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Abstract: Multithreading has been proposed as a means of tolerating long memory latencies
in multiprocessor systems. Fundamentally, it allows multiple concurrent subsystems (cpu,
network, and memory) to be utilized simultaneously. This is advantageous on uniprocessor
systems as well, since the processor is utilized while the memory system services misses.

We examine multithreading on high-performance uniprocessors as a means of achieving better
cost/performance on multiple processes. Processor utilization and cache behavior are studied
both analytically and through simulation of timesharing and multithreading using interleaved
reference traces. Multithreading is advantageous when one has large on-chip caches (32 kilo-
bytes), associativity of two, and a memory access cost of roughly 50 instruction times. At
this point, a small number of threads (2-4) is sufficient, the thread switch need not be ex-
traordinarily fast, and the memory system need support only one or two outstanding misses.
The increase in processor real-estate to support multithreading is modest, given the size of the
cache and floating-point units.

A surprising observation is that miss ratios may be lower with multithreading than with
timesharing under a steady-state load. This occurs because switch-on-miss multithreading
introduces unfair thread scheduling, giving more CPU cycles to processes with better cache
behavior.

1 Introduction

The high-performance workstation of the mid to late 1990s is expected to comprise a microprocessor
running above 100MHz, issuing multiple instructions per cycle with very fast floating-point, a
substantial on-chip cache, a very large dRAM main store, and a sophisticated memory system in
between. It will be used via a graphical interface with a host of windows, daemons, and background
tasks running simultaneously. Extrapolating from past growth rates, a dRAM access will require
the equivalent of many instruction times. This raises the interesting question of how best to focus
the storage hierarchy on the processing resources. One possibility is to provide intermediate levels
of caching to reduce the average off-chip access latency. However, with large on-chip caches the
references that escape from the processor have relatively little spatial or temporal density. Thus,
to achieve a significant hit rate, the next level cache must be very large. At this design point, the
processor is expensive, the intermediate cache is expensive, the main store is expensive, and two
of the three systems are idle much of the time. More careful cost analysis suggests an alternative
design point. It is expected that the cache occupies half the chip or more, the floating-point units
occupy roughly one quarter, and the memory management unit and the basic instruction processing
unit occupy roughly one tenth each. (The Intel i860xp fits this estimate quite closely.) Replicating



the register file and portions of the integer datapath represents a small investment and, given that
several processes are running simultaneously, could lead to better throughput and interactivity.
A process runs until it misses in the on-chip cache, at which point the miss request is issued
to the off-chip memory system and the processor switches to another process (or thread) on hot
stand-by. Although multithreaded processor design is non-trivial, the cost effectiveness comes from
eliminating the large intermediate level cache and making concurrent use of the memory system
and the processor. The processor executes instructions from one process while the memory system
services a miss for a waiting process.

The goal of this paper is to identify the technology point at which the multithreaded system
organization is attractive enough to warrant the engineering required to put it into practice. The
question we ask is under what conditions is multithreaded execution of several concurrent processes
markedly superior to timesharing amongst the same concurrent processes. This is quite different
from the question of multithreading vs. single threaded execution of one process, because in our
comparison both alternatives experience significant cache interference. The key issue is the impact
on memory system performance, so we need to compare timesharing and multithreading across a
range of cache sizes, associativities and memory latencies for various numbers of threads.

Studies of multithreaded architectures have primarily focused on multiprocessor systems where
several threads of a parallel program are maintained on each processor(l, 2, 3, 4, 5, 8] In that
context, it makes sense to consider switching on every remote load or on every instruction, as in [9].
We consider switching on each miss to the on-chip cache. If only one thread is used, the machine
behaves as a conventional processor. Adding threads provides very fine grain timesharing. Notice
that tolerating latency on multiprocessors results in concurrent use of three resources: processor,
network, and memory system. The observed latency is the time a process spends in the latter two
subsystems. The situation is similar with only one processor, but the network is very fast. In the
uniprocessor case, however, we expect the threads to be heterogeneous and independent.

In Section 2, a simple analytical model of multithreaded execution is presented to provide
a general understanding of how such systems behave. The model focuses on miss rate, which
determines thread length. Section 3 outlines the empirical method used to compare memory system
performance and processor atilization under timesharing and multithreading. The basic approach is
to multiplex traces from several independent threads. However, an important issue arises due to the
staggered completions of the traces. Section 4 presents data on the miss rates across a wide range
of system configurations and identifies a minimum viable cache configuration for multithreading.
Section 5 demonstrates the unfairness of thread scheduling under switch-on-miss multithreading
and examines its effects on cache miss rate. Section 6 examines the processor utilization of a viable
cache configuration against memory latency, switch cost, and the number of threads supported
within the processor. The data indicate a potential increase in throughput of roughly 50% due to
multithreading with a modest increase in processor complexity.

2 Analytical Model

To understand how a multithreaded processor should behave, we consider first a simple analytical
model[6]. A thread executes on the processor for a run of R instructions.! It issues a memory
request which takes L cycles to complete. In the meantime, the processor switches to a new thread
after a switch delay of C cycles, assuming one is ready. If no thread is ready, the processor idles.

1We will treat the average instruction time as our basic time unit and generally refer toit as a cycle. For superscalar
designs this may be smaller than the clock cycle time, but since the processor is fixed across the comparison the actual
units do not matter.



The utilization is
Busy

€= Busy + Switching + Idle,

where Busy, Switching, and Idle are the amounts of time the processor spends in the corresponding
states.

Let N represent the number of threads supported by the processor. If N is sufficiently large,
then the L cycles required to service a given memory request will elapse before all the other ready
threads have had a turn at the processor. Thus, the memory latency is entirely masked and the
utilization of the processor is determined by run length and switch delay. In this case, we say the
processor is saturated, since increasing the number of threads has no effect on performance. The
processor utilization in saturation is given by the following.

. __R
sat — R—+_ C‘

If the run length, switch delay, and latency are fixed, the saturation point is Ny = Fffc + 1.

On the other hand, if the latency is very large and the number of threads small, then the useful
work of all the threads will be exhausted before a memory request completes. Hence, the utilization
increases linearly with the number of threads, and is given by the following.

. _NR
lm—R+L

A more detailed stochastic model can be developed to capture the transition region between
these extremes (cf [6]); the general picture is given by Figure 1. The solid indicates the fraction of
time that the processor is busy doing useful work, but does not reflect the increase in cost due to
addition of hardware to support more threads. The rate of the cost increase depends on the fraction
of the processor that is shared between threads. Since misses occur very late in the pipeline, the
only way to achieve a near-zero cycle switch delay is to replicate the entire datapath. A delay of
five to ten cycles can be achieved by duplicating only the registers and flushing the pipeline behind
the miss.

Factoring in the incremental hardware cost per thread, the gain due to multithreading falls
off with increased number of threads. Adding threads has the most impact when the number of
threads is small. In this case, the switch delay has little impact, since there are idle cycles in any
case, and the chip area devoted to the added threads is small.

In the organization that we are considering, a thread switch is caused by a miss. One expects
that increasing the number of threads will increase the miss rate, since the same amount of cache
storage is shared by more processes. Increasing the number of threads will decrease the run length
and decrease the ratio of R to C. Therefore, with cache effects taken into account the utilization
is expected to peak before reaching saturation and drop with increased number of threads, as
indicated by lower curve in Figure 1.

Finally, observe that in the linear region the number of outstanding requests being serviced by
the memory system at any point is roughly N — 1. Thus, to increase the processor utilization the
memory system must be enhanced as well.

3 Method of Analysis

To measure the effects of multithreading and timesharing we use a variation on trace driven sim-
ulation. The traces are from eight of the SPEC benchmarks: doduc, egntott, espresso, matrix300,
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Figure 1: Utilization of a multithreaded processor as a function of the number of threads for latency
L = 100, switch delay C = 5, and average run length R = 20.

nasa?, spice2g6, tomcatv, and xlisp. These are the sampled traces of very large reference streams
presented in [7]. For each benchmark 50 samples are collected of 200,000 instructions each, giving
a total of 10 million instructions per trace. The traces are interleaved to simulate timesharing
or multithreading. In the timesharing case the trace is switched on each quantum, i.e., 200,000
instructions are taken from one trace, then 200,000 from the next, and so on in a round robin
fashion. For the multithreading case, a trace is followed until a miss occurs, then the next trace is
resumed until it misses, and so on.

For the eight-thread studies, all eight programs are used, one for each thread. Two different
orderings of the programs were used and the results averaged. For the four-thread studies, four
different sets of four programs were used such that each trace is used twice. For the two thread
studies, eight different pairs of programs were simulated and averaged. Reference addresses are
extended with thread numbers as high-order bits outside the mapped portion of the address.

We assume a lock-up-free on-chip cache able to sustain an arbitrary number of outstanding
requests (the number of outstanding requests never exceeds the number of threads). The memory
system outside of the cache is modeled as having a latency of a fixed number of cycles (L). Further,
we assume that instructions execute in a single cycle. The timeshared system incurs the direct cost
of misses, as well as indirect cost of having the cache polluted by other processes on each context
switch. For the multithreaded systems, a single cycle is charged for each instruction, plus a constant
Jatency value is charged on each cache miss. The first instruction of the next thread starts C cycles
after the miss or when the previous outstanding miss for the that thread completes, whichever is
later. We assume that once a value is fetched from main memory the value will be available at
least once for the thread which requested it. In effect, the value fetched on a load is provided to



the thread that issued the load, allowing the load to complete, as well as being placed in the cache.
The load is not reissued, so the thread makes progress even if the fetched line is knocked out of
the cache before the thread is resumed. Dirty lines are assumed to be written back to the memory
in the background, i.e., perfect write buffering is assumed, so no additional charge is assigned to a
miss that replaces a dirty line. For set-associative caches an LRU replacement policy is used.

Our cache simulator is based on Hill’s Dinerolll, but is almost entirely reworked to support
multiple trace streams. At every stage our simulator was verified both by hand and by side-by-side
runs against Dinerolll. We gather data on cache misses (instruction, data read, and data write),
number of context switches, bus traffic (generated from instruction fetches and data reads and
writes), number of references to a cache block before it is flushed, and life-time of threads (i.e, how
many references occur before a thread is switched). We collected data on caches with different
partitioning schemes (N-way partition for N contexts vs. single pool), sizes (1k, 2k, 4k, 8k, 16k,
32k, and 64k bytes), block size of 32 bytes, associativities (1, 2, 4, and 8-way), memory latencies
(10, 20, 50, and 100 cycles).

Multiplexing traces raises a question of when to stop the simulation. One approach is to
run all traces to completion, representing a fixed work load. The problems with this approach
are that differences in trace length essentially operate as weights on the various programs and,
more importantly, the number of threads decreases during the last portion of the simulation. The
alternative approach is to run for a fixed number of references, repeating traces as necessary so
that each program is represented throughout. This represents a fixed segment of a steady-state
workload. After examining the data it became clear that the results under the two methods are
very different because of the feedback from cache behavior to thread scheduling. Switch-on-miss
multithreading introduces unfair scheduling of threads, favoring those with low miss rates. In the
following we present results under both approaches. We first adopt the policy that the simulation
stops when any trace is exhausted. (Our traces contain the same number of references, to within a
few percent.) This reflects the steady-state assumption. We then show how the behavior changes
as the rest of the traces complete.

4 Multithreaded Cache Behavior

The most important factor we need to quantify is the performance degradation of the first level cache
due to interference among concurrently executing threads. The miss rate determines the thread
run length (R), which determines the number of independent threads (i.e., number of concurrent
processes in the processor), required to mask a given memory latency and the relative amount of
time spent running and switching. The interference among threads is strongly effected by the cache
organization. In light of this, we consider a wide range of cache sizes and associativities against
various numbers of threads. Note that timesharing causes interference as well, since each quantum
steps on the cache footprint established by the previously run processes. Thus, the real question
is how the interference under fine-grain switching compares with that of coarser-grain timesharing.
Focusing on miss rate at this stage, rather than utilization, has the advantage that memory latency
and switch delay can be ignored until the basic cache organization is determined.

Figures 2, 3, and 4 show data miss rates for a variety of cache organizations with two, four, and
eight processes on cache ranging from 1KBytes to 64KBytes with associativities of 1, 2, 4, and 8.
Miss rates represent the steady-state behavior, i.e., simulation stops when first trace is exhausted.
The columns show different degrees of associativity, and the rows show various cache sizes. For each
cache size and associativity the data miss rate is shown for timesharing (quantum), multithreading
with a single cache pool (pool), and multithreading with the cache partitioned into disjoint equal



regions, one per thread. Data for 2-way associative caches of size 32KBytes are shown in bar charts.

There are several interelated factors in the design of a cache to support switch-on-miss multi-
threading. We proceed by narrowing the space of interesting choices through a series of specific
questions.

4.1 Cache size

How large a first level cache is required to support multiple threads? Basically, we need to find the
point where the multithreaded miss rate is equal to that under timesharing. For small cache sizes
we observe that the multithreading miss rates are higher than those for timesharing. So we should
focus our attention on larger cache sizes.

4.2 Cache partitioning

Should the cache be shared among the threads or should threads have separate partitions? Under
multithreading, small partitioned caches do slightly better than small pooled caches. For larger
caches, a pooled organization is superior. Because the miss rates of a multithreaded C.P.U. using
a small cache of either organization is too high to be attractive, we should focus our attention on
pooled caches.

4.3 Associativity

Does multithreading require greater associativity than time sharing? For large pooled caches we see
improvements of 30% to 80% from direct-mapped to 2-way associative caches under multithreading.
Under timesharing the improvement is substantially less.

Interestingly, large, direct-mapped, partitioned caches outperform large, direct-mapped, pooled
caches. Some insight into these effects can be gleaned from Figure 5 which shows the cache footprints
of eight processes over time under direct-mapped and 2-way associative caches. With a direct-
mapped cache, programs with a broad access pattern, e.g., PID3 matrix mult, are able to hog
the cache, whereas with some associativity the amount of storage occupied by the programs is
more uniform. Partitioning enforces this uniformity in the direct mapped case. There remains an
advantage to pooling, since programs with a very small footprint, e.g., xlisp, are able to make room
for the rest.

For large associative caches, the miss rate for the pooled multithreaded cache is very close to
that for timesharing; in many cases it is better. This is clearly the design regime to investigate
further. Observe that if multithreading does not increase the miss rate, then the increase in memory
traffic under multithreading is proportional to the increase in performance. Furthermore, with miss
rates in the neighborhood of 2% the thread run length is comparable to the memory access time,
so a couple of threads saturate the processor/memory systems. This implies that the number of
concurrent miss requests that the memory needs to process is small and also that a very fast switch
is unnecessary.

5 Unfairness of Switch-on-miss Multithreading

It is counter-intuitive that multithreading should ever achieve better miss rates than timesharing.
Studies to date suggest the opposite[6, 9]. However, the reason for this is quite simple: switch-on-
miss multithreading allows threads for processes with low miss rate to run longer. This shows up
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Figure 2: Data cache miss rates under timesharing, multithreading with a
single cache pool, and multithreading with separate partitions for two threads.
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Figure 3: Data cache miss rates under timesharing, multithreading with a
single cache pool, and multithreading with separate partitions for four threads.
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Figure 4: Data cache miss rates under timesharing. multithreading with a sin-
gle cache pool. and multithreading with separate partitions for eight threads.
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quite strongly under our method of analysis. because the simulation stops when the first trace is
exhausted. However. the hardware would demonstrate the same unfairness.

To help explain these effects. the upper-left portion of Figure 6 gives data hit ratios for the
eight programs in isolation on 4Kyvte. 2-way associative cache. The hit ratios are all above 90%.
but three of the programs (egntot. espresso. and xlisp) are in the high 90s. while four programs are
in the low 90s. In effect. multithreading and timesharing mix these different reference patterns “on
the flv." However. the weights applied to the traces differ. Multithreading gives more processor
cvcles to those programs with better reference patterns. since missing less means more instructions
and more references per turn. Returning to the model of Section 2. the thread length R is related to
the miss rate pas R = %. In isolation, the miss rates of eqntot (trace2) and spice2g6 (traceG) differ
by a factor of 10. The upper-right portion of Figure 6 shows the number of instructions devoted
to each process under timesharing and multithreading. Under multithreading. eqntot contributes
five times as many instructions as spice2g to the total reference stream. The bottom portion of
the figure gives a graphical representation of how hit rate affects the weighting of various traces.
Traces with a high hit rate (shown in light grey) make up a larger fraction of the total instruction
stream under multithreading and the reverse for traces with a low hit rate.

To understand the miss behavior under a fixed-workload assumption. several configurations
were simulated until all the threads completed. Figure 7 show fixed-workload data miss rates for
two. four. and eight processes on two-way associative caches ranging from 1Kk Byvtes to 64KkByvtes
in size. Tle threads with low miss rate complete first and make additional room available in the
cache for the remaining threads. The footprints and the miss rates change in clearly identifiable
segments with each exiting thread. Generally the data miss rate increases as threads exit. because
the remaining threads have poorer cache behavior. Figure & summarizes this effect for eight threads
on a pooled. 32Kbyvte. 2-way associative cache. Instruction and data miss rates are given for each
individual segment and cumulatively from the beginning of the simulation.

Timesharing based on a quantum of a fixed number of cycles has a similar effect in real machines:
a process with fewer misses performs more instructions per second. Thus. in simulating timesharing
by multiplexed traces. the traces for the processes with low miss rates get consumed more rapidly
that those with high miss rates. In our simulation of timesharing a quantum is 200.000 instructions.
regardless of the number of misses. so this effect does not occur. We estimate that it would not be
pronounced. as it is under multithreading. because there is no feedback to instruction scheduling.

6 Processor Utilization

To analvze the impact of memory latency and switch delay under multithreading, we fix the cache
organization based on results from the previous section. Figure 9 shows the processor utilization
under timesharing (quantum) and multithreading for various numbers of processes, with a 32K Byte
2-way associative cache. The columns show various memory access latencies, and the rows show
various switch delays.

With two threads. 50 cvcle memory latency and a switch delay of 5. the cpu utilization under
timesharing and multithreading are 62% and 86%. respectively. giving a 35% speedup under multi-
threading. The speedup increases to 56% with four threads and 52% with eight threads under this
latency and delay. When the memory latency increases to 100 cycles, the speedup for two, four.
and eight threads is 59%. 112%. and 114%. respectively. Observe, that reducing the switch delay
provides little improvement. Increasing the switch delay to 10 has little effect with two threads.
because the processor is in the linear regime. However, with four or eight threads the processor is
saturated and the drop in utilization with increase in switch cost follows the model presented in
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Number of Processor Cycles Devoted to Each Process

Multi-threaded on 32K, 2-way Associative Cache (Pooled)
. Hit Ratio of Individual Trace on 4K, 2-way Associative Caches

‘ Timesharing Multithreading

" Program | HitRatein | Number of Number of

| Name | Isolation (4K) Instruction | pgregnt | Instructions Percent
Tracel idoduc 94.08% | 8,067,685 12.18% 2,138,906 6.55%
Trace2 ieqntott 99.22%! 9,571,743 14.46% 9,999,976 30.60%
Trace3 |espresso 98.549% | 9,162,432 13.84% 7,103,456 21.74%
Traced4 'matrix300 93.42% | 7,547,259 11.40% 2,547,673 7.80%
Trace5 inasa7 92.58% | 7,543,023 11.39% 2,398,518 7.34%
Traceb :spice2g6 92.01%| 8,569,311 12.94% 2,142,514 6.56%
Trace7 tomcatv 92.37%| 8,354,713 12.62% 2,776,096 8.50%
Trace8 xlisp 97.66% | 7,399,950 11.18% 3,567,492 10.92%

Tracet Trace2 Trace3 Traced TraceS Traceb Trace7 Trace8

~ Hit Rate in Isolation (4k)
Bl Timesharing Instruction Percent
EE Muttithreading Instruction Percent

Figure 6: Miss rates in isolation and number of references serviced for each benchmark under
timesharing and multithreading
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Figure 7: Fixed workoad data cache miss rates under timesharing, multithreading with a single
cache pool. and multithreading with separate partitions for two. four. and eight threads.
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Segment Data Miss Rate Inst. Miss Rate
Cumulative % J Segmen* % | Cumulative % l Segment 7.
1 6.40 6.40 0.45 0.45
2 6.60 7.20 0.4% 0.53
3 6.86 7.49 0.50 0.63
4 6.98 8.20 0.49 0.37
3 7.26 9.97 0.49 0.45
6 9.20 17.05 0.41 0.01
T 9.29 11.50 0.40 0.00
8 9.56 25.98 0.40 0.00

Figure & Cumulative and segment miss rates for eight threads on a 32Kbyte, 2-way associative
cache as threads exit.

Section 2 very closely. The average run length with four threads is 82 instructions while with eight
threads it is 55 instructions.

For a fixed workioad with two threads. 50 cvcle memory access and a switch delay of 5 the
utilization using timesharing and multithreading are 61% and 69%. respectivelv — a speedup of
13%. The speedup increases to 29% with four threads and 39% with eight threads. When the
memory latency increases to 100 cvcles. the speedup for two. four, and eight threads is 19%. 449..
and 67%. respectively.

7 Conclusions

As the gap between processor speed and memory cycle time increases. svstem designers will be
faced with a severe challenge in structuring the storage hierarchy. Multithreading uses multiple
lavers of the hierarchy concurrently. rather than adding more layers. One process uses the processor
and cache while another uses the main store. In the presence of large. on-chip caches, the basic
instruction processing unit occupies a small fraction of the CPU. so portions of it can be replicated
with little marginal cost. The presence of a sizable on-chip cache also makes the investment in a
next-level cache less attractive. because it needs to be very large to significantly reduce the average
access latency.

In this paper. a argument for limited multithreading was made analytically and validated
through trace-driven simulation with trace interleaving. Although there is interference among
concurrent threads. we have shown that in a design regime where on-chip caches are large, mul-
tithreading does not increase the miss ratio significantly bevond that incurred under timesharing.
In fact. multithreading may reduce the observed steady-state miss ratio by favoring processes that
operate in cache. The number of threads required is small, since run lengths remain fairly long.
Most of the gain is achieved with only two threads. and four appears to be a reasonable upper
bound. The demands placed on the cache/memory interface are not great, since it is enough to
support a small number of outstanding misses. The increase in memory bandwidth is proportional
to the speedup due to multithreading.

One weakness in our method is the use of sampled traces. The sample boundaries are aligned
with the timesharing quantum. This favors timesharing, since a process switch would destroy the
cache bstate. For multithreading these sample boundaries occur at arbitrary points in the trace.
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CPU Utilization 2 Threads | Mem Lat10 | Mem Lat20 , Mem Lat50 . Mem Lat10C
SwitchCost 0 |Quantum 88.74% 80.00% 62.27%  45.92%
'Pooled 97.85% 95.04% 86.04%  73.38%
SwitchCost 1 | Quantum 88.74%|  80.00% 62.27% _ 45.92%
Pooled 97.28% 04.68%'  85.90%  73.35%
SwitchCost 2 LQuantum 88.74% 80.00%| 62.27%|  45.92%
Pooled 96.61% 04.29% 85.75%!  73.32%
SwitchCost 5 Quantum 88.74% 80.00%| 62.27%!  45.92%
|Pooled 93.84% 92.98%  85.28%  73.21%
SwitchCost 10 . Quantum 88.74% B0.00%  62.27%|  45.92%
'Pooled 89.51% 89.51%' 84.36%  73.02%

SwitchCost 10

CPU Utilization 4 Threads | Mem Lat10 | Mem Lat20 | Mem Lat50 Mem Lat10C
SwitchCost 0 jQuantum 88.17% 78.84% 59.84% 42.69%
Pooled 98.92% 98.88% 97.78% 93.22%
SwitchCost 1 ‘Quantum 88.17% 78.84% 59.84%1 42.69%
‘Pooled 97.87% 97.86% 96.96% 92.76%
SwitchCost 2 ‘Quantum 88.17% 78.84% 59.84%§ 42.69%
Pooled 96.83% 96.83% 96.14% 92.28%
SwitchCost 5 ‘Quantum 88.16% 78.83% 59.84% 42.69%
Pooled 93.86% 93.86% 93.63% 980.72%
:Quantum 88.16% 78.83% 59.84% 42.69%

iPooled

89.29%

89.29%

89.29% |

87.82%

Figure 9: Processor Utilization under timesharmg and multithreading with various number of

threads. Average of runs with two. four, and eight contexts.

CPU Utilization 8 Threads Mem Lat10 | Mem Lat20 | Mem Lat50 Mem Lat10C
SwitchCost 0 :r Quantum | 87.90% 78.41% 59.23% '  42.08%
'Pooled t 98.25% 98.25% 08.23%  97.61%
SwitchCost 1  |Quantum | 87.90% 78.41% 50.23%  42.08%
'Pooled ! 96.56% 96.56% 96.55%| 96.11%
SwitchCost 2 ;Quantum i 87.90% 78.41% 59.23%; 42.08%
'Pooled | 94.93% 94.93% 94.92%  94.62%
"Pooled . 90.34% 90.34% 90.34%!  90.28%
SwitchCost 10 ZQuantum | 87.90% 78.41% 50.23%|  42.08%
'Pooled | 83.61% 83.61% 83.61%'  83.61%




thereby introducing a flurry of misses. To eliminate sampling for benchmarks of this size. it would
be necessary to avoid storing traces altogether.

Given current growth rates. the point where multithreading appears to be superior lies not
far into the future. These results need to be validated with studies based directly on interactive
workloads with operating system effects and limits on memory system capability. Nonetheless. the
results presented here indicate that a detailed engineering analysis of multithreading is warranted.
perhaps even in the next generation of microprocessors. Changes in processor design along these
lines mayv vield a better building block for large-scale multiprocessors as well. However. in shared-
memory multiprocessors one cannot expect miss rates to drop arbitrarily. since misses reflect the
inherent communication between portions of the computation. Multithreading in the uniproces-
sor case is particularly attractive because thread run lengths become long with caches that can
reasonably be expected to reside on the CPTU chip.
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