be sent directly to the storage server, bypassing the bitfile server. This is efficient for large data
transfers but the extra overhead of treating control and data independently is likely to degrade the
performance of small NFS-type requests.

2.4 Summary

We have examined the architecture of several existing file servers and discussed why they are unsuit-
able for heterogeneous computing environments consisting of both high-bandwidth data transfers
and high-transaction rate NFS-type requests. As RAID-I illustrates, the relatively low performance
of workstation memory systems make them unsuitable for use as high-bandwidth file servers. Not
surprisingly, specially designed file servers such as the Auspex NS5000, while supporting large
numbers of NFS clients, provide only marginal performance for high-bandwidth clients.

Although most supercomputer mass storage systems can transfer data at relatively high rates of
up to 10 MB/s, this is still not good enough to support diskless supercomputers. Furthermore, they
neglect the performance of small NFS-type requests in order to optimize the performance of high-
bandwidth data transfers. Finally, even if the supercomputer mass storage systems were optimized
to support NFS-type requests, it would be economically infeasible to use mainframes as file servers
for workstations. In the following sections, we describe the architecture and implementation of
RAID-II and how it economically supports both high-bandwidth data transfers and low-latency
high-transaction-rate NFS-type requests.

3 RAID-II Storage Architecture

Architecturally, RAID-II resembles the previously described LSS mass storage system and roughly
follows the structure of the Mass Storage System Reference Model. RAID-II, however, is distinctive
in its attention to low-latency high-transaction-rate NFS-type requests characteristic of UNIX client
workstation. It is a specific design goal of RAID-II to service NFS-type requests as well as, if
not better than, today’s workstation-based file servers. Thus, the design of RAID-II is driven
by very different motivations than the design of supercomputer mass storage systems. We think



of RAID-II as more of an evolution of workstation-based file servers than supercomputer mass
storage systems. Even without supercomputers, architectures like RAID-IT are needed due to the
rapid trend in workstation-based computing environments toward larger datasets and bandwidth
intensive applications.

Section 4 explains the reasoning which lead us to the RAID-II Storage Architecture and briefly
describes the architecture. Sections 4.1 and 4.2 describes the hardware (structural) and software
(functional) aspects of the two main components of the RAID-IT Storage Architecture: the RAID-II
storage server and the RAID-II file server. Finally, Section 4.3 describes an innovative file system
called the Log-Structured File System which runs on the RAID-II file server, and without which
the performance of RAID-II would be no better than the average workstation-based file server.

4 Network as Backplane

Today, high-bandwidth file service for supercomputers is provided by mainframe computers. Un-
fortunately, it is highly inefficient to use mainframes to provide NFS file service for a large number
of client workstations. NFS file service is a highly CPU intensive task for which mainframes have
little advantage over RISC workstations and which would leave the expensive high-bandwidth I/0
systems of mainframes virtually unutilized. Unfortunately, the other alternative, using workstation-
based file servers to serve both workstation and supercomputer clients is even worse. As our expe-
riences with RAID-I strongly point out, workstations are unlikely to support high-bandwidth I/0
in the near future.

Ideally, we would like to combine the high-bandwidth I/O systems of mainframes with the
inexpensive computing power of RISC workstations. Moreover, we would like to be able to inde-
pendently scale the bandwidth and CPU power of the network file server to accommodate a wide
range of supercomputer and NFS type workloads. Clearly a flexible interconnection scheme that
could scale in both bandwidth and the number of attached components is the key to solving the
above problems. With this in mind, we considered a wide array of bus-based and bit-sliced server
architectures. Unfortunately, all of the architectures we considered required large amounts of spe-
cialized hardware. In the end, however, the solution was staring us in the face; the network itself
is the most flexible and general interconnect.

RAID-II is radically different from conventional workstation-based network file servers. These
use a bus as the primary system backplane between the network, secondary storage system and
CPU whereas RAID-1I uses the network as the primary system backplane. Instead of connecting the
high-bandwidth secondary storage system to the high-bandwidth network via a low-bandwidth bus,
we connect it directly to the high-bandwidth network and refer to it as the RAID-II storage server.
Similarly, the CPU, now referred to as the RAID-II file server, is also connected to the network.
The result is a high-performance storage system that is more scalable than conventional network
file servers in much the same way networks are more scalable than busses. Figure 1 illustrates the
RAID-II storage architecture. A variety of clients from supercomputers to desktop workstations,
RAID-II storage servers and RAID-II file servers are interconnected over a network composed of
high-bandwidth network switches, FDDI networks, Ethernets and network routers.
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Figure 1: RAID-IT Storage Architecture.

4.1 Storage and File Servers: Independence and Interdependence

As mentioned in the previous section, the RAID-II storage server corresponds to the secondary
storage system of conventional network file servers. As such, the RAID-II storage server implements
a logical device-level interface and loosely corresponds to the definition of storage server given in
the MSS Reference Model. Storage on the RAID-II storage server is addressed using a logical
device name and offset within the device. The RAID-II storage server is implemented with custom
hardware and software.

The RAID-II file server combines the functionality of the MSS Reference Model’s name server
and bitfile server. In particular, it translates hierarchical human-readable file names to logical
device addresses for use by the RAID-II storage server, manages the metadata associated with each
file, and provides a cache of recently accessed files. The RAID-II file server is an off-the-shelf RISC
workstation running the Log-Structured File System.

Separating the RAID-II storage system into storage servers and file servers has several advan-
tages. If we need additional I/O bandwidth, we simply add more storage servers without affecting
the number of file servers. If we find the file servers overutilized, we can add more file servers
without adding more storage servers. To some extent adding storage servers is like adding disks
to a conventional file server but an important distinction is that when you add a storage server,
you increase the I/O bandwidth available to the network whereas when you add a disk you only
increase the I/O bandwidth available to the given file servers, whose backplane, if the file server is
a typical workstation, is easily saturated.

Additionally, we can increase data transfer bandwidth for servicing individual I/O requests by



striping files over multiple storage servers. That is, we can build a file system on a logical disk
spanning multiple storage servers. Striping over multiple storage servers is also useful for load
balancing. Note that striping over multiple storage servers is conceptually simple—we can treat it
similarly to disk striping—because synchronization and logical file operations for a given file are
still handled by a single file server.

Being able to scale by striping data over multiple storage servers is important for several reasons.
First, when designing a shared storage system for a heterogeneous environment, it is uneconomical
to build a storage server capable of supplying the full I/O bandwidth of the fastest supercomputer
client. The storage server’s capabilities would be wasted on the majority of clients, which are
desktop workstations. Second, even if one built such a super storage server, it would quickly
become inadequate when the next generation of supercomputers becomes available. Clearly a
storage architecture whose bandwidth for individual requests is incrementally scalable is highly
desirable.

Another advantage of physically separating the storage and file servers is apparent when one
considers redundancy schemes designed to tolerate server failures. It is easy to implement different
redundancy schemes to protect storage servers in comparison to file servers, since they are physically
separated. For example, since storage capacity is very important for storage servers, we can use a
parity storage server, similar to a parity disk in RAID, to provide access to the contents of a failed
storage server. By computing the parity over a large number of storage servers, we can make the
storage cost of parity arbitrarily small. On the other hand, we can use simpler higher-performance
redundancy schemes such as mirroring or logging to a backup file server to protect file servers
from failures, where the storage cost for redundancy is less because there is less state to maintain.
Finally, since the storage servers interface directly to the network, it is easy to distribute the storage
servers over a wide geographic area to protect against natural disasters such as earthquakes and
floods.

On the negative side, separating the storage and file servers increases the overhead to access
the storage system. For large high-bandwidth requests, however, the overhead is dwarfed by the
data transfer time. We also feel that small requests will not be significantly hurt because most
small read requests can be efficiently cached [1] and LFS performs writes asynchronously in the
background.

4.2 Standard and High-Bandwidth Modes

In the previous section, we considered several advantages and a disadvantage of the RAID-II hard-
ware architecture. However, the software mechanisms by which requests are serviced has not yet
been described. It is evident at this point that the RAID-II hardware architecture can provide
scalable high-bandwidth file service, but it is not clear if the software can effectively utilize the
hardware. In particular, the RAID-II software must efficiently support both standard low-latency
requests and high-bandwidth data transfers.

We define low-latency requests as small data transfers and file system operations such as open,
close and fstat while high-bandwidth requests are defined as large data transfers. Low-latency
requests and high-bandwidth requests obviously have widely different performance characteristics.
The performance of low-latency requests is determined primarily by fixed network and software
overheads. The time spent transferring data is not as significant. In contrast, high-bandwidth
requests spend most of their time transferring data and are insensitive to fixed overheads in the



network or software. Thus, it is unlikely that a network protocol that works well for low-latency
requests would work well for high-bandwidth requests and visa versa. Low-latency requests are best
handled using protocols with small fixed software overheads that reduce the number of round-trip
messages between clients and servers. In contrast, high-bandwidth requests are best serviced using
the highest bandwidth network protocols, even if they require more overhead to setup the data
transfers.

RAID-II services low-latency requests in standard mode. In standard mode, data and control
messages are combined and transmitted together to reduce the number of network messages and
software overheads. On reads, the file server returns the data with the acknowledgement and on
writes, the client sends the data with the write request. For most reads, a client’s request will be
satisfied from the file server’s cache, resulting in low-latency accesses. When a miss occurs, the file
server treats the storage server as a locally attached disk. The requested data is transferred from
the storage server to the file server’s cache and from there to the client. The scenario is exactly the
same as for conventional workstation-based file servers except that the disks are attached to the
network rather than the file server’s private backplane.

In contrast to the standard mode, the high-bandwidth mode is optimized for large data transfers.
In high-bandwidth mode, the file server processes each data request by setting up data transfers
directly between the storage servers and client. The data completely bypasses the low-bandwidth
file server. In addition, high-bandwidth accesses use a connection-based protocol between the client
and the storage servers. Typical network file systems use a connectionless protocol that breaks up
data into many small packets sent individually over the network. Each packet contains a protocol
header specifying the file and file offset to which it corresponds. For each packet, the recipient
takes an interrupt, processes the header and reassembles the contents of the packet. For large
high-bandwidth transfers, this results in high processing overhead. The UltraNet, for example, has
a maximum packet size of 32KB. To sustain a data rate of 100 MB/s, the recipient of the data
must be able to process over 3000 packets per second.

The connection-based approach, on the other hand, results in significantly less processing over-
head. When a client requests a high-bandwidth data transfer, the file server first performs some
preliminary processing to prepare for the transfer. Then it creates a connection between the storage
servers and client. Once the connection is established, the client transfers data by issuing read and
write requests on the connection. Each request consists of only file data; headers are not needed
since the file and file offset are implicit in the connection. The connection abstraction is easily
supported by the storage server’s network interface, so that the server workstation need only be
notified when the entire data transfer is complete.

A common problem in designing systems to support two very different types of requests is
interference between the two request types. Large high-bandwidth requests should not block the
service of low-latency requests and small low-latency requests should not waste the bandwidth
available on the high-bandwidth network. Our solution is to provide each RAID-II storage server
with both a high-bandwidth 1 Gb/s HIPPI interface and a low-latency 100 Mb/s FDDI interface.
Each storage server is fully functional with only one of the two network connections, and either
request type may use either network, but performance is enhanced if low-latency requests use the
FDDI network and high-bandwidth requests use the HIPPI network.



4.3 Log-Structured File System

Even with custom hardware and special network protocols, RAID-II could not support high-
bandwidth data transfers and high-transaction-rate NFS-type file requests without the Log-Structured
File System (LFS) [10]. Standard UNIX file systems cannot support high-bandwidth I/O because
they store files in small fixed-size blocks that often end up scattered over a disk. Also, because
we are implementing a RAID level 5 storage system, we are concerned with the throughput and
latency for small writes, which are inefficient in RAID level 5 systems because each small write
results in four disk accesses. Two disk accesses are needed to read the old data and old parity
followed by two accesses to write the new data and new parity. Standard UNIX file systems, which
perform many small synchronous writes, would greatly degrade the performance of RAID-II.

LFS, developed by the Sprite operating system group at Berkeley, solves the above problems
by laying out data in large contiguous segments and grouping small write requests together. More
generally, LFS always appends new data, and the corresponding metadata, in large sequential
segments at the end of a log. Small writes are grouped and buffered in main memory until enough
data to fill a log segment are accumulated. In practice, segments are forced to disk after a certain
time limit even if the segment is partially empty. As disk space fills up, segments that become
partially empty due to the deletion or overwriting of existing files are garbage collected. An added
bonus of LFS is that crash recovery is very quick because data is always written sequentially in a
log-like fashion. It takes less than a second to perform an LFS file system check, compared with
approximately 20 minutes to check the consistency of a UNIX file system.

4.4 Summary

The RAID-II storage system treats the network as the primary system backplane that interconnects
the storage servers, file servers and clients. The physical separation of storage and file servers allows
great flexibility in configuring the storage system to meet a wide range of performance requirements.

The separation of storage and file servers also makes it easy to scale peak data transfer rates to
clients by striping data over multiple storage servers. In addition to the method for striping data
described in this section, we are also investigating several alternatives. Omne of the alternatives is
similar to that used in Swift [2]. In Swift, the file servers are contacted only when files are opened
and closed. Clients perform individual read and write requests directly with the storage servers.
This can result in lower-latency file accesses and a reduction in file server load in exchange for a
more complex storage server.

Unfortunately, the separation of storage and file servers increases the overhead to access physical
storage. However, this increased overhead is insignificant for large transfers. For small data trans-
fers, our recent study [1] indicates that caches combined with asynchronous writes will effectively
mask the additional overhead for most applications.

The RAID-II storage system supports low-latency and high-bandwidth requests by providing
the standard and high-bandwidth modes of access, respectively. During the servicing of high-
bandwidth data requests, data are transferred directly to the high-bandwidth client and bypass
the low-bandwidth file server. Providing separate networks for servicing low-latency and high-
bandwidth requests allows the bandwidth of the high-bandwidth network to be efficiently utilized
and prevents large high-bandwidth requests from blocking small low-latency requests. Finally,
RAID-II will run LFS which is optimized to support large high-bandwidth data transfers and
RAID level 5 storage systems.
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5 RAID-II Storage Server

The RAID-II storage server is based on a chassis from TMC (Thinking Machines Corporation)
and is designed to provide a high-bandwidth path between the secondary storage system and
the network. Figure 2 illustrates the RAID-II storage server architecture. The storage server’s
backplane consists of two high-bandwidth data busses and a low-latency VME control bus. We
have adopted the technique of separate paths for high-bandwidth data transfers and low-latency
control accesses here as well as in the RAID-II Storage Architecture. The backplane interconnects
the HIPPI network interfaces, up to four RAID controllers and a server workstation that controls
the operation of the storage server.

Note that the system does not contain centralized memory modules. Instead, large data buffers
are associated with each RAID controller. With centralized memory modules, data would be
transferred over the high-bandwidth busses at least twice, once in to and once out of the memory
modules. With distributed buffers, data is transferred only once over the high-bandwidth busses.
Additional transfers are performed locally within the RAID controllers over local busses as needed.
An implication of the distributed buffers is that on writes, the server must know which RAID
controller to send the data to as it is received from the network. In our case, this is easily deter-
mined because the storage server implements a logical block-level interface with a simple one-to-one
mapping between logical block addresses and physical disk blocks. Architecturally, the RAID-II
storage server is very similar to the Maximum Strategy HIPPI-2 Array Controller, which also uses
a high-bandwidth (250 MB/s) data bus, a low-latency VME control bus and distributed buffers.

The performance goal of the RAID-II storage server is to sustain 160 MB/s data transfers,
80MB/s over each of the two unidirectional HIPPI interfaces. Although each HIPPI interface
can transfer data between the network and its TMC-HIPPI bus at close to 100 MB/s, each RAID
controller can only sustain 40 MB/s on each of the two TMC-HIPPI busses. To fully utilize the
bandwidth supported by the HIPPI interfaces, data is striped over multiple RAID controllers.

The VME I/O busses of the RAID controller, are primarily used to interface to ATC (Array
Technology Corporation) Array Controllers, although, as Figure 2 illustrates, other VME-based
products, such as data compression hardware, can be attached as well. Each VME I/O bus is
nominally rated at 40 MB/s, but in practice, it is difficult to sustain more than 20 MB/s over a
VME bus; thus, there are four VME I/O busses per RAID controller to sustain 80 MB/s. The
RAID controller is described in more detail in a later section.

Figure 3 illustrates the final physical packaging of the RAID-II storage server under construction,
and closely resembles the enclosed photograph which pictures the components so far assembled.
The main rack is composed of the TMC chassis containing the HIPPI interfaces and two RAID
controllers; a VME chassis containing eight ATC controllers; and a VME chassis containing the
server workstation. Two secondary racks will contain a 144 31/2 inch 320 MB SCSI disks for a
total capacity of 46 GB. In each rack, the disks are arranged on eight shelves with nine disks per
shelf.

6 RAID-II I/O Controller

The RAID controller interfaces standard VME-based peripherals to the high-bandwidth data busses
inside the RAID-IT storage servers. It also provides an XOR/DMA engine for performing parity
computations in support of RAID secondary storage systems. The RAID controller is the only
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Figure 2: RAID-IT Storage Server Architecture.
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Figure 3: RAID-II Storage Server.

major piece of hardware that we ourselves designed and constructed. The other components were
obtained from our industrial sponsors.

Figure 4 is a block diagram of the RAID controller. FEight independent memory modules,
collectively comprising the 128 MB buffer memory, are connected via the X-Bus, a crossbar-based
interconnect, to eight 32-bit 40 MB/s X-Bus ports. The TMC-VME port, in addition to supporting
access to the buffer memory, implements registers for configuring and controlling all components
of the RAID controller. In the following sections, we present the rationale for chosing the X-Bus
and the specifications of the X-Bus.

6.1 An Alternative to the X-Bus

Before deciding upon the X-Bus, we carefully considered using a single bus-based interconnect. The
main attraction of the bus-based interconnect was its conceptual simplicity. However, because we
had neither the experience nor resources to use anything other than TTL/CMOS technology, we
were limited to a bus cycle time of approximately 80ns. To sustain 40 MB/s over each of the two
HIPPI ports (40 MB/s of reads and 40 MB/s of writes), we need a bus bandwidth of 200 MB/s.
That is, 80 MB/s for the reads (40MB/s into and 40 MB/s out of memory) and 120 MB/s for
writes (same as for reads + 40 MB/s to compute the parity). Since we cannot realistically expect
to achieve a bus utilization greater than 70-80 percent, this implied that the bus would have to be
256-bits wide with a peak bandwidth of 400 MB/s.

Unfortunately, the number of fifo and transceiver chips required to implement each 256-bit bus
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Figure 4: RAID-II I/O Controller.

port was astronomical. A solution was to use a small number of time-multiplexed 256-bit ports
interfaced to narrower 32-bit and 64-bit busses. The result was a complex system of interconnected
busses of differing widths. Eventually, the 256-bit bus was abandoned in favor of a crossbar-based
interconnection scheme that we call the X-Bus.

6.2 The X-Bus

The X-bus is a synchronous multiplexed (address/data) crossbar-based interconnect that uses a
centralized strict priority-based arbitration scheme. All paths to memory can be reconfigured on
a cycle-by-cycle basis. FEach of the eight 32-bit X-bus ports operates at a cycle time of 80uns,
providing a peak bandwidth per port of 50 MB/s and an aggregate peak memory bandwidth of
400 MB/s. The memory is interleaved in sixteen-word blocks to allow block transfers to use the
faster page mode of DRAM chips. Each X-bus port must rearbitrate when crossing memory module
boundaries.

The X-Bus supports only two types of bus transactions: reads and writes. During each X-
Bus transaction, 1 to 16 words are transferred over the X-Bus. Each transaction consists of an
arbitration phase, an address phase, and a data phase. If there is no contention for memory, the
arbitration and address phases each take a single cycle; data is then transferred at the rate of one
word per cycle. The memory may arbitrarily insert wait cycles during the address and data cycles
to compensate for DRAM access latencies and refreshes. The shortest X-Bus transaction is a single
word write, which takes three cycles, one each for the arbitration, address and data phases.

An important concern with the X-Bus is contention for memory modules. In practice, contention
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is infrequent because most X-Bus ports perform large sequential accesses. When X-Bus ports
conflict, the loser of the arbitration ends up following the winner around the memory modules in
a deterministic manner, avoiding further conflicts. Also, each X-Bus port can buffer at least a
kilobyte of data to/from the X-Bus to even out fluctuations caused by memory conflicts. Detailed
board level simulations under extreme workloads indicate that contention for memory modules is
not a significant problem. Note that because the VME ports can realistically sustain only 20 MB/s,
the maximum utilization of the X-Bus is approximately 65%.

6.3 Summary

The main advantage of the crossbar-based memory system is that high aggregate memory band-
width is made available using relatively inexpensive 32-bit ports. One disadvantage is that a single
port cannot utilize the full 400 MB/s of memory bandwidth as in the wide-bus memory system but
is limited to 40 MB/s. In our case, this is not a serious problem since only the HIPPI ports could
have sustained more than 40 MB/s. Another disadvantage is that, although the ports are inexpen-
sive, the crossbar itself is expensive. We implemented the crossbar using 192 16-bit transceivers.
Using surface mount packaging we are able to implement the crossbar in 120 square inches or
approximately 20 % of the RAID controller’s board area.

7 Status

As of the writing of this paper, most of the hardware components of RAID-II have been assembled.
We are primarily awaiting the fabrication of the RAID controller boards which should be finished
in the next two months. In terms of software, LF'S has been in production use for the past year and
the software for implementing RAID secondary storage systems has been in experimental use for
the past six months. Zebra, the network file system software for striping files over multiple storage
servers, is currently under research and development. If all goes according to plan, RAID-II should
be available for experimental use in the next four to six months. Once our experiments with RAID-
IT are complete, it will be sent to NASA Ames for experimental use and, possibly, integration into
the MSS-II storage system.

8 Summary and Conclusions

The RAID-IT Storage Architecture is motivated by three observations: applications are becom-
ing more bandwidth intensive, the I/O bandwidth of workstations is decreasing with respect to
MIPS, and recent technological developments in high performance networks and secondary stor-
age systems make it economical to build high-bandwidth network storage systems. Most existing
high-bandwidth network storage systems have been designed primarily to provide shared long-term
storage for supercomputers. The relatively low bandwidth (approximately 10 MB/s) of existing
network storage systems makes it necessary to use privately attached parallel-transfer disks for
running most supercomputing applications.

RAID-II shares many things in common with existing mass storage systems such as bypassing
the file server on high-bandwidth accesses by using separate paths for data and control as in the
NCAR and LSS mass storage systems. However, because RAID-II is designed from the point of
view of extending current workstation network storage systems to provide high-bandwidth network
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file service rather than specifically as a storage system for supercomputers, it pays much greater
attention to small low-latency NFS-type requests. For example, we minimize the number of network
messages needed to perform small data transfers by combining data and control messages as in
existing workstation-based network file systems. This is in contrast to LSS which always separates
data and control, which for small requests, results in a significantly larger number of network
messages and higher latencies. Another example is the RAID file server’s file cache. While file
caches are common in workstation-based file servers, most supercomputer storage systems do not
support file caches because of the large size of file transfers.
The distinctive features of the RAID-II Storage Architecture are as follows:

e While conventional network file servers use a bus as the primary system backplane between
the network, secondary storage system and CPU, RAID-II uses the network as the primary
system backplane. This allows RAID-II to scale in performance as network performance scales.

o RAID-II separates the storage system into storage servers and file servers to gain flexibil-
ity in configuring the storage system to meet a wide range of performance and reliability
requirements.

o RAID-II stripes files over multiple storage servers to achieve higher-bandwidth data transfers.
The striping is conceptually simple and can be handled similarly to disk striping because, for
each file, there is only one file server that is responsible for its consistency.

o RAID-II provides both a standard mode of file access and a high-bandwidth mode of file
access for large files. In the high-bandwidth mode of access, data bypass the low-bandwidth
file server and are transferred directly between the storage servers and client.

The distinctive implementation features of RAID-II are as follows:

o RAID-II runs LFS, the Log-Structured File System, which lays out files in large contiguous
segments to provide high-bandwidth access to large files, groups small write requests into large
write requests and provides fast crash recovery.

e The RAID-II storage server uses two high-bandwidth busses each capable of sustaining 80 MB/s
for data transfers and a low-latency VME bus for control. Furthermore, the storage server
implements distributed buffers rather than a centralized buffer to reduce data transfers over

the high-bandwidth busses.

e The RAID controller uses an 8 X 8 crossbar-based interconnect with a peak bandwidth of
400 MB/s instead of a single wide bus.

In closing, we would like to say that over the course of designing and implementing RAID-II, our
project gradually evolved from focusing on only secondary storage systems to investigating high-
performance network file servers. In trying to use the systems we build, we came to realize that
existing storage architectures cannot take full advantage of low-cost high-performance secondary
storage systems. We feel that the main concepts of the RAID-II Storage Architecture will be
as significant for high-bandwidth network storage systems as the concepts in RAID, Redundant
Arrays of Inexpensive Disks, have been for secondary storage systems. In fact, the RAID-II Storage
Architecture incorporates many of the successful concepts from RAID.
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