PAGODA: A Model for Autonomous Learning in
Probabilistic Domains

Copyright (©1992
by
Marie Ellen desJardins

A dissertation submitted to the Department of Computer Science of the University
of California, Berkeley, in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.

PAGODA: A Model for Autonomous Learning in
Probabilistic Domains
by
Marie Ellen desJardins

Abstract

Machine learning approaches have traditionally made strong simplifying as-
sumptions: that a benevolent teacher is available to present and classify instances
of a single concept to be learned; that no noise or uncertainty is present in the en-
vironment; that a complete and correct domain theory is available; or that a useful
language is provided by the designer. Additionally, much existing machine learning
research has been done in a piecemeal fashion, addressing subproblems without a
uniform conceptual approach to designing intelligent systems. The resulting learning
techniques often are only useful for narrowly defined problems, and are so dependent
on the underlying assumptions that they do not generalize well—or at all—to complex
domains.

PAGODA (Probabilistic Autonomous GOal-Directed Agent), the intelligent
agent design presented in this thesis, avoids making any of the above assumptions.
It incorporates solutions to the problems of deciding what to learn, selecting a learn-
ing bias, and inductive learning under uncertainty, in an integrated system, based
on the principles of probabilistic representation of knowledge, Bayesian evaluation
techniques, and limited rationality as a normative behavioral goal. PAGODA has been
implemented and tested in a simulated robot domain, RALPH (Rational Agent with
Limited Performance Hardware).

Goal-Directed Learning (GDL) allows the agent to decide what to learn,
enabling autonomous learning in complex domains. The value of being able to predict
various features of the environment is computed using the principles of decision theory.
The agent uses the features with highest values as learning goals for building predictive

theories.

Probabilistic Bias Evaluation (PBE) determines the learning bias for each
learning goal using probabilistic domain knowledge, an expected learning curve, and a
time-preference function to .ﬁ-nd the expected discounted future accuracy for proposed
biases; the best of these biases is used for learning.

Theories are represented as Uniquely Predictive Theories (UPTs), which con-
sist of restricted sets of conditional probabilities. Probability Combination using
Independence (PCI), a probabilistic inference method which relies on minimal inde-
pendence assumptions, is applied to the theories to make probabilistic predictions
for planning and evaluation. A Bayesian evaluation method is used to determine the
best theory to explain the observed data.

Chapter 1 of the thesis defines the problem of building autonomous rational
agents, and motivates PAGODA as a solution to this problem. Chapter 2 surveys past
approaches to probabilistic learning. Chapter 3 describes PAGODA’s performance
element, including the RALPH world and PAGODA’s probabilistic representation for
theories (UPTs), inference method (PCI), and planning mechanism. Chapters 4, 5, and
6 describe Goal-Directed Learning, Probabilistic Bias Evaluation, and probabilistic
learning, respectively. The implementation of PAGODA in the RALPH domain and
results of empirical tests are described in Chapter 7. Related work in a number of
fields is discussed in Chapter 8. Finally, Chapter 9 presents conclusions and outlines

open problems for future research.

To John

il

Contents

1 Introduction

1.1 The Problem of Autonomous Learning
1.2 Central ISSUES . . . & v v v v v o e e e e e e e e e e e e
1.3 PAGODA: An Autonomous Agent Model
2 Survey of Probabilistic Learning
2.1 Probability Theory i e vt
2.2 Representing Probabilistic Knowledge
2.2.1 Logic and Probability.
2.2.2 Belief Networks o v it it i i e
2.3 Probabilistic Learning Techniques
2.3.1 Maximum Entropy«
2.3.2 Minimum Length Encoding
2.3.3 Probabilistic Machine Learning
2.3.4 PlanningtoLearn. o i
3 Performance Element
3.1 RALPH: An Autonomous Agent Testbed
3.2 Representing Probabilistic Knowledge
3.2.1- Conditional Probability
3.2.2 Conditional Distributions,
3.2.3 Predictive Theories v c oo oo
3.2.4 Uniquely Predictive Theories
3.3 Theory Notation ot v v on
3.4 ProbabilisticInference e
34.1 AnExampleof PCI............ ..o
35 Planning e e e e e e e e e e e

4 Goal-Directed Learning
4.1 Utility of Learning Goals« oo v v i v e
42 Utilityof Plans oot vt vt it

1ii

v

4.3 An Exampleinthe RALPHWorld 57
Selecting a Learning Bias 61
5.1 Background e 63
5.1.1 Bias in Machine Learning 64
5.1.2 DeclarativeBias. f e s e s e s e e e 65
5.1.3 Minimum Length Encoding 66
5.2 Probabilistic Evaluationof Bias 67
5.3 Probabilistic Background Knowledge 69
54 Expected Accuracy v v vt vt it i e e e 71
55 Learning Curves. e e e e 73
5.6 Time Preference Functionso 75
5.7 Expected Valueof Biases 76
58 Results o i i i e e e e e e e e e e 77
5.8.1 Learning Procedure 77
58.2 AnalysisofResults 78
Probabilistic Learning 82
6.1 Theory Evaluation 84
6.1.1 Evaluating Probabilistic Theories 85
6.1.2 Bayesian Probability 86
6.2 Prior Probability 87
6.2.1 Uniform Distribution on Theories 90
6.2.2 Rule-level Classification of Theories 91
6.2.3 Feature-level Classification of Theories 92
6.2.4 Huffman Encodingof Terms 93
6.2.5 ExpectedEffects 94
6.3 Likelihoodof Evidence i 95
Implementation and Results 99
7.1 PAGODA-RALPH Implementation099
7.1.1 OverallBehavior 99
71.2 BiasEvaluation 0 100
7.1.3 Hypothesis Generation and Evaluation 101
7.14 Goal Generationot 103
72 Testsand Results i it i ittt 103
7.2.1 Testing Biases and Learning 105
722 Testing Priors o v v v i ittt i e e 112
7.2.3 Testing Learning Goals 118
7.3 Conclusions . . .« v v v v v it e e e e e e e e e e e e e 123

8 Related Work 125
8.1 Classification of Machine Learning Research 125
8.1.1 Ideal Autonomous System 127

8.1.2 Classification of PAGODA oo 128

8.2 InductiveLearningot ot v vt 129
8.3 Autonomous Learningo o oo oo o 130
84 Bias R 133
84.1 Declarative Bias. « ¢« v o vt e e e 134

842 Shiftof Bias . . v v v v v v v v v e e e e e e e e 135

8.5 Planming . . . v o ot v e e e e 136
8.5.1 Reactive Strategies e e e 137

8.5.2 Deliberative Planning with Uncertainty 138

9 Future Work and Conclusions 140
9.1 Goal-Directed Learning+ v v v v v v v v v vt e e 140
9.2 Selectinga Learning Biasol 143
9.3 Probabilistic Learning oo oo h o e e e 148
9.4 Probabilistic Planning« oo 151
0.5 ConclUSIONS . « v v v v v v v v e e ettt e e e e e 153
Bibliography 154
A Maximum Entropy Proof 165
B ID* 169
B.1 Description of ID* i 169
B.2 Description of the Test Domain cvvvvco oo 172

C Generating Internal States 175
C.1 Dichotomization « « v v v v o vt e 177

C.2 An Examplein the RALPHWorld 178

vi

A cknowledgments

I would probably never have begun graduate school, much less finished it,
if it had not been for the lifelong support of my parents, Mary and Richard. They
inspired me to work hard, to aim high, and to enjoy life.

Lotfi Zadeh encouraged me to come to Berkeley, and provided me with
financial support for a year; he also suggested that I should switch research advisors
when Stuart Russell joined the faculty. Stuart’s fortuitous arrival allowed me to
pursue my interest in machine learning. Our many meetings and discussions over the
years have helped to shape my understanding of the important problems in the field,
and have honed my debating skills greatly.

My ideas and opinions about artificial intelligence in general, and machine
learning in particular, were also influenced by discussions and arguments with fel-
low graduate students. Thanks go to the RUGS (Russell’s Unusual Group of Stu-
dents) research group at Berkeley for listening to talks, reading papers, and provid-
ing invaluable feedback and advice: Lonnie Chrisman, Jeff Conroy, Othar Hansson,
Tim Huang, Mike Malone, Sonia Marx, Andy Mayer, Gary Ogasawara, Ron Parr,
Sudeshna Sarkar, Shlomo Zilberstein, and the late Eric Wefald. I would especially
like to thank Ron Musick, who managed to read the entire dissertation—and even to
find it interesting!

Alice Agogino and Richard Fateman, the other members of my qualifying
exam committee, were among the first people to express an interest in my work. Peter
Cheeseman, Doug Fisher, and Pat Langley have all provided helpful comments and
advice, and positive feedback, an essential ingredient to any thesis.

Haym Hirsh was the first person to state publicly that my research was

interesting; not surprisingly, we immediately became friends. I only wish we had

vii

met earlier; in a few days, our discussions gave me nearly as much enthusiasm for
continuing my research as I had built up over the course of the previous six years.

When I was in my. hour of darkest need, trying to develop a deeper under-
standing of probability theory, Dekai Wu was doing the same. Studying together
helped us both immensely. Dekai also spent a long afternoon helping me to polish
the ideas that eventually became PBE. In our race to take the longest to finish our
dissertations, I won by a month.

Ann Almgren, Michael Braverman, Lise Getoor, and Marti Hearst commis-
erated regularly with me about the shared challenges of life as a graduate student.
Penny Rheingans, my closest friend, provided a sympathetic ear whenever I needed
one, and always believed I would finish.

It has always been important to me to balance my life between computer
science and other activities. Thanks to Jeannette Hung, Andrew Neuschatz, Kathy
Post, and many others for dragging me away from the terminal with alarming regu-
larity. Thanks also to all of the people I have sung with over my years at Berkeley,
especially Heather Bourne, for enriching and enlivening my life.

Marie Bienkowski and Roberto Desimone gave me a terrific job at SRI In-
ternational, leading to five of the most exciting (and most difficult, thanks to the
unfinished dissertation) months of my life. I look forward to continuing to work with
them under less stressful conditions.

The administrative staff of Berkeley’s CS department have always been
friendly, helpful, and essential for dealing with the morass of bureaucracy. Thanks to
Kathryn Crabtree, Teddy Diaz, Liza Gabato, Danny Howard, and Jean Root.

Finally, I will never be able to describe the depth of love, support and caring
that my husband, John Park, has given to me. During our nine years together, he has
helped me to grow as a scientist, as a teacher, and most of all as a person. Without
his patient understanding and unshakeable faith in my abilities, I doubt I would have
made it through the tough times. Having him there to share the successes and small
triumphs made them more meaningful. I thank him, most of all, for making it all

matter.

viil

This work was supported in part by a NASA Graduate Student Researcher
fellowship, and by a grant from Lockheed.

Chapter 1

Introduction

The trend in artificial intelligence research has been to decompose the prob-
lem of intelligence, focus on a single aspect (e.g., planning or learning) and then to
work on a subproblem within that problem area (e.g., building an optimal decision
tree or constructing new features for a learning bias). This approach results in spe-
cialized systems that do not generalize well to domains or problems other than those
they were designed for, and that only work in isolation, without connecting naturally
to solutions to the remaining problems.

Additionally, machine learning approaches have often made strong simpli-
fying assumptions; for example, that a benevolent teacher is available to present and
classify instances of a single concept to be learned; that no noise or uncertainty is
present in the environment; that a complete and correct domain theory exists; or that
a useful language is provided by the designer.

This thesis describes PAGODA (Probabilistic Autonomous GOal- Dlrected
Agent), a model for an intelligent agent which avoids the problem of overly spe-
cialized focus, and does not rely on the simplifying assumptions mentioned in the
previous paragraph. PAGODA consists of a flexible, extensible architecture for an in-
telligent agent that addresses a number of open problems in machine learning. It
incorporates solutions to the problems of selecting learning tasks, choosing a learning
bias, classifying observations, and performing inductive learning under uncertainty,

in an integrated system.

The guiding principles behind PAGODA include probabilistic representation
of knowledge, Bayesian evaluation techniques, and limited rationality as a normative

behavioral goal. The key prbperties of PAGODA are:

e The agent operates autonomously, with minimal intervention from humans, and
does not require a teacher to present or classify learning instances, or to provide

a representation for learned theories.

o The agent handles uncertainty due to inaccurate sensors, randomness in the
environment, and sensory limitations. The learned theories express observed

uncertainty explicitly.

Most past machine learning systems have not included either of these properties, and
very few have included both. The development of PAGODA highlighted the fact that
the interactions that arise when building an agent with both of these properties are
complex and not well understood. One of the most important contributions of this
thesis is to identify and analyze these interactions.

The domain on which this thesis focuses is an autonomous mobile robot
manipulating and being affected by a complex, nondeterministic environment. Cur-
rently, PAGODA is implemented in the RALPH (Rational Agent with Limited Perfor-
mance Hardware) world, an intelligent agent testbed at UC Berkeley. The RALPH
world is described in Chapter 3.

The remainder of this chapter is organized as follows: Section 1.1 defines
the problem of autonomous machine learning. Section 1.2 describes some of the
most important issues that arise when designing an integrated intelligent agent. An

overview of PAGODA is given in Section 1.3.

1.1 The Problem of Autonomous Learning

In this section, we define the concepts of embedded limited rational agents
and autonomous learning; these two concepts are central to the thesis.
An embedded agent consists of three components: a transducer, which passes

information from the environment to the agent as sensory observations and provides

-

ENVIRONMENT

P

TRANSDUCER |

LEARNER | g.eeeve--- PLANNER

Y

Figure 1.1: Embedded Agent Model

the motor controls that allow the agent to move about in and manipulate the environ-
ment, a learning module, and a planner. Embedded agents must interact with their
environments in real time, and are continuously being affected by and manipulating
the environment. If any other agents (such as a teacher) are present, they are simply
viewed as part of the environment. A schematic view of an embedded agent is shown
in Figure 1.1.

The sensory input, which may include visual information, sound, infrared, or
anything else the detectors can provide, gives the agent a window on the environment.
This information may be incomplete (in that it does not represent the entire state of
the environment) or inconsistent (because the sensors may not always give identical
readings in identical states). The agent’s sensors provide a (possibly nondeterministi;:)
mapping from the state of the world to values of the sensory inputs. We will refer to
the values of the inputs at any given time as the agent’s perceptions, or its perceived
world. A perceived world may correspond to many actual world states, which the
agent may or may not be able to learn to .distinguish.

The agent’s actions allow it to move about in limited ways, usually with
limited accuracy, so that executing the same action in the same world state will not

always result exactly in the same outcome.

The learning module uses the information provided by the sensors and what-
ever background knowledge it has available (from earlier learning, or from the de-
signer) to build a world modél or otherwise provide information that the planner can
use to select actions. In our model, the agent initially knows what actions it can
exeéute, but not what effect its actions have on the environment. PAGODA builds an
explicit, predictive world model that the planner uses to construct deliberate plans,
but in general, the learner may construct any sort of knowledge usable by a planner,
such as condition-action rules (reactive strategies) or a neural network. Russell [1989]
characterizes the forms of knowledge that an agent may have about the world along
a continuum from declarative (e.g., predictive rules) to compiled (e.g., rules specify-
ing the best action to take in a given situation). PAGODA’s world model would be
classified by this model as purely declarative.

A rational agent chooses actions that maximize its expected utility. An
embedded rational agent must have strategies for learning and planning that maximize
its expected utility in the current environment.

A limited rational agent takes into account the cost of time, exhibiting a
strategy that maximizes the expected average utility per unit time by balancing time
spent deliberating with actually performing external actions. In an embedded agent,
since deliberating includes both learning and planning, the utility gained from these
activities must be traded off with their time cost.

An autonomous agent operates independently of human intervention. Specif-
ically, it does not require inputs (except for its initial state) to tell it what its goals
are, how to behave, or what to learn. In this thesis, an autonomous agent will always
mean an autonomous, limited, rational, embedded agent.

The problem of autonomous learning for a limited rational embedded agent
is: given sensory inputs and background knowledge, incrementally learn a model of
the world (or whatever representation the planner requires) that allows the planner
to maximize expected utility per unit time. Note that this does not mean that the
learner must learn a perfect world model, because that might require so much time
that the agent doesn’t have enough time left to use the model effectively. On the

other hand, if the agent allocates all of its time to planning, and none to learning,

it will not choose good actions. The learner must learn a good world model quickly
enough so that the planner has time left to react to the world and plan strategies to

maximize utility.

1.2 Central Issues

In this section we discuss four specific problems that arise from the definition
of autonomous learning given in the previous section. These problems are those
of deciding what to learn, selecting learning representations, learning in uncertain

domains, and planning under uncertainty.

Deciding What to Learn

In a complex environment, the true world model (i.e., the underlying state-
transition function) will be too complicated for an agent with limited resources to
learn completely in a reasonable amount of time. Therefore, in order to be useful,
the agent will have to focus attention on learning portions of this true world model.
A rational agent should allocate its resources so as to maximize its ultimate goal
achievement, by focusing its learning attention on whatever aspects of the world are
expected to be most useful to learn.

Supervised learning systems such as ID3 [Quinlan, 1986] and CIGOL [Mug-
gleton and Buntine, 1988] require a teacher to select concepts for the system to learn,
and to present and classify instances of these concepts. However, for general au-
tonomous agents, it is not realistic to expect an altruistic teacher to be present at all
times to guide learning. The case of an Al-based Mars probe is an obvious exaxnpie,
where the large time delay between the system and human controllers will require
largely autonomous functioning. Even in more mundane applications such as robot
household helpers for the handicapped or robot street sweepers, designers must ex-
pect that the system will encounter unforéseen situations which it must learn to deal
with. In such cases, being able to decide what to learn will be essential

Of course, a rational agent will use whatever sources of information are

available, including the environment, potential teachers, and reference manuals, to

learn and to plan courses of action. All of these sources must be treated by the agent

as sensory inputs to be processed, interpreted, and used to make decisions.

Selecting Representations for Learned Theories

An autonomous agent must not only select its own learning tasks (i.e., fea-
tures of the world to be predicted) but must also decide what properties of the world
are relevant in predicting these features. This is part of deciding what bias to use for

each learning task. Bias, as defined by Mitchell [1980], is

...any basis for choosing one generalization over another, other than
strict consistency with the observed training instances.

Bias can result from constraining the representation language used to express learned
theories, or by expressing a preference within the space of allowed theories. A com-
pletely unbiased learner could never generalize: the disjunction of all observed in-
stances would always be considered as good a theory as any other. Additionally, bias
is necessary for efficient learning. In a complex domain, there may be a large number
of irrelevant features of the environment present in any given learning problem. For
example, when an agent wants to learn a rule to predict how frequently parking me-
ters are checked, relevant properties of the world may include the day of the week and
time of day, weather, and how busy the street is; but the color of its car, how wide
the sidewalk is, and what it had for breakfast probably are not useful. Ignoring these
irrelevant features saves time without loss of predictive accuracy of learned theories.

Rather than requiring the designer to specify biases for each potential learn-
ing task, we believe that it will be necessary for the agent to use whatever domain
knowledge it has been given or has learned to select biases as learning tasks arise. This
domain knowledge can tell the agent what sorts of bias are appropriate for classes of

learning tasks.

Learning in Uncertain Domains
Many real-world environments contain uncertainty, which can arise from

randomness in the world, noise in the agent’s sensors, sensory limitations of the agent,

and complexity. In order for an agent to function in such an environment, it cannot
expect the world to be deterministic. It must have mechanisms for handling noise in
its input and, ideally, a repfésentation that allows it to express the uncertainty that
is present in the world.

Traditionally, learning has been defined as the problem of finding a theory
that is consistent with all observed instances (see, for example, [Carbonell et al.,
1983] and [Board and Pitt, 1989]). However, when uncertainty is present in the form
of randomness in the environment or noise in the agent’s sensors, there may be no
consistent theories under a reasonable learning bias (e.g., one which does not allow the
disjunction of all observations to be used as the theory). Because of this, traditional
learning approaches do not generalize well to domains containing uncertainty.

Another source of apparent uncertainty is complexity. If there are rare ex-
ceptions to a general rule, although the agent may be able to determine when these
exceptions occur, it may not be worth expending its limited resources in doing so.
A limited rational agent will have to decide when it is worth finding and represent-
ing these exceptions. This decision will depend on the expected gain in utility of
representing the exception versus the expected cost of doing so.

Finally, if the learner does not represent uncertainty (e.g., if it only stores
the most likely outcome for each situation), the agent will not be able to determine
all of the potential consequences of its actions, and will therefore be incapable of
maximizing its utility. Uncertainty must be dealt with explicitly by a limited rational
agent, and can only be ignored when the agent decides that that is the rational thing
to do.

Planning Under Uncertainty

When an agent’s learned world model contains uncertainty, the agent needs
a planning mechanism that can decide how to maximize goal satisfaction in the face of
this uncertainty. Classical Al planning techniques require deterministic models of the
world, and therefore are inapplicable to the domains we are interested in. Fortunately,
decision theory provides us with a paradigm for behaving optimally under uncertainty.

Decision theory requires the agent to choose whatever action maximizes its

expected future average utility per unit time. For a limited rational agent, this action-
selection must include deciding whether to think more, or whether to choose the best
action determined so far. ‘This decision-making process, called metareasoning, can
in theory lead to infinite regress (how does the agent decide how to decide, and so
forth). Although we do not address these issues here, there is active research being
done in this area. (See, for example, [Russell and Wefald, 1991]).

1.3 PAGODA: An Autonomous Agent Model

PAGODA (Probabilistic Autonomous GOal-Directed Agent) is a limited semi-
rational embedded agent that exhibits autonomous learning. We say “semi-rational”
because PAGODA does not exhibit optimal resource-bounded behavior. However, the
model does explicitly consider issues of limited rationality in its processes, provid-
ing important contributions towards building an optimal agent. PAGODA consists
of four major components, and an architecture in which they are applied. The
four components—Goal-Directed Learning, Probabilistic Bias Evaluation, probabilis-

tic learning, and probabilistic planning—are described in the following paragraphs.

Goal-Directed Learning

Initially, PAGODA has a trivial “theory” for features in its sensory inputs,
in the sense that it can determine their values by examining its sensory inputs. Its
learning effort is directed towards being able to predict feature values resulting from
a proposed sequence of actions, by forming a model of the world that provides a
mapping from perceived worlds and actions to resulting perceived worlds. It can then
use this model to choose actions that maximize its expected utility. However, given
that it has limited resources, it must constrain the scope of its world model to cover
only the aspects of the world that are most relevant to its ability to maximize utility.

We have developed an approach called Goal-Directed Learning (GDL), which
allows the agent to decide what features of the world are most worth learning about.
The agent uses decision theory to compute the information value (i.e., the expected

utility) of knowing various features of the world, and uses the features with the

greatest value as its learning goals, i.e., as features to predict. The value of a learning
goal is the difference between the agent’s expected utility when the learning goal can
be predicted and its expecféd utility when it cannot be predicted. GDL is described
in detail in Chapter 4.

Evaluating Learning Biases

PAGODA uses probabilistic background knowledge to evaluate potentla.l
biases for each learning task by computing how well each bias is expected to per-
form during future learning. The chosen bias may be changed later if the agent’s
theories are not predicting the world as accurately as it expected.

Probabilistic Bias Evaluation (PBE) chooses a set of features that is as rel-
evant as possible, without being so large that the complexity of the learning task is
excessive. Each potential bias, consisting of a set of features to be used in predicting
the learning goal, is assigned a value. This value is determined using a decision-
theoretic computation which combines the expected accuracy of predictions over time
with a time-preference (or discounting) function that expresses the agent’s willing-
ness to trade long-term for short-term performance. The computed value represents
the expected discounted accuracy of predictions made by theories learned using the
given bias. The bias with the highest value is used for learning. PBE is described in
Chapter 5.

Probabilistic Learning

PAGODA represents its learned theories as Uniquely Predictive Theories
(UPTs), which consist of sets of conditional probabilities meeting certain constraints.
The probabilities specify the distribution of outcomes of PAGODA’s learning goals,
given a state of the world and an action. Each theory contains probabilities for pre-
dicting a different learning goal; the world model is therefore a collection of theories.
A probabilistic inference mechanism, PCI (Probability Combination using Indepen-
dence), allows PAGODA to make predictions about the outcomes of its actions, by

reasoning with the probabilities in the world model. UPTs and PCI are described in

Chapter 3.

10

Theories are generated using a heuristic search process, guided using the
agent’s current sensory inputs; this search process is described in Chapter 7. The
generated theories are evaluated using a Bayesian technique, described in Chapter 6,

that provides a tradeoff between the accuracy and simplicity of learned theories.

Probabilistic Planning ,

PAGODA uses the principle of maximizing expected utility to choose its be-
haviors: it forward chains through the probability space of predictions, and selects the
action that maximizes its expected utility.- However, it does not do any metareason-
ing: it only plans external actions (not internal actions such as learning or searching
the plan space), and always searches to a fixed search depth, determined by the de-
signer. The planner occasionally chooses a random action instead of selecting the best
apparent action, in order to ensure that exploration continues and the agent does not
get stuck on a local maximum, but it does not explicitly reason about the value of

taking such sub-optimal actions. The planner is described in Chapter 3.

Architecture
Figure 1.2 shows a schematic view of PAGODA. The behavior cycle of the

agent is as follows:

1. PAGODA’s initial learning goal is utility: that is, it will first learn theories to
predict the utility of performing various actions in specified world states. The

agent’s utility is provided as part of its sensory input.

2. Probabilistic background knowledge! is used to assign a value to potential biases
for each learning goal. Additionally, the current bias may be re-evaluated if the
agent’s best theory is mot as good as it expected it to be. The bias with the

highest value is sent to the hypothesis generator.

3. Sensory observations are sent to the agent by the transducer. Probabilities of old

theories are updated to reflect the new evidence provided by the observations,

1This background knowledge is currently provided by the designer, but is potentially learnable
by the agent using similar techniques to those used for learning “ordinary” knowledge.

'ENVIRONMENT

b

TRANSDUGER

|

11

PAGODA
PLANNER LEARNER
HYPOTHESIS
EVALUATION
PROBABILISTIC '
SEARCH I T
EVEll..ll\JSAﬂON Failed New
theiries theories
GOAL GENERATION HYPOTHESIS
GENERATION
) A
Goals - 0ld theories; goals
KNOWLEDGE)-a—
Theories New theories; biases

Figure 1.2: Schematic view of PAGODA

12

and new theories in the space defined by the bias are generated and evaluated.

A set of the best theories is stored in the knowledge base.

4. The planner analyzes the preconditions of the theories to determine which fea-
tures of the environment will be most useful (with respect to maximizing utility)
to learn. These most useful preconditions are sent to the learner as learning

goals.

5. The planner initiates a forward search through the space of possible outcomes of
actions, based on the probabilistic predictions made by the current best theories.

The action which maximizes expected utility is taken.

6. The action chosen by the planner is sent to the transducer, which executes the

action in the real or simulated environment.

7. The sequence is repeated.

PAGODA has been implemented in the RALPH world described in Chapter 3.
Empirical tests of the system are presented and analyzed in Chapter 7. The tests
show that the PAGODA model works, in that the system consistently improves its pre-
dictive accuracy and average utility over time, and show the effects of the individual
components on the system’s performance. The tests also show that the components
of PAGODA are difficult to isolate, and that they interact in nontrivial ways. We con-
sider this to be expected and desirable in an integrated agent. Because of the tight
integration, and because of the complexity of the system, however, the results are
highly sensitive to initial conditions and to limitations in the design. In particular,
the planning mechanism and heuristic search, which are not well developed in the
current model, have an adverse effect on the system’s performance.

The remainder of the thesis is organized as follows: Chapter 2 contains
an overview of past work in probabilistic learning, including probability theory and
maximum entropy, probabilistic logics, belief networks, and existing machine learn-
ing techniques that handle uncertainty. Chapter 3 describes PAGODA’s performance
element, including the representation and inference method for probabilistic theo-

ries, the RALPH world, and the planning process. Chapters 4 through 6 present

13

the main research results of Goal-Directed Learning, Probabilistic Bias Evaluation,
and probabilistic learning. Chapter 7 describes the implementation of PAGODA in
the RALPH world, and sho“;s. the results of empirical tests in various RALPH envi-
ronments. Finally, Chapter 8 discusses related work, and Chapter 9 presents open

research problems and conclusions.

14

Chapter 2
Survey of Probabilistic Learning

The problem of learning in probabilistic domains has been studied by re-
searchers in philosophy, statistics, and artificial intelligence. This chapter provides
an introductory survey of relevant research in these fields.

Section 2.1 discusses probability theory, developed by philosophers to ad-
dress the problem of forming and reasoning with beliefs under uncertainty. Sec-
tion 2.2 outlines two methods for representing probabilistic knowledge: a formal
language combining logic and probability, and belief networks. Finally, Section 2.3
surveys methods for probabilistic learning; these include maximum entropy, Minimum
Length Encoding, machine learning techniques, and planning methods for controlling

the learning process.

2.1 Probability Theory

The first theories of probability were developed in the 17th century by Mill
and Leibniz. Mill wanted to analyze games of chance; Leibniz was interested in
analyzing legal reasoning quantitatively.! Despite centuries of research and study
since then, there is still fundamental disagreement about what probabilities represent

(or what we would like them to represent). Three different interpretations of the

1The interested reader is referred to [Hacking, 1975] for a detailed and fascinating history of the
evolution of probability theory.

15

meaning of probability are commonly used:

e Statistical or empirical probability refers to the propensity of an event to occur.
This propensity is presumed to be a physical property of the environment. Sta-
tistical probabilities may be directly approximated by empirical observations.
For example, if we roll an unbiased die a large number of times we can esti-
mate the statistical probability that a five will turn up as 1 /6. Most standard
statistical techniques deal with statistical probabilities.

e Physical or logical probability holds the relation between evidence and the prob-
ability of a hypothesis to be an objective or mathematical one. Compared to
statistical probability techniques, logical probability allows for a greater range
of evidence to be considered in determining the probability of a hypothesis.
However, formalizing such a logic has proved to be extremely difficult. Carnap
[1950] has begun to build a framework for a logic of probability, but the logic is
still incomplete. Kemeny [1963] gives an example of Carnap’s logic of probabil-
ity applied to a simple dice-rolling problem. The probability of a specified dice
roll, given a set of observations, is shown to depend on a parameter A, represent-
ing an “index of caution” (a larger index of caution indicates that it will require
more observations to change the observer’s initial “unbiased” estimate of equal
probability for all outcomes). Since A must be specified by the observer, and
the set of outcomes must be predefined, the resulting probabilities still depend

heavily on prior beliefs as expressed in the problem statement.

o Subjective probability treats the relation between evidence and the probabil-
ity of a hypothesis as a function of the observer. [Cox, 1946] proved that any
reasoning method which represents belief as a real numbef, and follows certain
rules of consistency, must satisfy the axioms of probability, implying a certain
degree of intrinsic objectivity. However, because subjective probability is de-
pendent on the observer, and in particular on the observer’s prior probability
distribution, the particular probabilities that are assigned to events will vary

between individuals. Bayesian probability theory is the most familiar form of

16

subjective probability.
Hacking [1975] writes that - -

Leibniz had learned from the law that probability is a relation between
hypotheses and evidence. But he learned from the doctrine of chances
that probabilities are a matter of physical propensities. Even now no
philosopher has satisfactorily combined these two discoveries.

In other words, our (or at least Leibniz’s) intuitive notion of probability covers both
the logical and the statistical interpretations of probability, but it is not clear how they
interact or whether there can be one satisfactory formal interpretation incorporating
both of these views.

Non-probabilistic approaches to representing uncertainty include fuzzy logic
[Zadeh, 1980], which describes uncertainty about linguistic descriptions, Dempster-
Shafer theory [Shafer, 1976], in which bounds on uncertainty are maintained, and
certainty factors (see, for example, [Shortliffe, 1976} and [Horvitz and Heckerman,
1986]), which are heuristic measurements of belief used by some expert systems. An
introductory survey of representations for uncertainty can be found in [Wise and
Henrion, 1986).

2.2 Representing Probabilistic Knowledge

In order to use probabilistic knowledge in an automated learning system,
a formal system for representing and reasoning with probabilities is required. In
particular, given a set of generalized conditional probabilities (i.e., a probabilistic
theory) and some (possibly probabilistic) knowledge about a particular object, the
system must be able to make probabilistic predictions about unobserved properties
of the object.

For example, given that Chilly Willy is a penguin, that a penguin is a
bird, that birds fly with probability .9, and that penguins don't fly (that is, fly with
probability 0), what is the probability that Chilly Willy flies? It appears obvious

that the probability is 0, but even this simple case is non-trivial to automate, and in

17

reality the knowledge can be much more complex. Finding an answer may involve
searching through a large theory, deciding which probability or probabilities to apply,
and possibly combining muiﬁple probabilities (e.g., if Chilly Willy is a penguin who
also owns a Learjet).

Kyburg [Kyburg, 1974] defined the reference class for a proposition as the
features that are relevant for making probabilistic predictions about the proposition.
For example, the appropriate reference class for determining whether or not Chilly
Willy can fly in the previous example is the class of penguins. The reference class
for a proposition will depend on what is being predicted and on what probabilities
are represented in the theory or set of beliefs. Once the reference class is found,
determining the probability of the proposition may require probabilistic inference
from the beliefs in the theory.

Bacchus’s [1990] probabilistic logic and Pearl’s [1988b] belief nets provide
formalisms for representing probabilistic knowledge. We discuss these two approaches

in the following sections.

2.2.1 Logic and Probability

Bacchus’s [1990] probabilistic logic is a formal language for representing
probabilistic knowledge using first-order logic. The language provides a represen-
tation for both statistical probabilities (defined in terms of observed frequencies of
events) and subjective probabilities (degrees of belief derived from the statistical
probabilities). The inference mechanism provides for some manipulation of the sta-
tistical probabilities using standard axioms of probability, and for direct inference
from statistical to subjective probabilities using the narrowest reference class.

The subjective probability of a proposition is given a formal interpretation
as the total probability mass of all possible worlds in which the proposition is true.
An example (given by Bacchus) of a subjective probability in the language is “birds
fly with probability at least 0.75,” written as

Vz.prob(bird(z)) > 0 — prob(fly(z)|bird(z)) > 0.75

18

The antecedent is necessary because Bacchus does not permit conditioning on a state-
ment which is known to be false. Qualitative relationships between probabilities can

also be expressed; for exampie, conditional independence can be explicitly written as
prob(A A B|C) = prob(A|C) prob(B|C)

Statistical probabilities, representing frequencies of events in actual trials,
have a different syntax, and require “placeholder variables” to indicate which variables
are intended to vary randomly. For example, the statement “ten tosses of a coin will

land heads 5 times with greater than 95% probability” is written as
[frequency-heads(z) = .5|sequence-10-tosses(z)]; > 0.95 (2.1)

Direct inference from statistical to subjective probabilities is based on finding
a statistical probability with the same reference class as the desired subjective prob-
ability. If no such probability is available, a simple type of independence is assumed
non-monotonically, and the “next narrowest” reference class for which a probability is
available is used. For example, if one wishes to find the probability that a particular
sequence of 10 tosses of a quarter will yield five heads, and the only statistical prob-
ability available is Equation 2.1, the direct inference mechanism non-monotonically
assumes independence of frequency-heads and is-quarter, given sequence-10-tosses,

yielding

prob(frequency-heads(T")|sequence-10-tosses(T’) A is-quarter(T))
= [frequency-heads(z) = .5|sequence-10-tosses(z) A is-quarter(z)]:
= [frequency-heads(z) = .5|sequence-10-tosses(z)).

> 0.95

While Bacchus’s language provides a useful formalism for representing many
aspects of probabilistic reasoning, including certain forms of default reasoning, it does
not provide a representation for beliefs about relevance, nor does it allow default

assumptions such as independence or maximum entropy to be used in the inference

process.

19

2.2.2 Belief Networks

@ @
Figure 2.1: Example of a Belief Net

A belief network is a compact representation of a complete joint probability
distribution on a set of propositions. Each proposition is represenfed as a node, and
conditional probabilities (dependencies) ar;e represented as links between nodes. Any
nodes that are not directly connected are assumed to be conditionally independent,
given the intervening nodes.

An example of a belief net is given in Figure 2.1. The nodes represent random
variables. Arcs represent dependencies between the random variables. If there is no
direct arc between two nodes, there is assumed to be no direct dependency between
the random variables. For example, A and B are dependent, as are B and C. A and
C, however, are conditionally independent given the intervening node B.

A probability matrix is stored at each node in the network, representing the
conditional probability distribution for that node given its set of parent nodes (i.e.,
the nodes for which there is a direct arc from the parent to the node). For example,
node B in Figure 2.1 has a table containing probabilities of the form P(B = b|A = a;)
for each value b; of B and a; of A. Node A has no parent nodes, so a prior probability
distribution for A is stored at the node, containing the unconditional probabilities
P(A = a;).

Letting z; stand for the event that the random variable X; takes on value z;,
it can be shown that the joint probability distribution P(zy,... ,Zy) for the n nodes
in a belief network depends only on the probability tables stored at each node. The
joint probability is the product of the conditional probabilities of all nodes given their

parents:

P(Z1,...,%a) = f_[P(z;|m;)

=1

where 7; is the set of parents of node :.

20

One problem with belief nets as presented above is that they require a prob-
ability matrix of size k;[I;cn, k; at every node ¢ (where k; is the number of values
that the random variable at node i takes). Pearl [1988a) gives several models for
computing this matrix from a subset of the probabilities; he refers to these models as
Canonical Models of Multicausal Interaction (CMMIs). The noisy-OR model of dis-
junctive interaction models a set of independent causes (parents) of an event (node).
Each cause has an associated “exception”— a random variable which, if true, will in-
hibit the effect of the cause on the event. For example, Pearl gives a situation where
the event in question is a burglar alarm going off; the two causes are a burglar and
an earthquake; and the two inhibitors are that the burglar is highly competent and
that the earthquake has low vertical acceleration. Given an event E with Boolean
causes C; and associated exceptions with probabilities g;, the overall probability of

the event is given as:

P(Elcls"',cn)‘_- H qi
t:citsTRUE

This model allows the probability matrix to be computed from only n probabilities,
instead of the 2" that would be required to enumerate all of the conditional proba-
bilities in the complete matrix.

UPTs (Uniquely Predictive Theories), the representation used by PAGODA,
are a hybrid of rule-based approaches and the belief-net method of representing de-
pendencies. UPTs consist of rules, which are easy to manipulate, perform inference
with, and learn using familiar and intuitive inference rules and inductive operators.
However, the rules are not modular: the semantics of a UPT does not allow the in-
ference rules to be applied without knowing what other rules exist in the system.
On the other hand, complete theories are still easy to modify incrementally because
they are modular in appearance, representation, and local meaning, if not in global
application.

PCI, PAGODA’s inference method, provides the equivalent of a sophisticated
CMMI for a node in a belief network. The probabilities stored in PAGODA’s the-
ories are used to compute the entries that would appear in the probability matrix

dynamically, assuming independence where necessary.

21

2.3 Probabilistic Learning Techniques

In this section, we summarize some of the work that has been done in the
general field of learning, or forming beliefs, in probabilistic domains.

Maximum Entropy (ME) methods, discussed in Section 2.3.1, are used by
statisticians to find a “good” probability distribution, given constraints on the distri-
bution. The ME assumption can be viewed as a bias that the generated distribution
should include as little information as possible, other than the initial constraints.

Minimum Length Encoding (Section 2.3.2) derives from work by Solomonoft,
Kolmogorov, and Chaitin on algorithmic complexity. The operative principle is that
the length of the description of a theory, plus the length of the data encoded with
respect to the theory, should be minimized.

“Traditional” machine learning approaches, including search-based learning
algorithms, iterative parameter adjustment mechanisms, and genetic learning algo-
rithms, are presented in Section 2.3.3. Finally, methods that view learning as a

process of planning to collect useful data are discussed in Section 2.3.4.

2.3.1 Maximum Entropy

The Maximum Entropy (ME) principle states that given constraints on a

probability distribution p, the best estimate for p will maximize the entropy function

H(p) =) pilogpi

The justification for ME is that the best distribution is the one that minimizes the
amount of information, by representing only the information contained in the con-
straints. Entropy is an information-theoretic measure of the information in the distri-
bution. An in-depth discussion of the justifications for ME can be found in [Hunter,
1986].

Mathematical techniques such as the Lagrange method can be used to find
a distribution satisfying the constraints that maximizes entropy. (See Appendix A

for an example of the Lagrange method applied to the ME constraint problem.)

22

The primary difficulty with ME is that the Lagrange equations can be dif-
ficult or impossible to solve directly. Approximation techniques are required if the
method is to be applied aﬁfomatically. This is a relatively unexplored area, but
[Levine and Tribus, 1979] contains a collection of ME applications that use various

domain-specific heuristics and approximation techniques.

2.3.2 Minimum Length Encoding

Solomonoff’s theory of inductive ipference [1964a] defines fhe probability of a
theory, represented as a Universal Turing Machine (UTM) program, as the probability
that the theory would be generated by a sequence of unbiased coin flips. If T is the
length of a theory, then the probability of the theory is

P(T) =217

The most probable theory to explain a set of data is the shortest theory that generates
that theory as output. The probability of the next observation taking on a given value
is the sum of the probabilities of the theories that predict that value.

Chaitin [1977) extended Solomonoff’s theory, developing a more formalized
concept of algorithmic complexity. Rissanen’s stochastic complexity [1987] also in-
cludes structure-dependent terms (for example, the number of parameters of a the-
ory), allowing the model class to be selected automatically. Essentially, the model
class is included in the description length, so that simpler (shorter) classes are auto-
matically preferred.

MLE applications generally require a hand-tailored encoding scheme for the
particular domain. In other words, the designer must decide what the description
language will be, and therefore what theories can be represented, and how many bits
are required to describe any given theory.

Pednault [1989] applies the MLE principle to surface reconstruction. The
system works quite well, but the data-encoding method is hand-tailored for the ap-
plication. A methodology for applying MLE is outlined: (1) determine structures to
be detected, (2) develop language, (3) develop algorithms, (4) run tests, (5) fix errors

23

and iterate. This methodology assumes a significant amount of human intervention:
only the tests run in step (4) are automated.

Babcock [1990] describes an application of MLE to the analysis of DNA
sequences. The goal is to segment DNA into functional regions, which can then be
matched to corresponding RNA features, and finally to functional protein features.
The method involves constructing an encoding, using a statistical Markov model,
for the DNA sequence. Again, the encoding is domain-specific, but the application
demonstrates the utility of the MLE model for extracting regularities in any type of
data.

A great deal of domain knowledge is embodied in the encoding procedure
for these applications; if a more general method for expressing the domain knowledge
could be found, and used to derive an encoding automatically, MLE could be applied

with much less human effort.

2.3.3 Probabilistic Machine Learning

Quinlan was one of the earliest machine learning researchers to consider se-
riously the effect of noise on concept learning [Quinlan, 1986]. He extended ID3 (a
decision-tree learning algorithm [Quinlan, 1983)]) to learn decision trees under noisy
conditions by adding a chi-square test for independence: if the distribution of pos-
itive and negative instances with varying attribute values is (approximately) equal
to that expected from randomly assigned classifications (i.e., the attribute values are
statistically independent of the classification value), then the decision tree should not
be split at that point.

Quinlan’s approach suffers from some limitations: first, it learns decision
trees, which are difficult to impose certain syntactic learning bia.Ses on (such as a lim-
ited number of disjunctions, or relational descriptions). Second, incremental versions
are not adequate for complex domains: Utgoft’s ID5 [1988] is fairly expensive to use,
and it is not clear how good the trees it generates will be on average.

Schlimmer’s STAGGER [1987a] represents concepts as prototypes. Individ-

ual features are maintained with associated sufficiency and necessity statistics; these

24

statistics are combined to make predictions about new instances. New features are
formed as conjunctions and disjunctions of existing features using an ad hoc bheuristic
process. The primary probiéms with the approach are that the representation can
be difficult for a human user to interpret and that features are assumed to combine
independently.

Goodman’s ITRULE [1989] learns sets of probabilistic rules. The rules gen-
erated are the KX “most informative” rules, where K is a parameter provided by the
designer, and “informativeness” is based on an information-theoretic measure of the
rule’s content. It is not clear how useful it is in practice to learn a fixed number of
independently informative rules.

Rendell’s PLS [1986], a system that builds hyperrectangles in the instance
description space to describe learned concepts, is basically a simple statistical tech-
nique for finding “good” hyperrectangles. A variety of heuristic techniques are used to
generate and evaluate hyperrectangles. These heuristics are not applied in a coherent
framework, though. Additionally, the use of hyperrectangles as the representation
limits the expressivity of the learned theories.

CONSTRUCTOR [Fung and Crawford, 1990] is a technique for building
Markov networks (essentially belief nets with undirected arcs) from data. CON-
STRUCTOR attempts to find the best structure to represent the dependencies in the
data. A chi-square test for independence is used to find a set of neighbor nodes for
each node in the net; these neighbor nodes “shield” the node from the influence of
other nodes in the net (in other words, the node is conditionally independent of the
remaining nodes in the net, given its neighbor nodes).

Cooper and Herskovitz [1991] describe a method for building belief nets that
is based on a Bayesian evaluation technique. Assuming a uniform prior distribution
on belief net structures and an ordering on the variables in the belief net yields a
complex formula for the probability of a structure. A good structures is found using
a greedy method: the best parent of a nodé that increases the overall probability of
the structure is added at each step, until no such parents remain.

Holland’s genetic learning algorithms [1986] are used to form many inde-

pendent rules which compete in a fashion inspired by Darwinian evolutionary theory.

25

Rules reproduce, mutate, and are combined to generate new rules. As in PLS, the
rule-generation operators have an ad hoc flavor to them. Additionally, the learned
theories are potentially very. difficult for an observer to interpret, since there are many
independent rules with no central control or inference method.

Buntine’s work on Bayesian learning [1990] analyzes the problem of learning
probabilistic classification rules as a search problem, and gives guidelines for formally
analyzing such search algorithms. Buntine also describes a Bayesian method for
learning class probability trees, based on previous work on learning decision trees (e.g.,
[Quinlan, 1986)) but using Bayesian, rather than information-theoretic, techniques for

splitting trees and averaging predictions over multiple trees.

2.3.4 Planning to Learn

Doyle’s [1990] definition of learning is “interpreting experience by making
rational changes of mental state or expectation.” Being rational means deciding
whether and what to learn based on the expected utility gain of doing so (due to the
increased accuracy of predictions) and the associated cost of learning, storing, and
applying the learned theories to maximize utility. Choices that must be made include:
which concepts to learn, what relevance criteria to use, which apparent distinctions
are significant, what experiments to run, how much evidence to collect, and which
conclusions or assumptions should be preferred. Determining the gains and costs
of learning in order to make these choices is a difficult problem that has not been
addressed extensively in the literature.

Subramanian [1986] gives a method for generating discrimination experi-
ments for a version-space learning algorithm. The version space is factored into in-
dependent relations; this allows the version space to be expressed as several smaller,
independent version spaces. The discrimination experiments are instances which di-
vide the remaining version spaces as nearly in half as possible. This allows the learner
to reduce the number of potential hypotheses in half after each instance.

The Operator Refinement Method is used in [Gil, 1991] to identify exper-

iments which allow the system to refine an incorrect theory. When the theory fails

26

(makes an incorrect prediction), the system generates a set of preconditions that
might account for the failure, and generates experiments to identify the correct pre-
condition. The approach, which has been implemented in PRODIGY, assumes a
completely deterministic world.

The Map-Learning Critter [Kuipers, 1985] and Rivest and Schapire’s [1987]
method for learning deterministic finite-state automata both perform deliberate ex-
ploration of their environments to learn a world model, by generating sequences of
experiments to refine the existing model. These systems are discussed in Section 8.3.

Rivest and Sloan [1988] model the process of inductive inference as a tradeoff
between “thinking” and “doing.” The costs of making predictions and of doing exper-
iments are assumed to be constant. Bayesian updating is used to assign probabilities
to theories, given some prior distribution and a sequence of observations (results of
experiments). Given current probabilistic beliefs in a set of possible theories, the
method determines a sequence of actions (chosen from a finite set of choices) that
maximizes the rate of progress with respect to one of five optimization criteria. An
example of an optimization criterion is to maximize the expected total probability
mass associated with theories which will be refuted by an action sequence. The pri-
mary limitation of the model is that the theories are simple deterministic predictive
functions, and it is assumed that a correct theory exists.

The n-armed bandit problem addresses the problem of experiment genera-
tion in nondeterministic environments. The problem is formalized as follows: given
a slot machine with n arms, and some state of knowledge about the probability of
success associated with each arm, what sequence of actions (arm pulls) maximizes
the expected rate of success? Given perfect knowledge, a rational agent should al-
ways pull the arm with the highest expected rate of success. However, given only
partial knowledge (i.e., a set of observations providing some current estimate of the
rates of success), the problem becomes more difficult. If the agent uses the policy
of always pulling the arm with highest estimated probability of success, it can easily
be misled by an incorrect initial estimate into preferring an arm with relatively low
actual probability of success. An optimal policy should gather enough information

to converge on the best arm in the long run, while maximizing expected success dur-

27

ing the information-gathering stage. Berry [1985] surveys solutions to the n-armed

bandit problem for a variety of initial conditions and independence assumptions.

28

Chapter 3

Performance Element

This chapter describes the components of PAGODA’s performance element.
These components include the representation and inference method for probabilistic
theories, and the probabilistic planning technique. A shorthand notation for theories
is also described.

The next section describes the RALPH testbed; we will use examples from

the RALPH world throughout the thesis the illustrate the components of PAGODA.

3.1 RALPH: An Autonomous Agent Testbed

RALPH is a system developed at UC Berkeley as a testbed for designing
intelligent autonomous agents. RALPH, which runs on TI Explorers in ZetaLisp and
on DECstations in Allegro Common Lisp, is an object-oriented system with scheduling
software and a graphic display, and is designed to be easily extensible. The system
provides the infrastructure for designing, running, and testing new worlds and agents.

This section provides an overview of the capabilities and use of the RALPH
system. For further details, see [Parr et al., 1992]; this document and the RALPH
software can be obtained by sending electronic mail to ralph@guard.berkeley.edu.

RALPH’s time-slicing mechanism simulates an asynchronous world by run-
ning the agents in pseudoparallel: it allocates a fixed amount of time (called a “time

slice” or “tick”) sequentially to each agent (note that this allows the RALPH world

29

o 0o 0o o oo

C O O O O O O O O ©

O

&

@
OO0000000nn

o oo 0 o o
ooo.o@oooo.
o o0 0o Po o
Oo0ooooononn

Figure 3.1: Typical RALPH world

30

to be used for testing multiple-agent interactions) and to the world. Because of
this, the agent’s activity and the world’s behavior are interleaved, creating a realistic
simulation of an embedded agent. However, time is necessarily discretized, making
continuous processes difficult to represent.

RALPH’s versatility as a testbed comes from the object-oriented design of
the world model and the agent model. There are currently several worlds imple-
mented (including the nasty world described below, a traffic-crossing world, and a
space-invaders world), but it is simple to add new objects or prdcesses or to define
a completely new world by defining new flavors and methods. New ralphs! can be
designed by defining methods on top of existing default agents. The agent (including
the sensory inputs) and nasty world we describe below can be replaced with other
agents and worlds.

A typical RALPH world is shown in Figure 3.1. The objects in this world
are ralph (the protagonist, with an “R” on his chest and question marks over his
head), nasties (the antagonists: evil-looking creatures with large, sharp teeth), food
(cupcakes) and walls. Empty locations are represented by diamonds. In the PAGODA
implementation, there is only one ralph (PAGODA-RALPH, hereinafter referred to as
PR).

The object hierarchy in RALPH includes agents and other world objects.
Some world objects, such as walls, food, and nodes, are basically static; their proper-
ties include a location (x and y coordinates), appearance, and size. Objects also have
various manipulation methods (e.g., food has a :get-eaten-by method). Agents
(ralphs and nasties) are dynamic: their :perform methods are run at each time slice
to update their state. Additionally, they have properties that are maintained by the
world (such as location and appearance), sensory inputs, and actions that they can
perform. World objects generally change only when agents manipulate them, but
worlds can be designed in which objects appear, disappear, or move randomly.

Walls are immovable, and ralphs cannot move into a space containing a wall.

Food (which is represented by a cupcake icon) is scattered about the world; when a

14 ALPH” refers to the system; “ralph” or “a ralph” refers to an agent in the RALPH world.

31

ralph consumes food, its utility goes up. Nodes are special world objects, representing
the discrete points in the world (i.e., grid locations). Nodes can contain things and
have :move-into methods.

The world is updated at each time click as follows: the :start-slice
method of each agent in the world is run; the :perform methods are run for a fixed
time interval;? the :end-slices are run to perform any necessary clean-up actions;
and finally each agent’s :choose-action method is run. The world is updated by
applying the selected actions of each agent. Currently, all of the agents’ actions have
deterministic outcomes given the complete state of the world, but actions with non-
deterministic effects (e.g., movement actions with a probability of error) could be
written.

Nasties exhibit fairly simple behavior: if they can’t see a ralph, they turn or
move randomly; if they can see a ralph but aren’t adjacent to it, they move towards
it; if they can see a ralph adjacent to them, they bite it.

PR is implemented as a ralph that calls a learning routine after every time
slice (in the :end-slice method), and uses a probabilistic planning mechanism in the
. choose-action method to select actions based on the predictions of its learned world
model. The actions available to PR are :move-forward, :turn-left, :turn-right,

:munch, and :zap. The effects of these actions are as follows:

-move-forward: If the space in front of PR contains only food, or is empty,
it moves forward and loses 10 utility points. If the space contains a wall or a

nasty, PR bumps into it and loses 11 utility points.
:turn-left: PR turns 90 degrees left and loses 10 utility points.
:turn-right: PR turns 90 degrees right and loses 10 utility points.

.punch: If there is food in the space containing PR, it eats part of the food
and gets 90 points (100 points for eating minus 10 points for the energy spent
eating). Otherwise, it loses 10 points. Each cupcake takes three munches to
finish.

2pAGODA’s :perform method is not actually time-sliced: it is allowed to run to completion.

32

:zap: If there is a nasty in the space in front of PR, the nasty disappears and
PR loses 160 points, else it loses 10 points.

If a nasty is next to and facing PR, it will bite the agent, causing it to lose 50 utility
points (in addition to whatever effect PR’s actions have on its utility).

PR has four sensory inputs. nasty-smell and food-smell are sums over
all of the objects in the world of their smell intensity, which is inversely proportional
to their distance from PR. vision has two arguments, the type of the nearest object
directly in front of PR and its distance. This object may be a wall, nasty, or food;
PR also knows that walls and food are inanimate-objects, and can use this term
in building theories. Au is the change in the agent’s utility function at each click.
Other ralphs with more sophisticated sensory inputs have been built: for example,

the vision input in some ralphs consists of a set of objects and their apparent sizes

and angles.

o o o o © o ©
0o o o o © © ©
0o o ¢ o 0 o ©
o o o o © o ©
0o o o o 0 o ©
0o o o o o o
o o o o o0 © ©
0o o o o 6 o ©
[Jo o o o © © ©
¢ o ¢ o 6 © ©
mjmju]m mjmjmjm

Figure 3.2: RALPH’s “nasty world”

33

O0000000000

Figure 3.3: Nasty world at the next tick

34

In Figure 3.2, PR’s current sensory input consists of the sentence

vision(10,food,2) A food-smell(10, 5)A
nasty-smell(10,10) A Au(10,-10)

The first argument of each predicate represents the current time. PR’s best bet would

be to move forward (toward the food), yielding at the next tick

vision(11l,food, 1) A food-smell(11,10)A
nasty-smell(11,10) A Au(11,-10)

The new situation is represented in Figure 3.3. Notice that the time is now 11, the

food smell is stronger, and the nasties have moved towards PR’s former position.

3.2 Representing Probabilistic Knowledge

PAGODA’s knowledge is represented as probabilistic theories about features
of the world (i.e., learning goals). Each theory consists of a set of conditional prob-
ability distributions; each of these specifies the observed distribution of values of the
goal, given the conditioning context. Conditioning contexts comsist of a perceived
world and possibly an action taken by the agent. A probabilistic inference mecha-
nism is used to make predictions about the effect of the agent’s action on its learning
goals, given the agent’s perceptions (which may be the current perceived world, or
a hypothetical perceived world generated by the planner). This mechanism requires
determining which conditional distributions within a theory are relevant, and com-
bining them if necessary (using minimal independence assumpfions) to get a single
predicted distribution.

The theories are called uniquely predictive theories (UPTs) because PAGODA
imposes a restriction on the structure of the theories that allows the inference mech-
anism to find a unique predicted distribution for any perceived world. The building
blocks of UPTs are presented in the next three sections: Section 3.2.1 introduces

conditional probability, conditional distributions are defined in Section 3.2.2, and

35

Section 3.2.3 defines predictive theories. UPTs are a subset of predictive theories;
they are described in Section 3.2.4.

A shorthand notation for theories is given in Section 3.3; this notation is used
throughout the thesis. The inference mechanism, called pciI (Probability Combination
using Independence), is described in Section 3.4; it is used to compute the likelihood

of a theory (Section 6.3) and to make predictions for planning (Section 3.5).

3.2.1 Conditional Probability
Definition: The conditional probability or CP of X given Y is

P(X AY)

PXIY) = =553

X, the target, and Y, the conditioning context or CC, are first-order schemata.
These schemata are required to be conjunctions of feature specifications, where each
feature specification may contain internal value disjunctions, representing internal
nodes in a feature value hierarchy (for example, vision(t,wall V food, [1,3]) means
that at time ¢, the agent sees a wall or food between 1 and 3 nodes away). The
schema corresponds to a set of perceived worlds. For example, the following is a valid

schema in the RALPH world:
vision(t,any-object, 1) A nasty-smell(t,[10,00]) A Au(t,—100)

Cross-feature disjunctions, such as vision(t,food,2) V food-smell(t,20), are not al-
lowed. Negations of features are allowed, since they may be rewritten as disjunctions.

An example of a conditional probability is
P(Au(t + 1,—10)|action(, :move-forward)) = .75 (3.1)

The variable ¢ stands for any time at which this conditional probability is the most
specific in the theory; that is, the knowledge we have about the situation at time ¢
implies this CC and does not imply any other more specific CC. Variables are not
universally quantified, since they cannot be instantiated without examining the rest of

the theory. The semantics of any individual probability within a theory will therefore

36

depend on the content of the rest of the theory, as well as on the inference mechanism
used to instantiate the variables and make predictions.

Intuitively, the meaning of Equation 3.1 is: given that an agent executes the
action :move-forward at time t—and that is all the relevant information the agent
has—the probability that the agent’s change in utility at time ¢ + 1 will be -10 is
75. The information in the conditioning context is assumed to be the only relevant
information if the agent have no other CP with a more specific conditioning context.
For example, if the agent also knows that vision(t,wall,1) holds, and the theory
contains the CP |

P(Au(t + 1,—10)|action(t, :move-forward) A vision(t,wall, 1)) =0

this more relevant conditional probability will be used (and Equation 3.1 has no
bearing on the prediction the agent makes). On the other hand, the agent may
have more knowledge about t—such as the fact that nasty-smell was 0—that is not
mentioned in any CP in the theory; this information is considered to be irrelevant in
the context of the current theory.

Using conditioning, relevance, and specificity in this way yields a quasi-non-
monotonic representation: adding new knowledge (i.e., new conditional probabilities)
to a theory doesn’t change the truth of the rest of the CPs in the theory, but it may

change their range of applicability, and therefore change their semantics.

3.2.2 Conditional Distributions

Definition: A conditional distribution or CD, which we will usually
refer to as a rule, is a set of n conditional probabilities on a target schema
G (a learning goal), with mutually exclusive partial variable substitutions
6, ...6, and common conditioning context C, such that

E P(G4|C)=1

=1
A CD specifies all of the possible instantiations for a target given a particular context,
and their probabilities. If C contains all of the relevant information, this distribution

is used to predict the probability of each value of G.

37

For example, PR’s utility goes up when it does a :munch action, but only if
there is food in the same node. If this has been true on half of the occasions it’s tried

a :munch action, it may have a CD on Au(tl, du) containing the probabilities

P(Au(t + 1,90)|action(t, :munch)) = .5
P(Au(t + 1,—10)|action(t, :munch)) = .5 (3.2)

This is a rule on goal Au(tl,du) with substitutions 6, = {t1/t + 1,du/90} and 6; =
{t1/t +1,du/ — 10}. ‘

A CD with an empty conditioning context is referred to as a prior distribu-
tion on G, or a default rule for G. A prediction on G is the set of probabilistic
outcomes specified by a conditional distribution. The rule in Equation 3.2 makes the

prediction
{(Au(t + 1,90),.5), (Au(t + 1,-10),.5)}

3.2.3 Predictive Theories

Definition: A predictive theory or PT on goal schema G is a set of
m conditional distributions, or rules, on G, with conditioning contexts
Ci...Cm (which must be distinct but not necessarily disjoint), such that
any situation (consisting of a perceived world and possibly an action)
implies at least one of the conditioning contexts.

As long as a set of distinct rules on a goal schema includes a default rule it is guar-
anteed to be a predictive theory.

A predictive theory stores all of the beliefs the agent has about the goal G.
The rules in a theory are indexed by their conditioning contexts (i.e., the situations
in which they apply). Using a specificity relation between CCs, the rules can be
organized into 2 DAG in which a child is always more specific than its parents. (A
rule in the theory may have multiple parents, but no rule may be an ancestor of
itself.)

Figure 3.4 shows an example of a predictive theory on a goal G, drawn as
a DAG. Only the conditioning contexts are shown, indicating the structure of the

theory. A conditional distribution is actually stored at each node. For example,

38

the bottom node represents a rule containing conditional probabilities of the form

P(G6:|A(z) A B(z)) =

A

@

A(x) & B{(x)

6

Figure 3.4: Example of a predictive theory

Definition: The most specific rules for a perceived world S are the
rules in the theory whose conditioning contexts are more general than S,
such that no more specific rule’s conditioning context is also more general

than S.

A rule is an MSR for a situation S if its CC is more general than S and it has no
children whose CCs are also more general than S. The MSRs for S are the conditional
distributions that will be used to make predictions about the outcome of the specified
action in the world state. If there is only one MSR, the outcome predicted by that rule
is made. However, if there are multiple MSRs, their predictions must be combined.
Uniquely Predictive Theories, described in the next section, are a restricted form
of predictive *.heories that allow MSRs to be combined using simple independence

assumptions; the inference mechanism which does this is described in Section 3.4.

3.2.4 Uniquely Predictive Theories

A predictive theory may correspond to many different complete probability
distributions. In principle, probabilities that are not specified by the theory may take
on any value that is consistent with the probabilities in the theory. For example,
given only the probabilities in Figure 3.4, P(G|D(z)) may take on any value. In

order to make predictions about perceived worlds that are not explicitly mentioned

39

as CCs in a rule in the theory, a single distribution must be found that specifies the
remaining probabilities.

The Maximum Entropy (ME) principle, discussed in Chapter 2, provides one
method for finding a “best” distribution, using the rules in a theory as constraints
on the distribution. The distribution chosen using this method will add the least
information possible to the existing theory. However, in the general case (i.e., for
arbitrary constraints), ME is intractable.

A less expensive approach is to identify valid independence assumptions
and use them to find the joint distribution. We restrict the set of allowed theories so
that a unique distribution can be found using only simple independence assumptions
that are consistent with the theory. If the induction mechanism finds a theory that
contains all dependencies that actually exist and no others, it is safe in the limit
(by definition) to assume that any dependence not represented in the agent’s theory
does not exist. PAGODA’s Bayesian evaluation technique will discard any theory that
contains additional dependencies (irrelevant rules) in favor of a simpler theory without
the irrelevant rules; similarly, any theory that is missing dependencies that actually
exist (i.e., statistically significant correlations in the data) will be discarded for one
that the dependencies.

PAGODA’s inference mechanism is based on the independence-assumption
approach. AThe technique involves finding shared features in the conditioning con-
texts of rules to be combined (MSRs), and assuming that the remaining features are

independent, given the shared features.

tall & blond blond & blue-eyed

Figure 3.5: Sample UPT

40

Suppose our theory (shown in Figure 3.5) specifies the conditional distribu-

tions corresponding to
P(sSwedish(z)|tall(z) A blond(z))
P(Swedish(z)|blond(z) A blue-eyed(z))

Now we observe someone who is tall, blond, and blue-eyed. Given our theory,

we wish to find the probability that they are Swedish, i.e.,
P(Swedish(z)|tall(z) A blond(z) A blue-eyed(z))

If we assume that blue-eyed and tall are independent, and that they are condition-
ally independent given blond, this can be rewritten as

P(Swedish(z)|tall(z) A blond(z))P(Swedish(z)[blond(z) A blue-eyed(z))
P(Swedish(z)|blond(z))

blond is the shared feature of the two CCs, which is used to separate their effects.

The denominator represents the combined effects of the two rules; the numerator
represents the overlap (essentially the shared part of the world state that was included
twice). If P(Swedish(z)|blond(x)) were removed from the theory, we would assume
that it was equal to the prior P(Swedish(z)) (i.e., the MSR for blond(z)).

tall & blue-eyed

tall & blond blond & blue-eyed

Figure 3.6: Unacceptable UPT
However, if we add the distribution specifying
P(Swedish(z)|tall(z) A blue-eyed(z))

yielding the theory shown in Figure 3.6, we would need to assume that blond,

blue-eyed, and tall were all independent. But if they were, this wouldn’t be the

41

simplest theory: a perfect induction mechanism would have preferred the theory

shown in Figure 3.7.

Figure 3.7: Preferred UPT

The inference mechanism does not work on theories such as the one in Fig-
ure 3.6, which have interlinked dependencies such that independent features cannot

be pulled out individually. This intuition is formalized below.

Definition: A set of rules in a theory is a valid set of MSRs if it
corresponds to some situation; i.e., there must be situation (perceived
world plus an action) that would have the set of rules as its MSRs.

In Figure 3.4, invalid sets of MSRs include {nil,C(z)} (C(z) should be the only MSR)
and {A(z),B(z)} (since A(z) A B(z) would be a valid MSR for the situation).

Definition: The shared features of a set of rules are the features that
appear in all of the conditioning contexts and have some value in common.

“Shared features” may also refer to this shared set of values for the features, in
which case they may be thought of as the minimum specializations of the common
features. For example, the shared feature of blond(z) A blue-eyed(z) and tall(z) A
blue-eyed(z) is blue-eyed(z). The shared features of '

vision(10,food,2) A food-smell(10,5)A
nasty-smell(10,10) A Au(10,-10)

and

vision(t,food,[1,3]) A action(t, :move-forward) A food-smell(t,20)

vision(t,food,1) A action(t, :move-forward)

42

Definition A set of rules is separable if there is some rule in the set
(which is also referred to as separable with respect to the rest of the
set) whose conditioning context can be split into two parts: one group of
features that is shared with a single other rule in the set, and one group
of features that is shared with no other rule in the set. Either group of
features may be empty.

The restriction on UPTs is simply that every valid set of MSRs must be separable.
Figure 3.6 violates this restriction because the valid set of MSRs

{tall(z) A blond(z),blond(z) A blue-eyed(z),blue-eyed(z) A tall(z)}

is not separable: all of the rules in the set share features with both of the other rules.

3.3 Theory Notation

A shorthand notation for theories is used throughout the thesis. Rules are
represented as implications with attached probabilities. They should not be inter-

preted as logical implications, but as conditional probabilities. For example,
action(t, :munch) — ¢ Au(t +1,90)
represents the conditional probability
P(Au(t +1,90)]action(t, :munch)) = .6.

The O symbol is used to indicate an empty conditioning context. Repeated condi-
tioning contexts in a single rule are left out for readability. An example of a UPT in

this notation is:
0O —r7Au(t+1,-10)

— 3 Au(t +1,—60)
action(t, :munch) — ¢ Au(t +1,90)
—3 Au(t +1,-10)
— 1 Au(t +1,—60)

43

3.4 Probabilistic Inference

This section rdescr'iBes Probability Combination using Independence (PcCI),
the inference method that is applied to a UPT T to compute the distribution of T"s
goal G, given a situation S. Given a set of MSRs, PCI iteratively finds a separable rule
in the set, computes its contribution to the overall probability using independence
assumptions, and recurses using the remaining rules as the new set of MSRs to explain

the remaining features. The algorithm operates as follows:

1. Let R be the set of the n most specific rules (MSRs) in T that apply to S.
This set consists of all rules, r;, whose conditioning context C; is satisfied by

the situation, where no strictly more specific rule also satisfies the situation:

R={r;:[S—= Ci] A -3ri,k#i:[(S— Ci) A(Ci — Col}

9. The rules are ordered so that each rule r; is separable given the set of rules
Tit+1,.--,Tn. Recall that r; is separable with respect to a set of rules if its
conditioning context can be split into two parts: f?, a group of features (possibly
empty) that is shared with some rule in the set, and f7, the remaining features,
which are shared with no other rule in the set (i.e., are unique to r in this set
of rules). This is guaranteed to be possible if T is a UPT, since each set of rules
ri...Tn is a valid set of MSRs.

3. The probability of G8 is computed, for each § common to all rules in the set of
MSRs (i.e., for values of G that are assigned non-zero probability by every rule
in the set). If we assume that f? is independent of the features only found in
the rest of the rules (i.e., of Ur»; Ck — f#), and also conditionally independent
of those features given G and f? (yielding a total of 2(n — 1) independence
assumptions, all consistent with the dependencies explicitly expressed in the
theory), this probability is equal to

I, P(GOIC:)

1132 P(GOIS})

P(G8)S) = (3.3)

44

(The derivation of this equation is given below.) If n is 1, the product in the
denominator is defined to be 1, so the predicted distribution on a goal when

only one rule applies is simply the distribution given by that rule.

4. The probabilities in the denominator of Equation 3.3 are computed by applying

PCI recursively.

The resulting probabilities are derived probabilities, which may be used
to make further inferences in the planning process, but otherwise are not reused.
Specifically, they are not stored in the theory. This keeps the empirical probabilities
represented in the theory distinct from the inferred, subjective probabilities (they are
subjective because the independence assumptions have not been directly validated
against the data).

The formula given in Equation 3.3 is derived as follows. Consider the effects
of pulling out the first MSR, r;, and assuming that its unique features f}' are inde-
pendent of the remaining features (U;»; C; — f7), and independent of these features
given G and f. In order to simplify the derivation somewhat, we assume that r;
is the rule that shares the feature f;. This is not necessarily the case: in fact, rs is
simply the next separable rule. However, making this assumption does not affect the
validity of the derivation. We will refer to the features in r, that are not shared with

r as f]. Then using only Bayes’ rule®

P(G|S) PGIff NN ACs...C)
PGIf)P(f ANfACs...CalGA f})
P(ft A f NCs...Calf?)
P(G|f2) P(f2IG A f1) P(f5 A Cs...CalG A f)
P(f#1f3) P(f5 A Cs...Cal f})

P(f2112) P(GHEAL?) P{fIAC3...CnlfE) P(GIf5AC3...CaAfL)
P(GIf) =" b R £ (- R

P(f21ff) P(f2 A Cs...Calft)
3This is a slightly non-standard version of Bayes’ rule. The general form of the rule we use here

P(X|K) P(Y|X AK)
P(Y|K)

is:

P(X|Y AK) =

45

P(GIft A f}) P(GIfE A f5 A Cs...Ca)

- P(G|f?)
_ P(G|C}) P(G|C:...Cn)
B P(G|f})

Iterating on the last term in the numerator yields Equation 3.3.

If the inductive learning algorithm is “perfect”—i.e., it identifies all depen-
dencies that exist—this procedure will be guaranteed to work, because the indepen-
dence assumptions will be correct. However, in practice, theories are often not perfect,
due to limited data or an inadequate search heuristic. The result is that the proce-
dure may not yield a valid distribution on G: the computed probabilities may sum
to less than or more than one. In this case, we normalize the probabilities to sum to
1 and proceed as usual. In the extreme case, the sum of the probabilities will be zero
if every goal outcome is assigned zero probability by some MSR. In this case, PCI as-
sumes that not enough data has been collected to cover the current case adequately,
and uses the less specific probability P(G|f?), where f? is the set of features that
are shared by all MSRs (possibly empty, in which case the prior probability P(G) is
used).

3.4.1 An Example of PCI

Taking the theory represented in Figure 3.4 as a predictive theory on a
Boolean goal G, and leaving out the argument z, the theory can be rewritten as a set

of conditional probabilities:

R,: p,= P(G)

R.: p.= P(G|A)
Ry: m= P(G|B)
R.: p.= P(G|C)

Ra: pa= P(GIAAB)

In order to find any probability which is not explicitly represented in the theory,

PCI must be applied. The simplest case is when only one rule applies to the new

46

probability. For example, for the situation D, R (the set of most specific rules) is just
{R,}, so

P(G|D) = P(G) = p,
If the situation is AA BAC, R is {Ra, R:}. Rs and Ry are not in R, because R,
applies and is more specific than either. Both rules are separable given the other,

so either order is acceptable. The probability of G can then be computed using

Equation 3.3: pClC
P(GIAABAC) = P(GIA /I\D(BG)) (CIC)

A(x)&B(x)

Figure 3.8: Theory to be used for making predictions

The theory in Figure 3.8 represents the probabilities py, Pa, Pab; Pac, and p.q.
If the situation is AA BACA D, R is {Ra, Racy Rea}. Rac is not separable given
R.; and R.q4, since it shares the feature A with Rg; and C with R.4. Ras is separable
given R,. and R4, since it only shares features with R,., and R, is separable given

R.4, so a valid ordering is R = (Rap, Rac, Red). Applying Equation 3.3 gives

P(GlAABAC A D) = ZEIAN B;fc(a)Ap/E GCl)CI)’(GIC A D)

P(G|C) must be computed recursively: in this case, R is {R,}, so P(G|C) = P(G)

and
P(GIANBACAD) = P(GlAAB);g%’}\)(CCE)P(GICAD)

47

3.5 Planning

The planner in PAC;:ODA performs a random action a fixed percentage of the
time (default probability .25). The remainder of the time, it uses heuristic search to
find the action with maximum overall expected utility. This overall expected utility is
equal to the immediate expected ﬁtility of performing the action, plus the maximum
utility of the plan that can be formed in the resulting states.

The planner forward chains to a fixed depth (default 3) through the space of
possible outcomes for each action, then propagates the maximum expected utilities
backwards to yield an expected utility for each initial action. This process can be
described as an average-max search: at each level, the utility of the action with the
highest expected (average) utility is used as the value to propagate back.

An example of part of the planning process to depth 2 is shown in Figure 3.9.
Only the left half of the plan is fully expanded. Two actions, :move-forward and

:munch, are considered. The theory used is as follows:

O —; Au(t+1,-10)
—3 Au(t+1,-11)
action(t, :munch) —5 Au(t+1,90)
—5 Au(t+1,-10)
action(t, :munch) A Au(t,90) —er Au(t+1,90)
— 33 Au(t+1,-10)

The squares in Figure 3.9 represent predicted changes in utility; the capsules
contain the expected utility of the entire plan below the capsule. The expected
utilities in the bottom row are computed directly, using the probabilities to weight
the predicted utilities. For example, the leftmost expected utility is equal to (.67 *
90+ .33* (—10)). The values in the upper row of capsules are computed by taking the
maximum expected utility of the rest of the plan from each state, plus the immediate
utility of that state, and weighting by the probability of the state. For example,
:munch has the highest expected utility in both of the lower states, so the expected
utility of performing :munch (57 and 40 respectively for the two possible outcomes) is

propagated backwards. The overall expected utility of performing :munch as the first

48

=10

:munch :move-forwarxrd

EU=88.5 EU=29.7

Figure 3.9: Partial plan search tree

49

action (represented by the upper left capsule) is then (904 57) .5+ (—10+40) *.5, or
88.5. The overall expected utility of :move-forward is 29.7 (computation not shown),
so the planner selects :munch.

PAGODA’s planning capacities could be enhanced by controlling and guiding
the search process, and by integrating the planner more closely with the learning
process. For example, the depth of the search might depend on the time available,
the theory being used (e.g., if the agent has low confidence in the theory, it is not
worth projecting very far ahead), and the plan computed so far (e.g., paths with low
expected utility are less likely to be worth éxploring). Also, the degree of exploration,
and what actions the agent chooses when exploring, could be determined by the con-
fidence the agent has in its theory, and by what aspects of the theory need refinement.

These and other areas for future research are discussed in Chapter 9.

50

Chapter 4

Goal-Directed Learning

_ In order for an agent to function without a teacher, it must be able to
select and classify its own learning examples. The agent will typically receive a large
amount of sensory information from the environment, which (in our learning model)
it must use to build a predictive model of the world. This model will consist of many
different individual concepts (each feature of the world being predicted is a concept
in the traditional sense). In complex domains, the environment will contain too many
features for an agent with limited resources to learn in a reasonable amount of time.
Therefore, it will need to focus its attention on aspects of the environment that are
most relevant to its ability to succeed at whatever task it was built for: that is, it
must decide what concepts to learn.

We have developed a theory called Goal-Directed Learning (GDL) that uses
the principle of decision theory to choose learning tasks. The expected utility of
being able to predict various features of the environment is computed and those with

highest expected utility are used as learning goals.

Definition: A learning goal is a feature of the world which the agent’s
inductive mechanism builds a model to predict.

For each learning goal, the learner uses background knowledge to select a learning
bias (Chapter 5) and induces a predictive theory for the goal from observations of the

world (Chapter 6).

51

An autonomous agent’s primary task is to maximize expected utility.
PAGODA does this by using .a model of the world to make predictions about the
effects of its actions on the world. Therefore, we provide PAGODA with utility as
a primary learning goal, so that its initial theories predict the utility of actions in
various world states. _

As learning proceeds, the agent uses its existing theories to determine which
features of the world it expects to be most useful to learn next. A feature is useful
to learn if the plans formed by the agent lead to higher expectéd utility when the
feature can be predicted than when it cannot be predicted. The most useful features
are selected by the planner as learning goals.

Intuitively, the agent needs to be able to predict intermediate states in order
to form plans to maximize utility in the long run. These intermediate states are
learning goals, but are not necessarily planning goals (i.e., states the planner wants
to achieve). For example, if the agent’s utility is determined by the amount of money
it has, and it has learned that putting a card into an ATM raises its utility, the next
logical step is to learn how to get to an ATM. “Being at the ATM” would then be
formed as a learning goal. On the other hand, if PR learns that standing next to a
nasty frequently leads to a large loss in utility, then being able to predict this state
is useful, so that plans can be formed to avoid it. “Being next to a nasty” would be
a useful learning goal, but not a planning goal.

In the simple world shown in Figure 4.1, PR may learn the following theory
about utility:

food-smell(t,20) A action(t, :munch) —y.0 Au(t +1,90)
0 -1 Au(t +1,-10) ' (4.1)

food-smell(t,20) is true in this world if and only if PR is standing on food. If this
is not the case, the agent believes that all actions have equal utility, and will wander
randomly until it happens to land on food. At that point, it recognizes that :munch
is the best action, and proceeds to eat the food. However, if it could predict which
actions and states lead to food-smell(t, 20), it would be able to plan ahead—any time

it was next to and facing food, the best two-step sequence would be (:move-forward,

0 o 0 o o ©
0 o © 0 o ©
| O © O © ©
| 6 6 0 O O
|| O © ¢ o ©
| o 0 O O ©
|| © 0 0 o ©
| o © © o ©
| O 0 © o ©
M| o © © o ©
O oo

Figure 4.1: A simple RALPH world

:munch).

In Section 4.1 we derive the value of information formula used to evaluate the
effect of a proposed learning goal on utility; Section 4.2 explains how the expected
utility of plans using a specified learning goal is computed. Section 4.3 gives an

example of the application of GDL to a theory in the RALPH domain.

4.1 Utility of Learning Goals

For an optimal (unbounded) rational agent, the value of a learning goal F
(a feature of the environment) is the agent’s expected utility per unit time given a
world model which predicts F' in additionv to the set of current learning goals, L,
minus the expected utility per unit time given the current world model, which only
predicts L. If P is the planning function for the agent, taking the knowledge available

in the world model (i.e., the set of learning goals) as its argument and returning the

53

expected utility of a plan formed using that knowledge, then the value of a learning

goal F for an optimal agent is:

For a limited rational agent, the value of a learning goal must take into
account the cost of learning the goal. These costs include utility lost due to com-
putation time expended during learning (instead of planning or acting), additional
planning costs with the resulting, more complex, model, and costs of experimentation
necessary to acquire sufficient data. The costs depend on the particular agent and
the environment; we model them as a single cost function C(F'). The net utility of a
learning goal F' is

Viim(F) = P(LAF)— P(L) - C(F) (4.3)

A limited rational agent should be willing to learn goals that have positive net utility,
i.e., for which V; (F) > 0, and should be indifferent to learning goals with zero net
utility. Of course, the costs and benefits of learning multiple goals may not have a
simple additive effect. For example, in a medical domain, learning whether a patient
has stomach cancer or an ulcer may both be useful initially, but once the patient
is known to have cancer, learning whether an ulcer is also present may become less
useful. The exact change in predictive value depends on the decision maker’s state of
knowledge about the domain and the particular situation of interest.

Additionally, the time spent learning multiple goals may exceed the available
amount of time in a real time environment; if the agent has “anytime” learning
algorithms that be run for a shorter period of time, the costs may be manageablé,
but the accuracy of the learned model—and therefore the expected utility of planning
with the model—will decrease. An ideal agent should learn the set of goals that, taken
together, maximize its expected utility.

In PAGODA, the cost of learning is ignored when computing the value of
learning goals, so the value of a goal is based on the formula for an optimal, unbounded

agent (Equation 4.2).

Definition: The single-step model treats the difference in two plans

54

generated using different world models as the difference in the final step
of each plan.

The final step of each plan is the action selected by the agent when it has chosen
(by constructing a plan) values for all of the learning goals predicted by the world
model. Two assumptions underlie the single-step model: first, the utility of the
intermediate steps in the plans is assumed to have the same expected value. In fact,
the utility of these intermediate steps in the plans will vary, but since the new model
has not yet been learned, the agent cannot determine the difference in the utility of
the intermediate steps.

Second, the agent is assumed to be able to control the values for its learning
goals. That is, it is assumed to be able to achieve states in which its learning goals
take on whatever values the agent chooses. In fact, since there is uncertainty in its
world model, it can only predict their values probabilistically. Additionally, some
features will be more controllable than others. For example, the agent can control
its location to a greater extent than it can control the weather. However, since our
model assumes no a priori knowledge of the degree of control the agént can exercise
over various features, the expected degree of control (from the agent’s point of view)
is the same for all features.

Under the single-step model, the agent generates a plan to achieve a state
of the world in which the values of its learning goals maximize its expected utility
(given the remaining features of the world, which it cannot control), and then takes
the action which maximizes its utility in that state. This final action is the single-step
plan chosen by the agent. Therefore, applying the single-step model to Equation 4.2
gives the following value of a goal in PAGODA:

V(F)= P,(LAZ) - P(L) (4.4)

where P, is a planning function that returns the expected utility of the single-step
plan, given that the planner can choose values for the specified learning goals.
In the next section, we derive the expected utility of this single-step plan,

given an arbitrary set of learning goals Z. The conditioning contexts of rules are

55

assumed to consist of conjunctions of feature values (although internal disjunctions—
i.e., multiple values for a given feature—are allowed). The representation used in
PAGODA, which was described in Chapter 3, satisfies this assumption. The derivation
is also based on the assumptions discussed above. Extensions that would allow some

of these assumptions to be relaxed or modified are discussed in Chapter 9.

4.2 TUtility of Plans

A single-step plan is defined to be -a triple (a, pw, u), where a is an action, pw
is a perceived world, and u is the expected utility of taking a in pw. The set of actions
and perceived worlds are determined by the environment; the expected utilities are
computed from the agent’s utility theory. Each rule in the theory corresponds to the
set of single-step plans which have an action and perceived world for which the rule
is the most specific rule in the theory. The expected utility associated with each of
these single-step plans is the expected utility of the rule.

The past frequency of application of a set of single-step plans corresponding

to a particular rule is equal to the number of past instances covered by the rule:

Definition: The past instances of a rule are the observations that were
covered by the rule (i.e., used to make predictions).

The average utility per unit time of the past instances can be found by weighting
the expected utility of each rule by its relative past frequency (i.e., its number of
past instances, divided by the total number of past instances). In order to determine
the expected utility per unit time of future plans, we construct a hypothetical
theory. The rules in the hypothetical theory have the same conditioning contexts
and expected utilities as the rules in the current utility theory, but are weighted by

the rule’s hypothetical instances, rather than its past instances:

Definition: The hypothetical instances of a rule are the observations
that would have been covered by the rule if the agent could have chosen
the values for the learning goals Z in order to maximize its expected
utility.

56

Under the single-step model, given a set of single-step plans (a;, pwj, u;;), where the
pw;s vary only in the values they specify for the learning goals, the agent can choose
which state pw; to be in and which action a; to take, in order to maximize its expected
utility u;;. The probability with which a rule (set of single-step plans) is chosen
is given by its relative hypothetical frequency (the rule’s number of hypothetical
instances divided by the total number of instances).

We let n, represents the number of past instances for a rule r; m, is the
number of its hypothetical instances. '

For each rule r, if there are rules S, that can be substituted for r (by choosing
values for the action and for the learning goals Z) and have higher utility than r, the
past instances of r will be included in the hypothetical instances of the rule in S,
with highest utility. When all rules have been examined, the hypothetical instances
are used to compute the expected utility of the resulting hypothetical theory.

R:={r:n[r]#0}

foreachrin R :
m(r] := 0
foreachrin R :

Substitution-Set (r) := {r} U
{ein R : (Z[r] = Z[e]) A = ((Z[e] = Z[r]) A (action[e] = action[r]))

u := argmax[s in Substitution-Set(r)] Expected-Utility (s)
m[u] := m[u] + n[r]

N := sumfr in R] (m[r])
EU (K (Z)) := (1 / N) * sum[r in R] (m[r] * Expected-Utility (r))

Figure 4.2: Algorithm for finding the expected utility of a plan.

The algorithm for finding the expected utility of a plan is given in pseudo-
code in Figure 4.2. First, those rules which have never actually been applied in the
past (i.e., for which n, = 0) are removed from the theory. These rules represent
generalizations which may be used by the inference algorithm, but are not relevant

for this algorithm. The remaining rules are initialized to have zero hypothetical

57

instances.

Definition: The substitution set for r is the set of all rules that could
be substituted for r by changing the action chosen and/or the values of
the learning goals Z.

Letting Z stand for the features in the world that are not included in the learning
goals Z, an alternative rule e can be substituted for r whenever (1) e’s Z feature
values are implied by those of r, and (2) e’s Z feature values or. action differ from
those of r. If (1) does not hold, the set of action/perceived world pairs corresponding
to e will not include those of r. If (2) does not hold, the agent would not be able to
substitute e for » by changing the values of the action and learning goals. Every rule
is also a member of its own substitution set. The past instances of r are assigned to
the hypothetical instances of the rule in r’s substitution set with the highest utility
(which could be r itself).

After all of the substitution sets have been computed, and hypothetical in-
stances determined, the overall expected utility is computed by weighting the expected

utility of each rule r with m,, its hypothetical frequency of application.

4.3 An Example in the RALPH World

Figure 4.1 shows a simple RALPH world, containing only PR and one piece
of food. Whenever PR consumes the food, a new piece appears randomly. PAGODA

learns the following theory to predict its change in utility in this world:

R;y(n; = 60) O —10 Au(t +1,-10) _
Ry(ng = 6) action(t, :move-forward) A vision(,wall, 1) =10 Au(t +1,-11)
Ra(n3=9): food-smell(t,20) A action(t, :munch)

—1.0Au(t+1,90) -

58

The set of learning goals Z for this world model is {Au}. The substitution sets for

the three rules in the theory are:

51 = {R]}
S; = {Ry R}
S3 = {Ra, Rl}

R,’s substitution set is { Rz, R1} because vision(¢,wall, 1) (Z[R;]) implies O (Z[R)))
and action(t, :move-forward) (action[Ry]) differs from O (action[R,]). Since R,
has higher expected utility than R;, Ry’s past instances (6 observations) are included
in Ry’s hypothetical instances. R3 has higher expected utility than Ry, so its past
instances are included in its hypothetical instances; R; is the only rule in its substi-
tution set, so its past instances are included in its hypothetical instances. The final

hypothetical instance counts are:

m = 66
ma
m3 = 9

The expected utility of this hypothetical theory is the weighted sum of outcomes:
-,715 * (66 * (—10) + 0% (—11) + 9 % 90) = 9.92

To compute the expected utility of the learning goal vision, we first find
the hypothetical theory when Z = {vision, Au}, then compute the expected utility
of this hypothetical theory, and subtract the expected utility of the initial theory.

The substitution sets S, for the three rules are as follows:

S = {Rl,Rz}
52 = {R27-Rl}
Ss = {Rs R}

R, can be substituted for R; because their left-hand sides differ only in features in
Z and the action; Rs cannot be substituted for R; because food-smell(t,20) is not
implied by O. R, can be substituted for both R, and Rz because its Z features

59

(empty) are different from R; and Rs, and its Z features (also empty) are implied by
both. .

Within these three substitution sets, the rules with the highest expected
utility are Ry, R, and Rs, respectively. Therefore, R;’s 6 past instances are assigned

to the hypothetical instances of Ry, resulting in the following final weights:

m1=66

mg =

The expected utility of the resulting hypothetical theory is
71—5 * (66 * (—10) + 9 % 90) = 9.92

The value of the candidate learning goal vision is therefore 9.92 - 9.92, or 0. Notice
that although R;’s substitution set is different from that in the original theory, the
final weights are the same, and therefore vision has no value as a learning goal.
Intuitively, learning about vision doesn’t gain PR anything in this theory: the agent
already knows enough not to bump into the wall, and predicting vision only allows
it to avoid situations where it could bump into the wall if it didn’t know better.
The expected utility of food-smell is computed similarly. The substitution

sets in this case are as follows:

Sl = | {RI’ R3}
52 = {R21 Rl}
53 = {R31 Rl}

The rules with the highest expected utility are, respectively, Ra, Ry, and Rs. Ry’s
past instances are therefore assigned to Rs’s hypothetical instances and R,’s past

instances are assigned to R;. The resulting final weights are:

my =

69

3
I

60

Note that the the re-assignment of instances is not transitive: R;’s past instances
cannot be moved to Rs, because R3 does not specify food-smell (which is in Z and
therefore cannot be changed).

The expected utility of the resulting hypothetical theory is
%*(6*(—10)+69*90) —8

The value of the candidate learning goal food-smell is 82 - 9.92, or 72.08.
food-smell is clearly a better learning goal than vision. Predicting it
allows the agent to plan to be at food, where it can eat the food and raise its utility.
Intelligent agents must determine what properties of the world are most
worth learning about if they are to behave autonomously and rationally. GDL provides
a theoretically justified technique, based on decision-theoretic analysis, for determine
the value of learning features of the world. Both a general model for the value of
learning goals in a rational agent, and a particular model for PAGODA’s performance
element, are given by GDL. The primary open question is how the agent can determine

not just the benefit of a learning goal, but its net utility, including the costs of learning.

61

Chapter 5
Selecting a Learning Bias

Selecting a hypothesis language for an intelligent learning system—whether
this is done by the designer or by the learning system itself—is in effect stating a set of
beliefs about how the world is expected to work. In defining the form of the theories,
their syntactic and semantic content, and even the primitives from which they may
be constructed, the scope of the agent’s understanding of the world is constrained.

The probabilistic evaluation method described in Chapter 6 uses the sim-
plicity of theories to define their prior probability. The underlying assumption is that
the language used is appropriate for the theories to be learned, in the sense that the
agent expects an efficient model of the world to be describable using the language.
This approach reflects a belief that representation languages should be chosen so that
the agent’s fundamental beliefs about the structure of the world are embedded in the
language.]
The idea that language reflects one’s knowledge about the world, and that
in an ideal language, truth would be easily expressible, is not a new one. Long ago
there was believed to be an Urlanguage, spoken by Adam, in use until the fall of
Babel, which was in complete harmony with the universe: “writ on the firmament....
inscribed by signature on every leaf and stone.” ([Hacking, 1975], p- 80)

Later, science supplanted religion, but the concept of an ideal language was

not lost. Leibniz, for example,

...did not believe in lost innocence but rather in a science and a language

62

that more and more closely correspond to the structure of the universe.
([Hacking, 1975], p. 140)

Still more recent work such as Goodman’s treatise on induction and the
projectibility of predicates [Goodman, 1955] and Rosch’s research on the psychology
of basic concepts (see, for example, [Rosch et al., 1976] and [Rosch and Lloyd, 1978])
emphasize the fact that we embed knowledge in our language: in a useful language,
frequently used (and useful) concepts can be expressed easily. Language evolves to re-
flect our beliefs about what is likely to be true. For example, simﬁle concepts—those
which can be expressed succinctly in our ianguage—are psychologically preferred by
people, all other things being equal. A language defines an informed prior probabil-
ity distribution, in the sense that it incorporates the knowledge used to create the
language.

On the other hand, when no “good” hypothesis can be found in a language,
the language is not expressive enough, and a better language may need to be found.
Similarly, complex hypotheses that are found to have a high posterior probability
may indicate that new terms should be introduced to make these theories simpler
to express (“quark” and “gravitational force” are two examples of new terms in the
history of science that made complex theories easier to express).

Since PAGODA defines the prior probability of theories in terms of simplicity,
a function of the language used, what does it mean to change the language (and thus
change the prior)? It seems somewhat paradoxical to change the “prior” (as defined
by the language) at all, and in particular, to use posterior probabilities—computed
using the prior as a starting point—to modify the prior. However, as we mentioned
above, the probability distribution defined by the language is an tnformed prior,
incorporating whatever information was used in the decision to change the language.
Updating the language is then equivalent to computing a better prior which can be
used in the next iteration.

In this chapter, we describe Probabilistic Bias Evaluation (PBE), a method
for using probabilistic background knowledge to select maximally relevant features to
describe theories, thus lowering the computational complexity of the learning task.

Smaller theory spaces are easier and faster to search (i.e., it takes fewer examples to

63

converge on the best hypothesis in the space, and the amount of time spent processing
each observation is lower), enabling an agent to focus its limited computational re-
sources. On the other hand, larger spaces are more likely to contain good hypotheses.
We present a formal analysis of this tradeoff, and show that a value can be assigned
to each potential language bias.

Traditional empirical learning systems use learning biases provided directly
by the designer to generate theories to describe data. Explanation-based learning
approaches, on the other hand, require the designer to provide a complete domain
theory, which is used to generalize single observations into operational theories. PBE
bridges the gap between empirical approaches and explanation-based learning: the
learning bias is derived automatically from background knowledge consisting of a
partial, probabilistic domain theory.

In the next section, related work on bias is discussed briefly. Section 5.2
presents the motivation for the probabilistic bias evaluation technique used in
PAGODA; Sections 5.3 to 5.6 build the formal theory. In Section 5.7 we give the
formula for the value of a bias and present a closed-form solution for the RALPH
world. Finally, results demonstrating the need for evaluating bias are given in Sec-
tion 5.8. These results use ID* (Appendix B), an incremental decision tree learning
algorithm based on [Quinlan, 1986] and [Utgoff, 1988], to show the effects of selecting
various biases on a traditional learning algorithm. The empirical tests described in

Chapter 7 show the effects of bias selection in PAGODA.

5.1 Background

Bias refers to a restriction on or preference within the space of theories
considered by a learning system. Without some bias, there would be no basis for
making inductive generalizations [Mitchell, 1980]. A strong, correct bias (i.e., one that
permits only likely theories) is extremely useful to have because it allows a learner to
converge quickly to a good theory. How to find a good learning bias has been an open
research question; in this chapter, we describe Probabilistic Bias Evaluation (PBE), a

method for using probabilistic domain knowledge to assign values to potential biases

64

for each learning goal. PAGODA uses the best of the evaluated biases to constrain the
hypothesis space for the learning goal. The preference function within the constrained
space is given by one of the prior probability distributions discussed in Chapter 6.

Russell and Grosof [1987] showed that bias can be represented declaratively
for deterministic learning problems as background knowledge in the form of deter-
minations. In probabilistic domains, choosing a bias is a more complex process.
The bias evaluation technique described in this chapter uses probabilistic background
knowledge to evaluate biases. '

The Minimum Length Encoding (MLE) principle states that the total length
of a theory and the data encoded using the theory should be minimized. MLE em-
bodies a bias towards simple theories, traded off with accuracy, since an inaccurate
theory will not encode the data efficiently. PAGODA uses a similar bias in its pref-
erence for simple theories; this preference is part of the Bayesian theory evaluation
technique described in Chapter 6.

The next three sections give some more background on bias, declarative bias,
and MLE techniques.

5.1.1 Bias in Machine Learning

The hypothesis language used by a learning system defines what it can learn
and imposes a particular structure on its learned theories. A particular theory may
be easily and efficiently describable in one language, require cumbersome definitions
in a second language, and be inexpressible in a third. The bias that constrains
the language may come from a variety of sources, including prior beliefs, syntactic
preferences, the sensory inputs available, and the agent’s vocabulary.

In PAGODA, the bias derives from three sources: PBE is used to select a
set of features to describe hypotheses; each hypothesis is required to be a Uniquely
Predictive Theory (Chapter 3); and a simplicity metric is used to define the prior
probability distribution (Chapter 6).

The ability to change bias is as important as initial bias selection for au-

tonomous agents. In order to operate in unanticipated environments, they cannot

65

depend on the programmer to build in the “correct” (i.e., most efficient and accu-
rate) language, so they must be able to change their representation. This means
that any assumptions made by the designer about what language is most likely to be
useful must be made explicitly, and the agent must be able to override these design
decisions. In the current design of PAGODA, bias is fixed when learning commences.

Techniques for shifting bias during the learning process are proposed in Chapter 9.

5.1.2 Declarative Bias

A determination, as defined in [Davies and Russell, 1987], represents a de-
pendency between relational schemata. P determines @ (P > Q) if all objects that
share the same P-value also share the same Q-value. Formally,

P(z,y) > Q(z,2) iff Ywyz[P(w,y)AQ(w,z) —
Vz[P(z,y) = Q(z,2)]] (5.1)

Background knowledge in the form of determinations can be used to derive
bias [Russell and Grosof, 1987]. Suppose an agent wants to learn how to predict
change in utility, Au(t,u), and the background knowledge consists of a single deter-

mination:
vision(t,0,d) A action(t,a) > Au(t +1,u) (5.2)

The arguments to vision are an object, o, and its distance, d. If the agent sees an

instance of the form
vision(5,food,0) A action(5, : eat) A Au(6,100)
it can conclude the rule
vision(t, food,0) A action(t, :eat) = Au(t + 1,100)

We can think of the determination in Equation 5.2 as a rule template of the

form

Vtvision(t,0,d) A action(t,a) — Au(t +1,u) (5.3)

66

Notice that ¢ is universally quantified but o, d, a, and u are free. This is because of
their asymmetric role in the definition of determinations: t functions as the generic
object z whose Q-value z is determined by the P-value y in Equation 5.1. In the
final rule, t is universally quantified; e, a, and » may be instantiated to a specific
or generalized value, or left uninstantiated, in which case they are considered to be
universally quantified. For example, if a is uninstantiated, all actions in the specified
state of the environment have the same outcome.

In general, we can use multiple determinations, chaining them together, and
take advantage of the derivation process to get a tree-structured bias [Russell, 1988],
in which the interactions between the predicates in the theory are constrained by
the structure of the derivation. A method of finding a maximally operational tree-
structured bias is outlined in [Getoor, 1989).

Declarative bias using determinations is straightforward because the bias is
expressed as a first-order logical sentence, and learning consists of applying deductive
logic to the bias and observations to yield consistent rules which can then be further
generalized using inductive techniques. However, determinations are rarely available
in uncertain environments, where theories to be learned may be nondeterministic.
PBE provides a method for using probabilistic background knowledge to impose a

bias on learning.

5.1.3 Minimum Length Encoding

The Minimum Length Encoding (MLE) principle states that the best theory
is the one that minimizes the length of coding the theory and the observations with
respect to the theory. (See Chapter 2 for an introduction to MLE.) This length is
given by the length of the shortest input to a Universal Turing Machine (UTM) that
causes the UTM to generate the observations as output. The coded theory is the part
of the input that causes the UTM to simulate some target machine; the coded data
is the part of the input that is treated as input to the (simulated) target machine,
which causes that machine to generate the observations as output. One can prove

that applying the MLE principle using any UTM to encode the target machine and

67

data will converge to the correct theory, given enough data.

In practice, of course, we don’t have a UTM available, can’t afford to use
it anyway, and are more interested in relatively immediate results than in conver-
gence proofs. Practical applications of the MLE principle (e.g., [Pednault, 1989] and
[Babcock et al., 1990]) use hand-tailored coding schemes for the application at hand
(which are usually not equivalent to any UTM because they implicitly limit the lan-
guage used). Presumably, the designer chooses a language which will be reasonably
close to the optimal language for the problem. However, if this language is not the
most efficient, the application may convergé very slowly; if the language is inadequate,
the correct theory will not be found at all.

In PAGODA, instead of providing a language, the designer provides some
general background knowledge which the agent uses to derive a good representation
dynamically. Because the representation can be changed, and the background knowl-
edge can be modified,! an error on the designer’s part is not fatal to the system’s

performance.

5.2 Probabilistic Evaluation of Bias

The goal of PBE is to define a quantitative criterion for evaluating biases,
allowing an agent to find the “best” bias (with respect to this criterion) for learning
to predict a specified learning goal. For the rest of this chapter, “bias” will refer to
the set of features used to make predictions, unless otherwise specified.

The best bias will not be the one which is most likely to contain the “correct”
theory (assuming there is such a theory), since any superset of a given bias will always
be better—or at least as good—by this measure. Instead, the criterion should trade
off accuracy (in the sense of making good predictions) with simplicity, so that a feature
that would significantly increase the size of the hypothesis space to be searched while
only yielding slightly better theories will not be considered adequately relevant, and
will not be included in the bias. Specifically, the best bias in PBE is the one which

1This is true in principle; we do not actually learn the background knowledge in this work.

68

maximizes the agent’s predictive accuracy over time, subject to any preference it may
have for short-term as opposed to long-term performance.

The consequences of selecting a larger theory space are twofold. First, it
will take more observations to converge on a good theory. In discrete embedded
environments such as RALPH, at most one relevant observation can be collected per
time step (an “observation” in this sense is simply a sensory experience). Therefore,
using a larger theory space, more time will pass in the real world before the agent
begins to make good predictions. The degree to which this time matters depends on
how much the agent discounts future perférmance.

Second, searching a larger space takes more computational time per obser-
vation. If the agent has limited computational power and has other tasks pending—
which is presumably the case in a complex environment—learning a concept using
a large theory space may interfere with its ability to perform these other tasks. In
cases where the space is very large, the agent may not even be able to keep up with
the stream of observations provided by the environment. The effect of this depends
on the cost of time in the environment.

In the remainder of this chapter, time should be taken to refer to the number
of observations made, unless otherwise indicated. However, PBE trades off the number
of observations against expected accuracy, which will tend to favor simpler biases
(since these require fewer observations to converge to a good theory). Therefore, the
resulting biases will also tend to minimize computational time spent per observation,
since the search space, and the theories themselves, will be smaller.

The value that PBE assigns to each potential bias is a measure of that bias’s
expected behavior in the long run. The accuracy of the agent’s predictions over time
will depend on the bias selected: a small feature set with high predictiveness (i.e., a
high uniformity) will converge quickly to high accuracy. Conversely, a large feature set
with low predictiveness will take a long time to converge to relatively poor accuracy.
The choice between two such biases is clear; the real question is what the agent should
do when the choice is between two biases when one is larger but also more predictive.
The decision will depend on how strongly the agent prefers short-term performance

to long-term performance.

69

To model this tradeoff, we define several concepts:

Definition: The expected accuracy of a bias is the accuracy of predic-
tions that the agent believes the best (i.e., most accurate) theory in the
bias will make.

Definition: An agent’s learning curve for a particular bias and learning
goal is the expected accuracy of predictions on the learning goal using the
specified bias, given as a function of time.

The general shape of a learning curve depends on the agent’s learning algorithm;
the particular shape and asymptote depend on the syntactic and semantic properties
(including the expected accuracy) of the bias.

Definition: An agent’s time-preference function is a measure of how
much a reward at a particular time is worth to the agent.

For example, a flat time-preference function is equivalent to having no preference for
short-term or long-term reward.

To find the value of a bias, we first determine its expected accuracy, using
background knowledge provided by the designer. Next, the learning curve for the
bias is determined, based on the expected accuracy. Finally, the learning curve is
combined with the time-preference function, yielding an overall expected accuracy,
weighted by the agent’s time preferences. Because the time-preference function used
in PAGODA is a discounting function (under which future performance is discounted,
or devalued, proportional to its distance in time), this overall accuracy is referred
to as the expected discounted future accuracy. This is the value of the bias;

whichever proposed bias has the highest value is used for learning.

5.3 Probabilistic Background Knowledge

Determinations (Section 5.1.2) are weak knowledge, in that they do not
specify what the function mapping the inputs P to the outcome @ is, only that one
exists. So, for example, if we know that Species(z,s) > Color(z,c), we won’t be

able to predict the color of an individual of a previously unobserved species. But

70

if we have observed one individual of species s; whose color is known to be ¢;, we
can immediately form a rule that says Vz[Species(z, s;) — Color(z,c;)). We refer to
the latter sort of rules—which enable individual predictions to be made—as strong
knowledge. Weak knowledge in the form of determinations can be used to determine
which features F are relevant for predicting O and thus extract a representation for
learning strong theories to predict O.

Probabilistic background knowledge about relevance is represented in PBE
using a form of ‘weak knowledge called uniformities, which are a probabilistic ver-
sion of determinations. Uniformities are similar to partial determinations as defined
in [Russell, 1986). U(O|F) (read “the uniformity of O given F™) is the probability
that two individuals sharing the same F-value will share the same O-value. Roughly,
it is the degree to which O can be predicted given F. As with determinations, it does

not specify what the most common O-value will be for any given F -value. Formally,
U(O|F) = P(O(z) = O(y)|F (<) = F(y)) (5.4)

Initial uniformities will be provided by the system designer or by domain experts. Al-
though this is not trivial, it is at least easier than providing the complete deterministic
domain theories needed by traditional explanation-based learning systems. The ini-
tial uniformities can be updated as the system acquires experience. Techniques for
learning uniformities are similar to those for learning strong theories [Russell, 1986).

Uniformities are similar to the variability bias described by [Martin and Bill-
man, 1991]. Instead of just summarizing the distribution of outcomes, a variability
bias specifies the expected distribution more precisely. The distribution gives the
probabilities of the most common outcome (for an arbitrary value of the input fea-
tures), the second most common outcome, and so on, again without specifying what
those values are. Variability biases, which are based on studies of human learning and
are intended to represent a form of knowledge that humans appear to use, may be
a useful extension when more information is known about the shape of the outcome

distribution.

71

5.4 Expected Accuracy

To find the expectéa accuracy of predictions over time, PBE first computes
the expected accuracy of the best theory in the space defined by F. Recall that the
uniformity of O given F specifies the probability that two randomly selected individ-
uals with the same F-value will have the same O-value. Using this uniformity value
and making some assumptions about the distribution of outcomes, p, the probability
of the most likely outcome &, is computed for an arbitrary value of F. The best
theory is the one that always predicts the most likely outcome in each situation; p
gives this theory’s expected accuracy.

We assume a simple prediction task: every time a new example (F-value) is
observed, the agent must predict a value for O. If the most likely outcome is always
predicted (maximizing expected accuracy), the expected accuracy of the best theory
is p, as given below.?

The distribution which maximizes entropy (Section 2.3.1) will be the one
which is closest to a uniform distribution. In this case, the maximum entropy distri-

bution satisfies the following assumptions (the proof is given in Appendix A):

1. For each value of F, there is one O-value, 6, which occurs most often.

2. The other values of O occur equally often.

Suppose that O(z) can take on n different values, o04,...,0n. Assumption #1 says
that given F, some 6 has the highest probability. Without loss of generality, assume
that this is o,; its probability is p:

P(O\|F)=p | (5.5)

where O; stands for the event that O(z) = o;.
Assumption #2 says that the remaining O-values have equal probability. If

there are n values of O,

A

1—p .
P(O‘If)=m, z=2,...,n (56)

2]f outcomes are instead predicted according to their expected probability, and the assu{nptio.ns
about the distribution given below are made, the expected accuracy will be equal to the uniformity
uor. This will always be less than or equal to p.

72

Introducing a shorthand notation in Equation 5.4 gives:
U(O|F) =vor = P(O(z)=O0®W)|F(z) =F(y))

For convenience of notation, we remove the conditioning context: for the remainder
of this derivation, it is implicitly assumed that F(z) = F(y). Substituting the prob-
abilities from Equations 5.5 and 5.6, and solving for p in terms of upx (remember

that z and y are independent random variables):
vor = P(O(z)=0(y))
= > P(O(z) = O(y) = 0i)

=1

= P(O(z) = O(y) = o1) + 3. P(O(z) = O(y) = o)

=2
= [P(O + 2L IP(ON)]
=2
o\ 2
= 2am-1(1=2)
= p°+(n 1)(n_1
N (el)
il n—1
(n—1luor = (1't—1)j52+1—2f)-}-132
= np?—-2p+1

0 = np>’—2p+1—(n—1)uor
24,/ - 4n(1 — (n — 1)uor)

P = 2n
3 liﬁ—n(l—nu0f+u0f)
- n
1 1-—- -1 i
5= Y1=n+n(n - uor (5.7)
n

We take only the positive square root because using the negative square root would
give us a negative value for p. :

Figure 5.1 shows p as a function of U(O|F) for n = 2 and n = 10. U(O|F)
has a maximum value of 1: this occurs when, for each value of ¥, O always has the
same value (i.e., F > O). In this case, p =1 as well (the most likely outcome for

each F always occurs).

73

U(O|F) is minimized when O is uniformly distributed, regardless of F; that
is, when each possible outcome o; is equally likely. In this case, if O takes on n
different values, U(O}F) = 1/n and p = 1/n. One can see that this is the minimum
value by requiring that the quantity under the square root in Equation 5.7 be positive;
this minimum uniformity value explains why the curve in Figure 5.1 starts at 1 /2 for
n =2 and at 1/10 for n — 10. |

These two extreme cases represent the “most skewed” and “most even”
distributions of outcomes. Any distribution that is not flat must be biased towards
some values, and so will have a greater uniformity than a flat distribution. For these

intermediate distributions, p will be greater than the uniformity.

1 T T T T T T T T T
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1 ’ -

0 1 1 1 1 1 1] 1 1

0 0.1 0.2 0.3 04 05 06 07 08 09 1
U(O|F

T 1

3
LI
1

T

Figure 5.1: Expected Probability as a Function of Uniformity

5.5 Learning Curves

Results from computational learning theory suggest that the number of ex-
amples 7 needed to learn a theory is proportional to the Vapnik-Chervonenkis (V-C)

dimension of the bias [Blumer et al., 1986). In other words,
m = cd (5.8)

where d is the V-C dimension of the bias, and c is a constant (which we approximate

empirically).

74

A set of examples S is said to be shattered by a bias B if, given any division
of S into positive and negative examples, there exists a theory in B that would so
classify them. The V-C dimension of B is the size of the largest set of examples that
can be shattered by B.

In the case of a decision tree (which is the representation used in ID*), every
theory can be described, so the V-C dimension d is equal to the size of the space of

possible examples. Therefore,

; v
m = cd = ¢ Hn,— (59)

i=1
where f is the number of features in F, and n; is the number of values of feature z.

Bounds on learning curves (specifying error as a function of time) have been
given by [Haussler et al., 1990] for the deterministic case, and by [Haussler et al.,
1991] for the probabilistic case. Unfortunately, these bounds are only useful for large
sample sizes, and we are interested in relatively small sample sizes. Also, it i1s not
clear how to use the probabilistic bounds in practice.

In the current implementation, we make the simplifying assumption that
prior to finding the best theory (for ¢ <), predictions are no better than random
guessing; after this, they are as good as we expect them to get (i.e., p). Then the

quality of predictions as a function of time will be

ift<m
q(t)={ " , (5.10)
p otherwise

where p is as given in Equation 5.7. The learning curve is shown in Figure 5.2

E

The actual learning curve will, of course, be smoother; however, in our pre-
liminary tests (on relatively small, simple theory spaces), the bias value (i.e., average
discounted accuracy) yielded by empirical tests is not too far from that predicted by
this learning curve. For more accurate results, though, a better learning curve will
be needed; unless better results from computational learning theory can be applied,
the curve should be approximated empirically. In fact, it may be preferable to run
empirical tests using the actual learning algorithm, in order to compute the expected

accuracy of predictions using that particular learning algorithm.

75

Accuracy

3
1

Figure 5.2: Quality of Predictions as a Function of Time

5.6 Time Preference Functions

The effect of the passage of time on the value of predictions depends on
a variety of factors, including the amount of computation time available, what the
prediction task is, the cost of making errors, the life expectancy of the agent, how
fast the environment is changing, and how many other tasks need to be accomplished
simultaneously with this learning task.

In PBE, the effects of these various factors are modeled as a time-preference
function 7'(t). Time-preference functions are used in decision analysis [Holtzman,
1989] to indicate the degree to which the importance of reward on a prediction task
changes over time (i.e., the degree of discounting of future rewards). If an agent’s
prediction task involves making a single prediction at time fo, for example, only
the accuracy of the agent’s prediction at that moment matters: earlier and later
performance is irrelevant. In this case, the time-preference function is zero at all
points except for a spike at time #o (assuming there are no other relevant factors,
such as other tasks that need to have time allocated to them).

A reasonable time-preference function for a simple autonomous agent, which
is constantly making predictions in a dynamic environment, is 7*, based on a constant

discount rate 7, close to 1. PR uses this time-preference function with discount rate

~v=.8.

76

Intuitively, using 7 (t) = 7! means that accurate predictions in the distant
future are exponentially less important than near-term accuracy; but any correct
prediction, no matter how distant, has some positive value. The closer 7 is to 1, the
more heavily long-term performance is counted.

The value of v will depend on the particular environment in which the
agent finds itself, and should be determined experimentally (and ideally should be
dynamically modifiable by the agent).

5.7 Expected Value of Biases

Combining the bias’s accuracy over time (Equation 5.10) with the time-
preference function T(t), and integrating over time, yields a general equation for the

value of a bias:

vV = /looq(t)']'(t)dt

Using the simplified learning curve from Equation 5.10 and letting 7 = cd, where d
is the V-C dimension of the bias, gives

ed] 0
vV = /1 ;T(t)dt+/cd PT(t) dt

Using the time-preference function 7 (t) = 7,
/ Lat [~ pat
1 N cd

t cd A 700
Ll N e
[nln'r}l [hw]cd

Vv

- 1 7cd__7 ar 00 _ cd

= Tyl w + p(y® =)

_ L [l . _l]

- In+y .7 (n' p) n
_1 .ch 1 7]

. 42 5.11
oy 7 (-=)+- (5.11)

where p is as given in Equation 5.7. This is the bias evaluation function we use in

PR. Notice that since v and n are constant for a given learning task, the only term

77

that varies between biases is ¥%(p — 1/n). Intuitively, if v is large, so that the agent
is willing to wait for accurate predictions, d has less influence on the value (in the
extreme case, 4 = 1 and v = 1 regardless of d). As p grows, the bias becomes more

predictive, and the value of the bias increases.

5.8 Results

The effects of the cost associated with larger feature sets were measured
using ID*, a probabilistic, incremental version of ID3 based on [Quinlan, 1986] and
[Utgoff, 1988] (see Appendix B for a complete description of ID* and of the domain).
ID* was run in a synthetic learning domain using various subsets of the full feature
set as the learning bias; the results are given in the following section. We conclude
that the cost of using a larger feature set can be prohibitively high, and that real-time
agents acting in complex environments will have to address the tradeoff between time

spent learning theories and their eventual accuracy.

5.8.1 Learning Procedure

The domain used for the tests described here consists of six descriptive
features (shape, location, size, texture, smell and age, with (respectively) 4, 4, 3, 4,
5, and 6 values), and a goal descriptor (color) with 4 values.

The uniformities were fixed as follows:

U(color|shape) = .58

U(color|location) = .81
U(color|size) = .27
U(color|texture) = .33

U(color|smell) = .25
U(colorfage) = .27

The unconditional uniformity of color is .25 (U(color) = .25). That is, given no

78

information, each color is equally likely. Therefore, U(color) = U(color|smell) and
“smell” has no predictive value.

Probabilities were generated to correspond to these uniformities (although
more than one probability distribution is possible, the one used here was chosen to
be fairly smooth). Examples were generated by selecting the goal (color) value ran-
domly, then choosing values for the six descriptive features independently, according
to the probability distribution. The process of generating the domain and examples
is described in Appendix B.

In each test run, one hundred training examples were generated, and ID*

was used to build four sets of decision trees:
e One using all six features.
e One using only texture (a relatively non-predictive feature).
e One using only location (a highly predictive feature).
e One using location and shape (the two most predictive features).

A set of forty test examples was generated from the same distribution; the four trees
were tested on all forty examples after each training example. Additionally, the time
spent processing each training example using each bias was measured.

Three test runs were performed and the results averaged. The average pre-
dictive quality n (number of test examples classified correctly) is shown as a function
of the number of training examples in Figure 5.3. Figure 5.4 shows the average time

spent processing each observation for each bias.

5.8.2 Analysis of Results

Given the uniformity values, the expected accuracy of each tested feature

set can be computed using Equation 5.7:

Ploc =9

Accuracy on test set (out of 40)

Time

10 ¢ Location only -~ -
Location and shape —
5 All features —— _
Texture only ——
o L L 1 L 1 1 L L 1

0 10 20 30 40 50 60 70 8 9% 100
Number of training examples

Figure 5.3: Results of Learning using 4 Different Biases

25 L 1 4 L} R] T L LS 1 LJ
L Y * A
. L
* L 4 *
*
20 S e e
e o o, o.“‘ O I
* .. * o
° 0% * o *° ¢
- L J * -
15 0. P .". ’.
.. PN .0.0 L] . *
* ., All features o
10 b . ..°, Location and shape 4]
« N e Texture only ™
L
L
5 s At
d & A,
. s, Afw‘p‘maﬁg
! ‘..‘q:“ u‘“‘“&"a“ ‘A‘“A:A":* x e 2%
W e 2 P o P P ST i X
0 1 1 1 1 1 . i 1 1 1

0O 10 20 30 40 S50 6 70 80 9 100
Number of training examples

Figure 5.4: Time spent processing each observation

80

ﬁloc-shape .95

ﬁtexture =5

Out of forty test examples, a tree built using these four biases on a large number of
training instances would be expected to yield (on average) 39.2, 26, 38, and 20 correct
predictions, respectively. -

Location-only and texture are the only biases that performed approximately
as well as expected, given the 100 training examples. Location-and-shape did almost
as well, but the tree using all the features is lagging far behind. Clearly, the larger
sample size needed for convergence in larger spaces is hindering its performance.
Presumably, given enough training examples (and computation time), the bias using
all the features would converge on nearly perfect prediction accuracy, but the marginal
amount of accuracy gained over the predictions made by location only or location and
shape is unlikely to be significant for many learning tasks. Considering that this is a
relatively simple domain (compared to human learning domains), the degree to which
the complete feature set is impaired is rather surprising.

The actual computation time spent processing each observation is shown
in Figure 5.4. (The location-only data is not shown, since it closely matches that
of texture-only.) The tree-building algorithm takes significantly longer to run using
all the features than using the smaller feature sets. Also, the time seems to still be
growing steadily after 100 examples.

If real-time behavior (in both learning and prediction) is needed, limiting
the feature set will be a necessity. This tradeoff—of ultimate accuracy vs. time spent
getting to that accuracy (and wrong predictions made in the meantime)—is captured
by the time-preference curve described in Section 5.6.

The relative bias values for the domain are shown in Figure 5.5. (The
[—1/1n+] factor was left off for scaling purposes.) Location is the best choice unless
~ is very high (location and shape outperform location only when 7 is around .999).
The improved accuracy of location and shape outweighs its expense compared to

texture only when 4 = .95. Using all of the features is not worthwhile unless « is

extremely close to 1.

81

(3]
=
=
Ed
8
3]
Location and shape --——
04 ¢ Texture only —
: All features —
03 F
0.2
0.9) 0.95 0.99 99599
’ Discount rate (log scale)

Figure 5.5: Relative bias values for the four feature sets tested

Intelligent resource-bounded agents clearly need to focus their learning
mechanism in order to learn efficiently and quickly. However, controlling this focusing
process requires examining the particular domain (learning task and problem environ-
ment). PBE provides a tool to do this by evaluating biases using domain-specific back-
ground knowledge (uniformities), agent-specific learning curves, and environment-

specific time-preference functions.

82

Chapter 6
Probabilistic Learning

In a complex environment, no matter how good an agent is at forming the-
ories, it will sometimes be unable to make predictions about the world with complete
certainty. Uncertainty may arise from the environment, from the agent’s sensory
mechanisms, from the agent’s internal processes, or from the agent’s history of inter-

action with the world. Sources of uncertainty include:

Randomness: The world may be nondeterministic. In this case, even an omniscient

observer would be unable to predict the world correctly.

Complexity: There may be a number of unlikely exceptions which would be expen-
sive to enumerate, or the “true” theory of the world would take too long, or be

too large, to learn precisely.

Representational limitations: The agent may be unable to express a correct de-

terministic theory (even if one exists) in its concept language.

Sensory limitations: The agent’s senses only report a limited amount of informa-
tion about the world. If important data are not reported, the agent may be

unable to acquire the knowledge necessary to characterize the world precisely.

Sensory inconsistency: The agent’s sensors may not always report the same per-

ceived world in identical world states, due to noise in the sensors.

83

Insufficient sample size: If only a subset of the possible observations have been
made, there may be multiple consistent hypotheses. In this case, the belief in

in any one of them cannot be held with certainty.

These sources of uncertainty interact. For example, if the agent is unable
to perceive relevant aspects of the environment (a sensory limitation) and the in-
formation it does receive from the environment is inconsistent (noise), the model it
builds will be more distorted than the model built in the presence of only one of these
handicaps.

If the world is chaotic (deterministic, but in such a way that outcomes are
heavily dependent on initial conditions), the agent will be seriously handicapped by
sensory limitations (inability to perceive initial conditions precisely), noise (incor-
rectly reported initial conditions), and complexity (if the agent’s bounded resources
are insufficient even in theory to compute the chaotic function to the necessary degree
of precision).

In general, it will be impossible for the agent to be certain which of the
sources of uncertainty are present. For example, to a finite agent, a complex enough
world will appear nondeterministic simply because the agent is incapable of repre-
senting a deterministic world model, and will have to collapse some distinct states
together in order to build a tractable (but nondeterministic) model.

In some cases, the agent may be able to tell after the fact that it has elim-
inated a source of uncertainty—for example, if it builds a tool (e.g., an infrared
detector) to enable it to perceive an aspect of its environment that it was previously
unable to detect directly, and the resulting model is better, a sensory limitation has
been overcome. But it cannot know a priori which uncertainty sources are present.

In addition to being able to behave effectively in the presence of the above
sources of uncertainty, there are functional advantages to using a probabilistic repre-
sentation for theories. First, probabilistic theories are less brittle than deterministic
theories: the behavior of the system degrades gracefully as the quality of the theory
decreases. Second, a priori preferences (i.e., learning biases) can be expressed as prior

probabilities, which are gradually overridden by data.

84

PAGODA uses statistical probabilities within the agent’s theories to represent
probabilities of outcomes given the external state of the world and the agent’s actions;
subjective probabilities are used to decide which world model (set of theories) is the
most effective representation of the environment.

The statistical probabilities in PAGODA’s theories represent summaries of
observed frequencies of events. The probability of an outcome, given a conditioning
context (consisting of a partial world state and an action taken by the agent in that
state), is estimated by the ratio of the number of observations in which both the
conditioning context and the outcome held to the total number of observations in
which the conditioning context held.

Subjective probabilities are used to evaluate the agent’s predictive theories.
In order to decide which proposed theory is most effective, a Bayesian analysis is per-
formed, combining a prior probability (based on the structure of the theory) with the
likelihood of the evidence seen (which is computed using the statistical probabilities
in the theories).

In this chapter, we describe PAGODA’s method for learning probabilistic
theories. Theories are represented as Uniquely Predictive Theories (UPTs; see Chap-
ter 3) and are evaluated using a Bayesian method which is described in the following

sections.

6.1 Theory Evaluation

In this section, we develop a Bayesian method for measuring the quality of
proposed uniquely predictive theories (UPTs). As we will show, only two terms need to
be considered: the accuracy of the theory, given by the likelihood of evidence P (E|T),
and the prior probability of the theory, P(T'). The former quantity is computed using
PCI; we define the latter in terms of simplicity.

Section 6.1.1 discusses general issues involved in evaluating probabilistic the-
ories. The formula used to evaluate theories is derived in Section 6.1.2, and the prior
probability distribution used by PAGODA is given in Section 6.2. Finally, likelihood

is computed in Section 6.3.

85

6.1.1 Evaluating Probabilistic Theories

In most models of concept learning, observations are assumed to be cor-
rect (i.e., noise-free) and consistent with some deterministic hypothesis which is
expressible in the hypothesis language (for example, [Mitchell and Keller, 1983,
Muggleton and Buntine, 1988, Kuipers, 1985, Carbonell and Gil, 1987]). The concept
learning problem under this assumption becomes that of finding a hypothesis in the
concept space which is consistent with all of the observed instances of the concept to
be learned. Consistent hypotheses may be prioritized according to some preference
metric (e.g., of simplicity or specificity), or they may all be considered equally good
(as in the version space algorithm).

In a nondeterministic or noisy environment, we can no longer expect to find
a completely consistent hypothesis. The problem then becomes that of finding the
hypothesis which “best describes” the observed instances.

The question is, how do we define “best description?” If we allow enough
parameters in the concept description, there will always be some theory that is con-
sistent with all of the data (for example, we can just take the disjunction of all of the
observations). The problem with this approach is that the resulting theory will be
cumbersome and expensive to use, and is not likely to make any useful predictions
(or perhaps not able to make any predictions at all). Of course, an agent can restrict
the hypothesis space to theories that will be usable (see Chapter 5), but beyond that,
it still needs a preference structure; otherwise, overfitted hypotheses (i.e., hypothe-
ses fitted to noise) will be selected. The tradeoff can be thought of as one between
simplicity and accuracy on the training set. -

Using a simpler theory has two advantages. First, minimizing error on the
training set may actually cause the theory to be fitted to noise, and therefore will not
minimize future error. Second, even if the simpler theory is less accurate, the cost
saved in applying it may outweigh the loss of accuracy for a limited rational agent.

The approach presented here is motivated on the one hand by algorithmic
complexity and Minimum-Length Encoding (MLE) techniques [Solomonoff, 1964a,
Solomonoff, 1964b, Chaitin, 1977] and on the other hand by Bayesian probability

86

theory and philosophical approaches to scientific theory formation using simplicity

metrics (see, for example, [Good, 1983, Goodman, 1958]).

6.1.2 Bayesian Probability

Recall that the proposed theories (which must be UPTs) consist of con-
ditional probabilities which are determined empirically. These probabilities in the
theory are distinct from the probability of the theory. The goal in this section is to
find the probability of a theory.

The theory with the highest probability should be that with the most effec-
tive structure for representing the observed data. Given this structure, the probabil-
ities within the theory are straightforward to optimize. Complex structures (those
with many dependencies) cost the agent in terms of space, computation time, and
risk of overfitting. On the other hand, simple structures with only a few dependencies
may not capture important relationships in the world.

The probability we wish to find, then, is the probability that the structure
of this theory is the best representation of the behavior of the environment. It is not
the probability that the particular values of the conditional (statistical) probabilities
in the theory are correct, or even that they are close.! The statistical probabilities
are estimated using observed frequences; this maximizes the accuracy of the theory
as given by the Bayesian likelihood P(E|T A K).

Using the notation

T a proposed theory
K background knowledge

E evidence: a sequence of observations ej,€z,...,€n

Bayes’ rule gives

P(T|K) P(E|T A K)
P(E|K)

P(T|K NE) = (6.1)

1Which is not to say that the statistical probabilities aren’t close, simply that we do not claim to
measure their accuracy explicitly with this evaluation technique.

87

We are only interested in finding a relative probability in order to compare probabili-
ties of competing theories, so the normalizing factor P(E|K) in the denominator can

be dropped,? yielding
P(T|K A E) « P(T|K) P(E|T A K) 6.2)

We also assume that the individual observations e; ...e, composing E are
independent, given K and T. This standard conditional independence assumption
is reasonable, because the theories generated by the agent make independent predic-
tions. Therefore, T embodies an assumption that the observations are independent,

which must be true if T holds. Therefore,
P(T|KAE) «x P(T|K)II,P(eT A K) (6.3)

The first quantity on the right-ha.nd side represents the “informed prior”—i.e., the
probability of the theory given the background knowledge K, but no direct evidence.
The second quantity represents the likelihood of the theory, i.e., the combined prob-

abilities of each piece of evidence given the theory and K.

6.2 Prior Probability

The prior probability of a theory, P(T'), is the probability of T' before any
evidence has been collected. A prior, however, is never completely uninformed: even
before any direct observations about a particular learning task are made, an agent’s
past experience, available sensors, and internal representation will affect its disposi-
tion to believe a theory, and hence its prior probability distribution. For example,
even if you have never been to a particular theater, your general background knowl-
edge about theaters allows you to learn quickly how to buy tickets and refreshments
and how to find your seat. All of the background knowledge available to an agent
should ideally be reflected in its “prior.”

2Note that if we drop these normalizing factors, we no longer have a true probability distribution.
However, for notational convenience, I continue to call the resulting measure P.

88

PAGODA uses background knowledge in the form of uniformities (see Chap-
ter 5) to select the language in which its theories are represented. The background
knowledge K of Equation 6.3 consists of those uniformities and theories about other
goals (which are irrelevant to the probability of this theory). The relevant knowledge

in K is then just the set of uniformities, but these are implicit in the bias B, so that
P(T|\K) = P(T|B)

We can think of P(T|B) as being the pfior_, P(T), implicitly conditioned by the bias.
A variety of justifications have been proposed for the use of simplicity as one
test of the value of a theory. The justification one chooses depends on, and conversely

influences, the model of simplicity used. These justifications include:

1. Occam’s razor: always choose the simplest theory which is consistent with the

data.
2. Simple theories are less expensive (in time and space) to learn and use.

3. The Minimum Length Encoding principle uses a formal argument to show that
the shortest (i.e., simplest) theory explaining the data is the best. (See Chap-
ter 2.)

4. Empirical evidence shows that people prefer simpler theories. (See [Medin et
al., 1987].)

5. Using a smaller hypothesis space implies that few hypotheses can be found that
are as good as the proposed one. [Pearl, 1978}

There are a number of difficulties with the “traditional” view of simplicity
(inasmuch as there is a traditional view, which, as can be seen from the above list of
justifications, is not obvious). The most common reference to simplicity is Occam’s
razor, which tells us to select the most simple of the consistent theories. But this has
two problems: first, it does not tell us what to do when we have a complex theory with
high accuracy on the learning set and a simpler, but slightly less accurate, theory.

(Or, rather, it does tell us what to do—we are to reject all inconsistent theories out

89

of hand, which doesn’t seem reasonable.) Second, it does not provide a definition of
simplicity.

In MLE, the length of the coded theory is used as a measure of its simplicity.
Applying MLE directly would require finding the shortest code length with respect to
a specified Universal Turing Machine (UTM). However, this is not computable, and
only provides good answers in the limit (i.e., for large amounts of data). An alternative
method, used by existing MLE applications, is to use a hand-generated encoding for
the domain, or a general “optimal” code such as Huffman encoding.3 However, a
Huffman encoding does not take adva,ntage of any structure in the domain: in most
languages, terms are not generated independently (as a Huffman code assumes).

Good suggests using as a measure of simplicity a function of the probability

that a theory appears in a language.

Perhaps the best plan is to define the complexity of a theory... as minus the

logarithm of the probability that the linguistic expression that describes

the theory would occur in the language when the statistical properties of

the language are specified up to say di-word frequencies. ([Good, 1983],

p. 155.)
In other words, the encoding should take into account not just the probabilities of
individual terms, but probabilities of pairs of terms. In some domains, however, even
this will not be enough: structure in the language may have effects on larger groups
of terms. Also, Good later says (p. 235)

Perhaps the weights [of the terms] should be minus the logarithms of the
frequencies of these categories of words (instead of using the frequencies
of the individual words and symbols and such). This would reduce the
problem to the specification of the categories.

That is, individual terms may not be the right level to consider. for computing sim-
plicity; rather, higher-level classifications should be used to evaluate a theory. These
categories might be semantic groupings of similar words (e.g., color terms or people’s
names) or syntactic groupings (e.g., nouns or adjectives). In the RALPH world, cate-
gories might be objects in the world, in which case instances of wall, nasty, and so

forth would be grouped together to determine frequencies.

3In a Huffman encoding, the length of each predicate is a function of its frequency.

90

This approach is similar to the method of evaluating theories by first exam-
ining the structure alone, and. then filling in the best structure with the numbers that
optimize overall probability. In this case, we determine the simplicity of a theory
by examining its structure (which is defined by which categories of words it con-
tains), and then measuring the contents of the structure (individual words) with the
likelihood defined in Section 6.3.

We have used PAGODA as a testbed to experiment with several different met-
rics of simplicity, which we will discuss below. They differ in the level of classification
(theories, rules, features, or terms) and in the method of finding probabilities of mem-
bers of the appropriate class (the two methods used are the uniform distribution and
a Huffman encoding scheme).

Our conclusion is that which metric of simplicity is “best” depends on the
domain. Using simplicity as the prior in a Bayesian evaluation process means that
any prior will converge to the correct theory, given enough data, as long as the prior
does not assign zero probability to the correct theory. However, in order to perform
well in any given domain, the language used and prior knowledge available should be
used to choose the measure of simplicity (i.e., the prior).

In the remainder of this section we discuss four simplicity-based prior prob-
ability distributions used in PAGODA. The results of using these different priors in

various RALPH domains are given in Chapter 7.

6.2.1 Uniform Distribution on Theories

Under this prior, equal probability is assigned to every theory. For infinite
theory spaces, this results in an improper prior (all theories have zero prior probabil-
ity), but since we are interested only in relative probabilities, we can ignore the prior
probability term and simply choose the theory with maximum Bayesian likelihood
P(E|T). This procedure finds a theory that exactly fits the data, if one exists. In
case of a tie (where two theories have equal likelihood) the shorter one will still be
preferred (i.e., the theory with fewer rules or, if the theories being compared have the

same number of rules, the theory with fewer terms).

91

Suppose PR has constructed the following two simple theories, T} and T5.

Ty: O —5 Au(t+1,-10)
—5 Au(t+1,90)
T2 . 0O -1.0 Au(t +]., ‘—10)
action(t, :munch) —; ¢ Au(t + 1,90)
Suppose further that the evidence used to construct these theories consists of two

observations:
e; = action(l, :munch) A Au(2,90)
e; = action(2, :move-forward) A Au(3,-10)
The uniform distribution on theories assigns the same probability to the two theo-

ries (P(Ty) = P(T3)). The likelihood of the two theories is simply the conditional

probability of the evidence, given the theories:

*

P(EIT]) = P(ellTl)P(engl)
P(EITg) = P(Clsz)P(elez) =

=t N

*
=t ol

Landi Y

The Bayesian evaluation formula (Equation 6.3) gives

P(T|E) « P(T)P(E|Th) «

— e

Therefore, under the uniform distribution on theories, T; is preferable given the evi-

dence.

6.2.2 Rule-level Classification of Theories

The level of classification under this distribution is rules in the theory. If
Np is the number of rules in the theory T, then the prior probability of T' according
to this distribution is

1
P(T)= -2TR

This gives the prior probability that the correct theory has Ng rules; i.e., the prob-
ability of the class of T being the correct class. In this prior, the theory class can

92

be thought of as being generated by coin-flipping. If the coin comes up heads, we
generate one final rule and stop; if it comes up tails, we generate another rule and
continue flipping. Within a class (i.e., theories with the same number of rules), the
particular rules are chosen to optimize the likelihood of the theory.
In the example given in the previous section, the rule-level distribution as-
signs prior probabilities
P(hh) =
P(Tz) =

since T} has one rule, and T, has two rules. The likelihoods are the same, so the

F I X1

relative posterior probabilities of the theories are

P(TI|E) « 1
P(T2|E) x 1

4

T, is still preferable, but not by as much as under the uniform distribution on theories.

6.2.3 Feature-level Classification of Theories

This prior is similar to the rule-level classification of theories, but at a slightly
lower level. The classification level is descriptive features in the conditioning context
of rules; the probability distribution assumes that a coin is flipped to generate features.
The probability of individual features is ignored. If Nr is the number of feature

descriptors in the theory,
1

P(T) = o5
Again, this represents the probability that the theory’s class is the correct one; i.e.,
the probability that the correct theory has N features.)

T, has no terms (since the only conditioning context is empty); T has one
term (action(t, :munch)). In the example, the feature-level distribution assigns prior
probabilities

Ph) =
P(T;) =

In this case, the priors are the same as for the rule-level classification, so the resulting

= -

relative probabilities are the same, and T is again preferred slightly.

93

6.2.4 Huffman Encoding of Terms

The classification level for this prior is terms (“words” within feature de-
scriptors), but a uniform distribution is not assumed. Rather, we use the frequency
of terms within the theory to compute an optimal encoding for the theory, and use
the length of the encoded theory as the negative logarithm of its probability. If Nr
is the number of terms in the theory, ¢; is the ith term, and prob(t;) is the relative

frequency with which ¢; appears in the theory,

Nr
P(T) = [] prob(t:)

i=1
This approach is similar to that of Muggleton [1988], who uses the Minimum
Length Encoding approach to decide which theories should be presented to an oracle
(but does not use the code length to define a prior probability). If S consists a theory
plus a set of data explained by the theory, Muggleton’s technique approximates the
length of an efficient encoding M of S as

|IM(S)|=-N Y_ p,log,p, bits
s€asym(S)
where sym(S) is the set of symbols in S, N is the number of different symbols found
in S, and p, is the relative frequency of s in S (i.e., n,/|S})-

The frequencies of terms in the theories in the example given above are:

Ti: Au
< variable >
< number >
To: Au
< variable >
< number >

action

— = N W NN NN

:munch

Variables and numbers are still classified together (i.e., treated as equivalent for the

purposes of determining frequencies).

94

The prior probabilities of the theories in the Huffman encoding are therefore

¢ = 2.14 x 10-%

= 3.7x10°7

P(Ti) =
P(Ty) =

2

DOlvo D=

232
9

Ol

241
99

\
T,, the simpler theory, is preferred very strongly (by almost two orders of magnitude)
by the Huffman encoding prior.

6.2.5 Expected Effects

The effects of the various priors in empirical tests are discussed in Chapter 7;

below is a brief summary of the expected effects.

1. The uniform distribution on theories should generate very specific theories (i.e.,
relatively large theories with many rules). The performance of these theories
should only be reasonable in fairly deterministic worlds where everything that

happens is relevant to the outcome.

2. The rule-level distribution (P(T) = 1/2N?) should perform approximately as
well as the uniform distribution on theories in simple worlds. However, in more
complex, nondeterministic domains we expect that it will tend to overfit (i.e.

to form theories that “explain” genuine randomness in the domain).

3. The feature-level distribution (P(T) = 1/2NF) should work reasonably well in
simple nondeterministic environments, where there is a significant degree of
randomness in results, but most properties that the agent observes affect the

degree of randomness.

4. Huffman encoding of terms provides a very strong bias for simplicity. However,
it will prefer theories in which all of the rules refer to the same one or two
features, since it encodes the repeated features more compactly. Therefore, we
expect that it will perform best in complex domains where only a few features

are relevant.

Given enough data, and a good search mechanism, using the Bayesian method with

any of these priors will converge to a maximum likelihood theory. However, in the

95

short term, knowledge about the complexity of the domain should be used to select
a good starting point.

Additionally, in learning systems that use an incremental search heuristic
(as does PAGODA), generating many bad (overly specific) theories early on can mean
that the agent may never, in fact, find a good theory, because it can get stuck on a
local maximum. From this we conclude that a good search heuristic should include

techniques for “jumping” away from local maxima.

6.3 Likelihood of Evidence

PAGODA generates its own learning instances from the sequence of sensory
inputs and actions, using the bias for each learning task. Each set of features that
matches (unifies against) the conjunction of a learning goal and the bias is treated as

an instance. For example, if the learning bias for Au(t + 1,u) is
action(t,a)

and the agent’s sequence of sensory inputs and actions includes (among other per-

ceptions)

action(0, :move-forward) A Au(l,—10) A action(l, :turn-right)

A action(2, :munch) A Au(2,—10) A action(3, : turn-left) A Au(3,90)
then it will construct three instances for the learning goal Au:

action(0, :move-forward) A Au(l, —10)
action(l, :turn-right) A Au(2,—10)
action(2, :munch) A Au(3,90)

P(e|T A K) is the probability of the direct observation made at time ¢,
given the theory and background knowledge. P(e:|T A K) is equal to P(e|T) if e, is
conditionally independent of K given T, which is a reasonable assumption since the
theories in K make no predictions regarding T’s goal G, and any relevant information

in the uniformities in K has already been used to select the current bias.

96

If the theory being evaluated predicts Au, e; can be rewritten as
éensest A actions A Augyq

This is because in the current implementation of PAGODA, only features at time ¢ are
considered for predicting features at time ¢ + 1. This assumption does not affect the
analysis, though; for example, features at time ¢ — 1 could be included without any

significant modifications. The probability of e, given the theory T, is

P(senses; A action; A Augya|T)

= P(senses; A action|T) P(Auy|senses; Aaction, AT)

Since T makes no predictions regarding senses; and action,, the first term can be

rewritten as the prior probability:
P(senses; A action|T) = P(senses; A action;)

We drop this term, since only the relative probability of theories is of interest and
the value of this term will be the same for all theories on the same learning goal.
The second term is computed by applying PCI (Chapter 3) to the theory, as we
demonstrate below.

Using a bias for Au which includes all sensory inputs and the action in a
world containing nasties and food, PR might form the theory in Figure 6.1. Suppose
that at time 5 PR’s perceived world is:

nasty-smell(5,20) A food-smell(5,10) A vision(5,wall,2) A Au(5,-10)
and it chooses the action :munch, resulting in Au(6,—10). The observation con-

structed is

es = nasty-smell(5,20) A food-smell(5,10) A vision(5,wall,2)
A Au(5,—10) A action(5, :munch) A Au(6, —10)

To compute the possible outcomes at time 6, PCI is applied. The most-

specific rules for the sensory inputs at time 5, which in this case are the second and

97

O —g Au(t+1,-10)
—1 Au(t+1,-11)
-5 Au(t+1,-60)
—.1 Au(t+1,90)
action(t, :munch) —g¢ Au(t+1,90)
—1 Au(t+1,-60)
—3 Au(t+1,-10)
nasty-smell(t,20) —.¢ Au(t+1,-10)
—5 Au(t+1,-60)
—1 Au(t+1,-11)
action(t, :move-forward) A nasty-smell(t,20) —.7 Au(t+1,-60)
‘ —3 Au(t+1,-10)

Figure 6.1: Theory for a RALPH world

98

third rules in Figure 6.1, are combined using PCI, yielding:

P(Au(6,90)|e5)
P(au(690)laction(s, :munch)) P(Au(s,90)jnasty-smell(s,20)) = £:0 _
P(au(s,90)) =1 -

P(Au(6,—-11)]es)
P(Au(s,-11)jaction(s,:munch)) P(Au(s,-11)jnasty-smell(s,20)) _ 0.1 . 0
P(AU(6,-11)) = =

P(Au(6,—10)les)

P(Au(s,~10)jaction(s, :munchy) P(Au(6,—10)lnasty-smell(s5,20)) _ 3.4 _ 9
P(AU(6,-10)) - & -
P(Au(6,—60)|es) |
P(Au(s,-so)laction(s,:munch))P(Au(e,-60)|nasty-smell(s,zo)) — d=5 _ or
P({AU(6,-60)) -T2 -

The probabilities are normalized by PCI so that the probabilities of all outcomes sum

to 1, yielding

P(Au(6,90)|es) 0
P(Au(6,—-11)les) = 0
P(Au(6,—10)es) = 4/9
P(Au(6,—60)|es) = 5/9

The likelihood of es is

P(es|T) = P(Au(6,—10)|T A nasty-smell(5,20) A food-smell(5,10)
' Avision(5,wall,2) A Au(5,—10)) = 4/9

In order to operate in complex domains, intelligent agents must be able to
cope with uncertainty arising from the environment and from the agent’s physical
and computational limitations. PAGODA’s learning model addresses this necessity by
using a probabilistic representation and inference method for theories, and Bayesian
evaluation methods for learning the theories. Various simplicity metrics have been
proposed; the degree to which the agent should bias its learning towards simpler

theories depends on the complexity of the domain.

99

Chapter 7
Implementation and Results

PAGODA has been implemented as an agent in the RALPH (Rational Agent
with Limited Processing Hardware) world. In this chapter we discuss the PAGODA
implementation and present and analyze the results of running PAGODA in a number

of RALPH worlds under varying conditions.

7.1 PAGODA-RALPH Implementation

This section describes the implementation of PR: first the high-level behavior
of the system is described, then the processes of bias evaluation, hypothesis generation

and testing, planning, and goal generation are presented.

7.1.1 Overall Behavior

The design of PAGODA was discussed in Section 1.3. The implementation of
this design consists of three primary routines: init-learning() and PR’s :perform
and :choose-action methods.

init-learning() initializes the global variables containing PR’s history,
and initializes the set of learned theories to be empty. It also selects a bias for each
initial learning goal using PBE (normally, the only initial learning goal is Au).

PR’s :perform method is called during each time slice by the scheduler. It

100

calls the learning routines described in Section 7.1.3 to update the current theory for
each learning goal.
The :choose-action method calls the probabilistic planning mechanism

described in Section 3.5 to select an action to be executed during the next time slice.

7.1.2 Bias Evaluation

PR is provided with background knowledge in the form of uniformities for
each RALPH world. These uniformities were estimated based on the actual behavior of
the world. They take into account the random behavior of the nasties, the complexity

of the world, and PR’s limited sensory inputs. All of them are of the form
U(Sg(t + 1)|Sl(t)) =u (71)

where S; and S; are subsets of PR’s sensory inputs at the specified times. The only
biases considered are those provided directly by the uniformities; in other words,
only sets of features that appear in the conditioning context of some uniformity are
evaluated. Therefore, no features from time ¢ — 1 are considered when predicting the
environment at time ¢ + 1. This provides the agent with a strong time contiguity bias
(i.e., a prior belief that events in the world are caused by immediately previous events).
This bias could be relaxed by the designer by providing uniformities that include
earlier events; the agent could automatically relax the bias by chaining uniformities
together or by generating new terms that represent intermediate states, and using
these to make predictions. The latter two possibilities will be discussed in Chapter 9.

A bias for each learning goal is selected by finding those uniformities which
are relevant to the learning goal (i.e., where the goal is part of S; in Equation 7.1),
computing the value of the bias represented by each uniformity (the set of features
in S)) using PBE (Chapter 5), and selecting the bias with the highest value.

The bias-value computation assumes that all features are Boolean (i.e., take
on only two values), since it is not currently provided with any knowledge about the
features. Since most features actually take on more than two values, this tends to

assign slightly higher bias values to larger biases than they would otherwise receive.

101

The value of 4 (the discounting rate) is .8. ¢, the learning constant in

Equation 5.8, is 1.

7.1.3 Hypothesis Generation and Evaluation

The Bayesian method used by PAGODA for evaluating theories was presented
in Chapter 6. This section describes the heuristic search process used to find new
theories to evaluate. The search is incremental, in the sense that as each new obser-
vation arrives, new theories are generated.- However, all of the previous observations
are stored in the theories, so the search process is not bounded in space or time.

The search process can be described as a generate-and-test search through
the space of possible theories, with an open list of fixed size n. After each new
observation arrives, the observation is first incorporated into each of the theories on
the open list. This is done by adding the observation to each of the most-specific
rules (MSRs) in the theory that apply to it, and updating the probabilities in the
theory accordingly. The search then uses the updated theories as seeds, and generates
all neighboring theories, using a set of search operators which are described below.
Theories that are not potentially better than the seed that generated them are pruned;
the others are recursively used as seeds to generate more new theories. After the search
ends—i.e., when no more potentially better neighbors can be found—the remaining
theories are all evaluated, and the n best theories are retained for the next cycle. (In
the current implementation, n = 3.)

A theory T is considered to be potentially better than another T; if the
probability of the observation given T is greater than or equal to the probability of
the observation given T. Because two theories can each be potentially better than
the other by this definition, the search process can loop. Therefore, if a theory with
the same structure as an existing theory is generated, the search along that path
terminates, so that an infinite loop will not occur.

The first time the learning module is called for a particular learning goal, a
single most-general theory is generated, stating that the specified outcome for that

goal always occurs. This is always the theory with the highest probability, since it is

102

the simplest possible theory with perfect accuracy on the training set.

Heuristic-Search:

Insert the new observation into each seed theory.

Apply Apply-operators to each seed theory.

Apply Generate-new-rules to each seed theory.

Apply Apply-operators to each theory yielded by step (3).

Apply the Bayesian evaluation mechanism to all of the theories that were generated.
Return the n best theories.

SOk N

Apply-operators:

For each MSR that made an incorrect prediction:

1. For each parent p of r, call Try-merging on p and r.
2. For each sibling s of r, call Try-merging on s and r.
3. For each child ¢ of r, call Try-merging on c and r.

Try-merging (ri,r2):

1. Generate a theory that replaces r1 and r2 with a minimally more general rule r.
2. If the probability of the observation given r is greater than the probability of the
observation given r1 and r2, call Apply-operators on the new theory.

Figure 7.1: Heuristic search algorithm

There are four search operators:

Generate-new-rules: A set of minimally more specific rules is generated for
each MSR in the seed theory that makes an incorrect prediction,! by specializing
each feature that has a more general value in the MSR than in the observation.
These features represent distinctions which may differentiate the outcomes. The
instances which were covered by the MSR are divided between the MSR and

the new rule. A new theory is generated with each of the new rules.

Merge-into-parent: Each MSR that made an incorrect prediction is merged
into each of its parents, generating a set of theories with fewer rules than the

seed theory.

1Recall that a probabilistic prediction is incorrect if the observed outcome is not the most likely
outcome.

103

Merge-with-sibling: Each MSR that made an incorrect prediction is merged
with each of its siblings, generating a set of theories with one rule that is more

general than either sibling.

Merge-with-child: Each MSR that made an incorrect prediction is merged
with each of its children, generating a set of theories with fewer rules than the

seed.

All of the theories generated by these operators are used as seeds for further searching
only if the resulting (new or merged) rule assigns at least as high probability to the
current observation as the rule it was generated from.

The search algorithm is given in Figure 7.1.

7.1.4 Goal Generation

The current form of GDL (Chapter 4) finds the utility of learning goals, but
does not account for the costs of learning. Therefore, the agent can only decide which
learning goals are best, but not whether it is worth adding any learning goals at all.
Because of this, the goal generation process is guided by the user. At any point, the
user can request that the system evaluate all potential learning goals, and may then
tell the agent to add the best of these goals to its set of learning goals; the new goals

will be used in future learning and planning.

7.2 Tests and Results

Two RALPH worlds were used for these tests: a small world containing only
food, and a larger world containing nasties. In the small-food world (Figure 7.2),
whenever PR manages to consume all of the food, a new cupcake appears somewhere
else in the world. In the nasties world (Figﬁre 7.3), food is not regenerated (none of
the tests were long enough for PR to consume all of the food) but whenever PR zaps

a nasty, a new nasty appears elsewhere, so that two nasties are always present. Each

104

uouo O 0 0 O © ©
O o0 ¢ 0 0 000
OO00 ¢ ¢ ¢ ¢ 0 ¢ ¢
[Jo o000 00 00 o0
[Jo ¢ 0 00000 00
[Jo ©¢ 000 0 00 009
0o ¢ 0 00 0 009 o o
[Jo ¢ 000 000 00
[Jo © 000 0 00 900
[Jo ¢ 000 00 0 00
OOoO0D0000onooon

Figure 7.2: Small-food test world

time the nasties world is initialized, the objects present in the world (food, walls and
nasties) are distributed randomly.

Three measures are used to evaluate the system’s performance:

e Accuracy on a test set: before each test is started, the world is run, guiding
the agent by hand to ensure that a representative set of observations will be
generated; these observations are used as a test set. Accuracy on the test set
measures generalization ability, and is used as a primary measurement of PR’s

behavior. The same test set is used for all measurements in each test.

¢ Time spent to process each observation: this is the internal run time of the
system while the learning module is active. This measures the complexity of

the learning task for a particular bias and domain.

e Success on the agent’s task: the average utility per unit timeis used as a measure

of the agent’s success. Since the agent’s goal is to maximize its utility, and the

105

)
<]
-)

OOoOo0oo0ooooon

[Jo oD oD o 0o 0 oF
uooooouonoo

[Jo oD oD 0o 0o 0 0
nooooo®®ono

noooo@oo'noo
nooooo®oooo

Oo0o oD 0o 0o 0 00

n<><><><><><><><><><>

[Jo o 00 o0& o o 0o
[Jo 0o 0o 0o 0o 0o 0o 0o

Figure 7.3: Nasties test world

purpose of learning is to further that goal, the utility earned by the agent tests
the system as a whole. Utility is used to evaluate the effects of adding new

learning goals to the system.

Section 7.2.1 presents a set of tests showing the effect of varying the bias
selection procedure, and demonstrating the overall learning capability. The tests
in Section 7.2.2 show the performance of PAGODA when different prior probability
distributions are used for learning. Section 7.2.3 demonstrates the goal evaluation
mechanism and shows the improvement in the system’s behavior résulting from adding

learning goals to the system. Overall conclusions are given in Section 7.3.

7.2.1 Testing Biases and Learning

The tests in this section demonstrate the effects of bias selection and show

the overall learning performance of the system. In the first two tests, the feature

106

set selected by PBE was compared to two alternatives: using all available features
(Au, nasty-smell, food-smell, and vision), and using no features (i.e., generating
a single theory with one default rule). These three biases were run in the two test
worlds. In the third test, a single scenario (using all of the features in the nasties
world) was run twice, to show the variability of performance resulting from the agent’s
experiences in different runs. This test highlights the difficulty of learning at all in
this domain, and of getting consistent test results.

For the tests in this section and in Section 7.2.3, the rule-level prior prob-
ability distribution was used. For all of the tests in this chapter, PR was guided
by hand for the first few steps to a node containing food, and then allowed to run

autonomously. Learning occurs whether PR chooses its own actions or is guided by
hand.

1 T v T T T y r .
\ /
A ___/‘_'—J
08 | |
All features —
2 PBE features ——
@ No features -
& 0.6 f |
g !—\
g R I I
g 0.4 Hy _
< :
0.2 .
0] y : . 4 l L N 1 1

0 10 20 30 40 S0 60 70 8 90. 100
Number of training examples

Figure 7.4: Bias tests in small food world: accuracy measurements

107

35“” T T -3 T T T T T L{

30000

25000 | All features —— .
PBE features —— -
No features -~

20000

15000

Time per observation

10000

L]
Xasn

5000

L]
[T,

0O 10 20 30 40 S50 60 70 8 9 100
Number of training examples

Figure 7.5: Bias tests in small food world: time measurements

Small-food world

For the first test, PR was run in the small-food world. The uniformities for

Au in this world are as follows:

U(Aulvision A food-smell A action) = 1.0
U(Aujvision A food-smell A nasty-smell A action) = 1.0
The bias values assigned by PBE are:
V(vision A food-smell A action) = 4.73
V(vision A food-smell A nasty-smell A action) = 4.50

therefore vision A food-smell A action is selected as the learning bias.
The results of this test are shown in Figures 7.5 and 7.4. Using the PBE

features gave good results, averaging an accuracy of .85 over the run, and eventually

108

converging to 1.0. The theory learned is

0 —10 Au(t + 1,-10)
vision(t,wall,1) A action(t, :move-forward) —10 Au(t +1,—11)
food-smell(t,20) A action(t, :munch) —10 Au(t + 1,90)

which is, in fact, a correct theory for the domain: eating when food-smell is 20 gives
90 utility “points;” moving forward into a wall causes the agent to lose 11 points; all
other actions result in a loss of 10 points.

Using all of the features resulted in lower performance, with a maximum
accuracy of .65. The no-feature bias performed poorly, yielding only 0.5 accuracy.

As expected, the no-feature bias takes less time than either PBE or all-
features. PBE actually seems to take longer on average than all-features, but both
have a number of spikes. The largest spike appears in the PBE bias run at the same
time as the observation that PR used to generate the correct theory (¢=90). Another,
smaller spike appears at the same time that all-features jumps to .65 accuracy (t=69).
This weak correlation of time spikes and theory shifts appears in some of the later
tests as well, but the underlying explanation of why the heuristic search generates

these spikes is unknown.
Nasties world

The uniformities for Au in the nasties world are:

U(Au|vision A food-smell A nasty-smell A action) =
U(Au|vision A food-smell A nasty-smell A AuA action) =

The resulting bias values are:

V(vision A food-smell A nasty-smell A action) 4.30
V(vision A food-smell A nasty-smell A AuA act ion) = 4.24

The bias selected is vision A food-smell A nasty-smell A action. The accuracy
on the PBE run is slightly higher than all-features; however, they do end up with
approximately equal accuracy (Figure 7.6).

Accuracy on test set

Time per observation

All features —
PBE features — |
N No features -~
0 10 20 30 40 50 60

Number of training examples

Figure 7.6: Bias tests in nasties world: accuracy measurements

lzm L) T ¥ T A
100000 | All features —) -
PBE features — \ 3
No features -) A
80000 \ i ! .
\ ! i
VA \
60000 ‘1;' H-\l {\ ‘ J
i MU
400(1) 8 ,’" N ‘n:‘.',' ! \i -
A
ol — |
i
0 10 20 30 40 50 60
Number of training examples

Figure 7.7: Bias tests in nasties world: time measurements

109

110

The timing results (Figure 7.7) are far more divergent—after 25 observations,
all-features levels off, but PBE continues to grow, spiking erratically. Again, the spikes
appear to correlate weakly with theory shifts: the time curve for all-features levels off
at the same time as its accuracy curve flattens (=24); PBE is continuously changing
(and generating time spikes), but at the end both appear to be flattening out. The
behavior of PBE in this test is inexplicable: although spikes appear in some of the
other tests, none of them are as extreme.

Another interesting effect is that no-features starts off reasonably well, but
quickly drops to barely 0.2 accuracy. In fact, what happened in the test was that PR
got “trapped” by nasties. It had learned that being near nasties or performing a :zap
action would cause its utility to drop, but not that zapping would cause a nasty to
disappear. Because of this, it was unable to plan far enough ahead to recognize that
the long-term benefit of zapping would outweigh the cost. Since it was continuously
being bitten by nasties, it eventually formed a belief that no matter what it did, its
utility would go down; this belief lowered its accuracy on the test set. Eventually, it
chose :zap randomly (since 1/4 of the time it picks a random action instead of the

apparent best action). When it did this—at ¢ = 40—its accuracy started going back
up.

Variability of results

To further explore the variability between test runs due to differing initial
world states and random behavior of PR and the nasties, two tests using the same
bias (food-smell, nasty-smell, vision, and action) were run in the nasties world,
and tested on the same test set. The results are shown in Figure 7.8. In the first run,
PR quickly found a fairly good theory, but later discarded it; its final accuracy was
58. In the second run, the effect was similar—an initial good theory discarded for
poorer ones—but more dramatic. The good theory was discarded almost immediately

for a much worse theory, and accuracy never got above .45.

111

0.8 T L4 T T 13 1 L
T First run ——
Second un —— 4
N -4
2
g -
8 -
oy
[
3 03 H : -
Q
< -
0.2 .
01 -
0 ' 'l L 1 L 1 2
0 10 20 30 40 50 60 70 80
Number of training examples
Figure 7.8: Variability of PR performance in the nasties world
Results

Since neither of the RALPH domains have a large number of features, and
most of the features are relevant to predicting utility, the savings that can be gained
by using PBE to select a subset of features for learning is not obvious here. The tests
in Chapter 5 show the savings more clearly.

The need for better incremental learning algorithms is obvious from these
results: all of the timing curves climb steadily as the number of observations increases.
This is because all of the observations are stored and reprocessed when new theories
are generated.

PR is developing good predictive theories, though: this is shown by the fact

that PBE and all-features consistently perform significantly better than no-features
(a single default rule). ‘

112

7.2.2 Testing Priors

In these tests, the four prior probability distributions described in Chapter 6
(uniform distribution of theories, rule-level classification, feature-level classification,
and Huffman encoding of features) were compared to each other. The four priors
were run in the small-food world, and then on two separate runs in the nasties world.

Within all of the distributions, conflicts between theories with equal prob-
ability were resolved by choosing the shorter one (i.e., the one with fewer symbols).
In both the feature-level distribution and the Huffman encoding, actions were con-
sidered to be “free” (i.e., they were not counted towards k, the number of features,
and are taken to have length 0 in the Huffman code). This represents a bias towards
describing outcomes based on the agent’s actions.

The stronger biases towards simplicity—Huffman encoding and the feature-
level distribution—are expected to perform better on the test set in more complex
worlds. The reason for this expectation is that in a complex world, the training set
is not expected to be representative of the entire world, especially initially, when the
agent has not collected many observations. In this case, the agent should try to gen-
eralize its experiences, rather than forming highly specialized theories that precisely
describe its training data. On the other hand, in simpler domains, a stronger bias
towards simplicity will prevent the agent from extracting important dependencies.

The theories learned under the weaker biases will tend to be larger (with
more rules and features), so we would expect that the time spent learning (processing
observations into the theories and searching for neighboring theories) would be greater

with these biases. N

Small-food world

The small-food world has a fairly simple, deterministic theory for predicting
Au. Not surprisingly, all of the priors yielded approximately equal results in this
domain.

The accuracy results can be seen in Figure 7.9. Since there is a deterministic

theory, explaining everything that happens to the agent is acceptable, so the weak

Accuracy on test set

1 L] L] ¥ T L ¥ ¥ L] 1
09 | AN
- “\ A \ ,I“\ I"‘“ II -4
o8 v/ \ !f"\./ \YAY/
07 t vy Y YR -
Uniform theory dist —
06 Rule-level dist —— -
Feature-level dist ------
0.5 Huffman encoding —— .
0.4 © 4
0.3 I) .
0.2 4
0.1} J
0] 1 1. 1 1 L 1 L 'l

0O 10 20 30 40 50 60 70 8 90 100
Number of training examples

113

Figure 7.9: Prior-probability tests in small-food world: accuracy measurements

Time per observation

700(X) T Y T T T B T T T

60000 | Uniform theory dist —— -
_ E Rule-}eve{ dist ——
eature-level dist -

50000 Huffman encoding —— : .

0O 10 20 30 4 50 60 70 8 9 100
Number of training examples

Figure 7.10: Prior-probability tests in small-food world: time measurements

114

biases perform well. Conversely, there exist fairly simple, correct theories, so the
strong biases also succeed.

The uniform-rule distribution exhibits an odd oscillation. The underlying
cause for this is that the agent has found two theories that appear nearly equal, and
is shifting back and forth between the two. Why it shifts so regularly is not clear,
but this phenomenon has been observed in other tests.

No significant differences in timing (Figure 7.10) are apparent: the feature-
level distribution has a particularly noticeable spike, matching a theory shift that can

be seen in Figure 7.9, but does not otherwise show a pattern of higher cost.

0.8 T L T Y T T T

0.7 + Uniform theory dist —— .

3/ Rule-level dist ——
06} M\ ‘ Feature-level dist -~ J
b ' Huffman encoding ——
g ospl) SN N
g LA
% 04 -._. :‘..' '..-“.“.. - o
8 0.3 1 e '
02 | — j
0.1 -
0 1 1 1 3 1 N N

0 10 20 30 40 50 60 70 80
Number of training examples

Figure 7.11: Prior-probability tests in nasties world (set A): accuracy measurements

Nasties world A

The results of comparing the four priors in the nasties world were more
surprising. In this more complex world, we expected that the stronger biases would
perform better, by not explaining noise. In fact, the results in Figure 7.11 show

exactly the opposite: the uniform distribution on theories clearly outperformed the

115

le+% 1 ¥] L] L] L4 LS
Uniform theory dist —
900000 | Rule-level dist -—-- .
Feature-level dist -~
800000 Huffman encoding —— .

Time per observation

0 10 20 30 40 50 60 70 80
Number of training examples

Figure 7.12: Prior-probability tests in nasties world (set A): time measurements

other priors. In general, the stronger the bias, the lower accuracy it achieved. At the
end of the run, the accuracy of the Huffman encoding does appear to be increasing
slightly, but the test ended before we could tell if this trend would continue.

The explanation for these results is that the domain is more complex than
the small-food world (so that there is no theory that is both very simple and deter-
ministic), but not complex enough for the strong biases to be effective. Because the
correct theory is not simple, the strong biases fail to find it; because the world is not

highly random, the explanations formed by the weaker biases are reasonable.

Nasties world B

To make sure that the results in the previous test were not simply due to
coincidence, we ran a second set of tests in the nasties world. The results still do
not show a preference for the stronger biases, but these biases are doing better than
in the first test. The feature-level distribution and Huffman encoding still are not

performing well. The uniform-feature distribution test ran into the same problem

116

1 '

Uniform theory dist ——
09T Rule-level dist — -
Feature-level dist -~
08 Fr ., Huffman encoding —— 4
g 07 } \ p _
g W\—\ | /f\/
g 06 ‘\" .
‘;f 05 g
< 04 } "..‘. . ‘ i
osff _
0.2 6 .
0.1 R R LU Y ~ N l‘ -----------
0 10 20 30 40 50 pa

Number of training examples

Figure 7.13: Prior-probability tests in nasties world (set B): accuracy measurements

Unifglr;n theory gist —_—
00000 Uniform rule dist —— |
2 i Uniform feature dist -~
g Huffman encoding ——
E 150000]
g
.8 _
2
‘é 100000 .]
[=
50000 | |

Number of training examples

Figure 7.14: Prior-probability tests in nasties world (set B): time measurements

117

Distribution Training set | Test set
Uniform theory .84 .53
Rule-level 92 - 74
Feature-level .71 31
Huffman code 49 21

Table 7.1: Final accuracy in nasties test B

as no-features in the bias tests in the nasties world: it was trapped by nasties and
spent a lot of time collecting observations of being bitten. The rule-level distribution,
however, performed noticeably better than the uniform distribution on theories.

On this test, we also measured the accuracy on the training set. In a highly
complex world, a set of observations of the size we collected would not be expected
to be very representative of the world. In this case, accuracy on the training set and
accuracy on the test set would not correlate well (hence the need for a simplicity bias
to avoid explaining the random deviations in the training set). However, although
the agent consistently made better predictions on the training set than on the test
set, the accuracies do correlate: as Table 7.1 shows, the rule-level distribution has the
highest accuracy on both the test set and the training set, followed by the uniform

distribution on theories, the feature-level distribution, and Huffman encoding.

Results

In the small-food world, the uniform distribution on theories learns best;
the rule-level distribution is not far behind. In the nasties world, the feature-level
distribution and Huffman encoding appear to be overly strong; the rule-level distribu-
tion did better than the uniform distribution on theories in one test, but not as well
in the other. In still more complex worlds, with a higher degree of randomness, the
need for a simplicity bias may become more apparent. In this case, the agent should
use whatever knowledge is available about the complexity of the world to determine

which prior distribution to use.

118

7.2.3 Testing Learning Goals

In this section, we show the values that PAGODA generates for learning
goals, given a learned theory, in the small-food and nasties worlds. We also show the
improved performance resulting from adding the best learning goal to the system in
the small-food world.

We expect to see a high correlation between intuitive usefulness of goals and
their assigned values. When an additional learning goal is added, the agent should
take more time to process each observation, since two theories are being formed, but

have higher utility due to its improved ability to plan.

Small-food world goal values

The best theory generated by the PBE bias in the small-food world in this

particular set of tests was:

Ri(n=66)0 —;0 Au(t+1, -10)

Ra(n = 9) food-smell(t,20) A action(t, :munch) —10 Au(t + 1,90)

Rs(n = 4) food-smell(t,5) A action(t, :move-forward) — 75 Au(t+1,-11)
— 95 Au(t+1,-10)

Since food-smell is the only feature that appears in any of the rules, it is the only
goal with non-zero value. The substitution sets for the initial learning goals (Au and

action) are:

S = {Ri}
Sz = {Rs, Ra}
S3 = {Rs, R1}
Rs’s past instances are assigned to R;’s hypothetical instances,.resulting in the final
weights
m, = 70
my = 9

119

The expected utility of a single-step plan in the initial world model is (70 * (—10)) +
(9 * 90), or 110. Adding the learning goal food-smell gives the substitution sets

S1 = {Ri,Rs Rs}
SE, = {Ry Ri}
S3 = {Rs,Ru}
and the final weights
m = 0
mg = 79
ms =0

so the the expected utility of the augmented world model is 79 * 90, or 7110. The
value of food-smell is 7110 — 110, or 7000.

Small-food world behavior

PR was run using Au as the only learning goal, and then using both Au and
food-smell. The results are shown in Figures 7.16 and 7.15. As expected, learning
with two learning goals takes significantly more time to process each observation, but
the cumulative utility is higher.

In the case where PR learns theories for both Au and food-smell, it rec-
ognizes situations when it can get to food in one step (i.e., when it is next to and
facing food). In this case, it moves to the food and eats it. However, if it is next
to but not facing the food, it can’t tell which way to turn; if it is not next to food,
it can’t plan far enough ahead to get to and eat the food. The planning ability is
definitely an improvement over Au alone (when PR simply wanders randomly until
it happens to land on the food), but not as much as one might imagine, highlighting
the difficulty of building a completely autonomous agent that can behave intelligently

in an unfamiliar environment.

Nasties world goal values

The theory given in Figure 7.17 was generated using the PBE bias and rule-

level prior probability distribution in the nasties domain, in the second set of tests

Cumulative utility

Time per observation

900
800
700

500

300

200
100

Figure 7.15: Goal tests in small food world: utility measurements

35000
30000
25000
20000
15000
10000

5000

Figure 7.16: Goal tests in small food world: time measurements

Food-smell and du —

duonly —

'

1

20 30
Number of training examples

50

60

70

80

- food-smell and du — .
duonly ——
0 10 20 30 50 60 70
Number of training examples

120

121

described above.

Ri: O —noAu(t+1,-10))
R, : nasty-smell(?,10) — .29 Au(t+1,-10)
— 57 Au(t + 1,-60)
— 14 Au(t + 1,-210)
Rs : nasty-smell(t,10) A vision(t, inanimate-object,2) —1.0 Au(t+1,-60)
Ry : nasty-smell(t,20) —.s Au(t+1,40)
—5 Au(t +1,-10)
Rs : food-smell(t,11) A nasty-smell(t,20) —1.0 Au(t+1, -110)
Re: action(t,:zap) AZfood-smell(t,11) A nasty-smell(t,20)
—1.0 Au(t +1,-260)
R; : nasty-smell(t,15) —i0 Au(t+1,90)
Rg : nasty-smell(t,11) —10 Au(t+1,-60)
Ry : food-smell(t,9) A nasty-smell(t,11) —;0 Au(t+1,-10)
Rio: vision(t,wall,1) — .5 Au(t+1,-11)
— 75 Au(t + 1,—60)

Figure 7.17: Theory learned in the nasties world

Table 7.2 shows the weight (n,) and expected utility (EU;) for each rule,
and gives the substitution sets (S;, a list of rule numbers), final weights (m,), and
overall expected utilities for the initial plan space and for the three candidate learning
goals (nasty-smell, food-smell, and vision). Intuitively, we expect nasty-smell
to have the highest value, because it appears most frequently.

The value of each potential learning goal is the expected utility of the plan

space formed using the augmented world model minus the expected utility of the

122

Initial

plan space nasty-smell food-smell | vision
Rule | n, | EU, |[S | m, S, [m, | S; [m, [S, |m,
Ry 28 -10)11 | 28 1,2,4,7,8 4 1 28 |1 35
R, T| 665112 {7 1,2,4,7,8 - 2 7 2 7
R; 3 6013 |3 1,3,4,7,8 - 2 7 2 7
Ry 2 1514 |2 0 1,2,4,7,8 - 4 6 4 2
Rs 2 1104t 5 |3 1,2,4,5,7,8 - 14,5 - 5 3
Rs 1 26016 |1 1,2,4,5,6,7,8 | — 1,4,56 | - 6 1
R, 1 90 7 1 1,2,4,7,8 57 | 7 1 7 1
Rs 11| 608 |11 1,2,4,7,8 - |8 11 (8 |11
Ry 1 10419 |1 1,2,4,7,8,9 - 1,8,9 1 9 1
Rio 41-47.751 10} 4 1,10 - 10 4 1,10 | -

WExpected utility || -37 | 83.4 [-26.3 | -32.1 I]

Table 7.2: Plan space utility for learning goals

initial plan space:

V(nasty-smell) = 83.4—(=37) = 1204
V(food-smell) = -—26.3-—(-37) = 10.7
V(vision) = -321-(-37) = 49

As expected, nasty-smell has a high value: if the agent could always choose a plan to
predict its value, it would always choose the value 15, leading to Au = 90, (according
to its theory). food-smell has a slightly higher value than vision; this is because
being able to determine values for the former would allow the agent to avoid applying

rules Rs and Rs, both with large negative utility.

Results

The benefit (in terms of added utility) of adding high-value learning goals
can be seen in the tests shown in this section. The relative values of the goals match
well with intuitions about which goals are useful, given the agent’s theory. Of course,
an incorrect theory will lead to bad decisiohs from an omniscient observer’s point of
view, but the decisions are still rational for the agent.

The current goal values only represent the utility gained by learning them,

and does not include the associated costs of learning and planning with an additional

123

theory. In order for the agent to decide automatically when it is worth adding a goal,

a model of these costs is needed.

7.3 Conclusions

The tests clearly show that PR is learning: the predictions made by its
learned theories are significantly better than chance. However, the results do not
show perfect accuracy, due to the complexity of the domain as well as limitations of
the agent.

The focus of the learning mechanism in PAGODA was on the probabilistic
representation and evaluation of theories, and not on the heuristic search for theories.

The search procedure used by PAGODA works well enough that good theories can be
found, as shown in the tests, but needs a sounder theoretical foundation and a more
efficient implementation. The variability of the timing results is most likely due to
anomalies in the search which have not been analyzed or measured; this is supported
by the apparent correlation between time spikes and theory shift.

An ideal heuristic search procedure would be not only theoretically sound
(provably correct and efficient) but incremental: that is, it would not store all previ-
ous instances to be reprocessed when new observations arrive. Incremental learning
algorithms are necessary to avoid the steadily increasing costs of processing new ob-
servations that are evident in the test results.

Another open area for future research is planning using the learned proba-
bilistic theories. The simple forward-chaining search without pruning that PAGODA
currently uses is too simplistic and cumbersome to allow the agent to make good
decisions. Opportunities for improvements to the planning mechanism are discussed
in Chapter 9.

The most important conclusion to be drawn from these tests is that au-
tonomous intelligent agents such as PAGODA are very complex systems, in which it is
difficult to isolate and measure the effects and behavior of the individual components.
However, we believe that the tight conceptual integration of the system is essential,

and that only by continuing to develop all of the components in parallel can the

124

performance be improved.

125

Chapter 8

Related Work

The goal of the research described in this thesis is to build an autonomous,
resource-bounded learning agent which can function in a variety of environments.
There are many issues involved in intelligent agent design, and the interrelations
between them are complex. Most existing research addresses only a few of these
issues, and tends to ignore the relations between them. In particular, very little work
has been done on the problem of autonomous learning under uncertainty.

In the next section, we present a system of axes along which machine learn-
ing research can be classified, discuss where an ideal system would lie, and classify
PAGODA in terms of the axes. Section 8.2 gives some background on the problem
of inductive learning, including the philosophy of induction and early machine learn-
ing work. Section 8.3 presents previous work on autonomous learning and related
problems. Section 8.4 presents a variety of approaches to the problem of defining
and changing concept learning representations. Finally, Section 8.5 discusses existing
work on probabilistic planning.

Related work on learning under uncertainty was dxscussed in Chapter 2.

8.1 Classification of Machine Learning Research

We have developed a set of axes (Figure 8.1) along which machine learning

research can be classified. The axes are broken down into four subgroups: character-

Agent’s characteristics:

Autonomous

- -
Knowledge-free = >
Goal-directed = -
Experiment generating %= >
Incremental learning = —e— —
Quality of observations:
Precise = —
Accurate = >
Theory characteristics:
Probabilistic = —a- >
Complete - -
Bias characteristics:
Declarative = —
Fixed - —

126

Teacher required
Knowledge-intensive
Data-driven

Event-driven

Batch learning

Imprecise

Inaccurate

Deterministic

Incomplete

Implicit
Changeable

Figure 8.1: Axes for Classifying Machine Learning Systems

istics of the agent’s learning system, quality of the observations, characteristics of the

learned theory, and characteristics of the learning bias.

Agent’s characteristics: The agent may be characterized by the degree of super-

vision required, the amount of background knowledge used in learning, how

the agent decides what to learn, whether the agent actively experiments on its

environment, and whether the agent learns incrementally or all-at-once.

Quality of observations: The observations may be more or less precise (i.e., grain

size may vary) and more or less accurate (i.e., degree of noise may vary). These

127

attributes will depend on the agent’s sensors.

Theory characteristics: The theories learned may be nondeterministic (in the
sense that they explicitly represent uncertainty about the world) or determin-
istic, and complete (i.e., make a prediction in all situations) or incomplete (oc-

casionally answer “I don’t know”).

Bias characteristics: The input language and hypothesis language will vary; they
may be stated declaratively or be implicit in the learning mechanism, and may

be fixed or changeable.

8.1.1 Ideal Autonomous System

The characteristics of the ideal autonomous agent vary along the axes, de-
pending on the current environment. It operates autonomously, but takes advice from
a teacher when available; operates without any domain-specific knowledge, but uses
a domain theory if it has one; is goal-driven but has enough curiosity to notice signifi-
cant regularities in the data; performs experiments if there is time and the risk factor
is low enough, but simply acts when necessary; and performs incremental learning to
the degree that its limited time and memory resources require.

Obviously, an agent’s behavior and performance will be affected by the qual-
ity of its sénsors, but an ideal agent should be able to function as well as possible
regardless of the degree of precision or accuracy of its sensors.

Theories need to express uncertainty in order to be fully general, and an
agent should always be able to make some (possibly probabilistic) prediction, but
should also have enough meta-knowledge about the information used to learn its
predictive rules, and about its information-gathering processes, that it can reason
explicitly about the accuracy of its predictions in order to decide whether to trust
them.

Finally, we believe that background knowledge about the world (which can
itself be learned) should be used to find a declarative learning bias, and that this bias

must be modifiable by the agent in order for learning to be effective in a complex

128

domain.

In other words, an ideal agent exhibits limited rationality. If its background
knowledge is represented as ftﬂly and explicitly as possible, the agent can more effec-
tively determine what it really knows, where the gaps in its knowledge are, and how
it should guide its learning and planning behavior to behave optimally with bounded

resources.

8.1.2 Classification of PAGODA

PAGODA, the agent model described in this thesis, comes closer than any
other single system we know of to meeting these criteria for an ideal agent. It be-
haves largely autonomously, but can accept external input in the form of background
knowledge which is used to select a learning bias. The more precise the background
knowledge is, the stronger its learning biases are. Because of this, it performs well in
both knowledge-free and knowledge-rich environments.

Because PAGODA does not incorporate a model of reasoning with limited
resources, it does not modify its learning behavior in a fully general way: it is always
goal-directed; it does not do experiment generation; and its learning is not com-
pletely incremental. However, because of the modularity of PAGODA’s architecture, a
more intelligent planner and a better model incremental learning could be added to
PAGODA, af:hieving generality along these axes.

PAGODA does not make any assumptions about the content or quality of its
sensors—although of course its learning capacity will naturally be limited by inade-
quate sensors. Because the theories it learns are probabilistic, noisy sensor data or
an inability to distinguish different world states simply cause PAGODA to build a less
accurate theory. The effects of sensor inaccuracies and limitations were discussed in
Chapter 6.

The theories learned by PAGODA are complete probabilistic theories, but it
does not reason about the quality of its theories (that is, it does not use second order
probabilities to reason about how good its predictions are expected to be). In order

to do this, extensions to the probabilistic evaluation techniques and to the planner

129

will be needed. Finally, PAGODA’s learning bias is declarative and changeable, as
desired. The technique for probabilistically evaluating bias can be extended to use
other forms of background kﬁbwledge in selecting a bias.

In the remaining sections, we will indicate the strengths and weaknesses of
research related to this work with respect to our learning classification of the “ideal”

system.

8.2 Inductive Learning

The problem of induction has two parts: first, how can an agent reason from
observations to predictive rules or to specific predictions; and second, how can this
reasoning process be justified?

Hume’s skeptical view of induction [Hume, 1975] was that induction is not
rational, and so the second question has no answer. Goodman’s “new riddle of in-
duction” [1983] shifted the focus from the latter question to the former: rather than
attempting to justify induction (which, he argues, cannot be done) we should define
precisely what is meant by a valid inductive inference. Goodman concludes that the
problem can be reduced to defining which regularities we are willing to consider in
forming inductive hypotheses. Specifically, which of our predicates, in a given induc-
tive context, are projectible; that is, which properties of past objects may be projected
onto future similar objects?

In the field of computational learning theory, analysis of induction has tra-
ditionally been based on Gold’s theory of inductive inference [1967]. His definition
of the problem is as follows: an agent is provided with a sequence of examples that
are classified as positive or negative instances of some concept.’ After each instance
is presented, the agent must “guess” what the definition of the concept is. A concept
class is learnable if there exists an a.lgonthrn that the agent may use such that, af-
ter some finite time, all of the agent’s guesses will be correct (that is, the algorithm
converges to the correct concept in a finite number of instances). This paradigm is
known as learning in the limit.

More recently, Valiant [1984] expanded this analysis to allow probabilis-

130

tic convergence and to provide a better model of the computational complexity of
learning. A concept class is PAC-learnable (PAC stands for “probably approximately
correct”) if there exists an Aalgorithrn that, with probability 1 — §, finds a concept
that has error less than or equal to €, using a number of examples that is polynomial
in 1/€ and 6. Later research has extended this model to analyze the effects of noise
[Angluin and Laird, 1986, Kearns and Li, 1987) and to allow arbitrary cost functions
[Haussler, 1989].

The machine learning community has generally viewed induction as a prob-
lem of searching a space of potential hypotheses to find a consistent one. Michalski’s
description of the Star system [1983] gives a large set of inference rules, which can be
thought of as operators for searching the space. These operators include both selec-
tive generalization rules (e.g., dropping a condition or climbing a generalization tree)
and constructive induction rules (e.g., forming new terms by counting arguments or
by generating chain propertie‘s).

Muggleton [1988] used the principle of inverse resolution as the basis for
inductive inference in CIGOL. Induction is modeled as a complementary technique
to deduction, involving finding a theory that would deductively predict the data. The
theory is found using operators that are inversions of the resolution steps of logical
deductive inference.

One of the limitations of all of the systems presented here, and indeed of
most machine learning systems, is that they only learn deterministic theories. Even
the PAC model is intended to analyze learnability where the true concepts are deter-
ministic. In Chapter 2, we presented some approaches from probability theory and
machine learning that can handle nondeterministic and noisy environments. Those

systems, though, represent only a small fraction of machine learning research to date.

8.3 Autonomous Learning

Existing work on autonomous learning falls primarily into two categories:
discovery systems, which do concept learning without requiring a teacher to classify

instances, and conceptual clustering techniques, which create classifications (“clus-

131

ters”) for unsorted data. We do not survey conceptual clustering techniques, since
they are not intended to be used for predictive learning.

Research on discovéfy has focused on two tasks: scientific theory formation
and exploring a robot world. Research on the former includes AM, Eurisko and the
BACON systems. Research on the latter includes Kuipers’” Map-Learning Critter,
Rivest and Schapire’s work on learning DFAs, and Mitchell et al.’s research on robot

manipulation.

Scientific Theory Formation

A number of Al systems have been built to perform scientific discovery
in a variety of domains. These systems generally incorporate hand-tailored domain
knowledge and heuristics for generating theories in the domain.

AM [Lenat, 1979] discovers mathematical and set-theoretic concepts. It uses
an “interestingness” heuristic to evaluate new concepts, which are found using heuris-
tic production rules. AM is essentially a best-first search with carefully tailored search
operators (the heuristic production rules) and evaluation function (the interestingness
beuristic).

EURISKO |[Lenat, 1982a, Lenat, 1982b, Lenat and Brown, 1984] is an ex-
tension of AM that adds a heuristic-description language, allowing the system to
be applied to new domains and to find new heuristics using a meta-discovery pro-
cess. Domain-specific information is still required, but the meta-rules for finding new
heuristics are somewhat more general. Still, the heuristics are ad hoc, with no formal
justification, and the system must be fine-tuned by hand.

BACON [Langley et al., 1983, Langley et al., 1986] discovers empirical laws
of chemistry by incorporating heuristics which examine experimental data to find
regularities. Some fairly general heuristics are used, but the system does not have
methods for evaluating and comparing multiple theories.

None of these systems have a theoretically justified method for choosing
among competing theories. Perhaps more importantly, none directly address the

question of scientific bias. Kuhn [1962] argues convincingly that existing theories and

132

paradigms provide the basis for scientific experimentation and theory formation, by
providing an initial bias and guiding the search for questions to ask. In order for
automated systems to use these biases, appropriate background knowledge must be
identified and incorporated in their design. However, the system must be capable
of overriding its initial beliefs and forming novel theories, or it will never discover

anything new.

Exploring Unfamiliar Environments

The Map-Learning Critter (MLC) [Kuipers, 1985] learns the structure of a
simulated environment, and interprets its own actions and senses as they affect each
other via the environment. The MLC embodies a strong a priori hypothesis that
the environment is a large space made of places connected by paths. The learning
process, therefore, consists of constructing a cognitive map of the environment. It does
this by classifying actions as “turn-like,” “travel-like,” or “other,” finding inverses,
and exploring the environment. The exploration strategy consists of determining the
current place, exploring the current path, and exploring the network randomly.

The MLC does not work well in complex environments or environments that
are not “map-like” (i.e., that contain objects that can be manipulated or states that
can be affected without moving). “Other” actions are simply ignored. Also, many
assumptions and definitions are built in; these place a strong constraint on the types
of worlds that can be learned, and therefore make learning easier in these particular
worlds, but impossible in more general worlds.

A method for learning the exact structure of a deterministic finite-state
environment is described in [Rivest and Schapire, 1987]. A perfect model consists of
a set of canonical tests (sequences of actions leading to a predicted sensation) and
the values of the canonical tests in the current state; the inference procedure learns
these canonical tests. W, a set of tests to be examined, is initialized to contain
the set of sensations, and the set of canonical tests is initialized to be empty. The
least (shortest) test t is removed from W and is tested for equivalence to a known

canonical test. Equivalence is determined by repeatedly executing the new test until

133

the outcome becomes periodic; randomization is used to increase the confidence that
true periodicity has been found. If t’s outcome is not then found to be equivalent to
some existing canonical tes.t,' it is added to the set of canonical tests, and for each
action a, a new test at is added to W. This process is repeated until W is empty.
Because of the need for the tests to become periodic when executed repeatedly, the
probable correctness of the method can be proved in environments where the effects
of actions can be reversed, and in permutation environments in general. However, its
efficacy in other types of environments is not known.

Mitchell’s recent work on robot manipulation [Mitchell et al, 1989] uses
a variation of explanation-based learning (EBL) driven by an incomplete domain
theory. Uncertainty derives from a limited ability to observe the world and from
complexity of computations. The planning mechanism constructs a strong plan (one
that succeeds for all possible outcomes) if one can be found; if not, a weak plan (one
that succeeds for some possibie outcome) is constructed using the incomplete domain
theory. Execution monitoring is used to stop the plan if and when failure is observed,
construct a plausible explanation for the failure (based on general physics knowledge),
and infer general conditions that would cause or avoid the error. When the goal is
achieved, the domain theory is updated to reflect the success of the final plan.

Both the MLC and Rivest and Schapire’s method work only in deterministic
environments. Mitchell’s work deals with uncertainty in the sense that the plausi-
ble theories generated are not necessarily correct, but since it does not represent
uncertainty explicitly, it is not clear how well it would deal with highly complex

environments or environments with true randomness or noise.

8.4 Bias

Mitchell [1980] showed that in order for learning to take place, the system
must have some basis for choosing one consistent theory over another; that is, the
search space must be biased, either because it contains only a subset of the possible
theories, or by use of a preference function. In many cases, this bias can be represented

in the language used for learning.

134

Rosch’s work on basic concepts [1976] and Goodman’s theory of projectibil-
ity [1955) emphasize the effects that language has on what hypotheses we form (and,
conversely, the effects that léirning has on the language we use). Rosch showed that
there are certain levels of descriptions that are more salient than others for purposes
of classification (e.g., “chair” is a basic concept, and is more likely to be used to de-
scribe a new concept than either “furniture” or “rocking chair”). Goodman’s theory
states that predicates that have been used in the past to form theories should be more
likely to be used in the future; these projectible predicates reinforce themselves.

Research on representing bias declaratively is presented in the next section;

Section 8.4.2 discusses approaches to shifting bias.

8.4.1 Declarative Bias

Russell and Grosof [1987] use determinations to describe a concept language
bias declaratively. A determination provides a sufficient set of features for learning
a particular concept. If determinations are chained together, the chaining process
can be used to find a tree-structured bias, where the interaction of the features is
constrained by the tree structure [Russell, 1988].

Using determinations to represent bias ignores the questions of what to do
if the background knowledge is incomplete or incorrect, so that the agent finds it
impossible.to learn a good concept definition, and of how to express a preference
ordering on possible languages.

One way to extend the determination approach is to include operationality
information about predicates, and find the best (most operational) bias [Getoor,
1989]. Another approach is to use a probabilistic version of determinations. Russell
[1986] discusses probabilistic forms of determinations, but not how to use them for
this purpose. The work described in this thesis on probabilistically evaluating biases
extends the concept of declarative bias to probabilistic domains.

Martin and Billman’s variability bias [1991] is similar to the uniformities
used by PAGODA, but captures more information about the expected distribution

of outcomes than uniformities do. However, it is not clear how to form variability

135

biases automatically. Also, the variability biases are used to weight expectations
for predictions, rather than as a tool for selecting a bias. In other words, a single
variability bias is used both to determine which features to examine and to weight
the predicted distribution according to the expectations provided by the variability

bias.

8.4.2 Shift of Bias

When a learning system’s initial bias—whether provided by the designer or
selected by the system automatically—is determined to be incorrect, the agent should
be able to select a new bias. Solving this problem requires determining when the
correct bias is inadequate, finding alternative biases, possibly evaluating competing
biases, and finding a theory using the new bias.

Utgoff’s STABB [1986] is the earliest work that directly addresses this prob-
lem. STABB uses version-space collapse as a signal that the current bias is inadequate
(since no consistent concept can be found). A search is then initiated for a new term
to add to the feature hierarchy that captures a necessary distinction. When the term
is found, the version space is recomputed from scratch using the new feature hierar-
chy. STABB assumes deterministic theories, is computationally expensive (since the
version space must be recomputed every time a new term is added), and can only
shift the bias in a very limited way.

Muggleton’s Duce [1987] and CIGOL [1988] both form new terms as part of
the inductive learning process. The terms learned represent disjunctions which allow
more concise descriptions of the system’s theories. Muggleton assumes deterministic
theories, and requires an oracle to tell the system whether the new terms are worth
adding. .

STAGGER [1987a) adds new features—conjunctions and disjunctions of ex-
isting features—based on the sufficiency and necessity values of the existing features.
This technique is basically ad hoc, and provides no formal consideration of the trade-
offs associated with adding new features. However, since the theory representation

represents the influence of features independently, adding a new feature does not

136

require any recomputation of the existing theory.

A number of researchers have investigated the problem of constructive in-
duction; that is, of generafihg new features to make learning more efficient or the
representation more expressive. A session of the 1991 Machine Learning Workshop

was devoted to research on this topic [Birnbaum and Collins, 1991].

8.5 Planning

Planning a course of action in a probabilistic domain is a relatively unex-
plored research area. “Classical” Al planning techniques require a complete, deter-
ministic world model, where the outcome of applying an operator in a given situation
is known with certainty. Planning in this case becomes a relatively straightforward
problem of heuristic search. In domains containing uncertainty, the planning prob-
lem is more complex, requiring the agent to maximize its probability of success rather
than finding a path that is necessarily guaranteed to reach a goal state. In addition,
agents with bounded resources must balance the amount of time spent planning with
the cost of deliberation.

Decision theory [von Neumann and Morgenstern, 1947, Savage, 1977] pro-
vides a formal theory of rational action which can be used to make decisions in
uncertain domains. Decision theory uses information about probabilities and utilities
of events to select optimal courses of action; computational limits can be taken into
account by including models of the cost of delaying actions [Pollard, 1969).

Al researchers have recently begun to study the direct application of decision
theory to intelligent real-time behavior. Protos [Horvitz et al., 1989] is a decision-
theoretic system for real-time control, which uses the expected value of computation
to decide whether to compute further or whether to act. Smith [1987] has developed
a decision-theoretic approach to controlling heuristic search which uses models of the
costs and probabilities of achieving goals to control the search process. Russell and
Wefald [1991] address the general problem of limited rationality at an abstract level,
particularly the use of metareasoning to control deliberation.

In the following sections, we survey two other approaches to planning with

137

uncertainty: reactive strategies are discussed in Section 8.5.1 and deliberative plan-

ning with uncertain knowledge is discussed in Section 8.5.2.

8.5.1 Reactive Strategies

Reactive techniques address the problem of planning in complex, nonde-
terministic domains by providing an agent with a strategy (set of condition-action
rules) that allows it to “react” quickly to any given situation [Brooks, 1991, Agre
and Chapman, 1987]. The primary problem with reactive systems is that the strate-
gies are difficult to build. Recently, research has begun to focus on learning reactive
strategies.

Delayed reinforcement learning [Kaelbling, 1990, Sutton, 1990] is a method
for learning to associate optimal (maximum-utility) actions with each possible situ-
ation. Utilities, or reinforcement values, are propagated backwards and associated
with the actions that led to them. Eventually—given enough observations—the sys-
tem will converge to the actual expected discounted utility of actions; these utilities
provide the system with an optimal reactive strategy (in every situation, the system
should choose the action with highest expected utility). Current research in this area
does not adequately address the problem of generalizing these utility models (but see
[Chapman and Kaelbling, 1990] for preliminary work on this problem). Also, the con-
vergence of this method can be extremely slow, and convergence is only guaranteed
if every possible situation is observed an unbounded number of times.

Dyna-Q [Sutton, 1990] uses a similar technique to learn a policy. The plan-
ning method is refined by using a Boltzmann distribution with annealing to choose
actions: the probability of selecting an action depends on its ‘expected value, and
the likelihood of selecting the best action under this distribution increases as more
evidence is collected. An exploration bonus, proportional to the time since an action
was last tried in a particular situation, is included, allowing the agent to continually
test its beliefs and thus cope with changing environments.

Robo-Soar [Laird and Rosenbloom, 1990] uses the Soar learning mechanism

of “chunking” to generalize previously generated plans and store them for future

138

problem solving. These stored plans, which are similar to macro-operators, allow the
system to solve similar problems more quickly. A set of stored plans is equivalent to

a set of reactive rules for guiding future behavior.

8.5.2 Deliberative Planning with Uncertainty

A number of researchers have developed methods for intelligent systems to
build plans using probabilistic world models by propagating error and uncertainty.

Brooks [1982] gives a symbolic method for propagating error bounds through
a robot plan (sequence of motions and senéing operations with conditional branches).
The errors include placement of objects, tolerances in the manufacturing of the ob-
jects, and positional error of the robot. Plans are refined by adding operations and
changing preconditions and constraints until the resulting plan is determined to be
feasible (i.e., to be guaranteed to succeed).

Lozano-Pérez [1984] defines a compliant motion as one that uses feedback
(e.g., pressure readings from a robot arm) to reduce uncertainty and control the
robot’s motion. His method develops a robot plan using compliant actions which is
guaranteed to reach a goal state from all possible initial states. The plan is generated
by backward chaining from the goal state, propagating positional uncertainty.

Qi and Poole [1991] solve the problem of navigation under uncertainty by
modeling distances between points as switches that have a specified probability of
being open (so that the path between the points is impassable) and a cost if closed (i.e.,
the cost of traversing that path). They treat the model as a finite-state Markovian
decision problem, and give a minimal-cost solution for systematically exploring the
environment until arriving at the goal (if possible).

Temporal projection [Drummond and Bresina, 1990] is a planning method
that attempts to maximize the probability of goal satisfaction by performing a fo-
cused beam search in the space of possible action outcomes. The goals are simple
primitive states; the system does not attempt to maximize overall utility, or to resolve
conflicting goals.

Kanazawa and Dean’s method of probabilistic temporal reasoning [1989]

139

represents the world model as an influence diagram with an explicit temporal com-
ponent. At compile time, this model is run through simulations to determine a fixed
optimal time for deliberation (i.e., the amount of computation time that maximizes
average expected utility in a real-time decision situation). This optimal time is used
to solve decision problems at run time. The world model is fairly simplistic, though,
and grows quickly in size as the temporal complexity grows. Additionally, since the
optimal time is determined at compile time, continuous learning cannot be incorpo-

rated into the process.

140

Chapter 9

Future Work and Conclusions

PAGODA provides a model for building intelligent autonomous agents that
learn and function in complex, uncertain environments. Methods for selecting learn-
ing tasks, representing probabilistic knowledge, selecting and changing learning bias,
learning probabilistic theories, and planning with the learned theories are integrated
into a single system.

PAGODA has been implemented and tested in a simulated robot domain
(RALPH), and the model does allow effective learning in this domain. However, a
number of open problems remain to be solved before PAGODA can be extended to
more complex domains.

We present some of these problems in the next four sections, breaking them
down into the same four research areas as before: Goal-Directed Learning, select-
ing a bias, probabilistic learning, and probabilistic planning. Finally, Section 9.5

summarizes the contributions of the thesis and presents our conclusions.

9.1 Goal-Directed Learning

The basic principle of Goal-Directed Learning (GDL) is that intelligent agents
should learn theories that will maximize their average utility in the long run. This
means constraining the set of features learned in a complex domain to those which,

if predicted by the world model, would enable the most effective planning. GDL does

141

this by selecting the features that will enable high-utility plans to be formed.

Some important factors were not included in the analysis. In particular,
only single-step plans are evaluated, and only directly observable properties of the
environment (i.e., sensory inputs) are learned. The result of these limitations is that
PAGODA, using GDL as it currently stands, is only able to select features that allow
relatively short-term plans to be formed. We present below some approaches to
overcoming these limitations by expanding the analysis.

Additionally, the cost of adding new learning goals is not computed in the
present system. It is clear from the tests in Chapter 7 that learning additional goals
has a significant impact on the system’s computational costs. Since the current
implementation of PAGODA is not real-time (the learning algorithm is always allowed
to run to completion), there is no negative effect on utility. However, in actual
resource-bounded systems, this negative effect will have to be determined. Reserch on
decision-theoretic approaches to real-time control such as metareasoning (Section 9.4)
may provide some insights into the problem of determining and controlling the costs

of learning.

Value of Information The computation of the value of knowing a feature only
looks at the immediate effect of predicting the feature on the agent’s utility. Specif-
ically, it gives the expected immediate utility of knowing the feature. The value-
of-information computation should be extended to consider explicitly the expected
future utility of learning the feature, by considering intermediate effects caused by
the increased ability to predict other learning goals that may then lead to increased
utility.

For example, if the agent had learned how to predict when it would be at
food (namely: when it was near food and moved towards the food), predicting when it
would be near food would allow it to plan further ahead, thus maximizing longer-term
utility. Under the single-step assumption, predicting near-food has no value because
the single-step plans that can be formed given near-food do not have high utility: a
two-step plan is needed to achieve the utility increase from eating food.

One way of achieving this would be to propagate the utility of learning a

142

feature backwards. Suppose a previously formed learning goal F' (at-food in the
above example) had value V(F), representing the utility gain from knowing F. A
new learning goal G (near-food above) contributes to utility in two ways: first, it
may allow better immediate predictions about utility, leading to improved single-step
plans. This contribution is represented by V(G). Second, if G can be used to predict
F, the agent can plan to achieve the value of G that will then allow it to select the
value for F that maximizes a two-step plan. The effect of knowing G on predicting F
can be measured by the decrease in variability of F' when G is known. The decrease
in variability (or, equivalently, increase in predictability) is given by the uniformity
of F given G, minus the prior uniformity of F (U(F|G) — U(F)). The two-step plan
can be improved by this difference times the utility that would be gained if F' were
predicted precisely.

Generating Internal States The agent should be able to hypothesize and learn
about unobservable properties of the environment that affect its sensory inputs in-
directly, by using its memory to preserve state. For example, PR has no direct way
to determine that it is standing on food (it can smell the food, but can’t distinguish
its smell from other nearby food). If it creates a new term (which we refer to as an
“internal state”), at-food(t), that it maintains by turning it on whenever it sees food
and moves forward, and turns off after eating or moving off of the food, he can form
better plans. Of course, it will have to learn when to turn it on and off, and decide
when such an internal state may be useful at all.

Internal states may be useful when an action has different effects in what
appears to be identical states. If the agent cannot find a description of its sensory
inputs to distinguish between the two outcomes, there may be some hidden feature of
the environment causing the different outcomes. (On the other hand, it could simply
be some random effect, or noise in the inputs or motor actions of the agent, in which
case no good theory will be found to predict the hypothesized internal states.) By
forming an internal state (a new feature) that is true when one outcome occurs at
time ¢t + 1, and false when the other outcome occurs, the agent can retroactively check

what happened at the previous time step (t —1) and use inductive techniques to form

143

a theory to predict the intervening internal state.

We have developed an approach that would allow PR to generate internal
states automatically in deterministic domains; the method is described in Appendix C.
For probabilistic domains, uniformities will have to be used rather than determina-
tions, and probabilistic analysis will be necessary to determine when and whether to
add the internal states. To fully incorpora.te the technique into PAGODA, the agent
will have to be able to determine the value of knowing such an internal state; the
bias-evaluation method will have to be modified to allow internal states on either side
of a rule; and the learning module will have to be able to learn theories about the

internal states.

9.2 Selecting a Learning Bias

The bias evaluation technique we have presented is useful in domains for
which uniformities, a learning curve, and the time-preference function -are known.
To make the technique more widely applicable, uniformities can be learned by the
agent, the analysis can be extended to cover other types of background knowledge and
biases, and learning curves and time-preference functions can be found for a variety
of domains and prediction tasks.

If PAGODA’s theories do not make good predictions, its representation may
be insufficient to form a good model of the world. The agent should be able to
recognize this situation, and shift bias when appropriate.

Finally, the thesis does not discuss the problem of sea.rchxng the space of
biases to find candidate biases. In the case of a large feature space, this problem will

have to be addressed.

Background Knowledge Uniformities are simply a form of probabilistic knowl-
edge to which inference methods and learning techniques can be applied. Automated
methods for reasoning with uniformities (e.g., chaining (U(X|Y) and U(Y'|Z) yield
U(X|Z)) and combining (U(X|Y) and U(X|Z) yield U(X|Y A Z))) would allow the

system to determine values for biases that aren’t explicitly represented as uniformities.

144

Additionally, the probabilistic learning techniques of Chapter 6 should be
extended to learn uniformities. Being able to learn uniformities would help to make
the system more effective as an autonomous system, since it could learn background
knowledge to use for later learning tasks, thus generalizing its previous learning ex-
perience.

In addition to uniformif.ies, other types of background knowledge may be
available or learnable, such as knowledge about relevance or independence, qualitative
theories, and partial domain theories. The value-of-bias analysis should be extended
to compute the estimated accuracy of various biases, given a variety of forms of
background knowledge.

Another general type of background knowledge includes knowledge about
operationality (i.e., cost of evaluation of features in the domain). Including opera-
tionality information would require extending the value-of-bias computation to com-
pute expected utility of learned theories using a given bias, rather than simply their

expected accuracy.

Types of Bias The analysis given in Chapter 5 focused only on selecting feature
sets, and not on other aspects of the learning bias such as syntactic structure or
feature value hierarchies.

Evaluating syntactic bias may require additional knowledge or assumptions
to be evaluated in our framework. For example, suppose the agent wishes to determine
whether (for a given feature set) to use &-DNF or k+1-DNF. The speed of convergence
can be compﬁted since we know the V-C dimension, but uniformities do not give
the relative expected accuracy. Either some other form of background knowledge
that specifies these expected accuracies, or a general method for ‘estimating expected
accuracy of various syntactic biases given a uniformity, is needed; once the expected
accuracy is found, it can be incorporated directly into the analysis given in the thesis.

Tree-structured bias [Russell, 1988] may be useful in many domains to con-
strain the syntactic structure of theories. Russell’s paper discusses tree-structured
bias resulting from combining determinations. Since we are using uniformities, we

need methods for combining them, and for evaluating and representing the resulting

145

tree-structured bias.

Another useful type of bias is internal disjunctions, represented as feature
value hierarchies for categorical variables or ranges for numerical variables. Deter-
mining these in advance can help significantly in guiding learning. One question of
particular interest is: if the agent has a particular object stored in multiple hierar-
chies, which should be used in a barticular learning task? This problem is equivalent
to determining the relevance of generalizations to a concept to be learned.

For example, the values of the property “color” may be organized into one
hierarchy that generalizes hue (red, blue, green) and another that generalizes intensity
(bright, dark, drab). Learning whether or not an object is edible may entail using the
former hierarchy; learning whether or not an object is manufactured may require the
latter. Some learning tasks may require both; for others, neither may be appropriate.

If one of the stored hierarchies has been more useful in the past for a partic-
ular sort of learning task, the agent should use it again, just as it reuses features that
have proved relevant in the past. The agent will need an appropriate description of
the hierarchies and a representation for background knowledge about the relevance of
hierarchies, and perhaps knowledge about the hierarchies themselves (e.g., character-
izations of learning tasks for which they have been useful, which can be generalized

to predict future areas of relevance).

Value of Bias We have relied on particular estimates of the learning curve ¢(t) and
time-preference function 7 (t) for computing the value of a bias. A precise character-
ization of domains would allow the time-preference function to be chosen according
to the properties of the domain. Similarly, characterization of learning algorithms
(e.g., some have better techniques for eliminating irrelevant attributes; some require
certain restricted syntactic biases) would allow g(t) to be determined automatically.
Alternatively, empirical tests may be run using a particular learning algorithm to
determine its actual learning curve.

In any case, the agent should be able to dynamically modify both the time-
preference function (for example, if its long-term behavior is poor, it may wish to

increase the discounting parameter) and the learning curve (by examining its actual

146

learning behavior).

Shift of Bias PBE providés a method for selecting learning biases before learning
has started. A completely autonomous agent will need to shift bias when it decides
that an alternative bias is expected to perform better.

One approach to shiftixig bias would be to examine the current theory and
try to determine why a predictive failure occurred. For example, in a UPT such as
those learned by PAGODA, if all of the rules make poor predictions, it may be a
syntactic restriction of the bias that is problematic (e.g., allowing disjunctions may
be necessary). On the other hand, if one particular rule is failing to distinguish what
appear to be significantly different situations, adding a new feature to the domain may
be more appropriate (e.g., an internal state as defined in Section 9.1). The current
theory and unexplained data can be used to guide the search for an appropriate
internal state.

In a deterministic world, an agent expects to be able to learn complete and
correct concepts. When the current concept space does not contain a theory which
is consistent with all past observations, the agent’s only option (other than failure)
is to expand its concept space by relaxing either its syntactic bias (e.g., allowing
disjunctions) or its semantic bias (e.g., including features that were previously thought
to be irrelevant).

In the nondeterministic case, the agent does not expect to find a consistent
theory. Instead, the signal that a different representation might be preferred is given
by a failed expectation—i.e., any time the most likely outcome does not occur. In this
case, the agent may settle for the imperfect theory, try to find a better theory under
the current bias, or choose an alternative bias. Which of these options to choose
will depend on several factors, including how accurate the best theory in the current
language is, what the alternative representations are and the agent’s past experience
with representation shift.

In PBE, if the current bias is not performing as well as expected, it should
be re-evaluated and compared to alternative biases. There is still a tradeoff involved:

although the accuracy is lower than expected, the learning effort has already been

147

expended, so the expected learning curve is flatter than for a new bias.

The current bias is expected to reach an accuracy of p after 7n instances,
as given in Equations 5.7 and 5.8. In order to avoid shifting bias too frequently, the
agent must wait until the learning process appears to have actually converged (i.e.,
to have stabilized on a single best theory) or until a large number of instances have
been processed. The value of the current bias can then be computed, using the actual
accuracy and a flat learning curve (equivalent to assuming that the theory will get
no better), and compared to the value of the next best bias. If the alternative bias’
value is higher, representation shift should occur, and learning should continue with
the new bias.

An alternative method would be to make bias shift an intrinsic part of the
learning process: initially learn with the best bias, or simply with the single most
relevant feature. Each time learning converges using one bias, the next most relevant
feature would be added and learning restarted with the new bias. The old theory
could be used for predictions until the accuracy of the new theory appeared to have
surpassed the old one.

A number of variations on this approach are possible: if the agent has enough
computational resources available, it can learn with several biases simultaneously and
use whichever theory appears the best. This approach would provide the “envelope”
of the learning curves of all of the biases, but would require significantly more pro-
cessing time than using a single bias. Another approach would be to use the theory
learned under the previous bias to “seed” the search in the new bias. Any savings,
or transference, that can be gained by doing this will speed the search process and
improve overall accuracy.

The advantage of this general approach is that initial iea.rning quickly con-
verges to reasonably good accuracy, and later learning allows the learner eventually to
reach an optimal prediction level. The disadvantage is that if no transference occurs
between biases, the cost of learning can become very high. Additionally, the ques-
tions of which biases to use at each stage, and how to determine when convergence

has occurred, still must be answered.

148

Searching the Bias Space We have not addressed the problem of searching what
may potentially be a very large space of biases: we have assumed that we can simply
evaluate all alternative biases and choose the best. However, this will not be feasible
in complex domains. Therefore, heuristics for searching the bias space are necessary.

First, operators for generating “neighboring” biases must be defined. Doing
this requires defining the bias spaée and using the observed data to guide the search
process (as discussed in the previous section). Second, an evaluation function must
be defined: this could be the bias value itself, or an approximation, if the bias-value

computation is too expensive.

9.3 Probabilistic Learning

Chapter 6 describes PAGODA’’s formalism for representing and learning prob-
abilistic knowledge using a language that combines the advantages of first-order logic
and probability. The utility of the formalism lies in the inference method; however,
applying the inference method as it currently stands requires the theory to be of a
restricted form. Additionally, a number of problems relating to the learning process

have not been fully addressed.

Constraints on Theories The constraints on theories are overly restrictive in some
ways: although they allow certain kinds of independence to be captured automati-
cally, it may be desirable to allow more complex interactions. In general, the problem
of deriving a complete conditional probability distribution, given partial knowledge
of the conditional probabilities, is non-trivial. Our model is more complete than, for
example, the noisy-or model used by [Pearl, 1986] and others, but still not able to
represent all possible interactions. Maximum entropy techniques provide a theoreti-
cally sound method for filling in all of the conditional probabilities, given any subset,
but are intractable in the general case. Identifying common types of interactions and

providing general solutions for computing the effects of those interactions is necessary.

149

Evaluating Theories Using point probabilities (i.e., a single numerical value) to
evaluate theories causes the agent to lose useful information. Second-order proba-
bilities, giving certainty values on the first-order point probabilities, or probability
intervals provide additional information that would allow the agent to determine how
likely it is that the current best theory is really better than the alternatives. This
knowledge can be used to guide ekperimentation and exploration in the planning pro-
cess: if the agent believes it to be likely that some alternative theory is better than
the current best theory, it should attempt to collect data to decrease the uncertainty.

Another factor that should be considered when evaluating and selecting
theories is the cost of errors. For example, if a false positive (predicting that a
property holds when it does not) has higher cost than a false negative, then theories
that are less likely to make false positives should be preferred. Additionally, the cost
of using the theories should be taken into account. For example, if some information
is expensive to gather and only reduces uncertainty slightly, it may not be worthwhile.
Decision theory can be used to select the theory with highest overall utility (rather
than simply selecting the most probable theory, as PAGODA currently does).

Searching the Space of Theories PAGODA’s current search techniques for split-
ting and merging rules are essentially ad hoc. The theories generated depend on the
order in which observations arrive, the number of candidate theories maintained, and
the simplicity metric used for evaluation. In some cases, the best theory may never
be found.

Heuristic search for theories is a difficult problem, complicated by the fact
that every new observation changes the probability of theories, which changes the
evaluation function over the theory space. Most existing search ‘techniques assume a
static space to be searched, in which the evaluation function does not change. The
convergence analysis of search techniques in dynamic domains changes drastically,
and has not been addressed in depth by either heuristic search or machine learning

reseatrchers.

150

Incremental Learning Incremental learning techniques process new observations
(updating the current theory) as they arrive, in contrast to batch learning algorithms
which find a theory to describe a set of previously collected observations. We use a
stronger definition of incremental learning techniques, which requires that the learning
method much be resource bounded in both space and time. In order to satisfy this
condition, an incremental learning method cannot simply store every observation and
re-run an essentially batch algorithm as each observation arrives.

The heuristic search method PAGODA currently uses is not incremental by
this definition, as it stores all of the observations (requiring a potentially unbounded
amount of memory) and reprocesses them when the theories are modified (requiring
unbounded computation time).

Most other existing “incremental learning techniques” also fail to satisfy our
definition of incremental learning. Although they generate a new theory after each
new observation, the updating technique often requires examining all of the previ-
ous instances, and almost always requires storing all of the instances. For example,
Utgoff’s ID5 [1988], an incremental decision-tree-building algorithm, stores all of the
observed instances at the appropriate leaf and uses them to decide whether to split
or merge subtrees. COBWEB, a conceptual clustering method [Fisher, 1987b], uses
a similar technique.

We believe that these “quasi-incremental” approaches will be too expensive
for agents with limited resources which must operate in complex domains. However,
many problems arise when designing truly incremental learning algorithms. In par-
ticular, if previous instances are not all stored, the agent cannot know with certainty
how many instances would have been assigned to a newly-formed rule. Heuristics
for estimating the probabilities of these new rules must be developed and analyzed
theoretically and empirically. For example, one heuristic might be to assign a per-
centage of instances proportional to the size of the subspaces formed when splitting a
rule, or to store only a limited number of “boundary examples” representing a set of
particularly important examples [Haussler, 1988]. The adequacy of these approaches

will depend on the representation, inference mechanism, and search techniques used

for learning.

151

9.4 Probabilistic Planning

PAGODA currently ﬁsés a fairly simple forward-chaining mechanism to com-
pute expected utilities of sequences of actions, and selects either the action that leads
to highest expected utility or a random action with a fixed probability (representing
the level of exploration). '

Probabilistic planning (i.e., planning using a probabilistic world model) is a
relatively unexplored field. “Classical” planning requires a deterministic world model.
Reactive planning, a more recent approach, uses hand-tuned production rules rather
than performing deliberative planning from a world model.

The open questions in this field include:
o How should the utility of future rewards be weighted?

e How can degrees of belief in learned theories be incorporated into the planning

process?

e How should the agent balance apparently-optimal behavior (i.e., maximizing
expected utility according to the current world model) with experimentation

and exploration to refine and correct the model?
e How should the agent allocate its time between planning, learning, and acting?

Discounting, weighting predictions from multiple theories, computing a value of cu-

riosity, and metareasoning are methods that may be useful in solving these problems.

Discounting A time-preference model such as that used in PAGODA’s probabilis-
tic bias evaluation technique, expressing the degree to which the agent is willing to
wait for long-term rewards, could be used to compute an expected discounted fu-
ture utility of action sequences. The time-preference model should take into account
factors such as uncertainty of predictions (which becomes exponentially greater as
more predictions are chained together), changeability of the environment, and life
expectancy. Discounting must be integrated into the planning process, and used with

metareasoning (see below) to control search time.

152

Weighting Predictions According to Bayesian probability theory, rather than
simply using the predictions of the best theory (as PAGODA currently does), the pre-
dictions of all potential theories should be combined, weighted by their probabilities,
to get a correct expectation. However, using all theories is computationally infeasi-
ble. The agent should combine the predictions of several of the current best theories.
A formal analysis to determine the probability of correctness, given the probability
of the theories and possibly second-order probabilities reflecting the degree of be-
lief in the first-order probabilities, can be done using techniques from computational

learning theory.

Value of Curiosity The planner described in the thesis takes a random action
with fixed probability, determined by the user. A preferable approach would be to
develop a theoretically justifiable technique for deciding whether to explore. For
example, second-order probabilities on current theories could be used to determine
the rate of exploration: the higher the uncertainty, the more exploration should be
done. Alternatively, rather than selecting either the best action or a random actions,
actions could be selected with probability determined by their expected utility (using,
for example, a a Boltzmann distribution). This problem is essentially equivalent to

the n-armed bandit problem discussed in Section 2.3.4.

Metareasoning In real-time systems, an agent must control the time spent com-
puting expected utility. Choosing an “optimal” action is not useful if finding this
optimal action takes so long that the agent is eaten before it is found.
Metareasoning—reasoning about the relative utility of computational and
external actions—may prove useful in controlling the deliberative behavior of the
agent. This involves more than just deciding whether to plan or act. For example,
the metareasoner may control search so that only the most promising action sequences
are explored, or it may decide to cache pla.n’knowledge by compiling the learned world

model into situation-action rules to be applied in the future [Russell, 1989].

153

9.5 Conclusions

We have provided aL model of learning in autonomous domains that integrates
solutions to the problems of deciding what to learn, selecting learning biases, repre-
senting and learning probabilistic theories, and planning with learned probabilistic
knowledge. The interactions among these problems have been considered throughout;
because of this, our approach is more complete than previous models.

In particular, we have developed a representation (upTs) and inference
method (PBE) for probabilistic world models, a mechanism for autonomous agents
to decide how to focus their attention in complex learning environments (GDL), an
innovative technique for finding a learning bias in probabilistic domains (PBE), and
a Bayesian evaluation technique for probabilistic theories.

Still, building general intelligent agents is an extremely difficult long-term
goal; accordingly, we have discussed some of the most pressing open issues in intel-
ligent agent design. PAGODA is the result of identifying and considering the issues
involved in agent design as they relate to one another, and combining old and new
technologies and ideas in a coherent agent model.

One of the most important open issues in machine learning is incremental,
resource-bounded learning. How do we guide the search for good theories in complex,
nondeterministic domains, when the only evidence we have of the true theory is a
limited sample, and we cannot afford to remember and reprocess all of the observed
instances?

The single most important issue that the machine learning community must
address, though, is the use of knowledge to constrain learning. If we wish to build
agents that can operate in real time in complex, uncertain environments, the agents
must be able to use prior knowledge (gained from previous interactions with the
environment and with other agents) to make future learning faster and more effective.

Agents must not simply learn—they must learn to learn better.

154

Bibliography

[Agre and Chapman, 1987] Philip E. Agre and David Chapman. ‘Pengi: An imple-
mentation of a theory of activity. In AAAI pages 268-272, 1987.

[Anderson, 1980] John R. Anderson. Cognitive Psychology and Its Implications. W.
H. Freeman and Company, 1980.

[Angluin and Laird, 1986] Dana Angluin and P. D. Laird. Identifying k-CNF formu-
}]as from noisy examples. Technical Report YALEU/DCS/TR-478, Yale University,
une 1986. ‘

[Angluin and Smith, 1983] Dana Angluin and Carl H. Smith. Inductive inference:
Theory and methods. Computing Surveys, 15(3):237-269, September 1983.

[Babcock et al., 1990] Marla S. Babcock, Wilma K. Olson, and Edwin P. D. Ped-
nault. The use of the Minimum Description Length principle to segment DNA into
structural and functional domains. In Working Notes: AAAI Spring Symposium
on the Theory and Application of Minimal-Length Encoding, pages 40—44, 1990.

[Bacchus et al., 1988] Fahiem Bacchus, Henry Kyburg, Jr., and Mariam Thalos.
Against -conditionalization. Technical Report 256, University of Rochester Com-
puter Science Dept., June 1988.

[Bacchus, 1987] Fahiem Bacchus. Statistically founded degrees of belief. Technical
Report 87-102, University of Alberta, 1987.

[Bacchus, 1990] Fahiem Bacchus. Representing and Reasoning with Probabilistic
Knowledge: A Logical Approach to Probabilities. MIT Press, 1990.

[Berry and Fristedt, 1985] Donald A. Berry and Bert Fristedt. Bandit Problems: Se-
quential Allocation of Ezperiments. Chapman and Hall, 1985.

[Birnbaum and Collins, 1991] Lawrence A. Birnbaum and Gregg C. Collins, editors.
Proceedings of the Eighth International Workshop on Machine Learning. Morgan
Kaufmann, 1991.

[Blumer et al., 1986] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and
Manfred K. Warmuth. Classifying learnable geometric concepts with the Vapnik-
Chervonenkis dimension. In Proc. 18th ACM Symposium on Theory of Computa-
tion, pages 273-282, 1986.

155

[Blumer et al., 1987] Anselm Blumer, Andrze] Ehrenfeucht, David Haussler, and
Manfred K. Warmuth. Occam’s razor. Information Processing Letters, 24:377-
380, April 1987.

[Board and Pitt, 1989] Raymond Board and Leonard Pitt. On the necessity of Occam
algorithms. Technical Report UIUCDCS-R-89-1544, UIUC, September 1989.

[Brooks, 1982) Rodney A. Brooks. Symbolic error analysis and robot planning. In-
ternational Journal of Robotics Research, 1{(4):29-68, 1982.

[Brooks, 1991] Rodney A. Brooks. Intelligence without reason. In IJCAI 1991.
Computers and Thought Lecture.

[Bundy et al., 1985] Alan Bundy, Bernard Silver, and Dave Plummer. An analytical
comparison of some rule-learning programs. Artificial Intelligence, 27, 1985.

[Buntine, 1990] Wray Buntine. A Theory of Learning Classification Rules. PhD
thesis, University of Technology, Sydney, February 1990.

[Carbonell and Gil, 1987] Carbonell and Gil. Learning by experimentation, 1987.

[Carbonell and Hood, 1986] Jaime Carbonell and Greg Hood. The World Modelers
Project: Objectives and simulator architecture. In Tom Mitchell, Jaime Carbonell,
and Ryszard Michalski, editors, Machine Learning: A Guide to Current Research,
pages 29-34. Kluwer Academic Publishers, 1986. ‘

[Carbonell et al., 1983] Jaime Carbonell, Ryszard Michalski, and Tom Mitchell. An
overview of machine learning. In Ryszard Michalski, Jaime Carbonell, and Tom
Mitchell, editors, Machine Learning. Morgan Kaufman, 1983.

[Carnap, 1950] Rudolf Carnap. Logical Foundations of Probability. University of
Chicago Press, 1950.

[Chaitin, 1975) Gregory J. Chaitin. A theory of program size formally identical to
information theory. JACM, 22(3):329-340, July 1975.

[Chaitin, 1977] G.J. Chaitin. Algorithmic information theory. IBM J. Res. Develop.,
21:350-359, July 1977. }

[Chapman and Kaelbling, 1990] David Chapman and Leslie Pack Kaelbling. Learn-
ing from delayed reinforcement in a complex domain. Technical Report TR-90-11,
Teleos Research, December 1990.

[Cheeseman, 1988] Peter Cheeseman. An inquiry into computer understanding. Com-
putational Intelligence, 4(1):58-66, 1988..

[Cooper and Herskovits, 1991] Gregory F. Cooper and Edward Herskovits. A Bayes-
ian method for constructing Bayesian belief networks from databases. In Workshop
on Uncertainty in Artificial Intelligence, pages 86-94, 1991.

156

[Cover, 1985] Thomas M. Cover. Kolmogorov complexity, data compression, and
inference. In J. K. Skwirzynski, editor, The Impact of Processing Techniques on
Commaunications, pages 23-33. Martin Nijhoff, 1985.

[Cox, 1946] R. T. Cox. Probability, frequency and reasonable expectation. American
Journal of Physics, 14:1-13, 1946.

[Davies and Russell, 1987] Todd Davies and Stuart Russell. A logical approach to
reasoning by analogy. Technical Report Note 385, Al Center, SRI International,
July 1987.

[Doyle, 1988] Jon Doyle. On rationality and learning. Technical Report CMU-CS-
88-122, CMU, March 1988.

[Doyle, 1990] Jon Doyle. Rationality and its roles in reasoning. In AAAI, pages
1093-1100, 1990.

[Drummond and Bresina, 1990] Mark Drummond and John Bresina. Anytime syn-
thetic projection: Maximizing the probability of goal satisfaction. In AAAI pages
138-144, 1990.

[Fisher and Langley, 1985] Douglas Fisher and Pat Langley. Approaches to concep-
tual clustering. In IJCAI, pages 691-697, 1985.

[Fisher, 1987a] Douglas Fisher. Improving inference through conceptual clustering.
In AAAI pages 461465, 1987.

[Fisher, 1987b] Douglas H. Fisher. Knowledge acquisition via incremental conceptual
clustering. Machine Learning Journal, 2:139-172, 1987.

[Fu and Buchanan, 1985] Li-Min Fu and Bruce G. Buchanan. Learning intermediate
concepts in constructing a hierarchical knowledge base. In IJCAI, pages 659-666,
1985.

[Fung and Crawford, 1990] Robert M. Fung and Stuart L. Crawford. Constructor: A
system for the induction of probabilistic models. In AAAI pages 762-769, 1990.

[Getoor, 1989] Lise Getoor. The instance description: How it can be derived and the
use of its derivation, 1989. MS thesis, UC Berkeley.

[Gil], 1991] Yolanda Gil. A domain-independent framework for- effective experimen-
tation in planning. In Machine Learning Workshop, pages 13-17, 1991.

[Gold, 1967) E. Mark Gold. Language identification in the limit. Information and
Control, 10:447-474, 1967. .

[Goldman and Charniak, 1990] Robert P. Goldman and Eugene Charniak. Dynamic
construction of belief networks. In Proc. of the Sizth Conference on Uncertainty in
Artificial Intelligence, pages 90-97, 1990.

[Good, 1983] 1. J. Good. Good Thinking. University of Minnesota Press, 1983.

187

[Goodman and Smyth, 1989] Rodney Goodman and Padhraic Smyth. The induction
of probabilistic rule sets: The ITRULE algorithm. In Machine Learning Workshop,
pages 129-132, 1989.

[Goodman, 1955] Nelson Goodman. Fact, Fiction, and Forecast. Harvard University
Press, 1953.

[Goodman, 1958] Nelson Goodman. The test of simplicity. Science, 128:1064-1069,
1958.

[Goodman, 1983] Nelson Goodman. Fact, Fiction, and Forecast (4/¢). Harvard Uni-
versity Press, 1983.

[Grosof and Russell, 1989] Benjamin N. Grosof and Stuart J. Russell. Shift of bias as
non-monotonic reasoning. Technical Report RC 14620 (No. 64608), IBM Research
Division, February 1989.

[Hacking, 1975] lan Hacking. The Emergence of Probability. Cambridge University
Press, 1975.

[Halpern, 1989a) Joseph Y. Halpern. An analysis of first-order logics of probability
(revised version). Technical Report RJ 6882, IBM Almaden Research Center, June
1989.

[Halpern, 1989b] Joseph Y. Halpern. Knowledge, probability, and adversaries. Tech-
nical Report RJ 7045, IBM Almaden Research Center, September 1989.

[Harper et al., 1981} William L. Harper, Robert Stalnaker, and Glenn Pearce (eds.).
IFS: Conditionals, Belief, Decision, Chance, and Time. D. Reidel, 1981.

[Haussler et al., 1990] D. Haussler, N. Littlestone, and M. Warmuth. Predicting
{0,1}-functions on randomly drawn points. Technical Report UCSC-CRL-90-54,
U.C. Santa Cruz Computer Science Laboratory, December 1990.

[Haussler et al., 1991] D. Haussler, M. Kearns, and R. E. Schapire. Bounds on the
sample complexity of Bayesian learning using information theory and the VC di-
mension, 1991. Preliminary draft for distribution at Neural Networks for Comput-
ing.

[Haussler, 1987] David Haussler. Bias, version spaces and Valiant’s learning frame-
work. In Machine Learning Workshop, pages 324-336, 1987. -

[Haussler, 1988] David Haussler. Space efficient learning algorithms. Technical Re-
port UCSC-CRL-88-2, UC Santa Cruz, March 1988.

[Haussler, 1989] David Haussler. Generalizing the PAC model for neural net and
other learning applications. Technical Report UCSC-CRL-89-30, UC Santa Cruz,
September 1989.

[Hempel, 1952] C. G. Hempel. Fundamentals of Concept Formation in Empirical
Science. University of Chicago Press, 1952.

158

[Holland et al., 1986] John H. Holland, Keith J. Holyoak, Richard E. Nisbett, and
Paul R. Thagard. Induction: Processes of Inference, Learning, and Discovery.
MIT Press, 1986.

[Holtzman, 1989] Samuel Holtzman. Intelligent Decision Systems. Addison-Wesley,
1989.

[Horsch and Poole, 1990] Michael C. Horsch and David Poole. A dynamic approach
to probabilistic inference using Bayesian networks. In Proc. of the Sizth Conference

on Uncertainty in Artificial Intelligence, pages 155-161, 1990.

[Horvitz and Heckerman, 1986] Eric Horvitz and David Heckerman. The inconsistent
use of measures of certainty in artificial intelligence research. In L. N. Kanal and
J. F. Lemmer, editors, Uncertainty in Artificial Intelligence, pages 137-151. North-
Holland, 1986.

[Horvitz et al., 1989] Eric J. Horvitz, Gregory F. Cooper, and David E. Heckerman.
Reflection and action under scarce resources: Theoretical principles and empirical
study. In IJCAI, pages 1121-1127, 1989.

[Hume, 1975] David Hume. Enquiries Concerning Human Understanding. Clarendon
Press, 1975.

[Hunter, 1986] Daniel Hunter. Uncertain reasoning using maximum entropy infer-
ence. In Uncertainty in Artificial Intelligence, pages 203-209. Elsevier, 1986.

[Kaelbling, 1990] Leslie Pack Kaelbling. Learning in Embedded Systems. PhD thesis,
Stanford University, 1990.

[Kanazawa and Dean, 1989] Keiji Kanazawa and Thomas Dean. A model for projec-
tion and action. In IJCAI, pages 985-990, 1989.

[Kearns and Li, 1987] Michael Kearns and Ming Li. Learning in the presence of mali-
cious errors (preliminary report). Technical Report TR-03-87, Harvard University,
1987.

[Kedar-Cabelli, 1986] Smadar Kedar-Cabelli. Purpose-directed analogy: A summary
of current research. In Tom Mitchell, Jaime Carbonell, and Ryszard Michalski,
editors, Machine Learning: A Guide to Current Research, pages 123-126. Kluwer
Academic Publishers, 1986.

[Kedar-Cabelli, 1987] Smadar Kedar-Cabelli. Formulating concepts according to pur-
pose. In AAAI pages 477-481, 1987.

[Kemeny, 1963] John G. Kemeny. Carnap on probability of induction. In The Philos-
ophy of Rudolf Carnap (The Library of Living Philosophers, v. 11), pages 711-738.
Open Court, 1963.

[Korf, 1980] Richard Korf. Toward a model of representation changes. Artificial
Intelligence, 14:41-78, 1980.

159

[Kuhn, 1962] Thomas S. Kuhn. The Structure of Scientific Revolutions. University
of Chicago Press, 1962.

[Kuipers, 1985] Benjamin J. .Kuipers. The Map-Learning Critter. Technical Report
AITRS85-17, University of Texas, Austin, December 1985.

[Kyburg, 1974] Henry E. Kyburg. The Logical Foundations of Statistical Inference.
Reidel, 1974. .

[Laird and Rosenbloom, 1990] John E. Laird and Paul S. Rosenbloom. Integrating
execution, planning, and learning in soar for external environments. In AAAI

pages 1022-1029, 1990.

[Langley et al., 1983] Pat Langley, Gary L. Bradshaw, and Herbert A. Simon. Re-
discovering chemistry with the BACON system. In Ryszard Michalski, Jaime Car-
bonell, and Tom Mitchell, editors, Machine Learning, pages 307-329. Morgan Kauf-
man, 1983.

[Langley et al., 1986] Pat Langley, Jan M. Zytkow, Herbert A. Simon, and Gary L.
Bradshaw. The search for regularity. In Ryszard Michalski, Jaime Carbonell, and
Tom Mitchell, editors, Machine Learning II, pages 425-470. Morgan Kaufman,
1986.

[Langley et al., 1987] Pat Langley, Herbert A. Simon, Gary L. Bradshaw, and Jan M.
Zytkow. Scientific Discovery: Computational Ezplorations of the Creative Process.
MIT Press, 1987.

[Lebowitz, 1986a] Michael Lebowitz. Concept learning in a rich input domain:
Generalization-based memory. In Ryszard Michalski, Jaime Carbonell, and Tom
Mitchell, editors, Machine Learning II, pages 193-214. Morgan Kaufman, 1986.

[Lebowitz, 1986b] Michael Lebowitz. Integrated learning: Controlling explanation.
Cognitive Science, 10(2):219-240, 1986.

[Lebowitz, 1986c] Michael Lebowitz. Not the path to perdition: The utility of
similarity-based learning. In AAAI, pages 533-537, 1986.

[Lenat and Brown, 1984] Douglas B. Lenat and John Seely Brown. Why AM and
EURISKO appear to work. Artificial Intelligence, 23:269-294, 1984. '

[Lenat, 1979] D. B. Lenat. On automated scientific theory formation: A case study
using the AM program. In J. E. Hayes, D. Michie, and L. I. Mikulich, editors,
Machine Intelligence 9, pages 251-283. Horwood, 1979.

[Lenat, 1982a] Douglas B. Lenat. Eurisko: A program that learns new heuristics and
domain concepts. Technical Report HPP-82-26, Stanford University, 1982.

[Lenat, 1982b] Douglas B. Lenat. Theory formation by heuristic search. Technical
Report HPP-82-25, Stanford University, 1982.

[Levine and Tribus, 1979] Raphael D. Levine and Myron Tribus. The Mazimum En-
tropy Formalism Conference. MIT Press, 1979.

160

[Li and Vitanyi, 1989] Ming Li and Paul M. B. Vitanyi. Inductive reasoning and
Kolmogorov complexity. In IEEE Structure in Complezity Theory Conference,
1989. -

[Lozano-Pérez et al., 1984] T. Lozano-Pérez, M. Mason, and R. Taylor. Automatic
synthesis of fine-motion strategies for robots. International Journal of Robotics
Research, 3(1):3-24, 1984.

[Martin and Billman, 1991] Joel D. Martin and Dorrit O. Billman. Variability bias
and category learning. In Machine Learning Workshop, pages 90-94, 1991.

[Medin et al., 1987] Douglas L. Medin, William D. Wattenmaker, and Ryszard S.
Michalski. Constraints and preferences in inductive learning: An experimental
study of human and machine performance. Cognitive Science, 11:299-339, 1987.

[Michalski and Stepp, 1983] Ryszard S. Michalski and Robert E. Stepp. Learning
from observation: Conceptual clustering. In Ryszard Michalski, Jaime Carbonell,

and Tom Mitchell, editors, Machine Learning, pages 331-364. Morgan Kaufman,
1983.

[Michalski, 1980] Ryszard S. Michalski. Knowledge acquisition through conceptual
clustering: A theoretical framework and an algorithm for partitioning data into
conjunctive concepts. International Journal of Policy Analysis and Information

Systems, 4(3):219-244, 1980.

[Mitchell and Keller, 1983] T. Mitchell and R. Keller. Goal directed learning. In
Second International Machine Learning Workshop, pages 117-118, 1983.

[Mitchell et al., 1989] Tom M. Mitchell, Matthew T. Mason, and Alan D. Chris-
tiansen. Toward a learning robot. Technical Report CMU-CS-89-106, CMU, Jan-
uary 1989.

[Mitchell, 1980] Tom Mitchell. The need for biases in learning generalizations. Tech-
nical Report CBM-TR-117, Rutgers University, May 1980.

[Muggleton and Buntine, 1988] Stephen Muggleton and Wray Buntine. Machine in-
vention of first-order predicates by inverting resolution. In Machine Learning Con-
ference, pages 339-352, 1988.

[Muggleton, 1987] Stephen Muggleton. Duce, an oracle based approach to construc-
tive induction. In IJCAI, pages 287-292, 1987. '

[Muggleton, 1988] Stephen Muggleton. A strategy for constructing new predicates in
first order logic. In EWSL, pages 123-130, 1988.

[Neufeld and Poole, 1988] Eric Neufeld and David Poole. Combining logic and prob-
ability. Computational Intelligence, 4(1):98-99, 1988.

[Nilsson, 1986] Nils J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71-87,
1986.

161

[Parr et al., 1992] Ronald Parr, Stuart Russell, and Mike Malone. The RALPH sys-
tem. Technical report, UC Berkeley, 1992. (Forthcoming).

[Pazzani et al., 1987] Michaél Pazzani, Michael Dyer, and Margot Flowers. Using
prior learning to facilitate the learning of new causal theories. In IJCAI, pages
277-279, 1987.

[Pearl, 1978] Judea Pearl. On the connection between the complexity and credibility
of inferred models. Int. J. General Systems, 4:255-264, 1978.

[Pearl, 1986] Judea Pearl. A constraint-propagation approach to probabilistic rea-
soning. In Uncertainty in Artificial Intelligence, pages 357-369. Elsevier, 1986.

[Pearl, 1988a] Judea Pearl. On logic and probability. Computational Intelligence,
4(1):99-103, 1988.

[Pearl, 1988b] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, 1988.

[Pednault, 1988) Edwin P. D. Pednault. Inferring probabilistic theories from data.
In AAAI pages 624-628, 1988.

[Pednault, 1989] Edwin P. D. Pednault. Some experiments in applying inductive
inference principles to surface reconstruction. In IJCAI pages 1603-1609, 1989.

[Pollard, 1969] Arnold Bruce Pollard. A Normative Model for Joint Time/Risk Pref-
erence Decision Problems. PhD thesis, Stanford Engineering-Economic Systems
Department, 1969.

[Qi and Poole, 1991] Runping Qi and David Poole. High level path planning with
uncertainty. In Workshop on Uncertainty in Artificial Intelligence, pages 287-294,
1991.

[Quinlan, 1983] R. Quinlan. Learning efficient classification procedures and their
application to chess end games. In Ryszard Michalski, Jaime Carbonell, and Tom
Mitchell, editors, Machine Learning, pages 463—482. Morgan Kaufman, 1983.

[Quinlan, 1986] R. Quinlan. The effect of noise on concept learning. In Ryszard
Michalski, Jaime Carbonell, and Tom Mitchell, editors, Machine Learning I, pages
149-166. Morgan Kaufman, 1986.

[Rendell et al., 1987] Larry Rendell, Raj Seshu, and David Tcheng. Layered con-
cept learning and dynamically-variable bias management. In Machine Learning
Conference, pages 308-314, 1987.

[Rendell, 1985] Larry Rendell. Genetic plaﬁs and the Probabilistic Learning System:
Synthesis and results. Technical Report UITUCDCS-R-85-1217, University of Illinois
at Urbana-Champaign, 1985.

[Rendell, 1986] Larry Rendell. Induction, of and by probability. Technical Report
UIUCDCS-R-86-1293, University of Illinois at Urbana-Champaign, 1986.

162

[Riddle, 1986] Patricia J. Riddle. Exploring shifts of representation. In Tom Mitchell,
Jaime Carbonell, and Ryszard Michalski, editors, Machine Learning: A Guide to
Current Research, pages 275-280. Kluwer Academic Publishers, 1986.

[Rissanen, 1978] J. Rissanen. Modeling by shortest data description. Automatica,
14:465-471, 1978.

[Rissanen, 1983] Jorma Rissanen. A universal prior for integers and estimation by
minimum description length. The Annals of Statistics, 11(2):416-431, 1983.

[Rissanen, 1986] Jorma Rissanen. Stochastic complexity and modeling. The Annals
of Statistics, 14(3):1080-1100, 1986.

[Rissanen, 1987] Jorma Rissanen. Stochastic complexity. J. R. Stat. Soc. B,
49(3):223-239 and 252-265, 1987. With commentary.

[Ritchie and Hanna, 1984] G. D. Ritchie and F. K. Hanna. AM: A case study in A.L
methodology. Artificial Intelligence, 23(3):249-268, 1984.

[Rivest and Schapire, 1987] Ronald L. Rivest and Robert E. Schapire. A new ap-
proach to unsupervised learning in deterministic environments. In Machine Learn-
ing Workshop, pages 364-375, 1987.

[Rivest and Sloan, 1988] Ronald L. Rivest and Robert Sloan. A new model for in-
ductive inference. In Moshe Vardi, editor, Proceedings of the Second Conference
on Theoretical Aspects of Reasoning about Knowledge, pages 13-27. Morgan Kauf-
mann, 1988.

[Rosch and Lloyd, 1978] Eleanor Rosch and B. B. Lloyd, editors. Cognition and Cat-
egorization. Erlbaum, 1978.

[Rosch et al., 1976) Eleanor Rosch, C. B. Mervis, W. D. Gray, D. M. Johnson, and
P. Boyes-Braem. Basic objects in natural categories. Cognitive Psychology, 8:382~-
439, 1976.

[Russell and Grosof, 1987] Stuart J. Russell and Benjamin N. Grosof. A declarative
approach to bias in concept learning. In AAAI, pages 505-510, 1987.

[Russell and Wefald, 1991] Stuart Russell and Eric Wefald. Do the Right Thing:
Studies in Limited Rationality. MIT Press, 1991. .

[Russell, 1986] Stuart Jonathan Russell. Analogical and Inductive Reasoning. PhD
thesis, Stanford University, 1986.

[Russell, 1988] Stuart J. Russell. Tree-structured bias. In AAAI pages 641-645,
1988.

[Russell, 1989] Stuart J. Russell. Execution architectures and compilation. In IJCAI,
pages 15-20, 1989.

[Savage, 1977] L. J. Savage. The Foundations of Statistics. Dover, 1977. 2nd rev. ed.

163

[Schlimmer and Granger, 1986] Jeffrey C. Schlimmer and Richard H. Granger, Jr.
Beyond incremental processing: Tracking concept drift. In AAAI pages 502-507,
1986. .

[Schlimmer, 1987a] Jeffrey C. Schlimmer. Incremental adjustments of representation
for learning. In Machine Learning Workshop, pages 79-90, 1987.

[Schlimmer, 1987b] Jeffrey C. Schlimmer. Learning and representation change. In
AAAI pages 511-515, 1987.

[Segen, 1986] Jakub Segen. Learning from data with errors. In Tom Mitchell, Jaime
Carbonell, and Ryszard Michalski, editors, Machine Learning: A Guide to Current
Research, pages 299-302. Kluwer Academic Publishers, 1986.

[Shachter et al., 1990] Ross D. Shachter,. Brendan A. Del Favero, and Bruce
D’Ambrosio. Symbolic probabilistic inference in belief networks. In AAAI pages
126-131, 1990.

[Shafer, 1976] G. Shafer. A Mathematical Theory of Evidence. Princeton University
Press, 1976.

[Shortliffe, 1976] E. H. Shortliffe. Computer-Based Medical Consultations: MYCIN.
American Elsevier, 1976.

[Smith, 1987) David E. Smith. A decision-theoretic approach to the control of plan-
ning search. Technical Report LOGIC-87-11, Stanford University, January 1987.

[Solomonoff, 1964a] R. J. Solomonoff. A formal theory of inductive inference, Part I.
Information and Control, 7:1-22, 1964.

[Solomonoff, 1964b] R. J. Solomonoff. A formal theory of inductive inference, Part
I1. Information and Control, 7:224-254, 1964.

[Solomonoff, 1975] R. J. Solomonoff. Inductive inference theory: A unified approach
to problems in pattern recognition and artificial intelligence. In IJCAI, pages 274~
280, 1975.

[Solomonoff, 1986] Ray Solomonoff. The application of algorithmic probability to
problems in artificial intelligence. In L. N. Kanal and J. F. Lemmer, editors,
Uncertainty in Artificial Intelligence, pages 473—491. North-Holland, 1986.

[Stepp and Michalski, 1986] Robert E. Stepp and Ryszard S. Michalski. Conceptual
clustering: Inventing goal-oriented classifications of structured objects. In Ryszard
Michalski, Jaime Carbonell, and Tom Mitchell, editors, Machine Learning II, pages
471-498. Morgan Kaufman, 1986.

[Subramanian and Feigenbaum, 1986] Devika Subramanian and Joan Feigenbaum.
Factorization in experiment generation. In AAAI 1986.

[Subramanian and Genesereth, 1987] Devika Subramanian and Michael R. Gene-
sereth. The relevance of irrelevance. In IJCAI pages 416-422, 1987.

164

[Sutton, 1990} Richard S. Sutton. Integrated architectures for learning, planning,
and reacting based on approximating dynamic programming. In Machine Learning
Conference, 1990.

[Tan and Schlimmer, 1990] Ming Tan and Jeffrey C. Schlimmer. Two case studies in
cost-sensitive concept acquisition. In AAAI pages 854-860, 1990.

[Utgoff, 1986] Paul Utgoff. Shift of bias for inductive concept learning. In Ryszard
Michalski, Jaime Carbonell, and Tom Mitchell, editors, Machine Learning II, pages
107-148. Morgan Kaufman, 1986.

[Utgoff, 1988] Paul E. Utgoff. ID5: An incremental ID3. In Machine Learning Con-
ference, pages 107-120, 1988.

[Valiant, 1984] L. G. Valiant. A theory of the learnable. CACM, 27(11):1134-1142,
November 1984.

[von Neumann and Morgenstern, 1947] John von Neumann and Oskar Morgenstern.
Theory of Games and Economic Behavior. Princeton University Press, 1947.

[Watanabe, 1960] S. Watanabe. Information-theoretical aspects of inductive and de-
ductive inference. IBM Journal of Research Development, 4:208-231, 1960.

[Wise and Henrion, 1986] B. P. Wise and M. Henrion. A framework for comparing
uncertainty inference systems to probability. In L. N. Kanal and J. F. Lemmer,
editors, Uncertainty in Artificial Intelligence. North-Holland, 1986.

[Zadeh, 1980] L. A. Zadeh. Inference in fuzzy logic. In IEEE Tenth Annual Sympo-
situm on Multiple-Valued Logic, pages 124-131, June 1980.

165

Appendix A
Maximum Entropy Proof

We show here that the assumptions made in Section 5.4 to find the distribu-
tion of outcomes, given a uniformity, yield the maximum entropy distribution (using
the uniformity as a constraint).

Recall that the assumptions were:
1. For each value of F, there is one O-value, 6, which occurs most often.
2. The other values of O occur equally often.

These two assumptions yield the probabilities

PON =5 (A1)
P(o.~|f)=%%§, i=2...,n (A2)

A probability distribution p has entropy H (p), where

H(p) = —_pilogp:

i=1
The entropy is a measure of the randomness of the distribution; alternatively, it can
be viewed as the amount of information contained in the distribution (a uniform
distribution has less information than a skewed distribution).

The probability distribution that maximizes the entropy of the distribution,

given a set of constraints, is the distribution that adds the least amount of informa-

166

tion to the constraints.! Maximum entropy is a standard technique for determining

probabilities of events when a complete joint distribution is not available.

< O
< O
p< O
p< O
p< O

Figure A.1: Alternative Probability Distributions

Intuitively, it makes sense that the assumptions about the distribution of
outcomes given above would maximize entropy, since they yield the flattest possible
distribution. However, it does not seem implausible that a smooth curve (“x” in
Figure A.1) would have higher entropy than the step curve (“o”) yielded by the
assumptions.

The constraints on the distribution are that the probabilities must sum to
one, and that the sum of the squares of the probabilities is equal to the uniformity u.

Mathematically, these constraints can be written as

glp) = Yp—-1=0
=1
h(p) = > pi—u=0

Using the method of Lagrange multipliers to maximize entropy subject to

the constraints g and h yields the Lagrange function

F(p) = H(p)+ Mg(p) + Azh(p)
= — Y pilogp + MOopi—1) + X (Pl —u)

1The information is minimized subject to a bias for maximally uniform distributions under the
specified description language. In this case, maximum entropy will tend to favor distributions that
are as flat as possible.

167

Any distribution that maximizes the entropy yields zero partial derivatives

with respect to each p;, A1, and Xz. There are n + 2 partial derivatives, as follows:

F, = Ef»—.-F =logp;i+1+ A +A2(2p;) 1=1,...,n

= 8 —_ .

Cl = -6_1\TF = ZP' -1

C: =5F =) pl-u
In principle, the maximum entropy distribution(s) can be found by solving these n+2
partial differential equations. However, since this is extremely difficult in practice, and
all we wish to show is that our solution does maximize entropy, we simply demonstrate
that the distribution given by the assumptions A.l and A.2 yields a solution to the
differential equations.

Equation 5.7 gives the value for p in terms of n and u:

1+\/r—n+n(n—1)u

n

p=

Letting k = /1 — n + n(n — 1)u for convenience,

. 1+k
p=
n
. 1-p n-—-(Q1+k
b = p_n—(1+FK

n—1 n(n-1)

Since the values for p; were found in terms of p to satisfy constraint Cy, and
the value for p was derived to satisfy constraint C; (the uniformity), we will not show
that they are satisfied.

We are then left with the n constraints F;. First we solve for)\ in terms of
k and), using constraint Fi, then show that there is a value for A, that satisfies the
remaining equations (since they are all the same, and p; ...p, have identical values,
this is straightforward). .

Solving for A in Fi:

M = —(1+logp+2X:p)

- (v (L) w2 (12))

168

Solving for Az in F; (i=2...n):

0 = logpi+ 1+ A+ X2(2p:)

_ n—(1+k)
= log n(n—1) +1

(o (i) o (12

oy (LHk _n=(+R) _ =45

\'n n{n —1) = o8 1k
log (50reh)

2n!n-—l!

nk

klog (=iish)

2(n—-1)

A2 =

The only cases in which this does not yield a solution for \; are when n = 1 (which
is not important, since there is only one possible distribution in this case) and when
n = 1 + k. The latter case is equivalent to u = 1. Again, there is only one possible

distribution in this case, so it must maximize entropy.

169

Appendix B
ID*

This appendix describes ID*, an incremental decision tree learning algorithm
based on [Quinlan, 1986] and [Utgoff, 1988}, and the synthetic test domain used for
the tests described in Chapter 6.

B.1 Description of ID*

square hex

oblong

color=red 0.5
1 color=blue 0.5
G medium ge

color=purple 0.6
color=red 0.4

color=green 1.0

Figure B.1: Example of a decision tree

A decision tree is a tree in which each node represents a test attribute and
each child of the node corresponds to a value of the test attribute. Each subtree covers

the set of instances which matches the test attribute values along the path from the

170

root. Instances are stored at the leaf nodes that cover them. In Figure B.1, the test
attribute at the root is “shape;” the class attribute being learned is “color.” Three
values for shape are represenfed in the tree. At the root of the subtree corresponding
to “shape = square” is another internal node with test attribute “age;” this subtree
has more children that are not shown. The subtree corresponding to “shape = hex”
is a leaf node, containing a set of instances, half of which are red and half of which
are blue.

Decision trees are used for classification by assigning a class value to each
leaf node. In a probabilistic decision tree, a distribution on class values (derived from
frequency counts) is stored at each leaf node. In ID*, a majority method is used
for predictions: the class value of each leaf node is the class value with the highest
frequency.

Quinlan [1986] describes a version of ID3 that learns probabilistic decision
trees by combining an information-theoretic measure with a chi-square independence
test to decide whether to split nodes in the tree (i.e., which test attributes to add
when building a tree). ID5 [Utgoff, 1988] is an incremental version of ID3 (but does
not learn probabilistic decision trees). In ID5, the decision tree is reshaped after each
instance arrives. ID* combines both of these techniques into an incremental learner

for probabilistic decision trees.

1. If the tree is empty, initialize it as a single leaf node containing the instance and
return.

Insert the new instance into the tree.

Find the best attribute to split the tree with.

If the new attribute is the same as the current test attribute, recurse to each child
(go to step 2).

Else if the new attribute is null (i.e., the tree should not be split at all), collapse the
tree into a single leaf node.

6. Else pull up the new test attribute to the root.

N

o

Figure B.2: Top-level incremental learning algorithm

The top-level learning algorithm, which is called when each new instance

171

1

. Compute the chi-square statistic for each attribute A. n is the number of instances

in the subtree; N[i,c] is the number of instances with the ith value of A that have
class value ¢, and * indicates summation over a parameter.

N'[i,c] = N[i,*] * N[*,c]/n

is referred to as the expectation and the chi-square statistic is

N[i,c] = N'[i,c])?
S UL ELIE

x4 has (k — 1) * (m — 1) degrees of freedom, where k is the number of values of the
attribute A and m is the number of class values.

For each attribute with sufficient chi-square value, compute the information gain from
splitting on that attribute. S is the set of instances in the subtree; S; is the set of
instances with the ith value of attribute A. M(S), the measure of the information in

a tree, is given by
M(S)=)_ —pilog,; pi

where the summation ranges over the class values, and p; is the probability of the ith
class value (i.e., the frequency with which the class value appears in §). The infor-
mation gain from splitting is the total information in the tree, minus the information
contained in the subtrees resulting from the split:

Lo = M(8) - = S (Nli,]« M(5)

Return the attribute from step two with highest information gain (if there are none,
return null).

Figure B.3: Algorithm for determining the best test attribute to split a tree

ol S

If the root is a leaf node, create a subtree by splitting on A and return.

If the test attribute at the root is the same as A, return.

Recursively pull up the test attribute to the root of each subtree.

Swap A with R, the test attribute at the root of the tree, so that the attribute at the
root of each subtree is R and the attribute at the root of the tree is A.

Figure B.4: Algorithm for pulling a test attribute A to the root of a tree

172

arrives, is given in Figure B.2. Step (2) inserts the instance into the appropriate leaf
node in the tree. Step (3)—finding the best attribute to split the tree with—uses
Quinlan’s chi-square test for statistical independence, given in Figure B.3. If the chi-
square value is high (above a tabulated value for a given confidence level), the value
of the test attribute and the class Ya.lue are unlikely to be independent. Quinlan says

that

[o]ne minor difficulty is that the chi-square test is unreliable for very small
values of the expectations N’, so the common practice of using the test
only when all values of N’ are at least 4 has been followed.

We use the test only when all values of N’ are at least 5, unless the chi-square value
is extremely low (less than 0.1). In other words, the attribute has “sufficient chi-
square value” in step (2) if the chi-square value is greater than the tabulated 90%
confidence level for a chi-square statistic with (k —1)(m — 1) degrees of freedom, or
if the chi-square value is greater than 0.1 and some value of N is less than or equal
to 3.

The recursive algorithm for pulling up a new test attribute A to the root
of a tree (step (6) of the top-level learning algorithm) is given in Figure B.4. This
algorithm is self-explanatory except for step (4), which simply involves generating the
appropriate value branches and adjusting the weights properly.

B.2 Description of the Test Domain

The synthetic test domain for the ID* tests described in Chapter 5 includes
six predictive features. Table B.1 gives the names and values for each feature and the
uniformity of color given each feature. The class feature (to be predicted) is “color,”
with four values (purple, red, blue, and green). The prior (unconditional) uniformity
of color is .25 (i.e., given no other information, each value is equally likely). The
predictive features are conditionally independent of each other, given color.

Table B.2 shows the table of probabilities that was built using these unifor-
mities. The probabilities in the table represent the probability that the predictive
feature takes on the specified value, given the value of color: P(F = filcolor =).

[Feature name (F) [U(color|F) | Values |
Location 8L box1, box2, box3, box4
Shape .58 square, hex, oblong, round
Texture 33 smooth, rough, slimy, sticky
Size 27 small, medium, large
Age 27 11,2,3,4,5,6
Smell .25 putrid, nauseating, horrible,

vile, lovely
Table B.1: Predictive features with uniformities and values
| Color | purple red blue green |
Shape square 15 1/12 1/12 1/12
round /12 1/12 .75 1/12
hex 1/12 .75 1/12 1/12
oblong /12 1/12 1/12 .75
Location boxl 1/30 .9 1/30 1/30
box2 9 1/30 1/30 1/30
box3 1/30 1/30 .9 1/30
box4 1/30 1/30 1/30 .9
Size small 3 33 03 4
medium 3 33 4 3
large 4 343 3
Texture smooth 5 1/6 1/6 1/6
. rough 1/6 1/6 .5 1/6
slimy 1/6 1/6 1/6 .5
sticky 1/6 5 1/6 1/6
Smell putrid 2 2 2 2
nauseating | .2 2 2 2
horrible 2 2 2 2
vile 2 2 2 2
lovely 2 2 2 2
Age 1 2 15 .16 .16
2 15 2 16 .16
3 15 15 .16 .2
4 15 2 16 .16
5 15 a5 .2 .16
6 2 a5 .16 .16

Table B.2: Probability table for the synthetic domain

173

174

We next show that the probabilities satisfy the uniformity value for one
of the features (age). Recall that the uniformity of color given age is equal to the
probability that two randomly chosen instances have the same color, given that have
the same age:

U(color|age) = P(c1 = cza1 = a2)

where ¢;, a1, ¢; and a; represent the color and age values for two randomly chosen
instances. This can be expanded using Bayes’ formula and summing over individual
probabilities as follows: ‘
P(c; = ¢3) P(ay = azlcy = ¢3)

P(ay = a3)
T2, Pei)2 i Tj Plej) Paile;)?

i Pa:)?

The probability of each class value, P(c;), is .25 (all are equally likely). The proba-
bilities of a; given c; are given by the table. The probabilities of each value @; can be

U(colorjage) =

found by summing over the class values:
P(a;) = 3 P(aile;) P(cs)
i

which is equivalent to summing the probabilities in the ith row of feature a in the

probability table and multiplying by .25. The final uniformity value is:

4(.25)? .25[6(.2)% + 8(.15)? + 10(.16)?]
4(.67 % .25)2 + 2(.66 * .25)?
257(.24 + .18 + .26)
11 4.05

U(colorlage) =

= .27

Representing the probabilities this way allows instances to be generated by
first choosing a random value for color (according to a uniform distribution), then
choosing values for each predictive feature separately. For example, if the color value
is randomly chosen to be blue, the probability that the instance is in box3 is .9.

In the tests, training examples and test examples were generated indepen-
dently, but the same training examples and test examples were used for every bias on

a given run.

175

Appendix C
Generating Internal States

This appendix describes a method that allows an agent (PR) to generate
internal states which represent unobservable properties of the world. The method
assumes that the world is deterministic and can be described as a Markov process;
the dependency of the next state of the environment on the current state can then

be written as a determination (Section 5.1.2):
E:NA: > Ei (C.1)

E, represents the state of the environment at time ¢, the present time, and A is the
action performed by PR at time t.}
PR'’s sensory observations S include only a limited subset of E; that is,

S: C E; (0-2)

Since PR does not have the information about the environment to build a model based
directly on Equation C.1, it instead begins learning by making explicit assumptions
about which rules are most likely to be useful in describing the environment. The
time contiguity assumption tells PR initially to assume that only its most recent
observations and actions are relevant to the next world state. One can think of this

as a nonmonotonic belief that its sensory observations include all features of the

11n fact, if PR itself is a deterministic agent, and its internal state is part of the environment, then
A, is unnecessary in the determination. For our purposes, though, it will be clearer if we include A¢
separately.

176

environment that are relevant in determining the next world state. This belief will be
held and used for learning unless it leads to an inconsistency. Under this assumption,

PR’s first approximation to the determination given in Equation C.1 is:
S¢ N Ay > St (C.3)

This approximation lets PR focus on those features of the environment that are
most likely to be relevant to the new world state. When PR discovers that this
determination does not allow it to learn a consistent world model, it relaxes the time

contiguity assumption. Successive approximations to Equation C.1 have the form
Stenpt N Aten,p ™ St (C.4)

Note that Equation C.3 is a special case of Equation C.4 for n = 0. PR increases n
each time it cannot find a consistent world model using the previous determination.

Letting n = 1 in Equation C.4 gives:
St_1 A At-—l A St A At - St+1 (C5)

Equation C.1 tells PR that S;_; and A;-; do not directly affect S;41, but rather affect
E, in some unperceived way (i.e., they affect E;\ S;). The relaxation process lets PR
partially overcome its sensory limitations by “remembering” earlier observations so it
can refer to properties of the environment that can no longer be observed directly. We
refer to this indirect knowledge as PR’s internal states, I . I represents the changes
in E, that PR knows have happened, because they somehow affected S;41, but that

it cannot explain using only S; and As.
Seca A Ari Aoy = I " (C.6)

Since all the relevant information for the determination in Equation C.5 is contained

in I;, Equation C.5 can be rewritten as
St ANA AT > S (C.7)

An example of an internal state being generated by this process is given in Section C.

177

In addition to allowing the agent to generate a consistent theory in cases
where the time contiguity assumption has been found not to hold, internal states
define new predicates about past events which may be relevant to rules yet to be
learned. These correspond to predicates generated by Dichotomize (Section C.1).

Since I, is considered to be part of PR’s current state, once the predicates
in I, have been defined, the new‘version of the time contiguity assumption, given in
Equation C.7, still holds. In other words, PR only relaxes the time contiguity assump-
tion locally, not globally, so although it may be necessary to relax the assumption
temporarily in order to learn a particular tule, PR will continue to learn other rules

using the original assumption.

C.1 Dichotomization

Dichotomization is a rule transformation operator described in [Muggleton,
1987] that can also be viewed as an inverse resolution operator [Muggleton and Bun-
tine, 1988]. Dichotomize takes a set of mixed positive and negative examples of a

concept such as

Xe—aAbAc
-X—aAdAe

and generates a more general set of rules using an invented predicate p:

Xe—aAp
X +~—aA-p
p—bAc
-p—dAe

The PR version of Dichotomize extends the definition slightly to apply to
sets of rules defining any mutually exclusive concepts (rather than just positive and

negative examples of one concept). An example is given in the next section.

178

C.2 An Example in the RALPH World

One way that PR can tell that the time contiguity assumption does not hold
is if two situations that appear the same have different outcomes. (VB this is only
true for deterministic environments.) In this case, Dichotomize will generate a new
predicate with a logically inconsistent definition.

The behavior of PR is slightly different in this world than in the other worlds
described in the thesis. PR’s utility is increased every time it eats food. Before it can
eat, it must have actually picked up the food using the :grasp action. In order to
pick up the food, it must be in the same node; it can detect this as vision(t,food,0).
However, once it picks the food up, it can no longer see it. For the purposes of this
example, we further assume that PR does not have a food-smell sensor.

After a number of situations in which PR eats while grasping food, it will
learn the rule |

action(t, :munch) — Au(t + 1,90)

If PR tries to execute the action :munch when it is not holding food, nothing happens.

The learned rule for this case is:
action(t, :munch) — Au(t + 1,-10)

Au cannot be 90 and -10 at the same time, so these rules define two mutually exclusive

concepts. Dichotomize applies and generates the new rules

action(t, :munch) Ap(t) — Au(t+1,90)
action(t, :munch) A =p(t) — Au(t+1,-10)
o — pt) |
0 — -p(t)

p is intended to define whether or not eating increases utility, but given the currently
available information, p’s definition is inconsistent.
When this condition is detected, the relaxation process is invoked. This

process involves adding the available information for the two examples at timet —1

179

and re-invoking Dichotomize. The new rules are
action(t, :munch) A p(t) — Au(t +1,90)

action(t, :munch) A —p(t) — Au(t + 1,—10)
action(t — 1, :grasp) A vision(t — 1,fo0d,0) — p(t)
—vision(t — 1,food,0) — —p(t)
—action(t — 1, :grasp) — —p(t)

p represents an internal state of “holding food.” The definition of p could be general-
ized to apply to any object, and would then represent the more general internal state
“holding” which PR may find useful in other situations (e.g., holding keys allows PR

to open doors).

