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Abstract

Fast computer simulation is an essential tool in the design of large
parallel computers. Our Fast Accurate Simulation Tool, FAST, is able
to accurately simulate large shared memory multiprocessors at simulation
speeds that are one to two orders of magnitude faster than comparable
simulators. The key ideas involve execution driven simulation techniques
that modify the object code of the application program being studied.
This produces an augmented version of the code that does much of the
work of the simulation. In particular, we introduce a technique for in-
line context switching which reduces the typical context switch time to
10 cycles or less. This fast context switching is an essential component
of a shared memory simulator because the simulator must rapidly switch
between threads in order to accurately interleave the shared memory ref-

crences.
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1 Introduction

Simulation is an essential tool in the process of computer design. While the speed
of sirnulation has always been a concern, it is of critical concern when simulating
parallel machines because of the increased computational power of these machines.
For example, simulating the execution of a one MIP uni-processor for one second
requires simulating one million instructions, but simulating the execution of a parallel
machine with a thousand similar processors for one second requires simulating one
billion instructions. Most simulation based research is limited in scope and accuracy
by the speed of their simulators[2, 8, 12]. Faster simulators allow larger and more
realistic sirnulations to be performed and help speed up the experimental process by
allowing more rapid feedback of simulation results.

Our simulation system, FAST (Fast Accurate Simulation Tool), has a simulation
slowdown factor! ranging from 10 to 100. The slowdown varies based on the applica-
tion program being simulated. Applications with more frequent references to shared
memory interact with the simulator more frequently and therefore take longer to
simulate. Comparable simulation systems such as Tango[6] have reported slowdowns
ranging from 500 to 6000 for simulations of comparable accuracy.

FAST was developed for the purpose of studying large shared memory multipro-
cessors with hundreds or even thousands of processors. On these machines we expect
that the shared memory will be reached through multistage switching networks which
will have delays of hundreds of cycles before results are returned. We are currently
studying multithreaded processors as a means of tolerating these long memory la-
tencies. In a multithreaded processor several active threads are maintained and the
processor rapidly context switches among them to avoid stalling on memory accesses.
To support our simulation studies of such large systems, we needed a simulator that
was orders of magnitude faster than the other simulators that were available at the
time of its development.

The technique of execution driven simnulation[5] is the foundation of FAST. We are
not concerned with the simulation of an instruction set, but rather we are concerned
with higher level aspects of the simulated machine. Because of this, we can accept the
instruction set of the host machine on which we are performing our simulations. This
allows us to directly execute most instructions instead of spending hundreds of cycles
to simulate each instruction individually[10]. The assembly code of the application
program is augmented to allow the application to guide its own simulation. This
augmentation includes adding code to count its own simulated time and code to
interact with the simulator at special events such as references to shared memory.
The net result is that most instructions are directly executed in a single cycle, and
only the small fraction of instructions which interact with the rest of the system need
to be simulated.

'The simulation slowdown factor is the number of cycles it takes to simulate a single cycle of
execution for a single processor.



One of the main costs in an execution driven simulation of a parallel machine is the
overhead for context switching between the many parallel threads in the application
program. To accurately simulate a shared memory machine, the memory access of all
of the parallel threads must be correctly interleaved. This requires context switches
at every reference to shared memory. For some applications, as many as one in five
instructions may be a shared reference and thus context switching will occur every
fifth simulated cycle. In fact, each reference actually causes two context switches:
one context switch to the simulator, and later a context switch back to application.
For many applications, the context switch cost is a critical factor in the performance
of the simulator.

In this paper we show how to greatly reduce the cost of context switching by
introducing a technique for in-line context switching. This extends the ideas of ex-
ecution driven simulation with code augmentation that lets the simulated program
manage its own register set. Without this technique, a context switch involves sav-
ing or restoring the full set of 64 registers.? Often only a few of these registers are
actually used before the next context switch, and it is wasteful to save and restore
the entire set. Our technique reduces the number of loaded registers to only those
registers whose value are used, and it reduces the number of saved registers to only
those registers whose values have changed. The typical context switch time is reduced
to less than 10 cycles.

The remainder of this paper is broken into four sections. In section 2 we explain
and demonstrate the techniques of code augmentation. In section 3 we discuss the
overall simulation system and its performance. In section 4 we compare our perfor-
mance to other simulators. And in section 5 we conclude.

2 Code Augmentation

Code augmentation is the process of inserting extra code into an application program.
The inserted code can perform various functions such as keeping track of the simulated
execution time or gathering statistics. The MIPS pixie program[l1], for instance,
collects profiling statistics using code augmentation techniques. In this section we
show how to extend the code augmentation technique with the ability to support
rapid context switching.

Although code augmentation can be performed on a high level language[5], it is
best performed at the assembly level for several reasons. First, compiler optimizations
will have already been performed and thus the application program can be studied in
the optimized form in which it would be run on a real parallel machine. Second, the
timing of the application can be accurately determined from the assembly language
instructions®. Finally, the assembly language instructions are easily manipulated and

20n a Mips processor there are 29 integer, 32 floating point and 3 special purpose registers in
the usable register set.
3This is true for RISC instructions since timing and pipeline delays are easily determined. A
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codeforr A=B+C+X registers: Rgp = coptext pointer
where: A is variable in shared memory Rtime = time value
B,C are variables in local memory simulator interface:
X Is variabie in register r8 simulator_sw(r4 = address, 5 = value)
------------ 1w r8, offset_of r8(Rcp) > load used registers
1w rl, local address_of B 1w rl, local address_of B
1w r2, local address_of C 1w r2, local_address of C
add r3, rl, rg add r3, rl, r&
add r3, r3, r add r3, ri, r2
sW T3, shared address_of A %, sw rl, offset_of_rl{Rep)
sw r?, offset_ef_r2{Rcp) save modified registers
\‘ e, sW r3, offset_of_ r3{Rcp)
%~ ™, 2dd” Rtime, Rtime, 7 accumulate time
b 11 T4, shared_address _oi &
o 1w r5, offset of r3(Rep) all .
‘. add Rtime, Rtime, 1 call out to simulator

% call simulator_sw

(a) original code (b) modified code

Figure 1: Example of code augmentation

reorganized. We will now present a simple example which shows the steps in code
augmentation.

2.1 Example

Figure 1 shows an example of code augmentation for a small code fragment. The
original assembly language instructions are shown in figure 1(a).* These instructions
were generated by the compilation of the expression A = B + (' + X, where the
variables B and € will be loaded from local memory, the variable X is already in
register r8, and the result A will be stored in shared memory. Assume for this example
that this expression by itself forms a basic block. Basic blocks are the granularity at
which we perform analysis and code augmentation, and thus this small basic block
can serve as a complete example.

The first step is to identify which instructions can be directly executed by the
host processor and which instructions must be simulated. In this example the last
instruction references shared memory and will be simulated while the other four
instruction are local to the processor and can be directly executed. The simulated
instruction is isolated into its own basic block and treated separately.

CISC instruction set might be more complicated. -
4The instruction set is approximately that of the MIPS R2000[9], but it has been simplified
slightly to make the example clearer.



We now have two basic blocks as indicated by the lines separating the instructions.
The first basic block is directly executed and will be augmented with code that
accumulates the timing of the block and with code that saves and restores appropriate
registers. The second basic block contains the instruction that needs to be simulated,
and 1t will be replaced with a sequence of instructions that load needed arguments
and then call the simulator.

The second step is to calculate the timing of the basic blocks. The first block has
four instructions and takes four cycles. The second block has one instruction and
takes one cycle®. The timing of each basic block is computed statically and will be
used later during code augmentation. At that point the application will be modified
to compute 1ts own simulated execution time by summing basic block execution times
as 1t runs.

Once the execution times of basic blocks have been computed, we are ready to
start augmenting the code. Step three involves adding code to manage the register
file. As mentioned in the introduction, calls to the simulator are context switch points
and the register set must be saved in memory at these points. Since context switches
occur frequently and only a few registers are typically used between context switches,
it is much more efficient to load only those registers that will be used before the next
context switch, and to save only those registers that have changed since the previous
context switch. For typical applications, context switches occur almost every basic
block, and thus a sufficient policy is to load from and save to the register set at
basic block boundaries. We will maintain the condition that between basic blocks all
registers values will always reside in memory.

Figure 1(b) shows the expanded code. Before the first basic block we have added
a block which loads the registers whose values are used in that block. In this example,
only register r8 is loaded. The registers r1, r2 and r3 also appear in the basic block,
but they do not need to be loaded since they are defined within the basic block and
their previous values are not used. At the end of the basic block is append code to
save any registers which were defined within the basic block. The registers r1, r2
and r3 were defined and thus there are instructions to store each of them back to
memory. The register values are saved and restored from a region of memory called a
context block. In a parallel program, each thread has its own context block, and the
registers are saved and restored relative to the context block of the executing thread.
For our system, the current context block is always pointed to by a reserved register
Rcp (context pointer) which contains the starting address of the context block.

The fourth step is to add an instruction to accumulate the time taken by the
basic block. Since previous analysis had calculated that the first basic block took
four cycles, we append an inmstruction which adds four to the time counter. The
reserved register Rtime holds the time value and its value is used by the simulator to
order the scheduling of threads.

%In general determining accurate timing is somewhat more complicated because of pipeline con-
flicts within the floating point unit.



Cycles / || Context switch cost
Application | Description Switch || Switch in | Switch out
sieve finds primes 7.0 9.8 7.9
blkmat blocked matrix multiply 48.0 47.7 50.3
sor solves Laplace’s equation 4.2 8.5 5.5
ugray ray tracing renderer 10.1 11.8 9.1
water system of water molecules 33.1 277 22.2
locus standard cell router 4.0 8.0 5.2
mp3d rarefied hypersonic flow 4.7 8.1 6.3

Table 1: Context Switch Costs

This completes the code augmentation for those basic blocks that are directly
executed. Now in step five we replace the instructions that interact with the simulator.
These instructions were each isolated into their own basic blocks earlier. The save
word instruction (sw) that originally saved the value in register r3 directly to an
address in shared memory is replaced by a sequence of instructions which call a
simulation routine to perform the shared memory operation. The address and data
values are loaded into the argument registers (r4 and r5) and the time counter (Rtime)
is incremented by 1 (the time taken by the original instruction). If the simulator
finds that more time would be needed by this instruction, for instance if the memory
network is clogged or there is a cache miss, it would add the additional time.

This completes the code augmentation. The simulator can now use this modified
code to simulate parallel programs. By maintaining separate context blocks, program
counters, stacks, and time counters for each thread, a large parallel processor can be
simulated.

Table 1 gives the average context switch costs for the applications that we have
used in our simulation studies. Sieve, blkmat, and sor are toy applications developed
by the author. Ugray is from Berkeley[l]. Water, locus, and mp3d are from the
Stanford SPLASH[13] benchmark set.

The switch in cost listed in the table is the average number of registers loaded
per context switch into the application from the simulator. The switch out cost is
the average number of registers saved per context switch from the application out to
the simulator. Included in these costs are the overheads incurred by the simulator
in saving and restoring reserved registers such as the program counter, time counter,
stack pointer and context pointer.

This table shows the effectiveness of this in-line context switching technique. The
column labeled cycles / switch shows the average number of simulated execution
cycles between context switches. For all applications, the context switch cost 1s less
than the size of the register file, and for the applications that context switch most
frequently, the context switch cost is less than 10 cycles. The locus program, for
example, accesses shared memory very frequently and context switches at an average
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rate of once every four cycles.

The blkmat and water applications context switch much less frequently than the
other applications. Their average context switch cost is higher, but since they don’t
context switch as frequently, the higher context switch cost is amortized over a longer
period. Overall, the total context switch overhead ranges from 2 to 3 cycles per
simulated cycle.

2.2 Virtual Registers

The technique just presented of keeping the register values in memory facilitates
simple virtualization of the register file. For example, when register r8 was loaded
and later used in figure 1(b), it could have been loaded into any physical register
as long as the later use in the add instruction was also changed to use the same
register. Thus the virfual registers used in the original code need not be the same as
the physical registers used in an expanded basic block. Different basic blocks could
choose to use different physical registers to hold the virtual register r8.

Some virtualization of the register file is necessary to do code augmentation be-
cause a few of the registers used by the original program have been usurped for special
purposes. Examples are the Rtime and Rep registers used in the modified code to hold
the time counter and context pointer respectively. These extra register are assigned
to arbitrary physical registers (in our case r23 and r30). Wherever r23 and r30 are
used in the original code, they must be remapped to use some other register.

This capacity for virtual registers has proven very convenient in later research
projects performed with this simulator. In particular a research project involving
reorganizing the basic blocks to improve the reference patterns to shared memory
needed a few extra temporary registers to allow reordering of instructions while still
preserving all data dependencies. These extra registers were made available as extra
virtual registers, and then mapped into physical registers on a block by block basis.

3 Simulator

The simulator itself is written in a high level language (C) and is easily configured.
It can simulate different multithreading models and can use different memory system
models. For studies of multithreading it was used with a simple memory model
with constant memory access latency. For studies of cacheing it was configured with
memory modules that simulated an assortment of cache coherence protocols.

The main activity of the simulator is scheduling the threads and the memory
operations based on their time ordering. The simulator also gathers various execution
statistics and provides special system routines, such as m_fork(), which allow the
application to create and manipulate the simulated parallel threads.

Figure 2 shows the performance of the simulator over a large set of applications.
Results are shown with the number of processors varied from 1 to 1024. The slowdown
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Figure 2: Simulation Slowdown

factors shown in this graph are the number of cycles which are taken to simulate a
single cycle of a single thread. Since most instructions are directly executed and the
context switching cost has been reduced to just 2 to 3 cycles per simulated cycle, one
might expect slowdown factors of 3 or 4. The slowdowns are much larger because
of the remaining overhead which comes from the scheduling mechanism within the
simulator, the simulation of shared references, the memory simulator, and statistics
gathering. For this graph the memory model was a simple ideal memory that has 0
latency and no contention.

Two interesting trends can be observed from this graph. First, the slowdowns vary
for different programs. Programs such as blkmat and water have typical slowdowns
from 10 to 30, while programs such as locus and sor have typical slowdowns from 60
to 100. The difference comes from the different frequencies at which the applications
interact with the simulator. Where sor and locus had context switches every 4
cycles, blkmat and water have context switches only every 30 to 50 cycles and thus
require must less scheduling by the simulator. The costs of scheduling operations
are amortized over a larger number of simulated instructions and thus the overall
slowdown factors for blkmat and water are lower than those for the other applications.

The second interesting trend is that as the number of processors sirnulated is in-
creased, the slowdown factor initially drops and then slowly rises. The initial decrease
in slowdown is due to the time wheel algorithm used to implement the priority queue
that is used for scheduling threads and memory accesses. It works best when there
are many processors and thus there are many events per cycle. The later increase in
the slowdown factor occurs because the applications use more synchronization opera-
tions as the number of processors is increased. Synchronization operations, especially
spinning on locks or barriers, involve many shared accesses and thus increase the work
of the simulator.
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Figure 3: Simulation slowdowns under different configurations

3.1 Memory Simulator

This simulator can be combined with an assortment of memory simulators. The differ-
ent memory simulators are used depending upon what is of interest to the researcher
conducting the simulation studies. The main uses of the simulator have been for
studies of multithreading under long memory latencies and for performance studies
of cache coherency protocols.

Figure 3 shows the performance of the simulator under three configurations. The
configurations are: the ideal case which has 0 latency, the multithreading case which
has 200 cycle latency and anywhere from 3 to 11 threads per processor depending
on the application, and the cacheing case which uses a memory simulator that sim-
ulates the Censier and Feautrier[4] directory based cache coherence protocol. The
ideal case and the multithreading case have roughly the same performance. This is
because studying multithreading was our main use of the simulator, and thus the
multithreading support was built into the simulator from the start. Single threaded
execution is simply a special case of multithreading in which there is just one thread
per processor. The cache simulations use a memory simulator that typically takes
hundreds of cycles per reference to check and manipulate the caches’ states. This
extra overhead for the memory simulator slows down the simulations, but the slow
downs are only moderate because the memory simulation cost is amortized over the
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total number of simulated cycles.

4 Related Work

The Tango simulator[6] developed at Stanford is based on Unix shared memory and
uses Unix context switches. Unix context switches take tens of thousands of cycles
and slow down their simulator tremendously. For accurate simulations they report
slowdown factors ranging from 500 to 6000. In compensation for their large context
switch cost, they provide a mechanism to allow faster simulation in exchange for
reduced accuracy of the results. The faster simulation lets a thread execute hundreds
of memory references before it is context switched. The loss in accuracy arises because
the memory references of the threads are no longer accurately interleaved.

They are currently converting their simulator to use a light-weight threads pack-
age. This will greatly reduce the cost of context switches and will bring their perfor-
mance closer to the performance of our simulator.

Recently we learned of the Proteus simulator developed at MIT|3, 7]. Their sim-
ulator uses execution driven simulation and a light-weight threads package. This is a
versatile simulation system allowing simulation of both message passing and shared
memory multiprocessors. Their light-weight threads package takes 135 cycles per
context switch, compared with the typical context switch cost on our system of less
than 10 cycles. Their performance, however, is fairly close to that of our simulator
since there are other large costs such as the ordering and scheduling of events and the
simulation of shared memory accesses. They have reported typical slowdown factors
ranging from 35 to 100.

5 Conclusions

We have used our FAST simulator to perform a large number of architectural simula-
tions. Its fast speed has allowed us to simulate larger problems and larger machines
than would be possible with previous comparable simulators. Simulations that can
be completed in an hour on our simulator would require days on slower simulators.

The performance of our simulator comes from the combination of execution driven
simulation techniques and our new technique of in-line context switching. Where pre-
vious execution driven simulators have used Unix processes where context switching
costs 10,000+ cycles or light-weight threads where context switching costs 100+ cy-
cles, we have reduced the typical context switch cost to less than 10 cycles.

This large reduction in cost is made possible because context switches occur so
frequently that typically only a few registers are used between context switches. The
assembly code can be augmented to load and save only those registers which are used.
This reduces context switch overheads to just 2 or 3 cycles per simulated cycle.
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The most critical need for fast context switching occurs when context switching
occurs most frequently. The in-line context switching approach performs well in this
situation since as the interval between context switches decreases, the context switch
cost decreases as well.
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