Mathematical Findings on Artificial Neural
Nets and Their Physical Meaning

Han-gyoo Kim
EECS Department
University of California, Berkeley

January 14, 1992

Abstract

This paper at first applies Stone-Weierstrass theorem to prove the ex-
istence of universal approximating capability of feedforward multilayer
neural nets, and at second discusses the construction of such approxima-
tors. Since the fact that approximators can be built efficiently without
using neural net structures provides insight of great importance into un-
derstanding the characteristics of neural nets, this paper further inves-
tigates the limit of neural net capability. Finally, feasibility of utilizing
general approximators to solve Al problems is discussed.

1 Introduction

The capability of feedforward multilayer neural nets to approximate any func-
tions quite well in real world applications has been recognized for the time being,
and some of the recent research efforts have been devoted to find the approx-
imation capability of neural nets. For example, Hornik et al. [1] proved that
neural nets can approximate any Borel measurable functions from one finite
dimensional space to another to any desired degree of accuracy. Their proof
is, however, a direct application of Stone-Weierstrass theorem to the function
class produced by the neural nets. Their work is nothing but a mathematical
proof of existence of approximation capability in neural nets which has long
been noticed in the academia of neural net research. Stone-Weierstrass theorem
could, however, provide us with more insight about the nature of neural nets
than just the guarantee of the existence of approximation capability.

This paper discusses mainly two important mathematical findings that re-
sulted from applying Stone-Weierstrass theorem to the neural nets and inspect-
ing the function class of neural net output. In section 2, we start with Stone-
Weierstrass theorem to show that there exist functions which approximate any
given real continuous function and those approximating functions take the form

eural net neural net output
input x Yaerral
———>
actual output
unknown Yacoal
gystem

Figure 1: Typical Neural Net Application

of functions that can be generated by peural nets. This theorem, however, is
nothing but an existence proof, and does not provide the design methodology
how to build the approximating functions. Nonetheless, the proof tells us the
fact that the approximation is the main characteristic of neural nets.

As is illustrated in Figure 1, most typical example of neural net application
would be to use a neural net structure to find an approximate relation between
the input and the output of a system of interest. As the neural net is getting
learned, that is, adjusting its weights by comparing neural net’s outputs with
actual outputs, it is expected that the neural net eventually produces outputs
close enough to the actual desired values.

In practice, peural nets would be used to find approximation in the appli-
cations that do usually not require precise approximation, i.e., the applications
in which neural nets are only demanded to approximate already obscure func-
tion. See Figure 2(a). Other important area of neural net application would be
the input classifiers or pattern recognizers equivalently. In other words, given
a set of inputs neural nets are asked to classify those inputs into subsets of in-
puts such that the input elements of & classified subset are considered to share
commonality while the boundaries among the classified subsets are not clearly
cut. See Figure 2(b). In any case those applications only relax the accuracy
requirement but do not change the requirement of approximation itself.

This fact that neural nets are approximators, in turn, provides us with impor-
tant insight about what the neural nets are actually doing and raises a question:
Why do we need neural nets to find an approximator if we have better approxi-
mators otherwise? Or more constructively, what kinds of algorithms can we use
to build working neural nets? Section 3 contains the mathematical findings that

/-\—/ g
}
- 7 !
(a) loose approximator () input classifier

Figure 2: Relaxed Approximation

led us to the above question by closely looking at the function class of neural
net output.

Throughout the paper, we are concerned about the feedforward multilayer
peural net as is depicted in Figure 3 without loss of generality of discussing the
properties of neural nets. Inputtoa hidden node takes the form of affine function
A(z) = w-z+ b where z is input vector, v is weight vector, and b is scalar bias.
Output from a hidden node is the value of a certain type of squashing function?,
G(-), that is, G(A(z)). Therefore, overall output of a neural net constitutes the
class of functions that take the form of 3=, B;G(A;(z)) where B;’s are scalar
weights from hidden nodes to output node. There have been suggested various
learning algorithms to adjust the weights and biases.

2 Neural Net as Approximator

For the ease of mathematical manipulation, we consider single output neural
nets, but all the results shown in this paper also pertain to multi-output neural
nets.

Before we start with Stone-Weierstrass theorem (S-W theorem in the sequel),
we present some mathematical definitions with explanation as appropriate to
understand the S-W theorem.

Definition 1 (algebra) A linear space A of real functions defined on a set E
is an algebra if the product of any two elements in A is again in A. Thus A is
an algebra if for any two functions f and g in A and any real numbers a and
b we have af + bg in A and fg in A. A family 4 of functions on E is said to
separate points if given distinct points z and y of E there is an f in A such that

1To be defined later.

output y

output nodes
BG() '
G(wx+b)
hidden nodes
wx+b
input nodes

inputx

Figure 3: Feedforward Multilayer Neural Net

f(z) # f(y). The family A vanishes at no point of E if for each z in E there
exists f in A such that f(z) # 0. o]

Definition 2 (dense) A subset Sofa metric space (X, p) is p-dense in a subset
T if for every € > 0 and for every t € T there is an s € S such that p(s,t) < €.
i}

That is, p-dense means that we always have at least one function that is close
enough to any given function to any degree of accuracy.
Here follows the S-W theorem.

Theorem 1 (Stone-Weierstrass) [2] Let X be a compact space and A an
algebra of continuous real-valued functions on X which separates the points of
X and which contains the constant functions. Then given any continuous real-
valued function f on X and any ¢ > 0 there is a function g in A such that for
all z in X we have | g(z) — f(z) |< e. In other words, A is px-dense. D

The S-W theorem tells that certain family of continuous functions satisfy-
ing the conditions of S-W theorem contains a function that approximates an
arbitrarily given function to any degree of accuracy on any given input domain.

Let’s now look at the function family generated by neural nets. As is shown
in the previous section, the output of neural nets is a family of:

Y BiG(4;(2))
i

where G(-) is sqaushing function and A;(-) is affine function defined respec-
tively below. So the output function family of neural nets is 2 linear space of

(a) hard limiter (b) ramp (c) sigmoid

Figure 4: Examples of Squashing Functions

affinely shifted squashing functions. We denote the above class of affinely shifted
squashing functions as 3°"(G) in the sequel.

Definition 3 (squashing function) A non-decreasing function g : R— [l,d]
is a squashing function if lims~c0 9(z) = 1, and limsy— o0 g(2) = 0. o

Some of the examples of squashing functions are hard limiter, ramp function,
etc. as given in Figure 4.

Definition 4 (affine function) For any r € N where N is an integer, A" is
the set of all affine functions from R™ to R, that is, the set of all functions of
the form A(z) = w-z + b where w,z € R" and b€ R. D

Theorem 2 given below proves that neural net output function class, 3."(G),
can approximate any arbitrary real valued continuous function to any degree of
accuracy. Hornik ae al.[1] originally provided a long proof of theorem 2 with
minor mistakes. A succint proof is given in the appendix. The proof given in
this paper follows totally different approach than the approach of Hornik and
others.

Theorem 2 [1] For every squashing function G, every r, Y "(G) is a dense
subset of set of all continuous real valued functions from R" to R on arbitrary
compact set X. D

To recap the mathematical findings so far, we show that the neural net
output can approximate any given continuous function provided that the neural
net has enough number of hidden nodes and appropriate learning algorithms.
However, we do not know how to build such a neural net, that is, we have no
ideas how many hidden nodes are needed and how wella neural net approximate,
etc. Next section investigates about the construction of approximators.

3 Construction of Approximators

As we have found in the previous section, neural nets are universal approxima-
tors if built properly. In this section we further look into the infra structures of
neural nets and the function classes of neural net outputs in orer to understand
more about the characteristics of neural nets.

We may have interesting observation if we look at the various types of squash-
ing functions of the hidden nodes. Although theorem 2 proves that we can use
any squashing function in the hidden nodes for approximation, we see some of
the function classes we use for the hidden nodes are algebra. Hard limiter is a
simple but important example of such kinds. The family of affinely shifted hard
limiters is algebra because multiplication of two elements in the linear space of
affinely shifted hard limiters becomes a member of that space again:

91-92 € Y7 G(-) if g1,92 € 7 G()
where Y-" G(-) = {g:g:Zjﬂjhj(az+b),a,b€R,h(z)= ((1) i;g }

Another example of such classes is the class of arctan(-).

Besides the fact that it is guaranteed the existence of universal approximators
if hard limiters are used for the hidden nodes, the hard limiter case gives us an
important insight about the characteristics of neural nets. Even though we do
not know how to build approximating neural net using hard limiters, we have
already long used universal approximators made of hard limiters, that is, analog
to digital converters by way of pulse sequences.

It is interesting to notice that the rectangular pulse sequences can be actually
generated by the neural net that uses hard limiter in its hidden nodes. That is,
the unit pulse with the width of & is made by taking the difference of two hard
limiters shifted by é:

_f1 foro0<z<é _
p(z)_{ 0 otherwise = h(z) = h(z = §)

Figure 5 shows an example of neural net structure with single input that con-
stitutes the sequence of pulses with equal width of é at the hidden nodes. In
Figure 5, all the weights, w’s, from input node to hidden nodes are 1 identically.
The i-th hidden node has the bias b; such that b; = —i-8 for —N < i < N where
N is an integer. The output of the i-th hidden node is accordingly a hard limiter
shifted by i - 6. So any two contiguous hidden nodes constitute a unit pulse of
width 6. This is actually how the final neural net output y is constructed. The
i-th output node receives signals only from outputs of i-th an (i+1)-th hidden
nodes. That is, i-th output node has all zero weights identically except for the
two edges (bi,) and (bi41,¥)- In Figure 6, we eliminated all the edges with
jentically zero weights for clarity. The weight between y; and b; is assigned S;
such that f is the actually measured output, i.e., learned value. The weight

Figure 5: Neural Net Producing Pulse Sequence

ay
. /
/
]
+ 08 2 3 FI—x
-N§ N§

Figure 6: Approximation by Pulse Sequence

between g and b;4y is set =f;. It is easy to see that g is nothing but a pulse
spanning fromz =i-§toz= (i +1) - 6 of height §;:

yo={ﬁ° 0<z<é ={ﬂ1 §<2<2

0 otherwise 0 otherwise

The neural net in Figure 5, therefore, emulates the pulse sequence that approx-
imates actual function on [-N§,N §). See Figure 6. We know that at least
theoretically any degree of accuracy can be achieved by selecting appropriate
pulse width é.

Note further from theorem 2 that not only the squashing functions satisfying
the conditions of the S-W theorem such as the hard limiter but any squashing
function serves well to construct pulse sequence for approximation purpose. Two
ramp functions, for instance, can be used to build spike pulse as in Figure 7,
and the spike pulse can be easily realized using neural net structure similarly.

7

y
—> T —> >
X

X

Figure 7: Spike Pulse Made of Two Ramp Functions

Aly A\y

/ - / supidi<e

Y -

X 'K

Figure 8: Histogram Approximation

The above trivial but important example leads us to a question: Doesn’t &
neural net actually converge to a structure such as given in the above example?
In other words, Isn’t the approximation by pulse sequence all what a neural net
is actually doing?

The observation we made so far is disappointing because we do expect neural
pets to do more than just brute force approximation by pulse sequences. The
approximation by pulse sequence is a total waste in terms of amount of memory
it requires. We do not need dense pulses for the portions that do not vary rapidly.
Maybe neural nets approximate to the same degree of accuracy spending less
amount of memory.

Actually, we know obvious and effective improvement over brute force pulse
sequence approximation. One simple improvement is to replace the unnecessar-
ily dense parts of pulse sequence with single thick rectangular column as long as
the replacement by the column preserves the accuracy requirement, supld| < ¢,
where d is the difference between the desired value and approximation. See
Figure 8.

Probably, a good neural net using hard limiters in its hidden nodes would
come up with the approximating columns similar to the ones in Figure 8. Note
that such a neural net can easily be constructed simply by changing biases in
Figure 5 and such a neural net will save a lot of nodes to achieve the same

— N

—
>x 7x X

() hard limiter G (b) ramp function G (c) sigmiod G

Figure 9: Various Neural Net Outputs

degree of approximation accuracy compared to the pulse sequence neural net
approximator.

Note, however, further that such an approximation can easily done having
nothing to do with neural nets. We know that we can devise reasonable algo-
rithms that produce histograms that approximate any continuous function on
any compact input domain. Anyway, it seems feasible to devise the optimal
algorithm or pseudo-optimal algorithms that find a histogram which approx-
imate a function on a compact input domain using near minimal number of
colurmns. Even a simple minded algorithm will serve our purpose to greatly
reduce the number of columns for approximation. Moreover, any of such al-
gorithms will consume much less learning samples compared to the enormous
amount of learning samples usually required for neural nets. We do not dwell on
the invention of such algorithms here since it is of minor interest and difficulty.
What is important here to pay attention is to fin¢ the real characteristics of
neural nets.

The observations in this section give a belicf that peural nets are approxi-
mators. This belief is more evident if we closely look at the neural net outputs.
As is shown in the previous section, the output of a peural net is a linear space
of affinely shifted squashing functions, ;B G(A;j(z)), at all. Figure 9 shows
the plots of neural net outputs for various squashing function they can use. If
we use hard limiters in the hidden nodes, the output of the neural net forms a
ragged edge as shown in Figure 9(a). If ramp functions are used, the output
becomes a graph made of straight lines as in Figure 9(b). Squashing functions
whose first derivatives are continuous will produce curves in general as in Fig-
ure 9(c). Anyway, it is clear that any of those outputs will be meaningful only
when the output approximates a certain relationship of concern.

4 Discussion and Conclusions

Mathematical findings in this paper include:

1. The S-W theorem and theorem 2 show that the neural net output can
approximate any real functions on any compact domain. This tells us
that neural nets do approximation.

2. Roles of neural nets in real world applications are approximators or input
classifiers.

3. We find that neural net output can actually produce pulses or columns
that can successfully approximate any continuous function.

4. Inspection of the function class of neural net outputs shows that neural
net outputs are meaningful only when they are approximators of certain
relationship of interest.

5. Above all, we also know that we do not need neural net structure in
order to build such approximators since easy-to-build non-neural net type
approximators do the jobs efficiently.

Realizing that the output of a neural net is a linear space of affinely shifted
squashing functions at all and that non-neural net type approximators can be
constructed more efficiently using such functions, we have to investigate more
about the genuine characteristics of neural nets other than just approximation
property if any exists before we push all the unfair burdens of Al problems to
the obscure neural net structures.

It will be valuable to perform a simulation study to see if the infra structures
of neural nets converge to form approximators or something else that do more
than just approximation.

As we have observed in the previous sections it would raise some doubts
about the utility of neural nets if the sole purpose of using neural nets is to
approximate. Neural net approximators are disadvantageous compared to non-
neural type approximators, e.g., histogram approximator, since we do not have
a priori knowledge about the structure of neural net required to solve a specific
approximation problem. Moreover, neural net approximatot, even though we
hope it works, requires ample multitude of learning samples which non-neural
approximators do not need.

It is suggested to incorporate the idea of non-neural net type approximators
into the structure of neural nets. We may be able to invent neural nets that can
approximate more efficiently than the currently used neural nets.

We have seen many experimental works of neural nets, but we have to realize
that most of the roles of neural nets in various applications have been approxi-
mators or input classifiers. In this sense, we suggest that more researches should
be performed how we can effectively utilize approximators to solve Al problems

10

and we will have to put our endeavors towards the understanding of why and
how approximators can solve various Al problems instead of pursuing myths of
neural nets blindingly.

5 Appendix

Proof of Thm.2

All we have to show is that Y."(G) is px-dense for every fixed squashing
function G(-).

We know that the set of all polynomials form an algebra. So the set of
all polynomials is px dense on any arbitrary compacta X. For every G, for
arbitrary compacta X, and for arbitrary € > 0, there exists g € Y""(G) such
that supzex | p(z) — g(z) |< € where p(z) is any polynomial. We can always
find such g(z) because we can build a pulse shaped function of unit height
with two affinely shifted squashing functions such that the width of the pulse
shaped function can be set arbitrarily narrow. It is clear that any polunomial
can be approximated on any compacta by the linear combination of affinely
shifted pulse shaped function created as above. That is, we can approximate
any polynomial on any compacta using the sequence of arbitrarily narrow pulses.
This shows that supzex | p(z) — 9(z) |< € where g(z) = 3_; G(4;(-)) for an
appropriate j. This proves, in turn, that Y-"(G) is px-dense. o

References

[1] K. Hornik et al. Multilayer Feedforward Networks are Universal Approxi-
mators Neural Networks Vol.2 pp. 359-366,1989

[2] H. L. Royden Real Analysis 2nd ed. MacMillan Pub. Co. 1968

11

