An O(logn) Time Common CRCW PRAM
Algorithm for Minimum Spanning Tree

Ramesh Subramonian
Division of Computer Science,
University of California, Berkeley,
Berkeley CA 94720

subramon@melody.berkeley.edu

Abstract

We present a probabilistic algorithm for finding the minimum spanning tree of a graph with n ver-
tices and m edges on a Common CRCW PRAM. It uses expected O(log nlog™n) time with (m + n)
processors and expected O(logn) time with (m+ n)logn processors. This represents a significant im-
provement in terms of efficiency over the previous best results for solving this problem on a Common
CRCW PRAM and compares favourably with the best result for the Priority CRCW PRAM, a more
powerful model. The algorithm presents a novel application of recent results on recursive *-tree data
structures [2]. An important contribution of this paper is (i) a strategy to schedule the growth of com-

ponents in algorithms based on repeated graph-contractions and (ii) an amortized analysis technique
to account for the scheduling overhead.

1 The Algorithm

The Minimum Spanning Tree (MST) problem is a classic combinatorial optimization problem
and has been studied extensively in the literature [7]. Many almost linear sequential algorithms
have been designed for this problem. Various parallel algorithms for the MST problem have been
proposed. We give a brief explanation of the models used, details of which can be found in [10].
In the Concurrent Read Exclusive Write (CREW) model, in a step, more than one processor
can read from a given location but at most one processor can write to a given location. In the
Concurrent Read Concurrent Write (CRCW) Model, in a step, more than one processor can
write to a given location in a step. Based on the way write conflicts are resolved, there are
various possibilities. In the Common CRCW Model, concurrent writes to the same location
must write the same value. In the Arbitrary model, an arbitrary one of the multiple writes to
the same location succeeds. In the Priority Model, processors are assigned unique, unchangeable
priorities at the start of the computation and the write of the highest priority processor succeeds.
Chin et al [3] proposed an O(log® n) time algorithm on a CREW PRAM using n? processors.
Hirschberg [8] proposed an O(logn) time algorithm on a Common CRCW PRAM using n®
processors. Awerbuch and Shiloach [1] proposed an O(logn) time algorithm on a Priority
CRCW PRAM using m + n processors. It has been shown that a single step of a Priority
CRCW PRAM can be simulated on a Common CRCW PRAM using O(ﬁ%) time, where p
is the number of processors that each has [6]. This can be used to modify the algorithm of [1]
to run on a Common CRCW PRAM in O(ngin) time using m + n processors.

0,
logiog
In this paper, we devise a Common CRCW PRAM algorithm that requires EQ(logn) !
time using (m + n)logn processors and EO(log nlog™n) time using m + n processors. This is
the first (almost) logarithmic time algorithm for this problem which uses a linear number of
processors on the weaker and more realistic Common CRCW PRAM model.

Outline. In Sollin’s sequential algorithm {7], which finds the MST in (m + n)logn time, in
each iteration, the smallest edge incident on each node is identified as an MST edge. These
edges are used to contract the graph i.e, all nodes connected by MST edges are merged into
a single component and all edges between nodes in the same component are made redundant.
An edge (u,v) is redundant if u = v. This is repeated this until all edges are redundant, which
takes O(log n) iterations. In the sequential algorithm, finding the minimum edge incident on
a component is found by merging the heaps of the constituent nodes. In the paralle] version,
finding the minimum edge is easy initially because each edge list is sorted. To continue to be
able to find the smallest edge quickly, the edges belonging to the constituent nodes that merge
into a super-node must be in sorted order .

In designing the parallel equivalent, it is clear that we should not form large components
because assembling, compacting and sorting the edges of the constituent nodes could be time-
consuming. Instead we try to create small components which can be shrunk fast and yet create

1EO(f(n)) is shorthand for expected O(f(n)).

many of these components so that the graph as a whole shrinks fast. There is still the possibility
that a large component could be created. In that case, we shrink it over many iterations.

Data Structures. Let G = (V,E) be an undirected weighted graph, where V is a set of
vertices and F is a set of edges, each € € E having a weight w(e). Without loss of generality,
assume that (G is connected and that the weights are distinct.

We assume that G is presented as an adjacency list with the edges incident on a particular
node in contiguous locations. Each edge appears twice, once as (1, j) and once as (j,1). Yo € V :
the component v belongs to is stored in P[v]. Initially, each node is in a component by itself i.e,
Vv € V, Plv] « v. When we merge i into j, we set ¢ to point to 7 (P[i] « j). Two nodes belong
to the same component if they point to the same node. A leader points to itself (Plv] = v).
We will maintain the invariant that each node points to a leader i.e., Yo : P[P[v]] = v. (We
will use the terms node and component interchangeably. Strictly, a component, C,, is a set of
nodes which point to the same leader, v (C, = {i|P[] = v}).} In each iteration, the minimum
edge incident on a node, ¢, is recorded in Min_edge[i]. MST[1..n] will eventually contain the
n — 1 edges of the minimum spanning tree. For each component 7, we have a list C; which is a
list of the vertices in it. Initially, V¢,C; = {i}. For each component 7, we have a list L; which
consists of a subset of the edges from each of the vertices that comprise component . Initially,
Vi, L; = smallest edge incident on i. We defer details of C; and L; to Section 1.2.

1.1 Details

For each leader, ¢, we repeat the following steps until all edges are redundant.

1. Find smallest edge incident on i. Min_edgeli] = left most non-redundant edge in L;. (We
justify restricting attention to the edges in L; in Lemma 2.4.) This is done in O(1) time
using |L;| processors using the algorithm cited in Lemma 2.1.

2. Colour(s] «€pg {Black, White} 2.

3. If 1is Whate and its minimum edge is to a Black node (Min_edge[i] = j and Colour[j] =
Black), then indicate that i wants to merge with j. This is done by: V(j,1) : if Colour[i] =
White and Colour([j] = Black and Min_edge[i] = j, then Marked[(j,1)] ~ true.

4. Each black node determines whether the number of its edges that are marked is 0, 1, or
greater. This is done with a minor variation of the algorithm cited in Lemma 2.1.

5. Every white node, {, that desires to merge does so if it is the only such node (2 merges with
j if Colour[:] = White, Min_edge[i] = j, Colour(j] = Black and |{(j, k)| Marked((j, k)] =
true}| = 1).

Merging involves

*z —€g X means z is assigned a value from X uniformly at random.

2

(a) Pl]

(b) MST{] — Min_edgefi]. (Note that MST[] is assigned a value at most once since
after Step 7, there will be no edge with 7 as an end-point.)

(c) combining edge lists of both nodes by Lj—L;UL,,
(d) combining constituent nodes of both nodes by C; — C;uU

A node is said to be merged when all the above four steps have been performed for it.
Periodically, C; and L; are compacted. (Details in Section 1.2 and 1.3.)

6. Special case. This arises when more than one white node wants to merge with a black
node. If 3b,3W : b is black and |W| > 1 and Yw € W, w is white and Min_edge[w] =
b= Marked[(b,w)] = true), then we have found a large component. We shrunk it only
partially in this iteration by pairing up nodes in W and merging these pairs, We will
mark all nodes in this component, (W U {b}}, as passive until the contraction is complete,
at which stage b is reset to active. A passive component executes only Steps 6(b)-6(d).

Rationale for marking nodes passive. When a component is formed, the minimum
edge incident on it is the minimum of the edges incident on each constituent node. Since
the component is too large for us to assemble all the edges of the constituent nodes in
O(1) time, we mark them as passive until such time as the contraction is complete.

Remarks. First, as a consequence of Step 6(b) and Step 7, no edge will have a white,
passive node as an endpoint. Second, while being passive prevents b from merging into
another node, j, it does not prevent j from merging into b.

Define predjw] = v if Min_edgefw] = Min_edge[v] = b and (b,v) is the rightmost edge
to the left of (b,w) in b’s edge list. Yw € W, compute pred[w]. For the tail of the list
(the white node, wg, corresponding to the left-most marked edge in b’s edge list), we set
prediwo] = b. Thus, we create a linked list of the nodes in W. We pair up the nodes in
W and merge these pairs.

(a) Yw € W, set w to passive. Set b to passive. b will be reset to active only when it
has no marked edge (no node want to merge with it).

(b) Yw € W, compute pred[w].
(c) Yw € W, Sez[w] «—€r {Male, Female}. By definition, Sex[b] = Male.
(d) If Sexz[w] = Female and Sez[pred[w]] = Male, then merge w into pred(w)

7. To ensure that all nodes point to a leader and that all edges are between leaders, we do
“short-cutting”. Vu € V, Plu] « P[P[u]] and V(u,v) € E, (u,v) — (Plu], Plv]).

1.2 Partial Compaction and Sorting (PCS)

Intuition. When we merge components, we must ensure that the edges of this component
are in contiguous memory locations and still sorted. Also, we would like to discard redundant
and duplicate edges. However, to do so after every iteration would be too time-consuming. So,
our strategy (PCS) is to construct an edge list with just sufficient information from each of the
constituent nodes as is necessary. Now, to find the minimum edge incident on the component,
we can restrict our attention to the selected edges. This allows us to treat the component as if
it were a single node until the next PCS.

Consider a node which has just become part of a component of size s. Till the time it
becomes a part of a component of size s?, it could lose at most s2 — 1 edges, one to each
member of its component. Therefore, at most the smallest s2 of its edges were relevant to this
period of the computation.

Details The question is how often and how much of PCS to perform ? Our rationale is to
perform as much PCS as possible, without affecting the speed of the computation (Lemma 1.2).
We will show that this is precisely the amount of PCS we need to perform in order to find the
minimum edge incident on a node in O(1) time (Lemma 2.4).

Let I be the number of iterations performed. We perform PCS when I doubles. Consider
the PCS when 7 = k. The number of iterations since the last PCS is % Therefore, as long as
PCS takes O(k) time, it does not increase the asymptotic time. For each component, we create
an edge list comprising 2°* edges from each constituent node, eliminate redundant edges using

parallel prefix and sort the remaining edges.

Lemma 1.1 After k iterations, the size of the largest component is < 2F.

Proof. Since at most two nodes merge into one in an iteration, this follows directly. O

Lemma 1.2 PCS requires O(1) amortized time per step.

Proof. Consider the PCS performed when the number of iterations is k. The size of the edge
list to be compacted is < 2% x 2% = 23 edges since, by Lemma 1.1, the maximum size of
a component after k steps is 2. Compacting and eliminating redundant edges is done using
parallel prefix which requires log L < O(k) time for a list of size L = 2°% using L processors
[11]. Sorting requires log L < OQ(k) time for a list of size L = 23 using L processors [4]. Since
the number of iterations since the previous PCS is k/2, the amortized cost of PCS is O(1) per
step. O

1.3 Complete Compaction and Sorting (CCS)

However, PCS is insufficient as we will now show. After a PCS has been performed, we can
find the smallest edge incident on each component in O(1) time. When we merge components,
we do not compact and re-sort the edges of the constituent nodes until the next PCS. So, to
find the smallest edge incident on the composite component, we find the smallest edge incident
on each of the constituent components and then find the minimum of these minima. We can
do so in O(1) time (Lemma 2.2) provided that the number of processors available is greater
than the square of the number of constituent components. If this is not true, we perform CCS,
in which we merge all the edges of the constituent components, eliminate redundant edges and
re-sort them. Thereafter, the entire component can be treated as a single sorted node.

Lemma 1.3 CCS requires O(1) amortized time per step.

Proof. Assume PCS has just been performed. Before the next PCS is performed, consider
the formation of a component of k sub-components, with a total of £ edges. We can use the
algorithm cited in Lemma 2.2 if £ > k*. When k? exceeds E, we perform CCS. This requires
log E steps, since it requires a parallel prefix and sorting. But log £ < 2log k since E < k2.
We know by Lemma 1.1 that at least log k steps must have elapsed since the last PCS for the
component to have acquired & sub-components. Hence, the amortized cost of CCS is O(1) per
step. O

2 Analysis

Lemma 2.1 [6] Given an array of n elements which are either 0 or 1, the left most 1 can be
Jound in O(1) time using n processors on a Common CRCW PRAM.

Lemma 2.2 [13] Given an array of n elements and n? processors, the minimum element can

be found tn O(1) time on a Common CRCW PRAM.

Lemma 2.8 [2] Given an array of size n, the elements of which are 0 or 1, the time for each
element of the array to find the rightmost 1 to its left is O(log™n) using n processors or O(1)
time using nlogn processors.

Lemma 2.4 The smallest edge incident on ¢; is elways the left-most non-redundant edge in L;.

Proof. The invariant holds true initially, because we start by sorting the edge list of each
node and L; is a singleton set containing the smallest edge. We show that if it is true after
I = k iterations and PCS has just been performed, then it must be true after 2k iterations,
when the next PCS will be performed.

For the PCS when I = k, L; contains the smallest 2% non-redundant edges from each of its
constituent nodes. This is because we picked the first 22* edges from each of their edge lists
(assuming they exist), which were sorted to start with. We then purge redundant edges and
sort this collection of O(2% x 2%} edges.

At the next PCS, I = 2k, each node could become a part of a component of size < 22 by
Lemmal.l. So, it could have lost at most 22* — 1 edges as a result of their becoming redundant.
But L; was formed using 2% edges from each constituent node. Hence, at the next PCS, there
must be at least 1 non-redundant edge in L, from each of the constituent nodes, if one exists.
Since the edges were picked from a sorted list, there can be no smaller edge from the constituent
nodes. Since L; is sorted, the smallest edge must be the left-most. O

Lemma 2.5 The minimum edge incident on a component can always be found in O(1) time.

Proof. When we merge components, we can find the minimum edge incident on each of
the constituent components (Lemma 2.4) in O(1) time. The question is: “How do we find
the minimum of these minima?” By Lemma 2.2, we can do so in O(1) time provided that
the number of processors available is greater than the square of the number of constituent
components. If not, we perform CCS after which finding the minimum edge is straight-forward.

Lemma 2.6 All edges are between leaders. Precisely, Ve = (u,v), Plu] = u and Plv] = v.

Proof. Direct consequence of Step 7. O

Lemma 2.7 Let n be the number of unmerged nodes at the start of a step and let h(n) be the
number of unmerged nodes at the end of the step. Then, Elh{n)] < =,

Proof. There are three types of nodes which we shall consider separately.

(i) Leaders: Each leader has an edge to some other leader, since, by assumption, the graph
is connected and, by Lemma 2.6, any edge that a leader has is to another leader. Hence, for
each leader, ¢, Min_edge[i] = j, for some leader j. 7 is merged if Colour[i] = White and
Colour[j] = Black. Hence, P[i is merged] = 1.

(i1) Passive white nodes: A passive white node, w,, either has a pointer to another white node
wy (pred[w;] = ws) or to a passive black node, b. w; is merged if Sex[w,] = Female and
Sex[wq] = Male. (Recall that Sez[b] = Male by definition.)

(i1} Passive black nodes: These cannot merge. However, the number of passive black nodes
can be at most % the total number of nodes because each passive black node, b, must have at
least one passive white node w : Marked[(b, w)] = true A Min_edgefw] = b.

Therefore, for at least 1 the nodes, the probability of merging is ;- Hence, E[h(n)] < . O

Lemma 2.8 Let T(n) = number of steps before all edges are redundant. Then, T(n) =
EQO(logn)

Proof. From Lemma 2.7, T(n) = 14 T(h(n)), E[(h(n)] < 2 By Theorem 3 of 9}, it follows

that P[T(n) > w +1 + UOgsﬁ n]] < %(w—l)B/T los:ﬁn 17, for a constant w. (We use essentially

the same on Randomized Tree Contraction in [9]). A little manipulation yields P[T(n) >
(w + 2)([logg/7n + 1])] £ 7 The proof follows. O

Theorem 2.1 The Minimum Spanning Tree of a weighted undirected graph G = (V, F) where
V| = n and |E| = m can be computed in EO(log n) time using (m + n)logn processors and in
EO(lognlog® n) time using (m + n) processors on a Common CRCW PRAM.

Proof. By Lemma 2.8, the algorithin requires EO(log n) iterations. Steps 1, 2, 3, 5(a),5(b),
6(a), 6(c) and 7 take O(1) time using m+n processors. Using the algorithm cited in Lemma 2.1,
Step 4 requires O(1) time. Using the algorithm cited in Lemma 2.3, Step 6(b) requires O(1}
time using (m + n)logn processors or O(log” n) time using (m + n) processors. Step 6(d) is
merging which requires the same time as Step 5. Steps 5(c) and 5(d) require O(1) time because
we are merging exactly 2 node lists and edge lists respectively. By Lemmas 1.2 and 1.3, PCS
and CCS take O(1) amortized time per step. O

References

[1] Awerbuch, B. and Shiloach, Y. “New Connectivity and MSF Algorithms for Shuffle-
Exchange Network and PRAM” IEFE Trans. on Computers Vol. 36, 1987, pp.1258-1263

(2] Berkman, O. and Vishkin, U. “Recursive *-Tree Parallel data Structures” Proc. 30th Annual
IEEE Symposium on Foundations of Computer Science 1989, pp. 196-202

[3] Chin, F.Y., Lam, J. ad Chen, I. “Efficient Parallel Algorithms for some Graph Problems™
Communications of the ACM Vol. 25, 1982, pp. 659-665.

(4] Cole, R. “Parallel Merge Sort” Proc. 27th Annual IEEE Symposiurm on Foundations of
Computer Science 1986, pp. 511-516.

[5] Cole, R. and Vishkin, U. “Optimal parallel algorithms for expression tree evaluation and list
ranking”. Proceedings of the Aegean Workshop on Computing, 1988, pp. 91-100.

(6] Fich, F.E., Ragde, P.L., and Wigderson, A. “Relations between concurrent write models of
parallel computation” Proceedings of the 3rd Annual Symposium on Principles of Distributed
Computing 1984, pp. 179-189

{7} Graham, R.L. and Hell, P. “On the History of the Minimum Spanning Tree Problem” Annals
of the History of Computing Vol. 7, 1985, pp. 43-57.

7

(8] Hirschberg, D.S. “Parallel Graph Algorithms Without Memory Conflicts™ Proceedings of the
29th Allerton Conference on Communications, Control and Computing 1982, pp. 257-263

[9] Karp, R.M. “Probabilistic Recurrence Relations” Proc. 23rd Annual IEEE Symposium on
Theory of Computing 1991, pp. 190-197.

[10] “A survey of parallel algorithms for shared memory machines” Theoretical Computer Science
North Holland, 1990.

b

[11] Ladner, R.E., and Fischer, M.J. “Parallel prefix computations” JACM Vol. 27, 1980, pp.
831-838.

[12] Miller, G.L., and Reif, J.H. “Parallel tree Contraction and its Applications” Proc. 26th
Annual IEEE Symposium on Foundations of Computer Science, 1985, pp.478-489.

[13] Shiloach, Y. and Vishkin, U. “Finding the maximum, merging and sorting in a parallel
computation model” Journal of Algorithms Vol. 2, 1981, pp. 88-102.

