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Abstract

This paper develops a new algorithm for line clipping based on the concept of the
optimal tree. A careful analysis results in an algorithm that classifies a given line seg-
ment in such a way that at most one procedure is invoked to clip it; furthermore, there are
five such procedures that cover all cases. The result is an algorithm that is provably
optimal and according to experimental tests outperforms previous algorithms. For both
the two-dimensional and three-dimensional cases, and on both the Sun 3/160 and the
DECStation 5000/200, the new algorithm performed uniformly faster than all the other
"standard" algorithms for each of four different sizes of data space. Only the two-
dimensional case is described in detail. Although in the three-dimensional case this algo-
rithm is significantly faster than the other known algorithms, the code is huge and more
complex than the new two-dimensional algorithm, and there are more special cases that
need to be handled. '

0. Introduction and Previous Work

Line clipping is a basic and important step in computer graphics that involves the
removal of that portion of line segment that lies outside a region called the clip window
or visible region or clipping region. This will be explained in detail in Section L.

An early algorithm for line clipping is due to Ivan Sutherland and Danny
Cohen.8:14.22 This algorithm uses a coding scheme to subdivide space. Then, each end-
point of a line segment is assigned the code of the sub-region in which it lies. Several
properties of these codes are used to facilitate the determination of visibility of the line
segment. When the use of the codes is insufficient to determine visibility, then the line
segment is decomposed for further examination.

Later, the authors!%-1’ employed a parametric representation of the line segment to
be clipped, used minimum and maximum calculations to determine the parametric values
corresponding to the endpoints of the visible line segment, and developed several new
definitions for trivial reject to speed up the approach. A similar approach was indepen-
dently adopted by Cyrus and Beck? although that work did not develop the trivial reject
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cases that are so important for efficiency.

At SIGGRAPH’87, Nicholl, Lee, and Nicholl13:16 presented a very efficient two-
dimensional line clipping algorithm that is based on a case-by-case approach and which
improved upon the efficiency of existing line clipping algorithms. However, this algo-
rithm is only applicable in two dimensions. Their algorithm computes intersection points
of the line with the clip boundaries only when the new point is definitely one of the end-
points of the clipped line. This approach subdivides the plane based on the location of
the "first" endpoint of the line. The algorithm uses a small number of generic cases such
that all others can be transformed into these by reflections or rotations The final clipped
line, if any, must then be transformed back. In their more recent paper, Nicholl and
Nicholl!6 showed how their program could be transformed to reduce the number of pro-
cedure calls and assignments, but the extent to which this reduction could be practically
accomplished, and its effects on execution speed remain unknown. The program is
already very long and if each call were replaced by in-line code, the program would be
massive in size.

These three algorithms are well-known in computer graphics, and are covered in
~ detail in8 However, there are lesser known variants of these three algorithms for line
clipping and there are other algorithms as well.

Improvements to the Sutherland/Cohen algorithm have been developed in;!-2.7-18
they have concentrated on speeding up the algorithm by minimizing the work involved in
recomputing line segment endpoint encodings.

In,12:13 the original Liang/Barsky parametric line clipping algorithm is improved
by reducing the number of divisions in favor of more comparisons. Dorr® provides a dif-
ferent improvement by showing that the Liang/Barsky algorithm can be performed
entirely in integer arithmetic.

Sobkow, Pospilsil, and Yang21 developed an algorithm which is similar to the
Nicholl/Lee/Nicholl algorithm in substance (if not in form) in the sense that they
enumerate all possible relationships between a line and the clipping region, and only
compute intersection points where these are required as part of the output.

In, Brewer and Barsky analyze the projection transformation and thus show how
clipping algorithms can be modified so that three-dimensional clipping is performed after
the perspective division. Clipping after projection is simple to implement and allows
three-dimensional graphics to exploit the benefits of two-dimensional clipping, including
hardware clipping and complex boundaries, including curved edges. Recently, Slater and
Barsky?0 introduced the idea of tracing the path of the line segment through the spatial
subdivision induced by the extended clipping region boundaries, only computing inter-
sections when the line segment enters the central cell (the clipping region). This
approach avoids the large number of tests needed in, for example, the algorithms of Sob-
kow, Pospilsil, and Yang, or of Nicholl, Lee, and Nicholl, and this can be extended for
polygon clipping. Finally, the complexity of the general clipping problem, of line seg-
ments against polygons, has been given attention in the computational geometry litera-
ture (where it is known as the Line-Polygon Classification problem, LPC), and is dis-
cussed, for example, in.17.19.23

In this paper, we present a new algorithm for line clipping that is completely dif-
ferent from our previous parametric line clipping algorithm. It is based on the concept of
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the optimal tree. A careful analysis results in an algorithm that classifies a given line
segment in such a way that at most oné¢ procedure is invoked to clip it; furthermore, there
are five such procedures that cover all cases. The result is an algorithrs that is provably
optimal and according to experimental tests outperforms previous algorithms. For both
the two-dimensional and three-dimensional cases, and on both the Sun 3/160 and the
DECStation 50007200, the new algorithm performs uniformly faster than all the other
“standard" algorithms for each of four different sizes of data space. Only the two-
dimensional case will be described in detail. Although in the three-dimensional case this
algorithm is significantly faster than the other known algorithms, the code is huge and
more complex than the new two-dimensional algorithm, and there are more special cases
that need to be handled.

L Set-up

Given a visible region, extend the boundary lines to be of infinite extent. The left,
right, bottom, and top boundary -lines are denoted by x=xp, x=xr, Y=¥B, and y=yr,
respectively. These boundary lines of infinite extent subdivide the plane into a set of
areas, which we call partitions, one of which is the visible region. There are nine such
partitions using a rectangular clipping window. For convenience, we denote these parti-
tions, or areas, by A;;,i€ {L, C,R} and je {B,M, T}. This arrangement is illustrated in

Figure 1.
Arr Act ART
Y=¥YT
Am Acm ArM
Y=YB
AL Acp AR
X=Xy X = XR

Figure 1: The boundary lines subdivide the plane into nine partitions.

The line segment to be clipped is denoted Py Py, where Py and P, are its endpoints with
coordinates (xq,yo) and (x1,y1), respectively. We classify the line segment according to
which partition each endpoint lies in. For example, a line segment might start in the bot-
tom left partition and terminate in the top right partition; that is Py lies in Ag;, and P, is
in Agr. We call each such classification a partition-pair and denote it by (4; j»Au). Since
we distinguish explicitly between which partition Py is in and which partition P, is in,
the total number of possible partition-pairs is simply 9x9=81.

Extending the line segment Po P; to be a line of infinite extent, this intersects the
left, right, bottom, and top boundary lines at y=y£, y=y£, x=xf; and x=x5-, respectively.

II. Definition of Line Clipping

Recalling that the line segment to be clipped has endpoints denoted as Po(x0.y0)
and Py(x1,y1), let the line segment that results from the clipping operation have end-
points denoted as Po(xg,yo) and P1(x;,y1). The line clipping operation can be regarded
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as a mapping, which we denote by LCM, from Pg P, to P, P}. This can be written in
several ways:

LC™M
P() Pl - Po Pl
or
Py P} = LCM (Po,Py)
or
LCM ’ 4 ’ ’
(xO’ Yo, X1, yl) - (XO, Yo, X1, yl)
The clipped endpoints could be expressed as follows:
, x}, X0 <x3 , x'R Xg<Xx4
*0 =1x, otherwise *1 =) x; Otherwise
. PByosSyr , yr yosy
Y0 =1y7 otherwise Y1 =1y7 otherwise
where

x7, = max(min(xg, X1), X, min(x}, x1))
X = min(max(xo, x1), xg, max(xg, x7))
yp = max(min(yo, 1), ¥s, min(yL, yk))
yr = min(max(yo, ¥1)» yr, max(L, yk))

In the case of a horizontal line, min(xfg, xé) and max(xf;, xf) are taken to be — and
+oo, Tespectively. Similarly, in the case of a vertical line, min(y}, yk) and max(y}, yk)
are taken to be —eo and +oo, respectively.

The line segment is partially visible if x},Sx}g or y}); Sy:T; otherwise, it is invisible. If
the line is partially visible, then the visible segment is Pg P;.

Although the above formula provides a theoretical solution for the line clipping
problem, it is not a practical computation because it requires two multiplications, three
divisions, four additions, four subtractions, and twelve comparisons for each line seg-
ment to be clipped.
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1. Line Clipping Tree

One of the underlying ideas of our approach is to determine a careful ordering of
comparison tests to be performed to soive the line clipping problem. This is represented

by a line clipping tree. The nodes of the line clipping tree are comparison tests. There are
two types of such comparison tests.

The first type compares an endpoint of the line segment to be clipped to a boundary
line. These comparisons are:

Xo>XR X0<XL Yo<YB Y0>)T
X1>Xp X1<XL Y1<XB Y1>)T
We call these the primary comparisons.

The second type compares a point of intersection between the extended line and the
extended boundary lines to a boundary line. These comparisons are:

x§>xk x’r<xL )’i<xa )‘f.>xr
15‘>IR 15'01, )’fz<xB Yfe>xr

We call these the secondary comparisons.

We will use the idea of convex regions which contain one or more of the partitions
A;j. Examples of such convex regions are shown in Figure 2. As we did for the partitions
A;j, we specify a pair of convex regions, each of which defines where one of the end-

points of the line segments to be clipped can be located. Such a pair of convex regions is.

called a region-pair. For the line segment to be clipped Py Py, the convex regions for the
endpoints are denoted by Co and C;, and the region-pair is denoted by (Co, Cy).

In the case where both Co and C; are on the invisible side (the side that does not
contain the window) of the same boundary line, then (Co, Cy) is a trivial reject region-
pair; otherwise, (Co, C1) is a non-reject region-pair. An example of a trivial reject
region-pair is shown in Figure 3(a). In the case where both Co and C; are the visible
region, then (Co, C1) is a visible region-pair, as shown in Figure 3(b). Finally, if (Co,
C,) contains neither a trivial reject region-pair nor a visible region-pair, then (Co,Cy) 1s
called a key region-pair. An example of a key region-pair is shown in Figure 3(c).

IV. Subcases of Line Segments for a Given Partition-Pair

As mentioned ecarlier, we classify the line segment to be clipped according to which
partition, A;j, each endpoint lies in, called a partition-pair. Each partition-pair is further
decomposed into subcases according to which side of the window the line enters or exits,
and which corner of the window is nearest to the line missing the window.

For example, consider the partition-pair (Ags, Apr). For this partition-pair, there are
six subcases, two of which are reject subcases. Figures 4(a) and 4(b) show the two reject
subcases and four non-reject subcases, respectively.

The line segments to be clipped are not uniformly distributed among these subcases.
To see this, consider a line segment of the subcase Eg E; in Figure 4(b) that intersects
the window on the left boundary at a given point. The range of geometric possibilities for
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Figure 2: Examples of convex regions.

t

@ ® ©

Figure 3: Region-pairs.
(a) Trivial reject region-pair.
(b) Visible region-pair.
(c) Key region-pair.

this subcase is shown in Figure 5. It is intuitively clear that of all the possible line seg-
ments that pass through the point I, the proportion that will be of subcase Eo E; would
be far less than the 1/6 that would occur if the subcases were uniformly distributed.
Using this type of analysis, we can estimate the relative proportions of the occurrences of
cach of the subcases, for this partition-pair. These proportions will be used as weights in
calculating the computational requirements.
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Figure 4: The partition-pair (Ags, ALr) has six subcases.
(@) The two reject subcases.
(b) The four non-reject subcases.

~x

l\\\
AN

Figure 5: Geometric possibilities for line segments of the subcase Eq E; in Figure 4(b)
‘ that intersect the window on the left boundary at a given point.

Now, for a given partition-pair (4;;, Au) we consider all its subcases. The relative
proportions of the occurrences of each subcase are used as weights in computing the
average computational requirements for the partition-pair.

The computational requirements are, of course, dependent upon the ordering of the
comparison tests. As mentioned in Section 111, a specific ordering is represented by a line
clipping tree whose nodes are comparison tests. Clearly, there are many possible line
clipping trees for any partition-pair.

For a given partition-pair (4;j, Au) consider an arbitrary line clipping tree which
we will denote by T (4;j, Ay). We can calculate the computational requirements of T (Aj,
Ay) by considering the ordering as specified by the tree and taking a weighted average of
the computational requirements of cach subcase where the weights are the above-
mentioned relative proportions of the occurrences of each subcase for the given
partition-pair. In particular, we consider three separate weighted averages: (i) the number
of additions and subtractions, (ii) the number of multiplications and divisions, and (iii)
the number of comparisons.

For a given partition-pair, we can find a line clipping tree that simultaneously
minimizes each of these three weighted averages. Except for geometric symmetry, the
tree is unique. It is said to be the optimal tree of the partition-pair (A;;, Ay) and will be
denoted by OT (A;j, An)- ‘
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To see this, we carefully construct the optimal tree for various types of partition-
pairs. First, we divide the partitions into three categories, as in.15 A partition is a side if
it has a common edge with the window; these are Arys, Apym, Acp, and Acr, as was
shown in Figure 1. A partition is a corner if it has only one comer point in common with
the window; these are A;p, App, ALT, and Agr, as was also shown in Figure 1. A parti-
tion is the window if it is the visible region; this is Acys, as was also shown in Figure 1.

Now, consider the possible types of partition-pairs. The partition-pair (Acy, Acpy)
is window-window and is a trivial accept. This leaves five distinct types of partition-
pairs. These are: (1) window-side or side-window, (2) window-corner or corner-window,
(3) side-side, (4) side-corner or corner-side, and (5) corner-corner. Note that the last two
types contain the trivial reject case of line segments that are completely on the invisible
side of a boundary line. This trivial reject case is excluded in the construction of the
optimal tree for these types of partition-pairs. We turn now to the optimal tree for each
of these five types of partition-pairs:

IV.1. Optimal Tree of Window-Side or Side-Window

The eight instances of this type are shown in Figure 6. In each case, the result of the clip
is immediately determined with no comparisons.

(a) (©) e ®

®) ‘ @ ® ®
Figure 6: Eight instances of window-side or side-window type of partition-pair.

As a representative, consider the instance illustrated in Figure 6(a). The result of the clip
is:t

Y1=)T

xy=xf

t This requires four additions / subtractions.
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IV.2. Optimal Tree of Window-Corner or Corner-Window
The eight instances of this type are shown in Figure 7.

Py
P
(/f/h P.\‘\\\\
Po 1 P ' Fo
Po PR‘\\\‘ ///P" \"‘
Py P
@ © e ®
; ) Py P,\
// // Po.\\\\
P/ P Py N
Py PQ N _/ o n
P,
\P.. Py l{
®) @ 4] )

Figure 7: Eight instances of window-corner or corner-window type of partition-pair.

As a representative, consider the instance illustrated in Figure 7(a). The optimal tree for

this is shown in Figure 8.

Y a
=X &'4
YNk nerr

Figure 8: Optimal tree for Figure 7(a).

Note that we use the convention that the left hand branch is followed if the condition is
satisfied and the right branch is followed otherwise.

IV.3. Optimal Tree of Side-Side

The twelve instances of this type are divided into two groups. Four instances involve
“‘opposite sides’” as shown in Figure 9 and eight instances involve ‘‘adjacent sides’’ as
shown in Figure 10.

Consider first the “‘opposite sides’” group shown in Figure 9. As a representative,
consider the instance illustrated in Figure 9(a). The result of the clip is:
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3 Py
1 [
Py —*P, P ¢ * Py
{ ) :
Po P,
(a) ® ©) @

Figure 9: Four instances of opposite sides group of side-side type of partition-pair.
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Figure 10: Eight instances of adjacent sides group of side-side type of partition-pair.

xo=xk
Yo=JYB
x1=x5

Y1=Jyr

Now, consider the “‘adjacent sides’’ group shown in Figure 10. As a representative,
consider the instance illustrated in Figure 10(a). The optimal tree for this is shown in
Figure 11.

IV.4. Optimal Tree of Corner-Side or Side-Corner

The sixteen instances of this type are shown in Figure 12. Asa representative, con-
sider the instance illustrated in Figure 12(1). The optimal tree for this is shown in Figure
13.
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< >

y n
. -7
Yo=Ys
Xy =Xp
’1')/3

Figure 11: Optimal tree for Figure 10(a).

IV.5. Optimal Tree of Corner-Corner
The four instances of this type are shown in Figure 14.

AN N e i

N N V4 4

N N / /

N N Z £

\ Py \ P, Py / | 21 /

@ ®) ® @
Figure 14: Four instances of corner-corner type of partition-pair.

As a representative, consider the instance illustrated in Figure 14(a). The optimal tree for
this 1s:

V. Optimal Tree for the Region-Pair
Having considered the optimal tree for various type of partition-pairs, let us now
investigate the optimal tree for a region-pair, as was discussed in Section III. Note that a
region-pair can always be decomposed uniquely into the union of non-overlapping
partition-pairs. That is,
(Co.Cy) =V (Ajj,An)
where each (A;j,An) is said to be a subpartition of (Cg, Cy).

Unlike the optimal trees for the various cases of partition-pairs, it is not always pos-
sible to have an optimal tree for a region-pair. That is, it is not always possible to minim-
ize simultaneously (i) the number of additions and subtractions, (ii) the number of multi-
plications and divisions, and (iii) the number of comparisons. The following two exam-
ples will illustrate this. However, if we exclude the number of comparisons, then it is
possible to minimize simultaneously the arithmetic operations (that is, (i) and (i1)).

Example 1: Figure 16 shows the region-pair for this example. In this case, the con-
vex region Cq corresponds to the union of partitions Ay p and Acp while the convex
region C; corresponds to partition Act. Consider the line clipping trecs shown in
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Poe Py \ Py \ / Py
S~ TN \ 7
\ N /
\ \ Py P /
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@) ® ®) @
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Figure 12: Sixteen instances of comer-side or side-corner type of partition-pair.

Figure 17. The tree shown in Figure 17(a) minimizes the number of arithmetic
operations ((i) and (ii) above) while the tree shown in Figure 17(b) minimizes the
number of comparisons.

Example 2: The region-pair for this example is shown in Figure 18. In this situa-
tion, the convex region Cy corresponds to the union of partitions Azy and Azr while
the convex region C; corresponds to the union of partitions Acp and Agg. Consider
the line clipping trees shown in Figure 19. The tree shown in Figure 19(a) minim-
izes the number of arithmetic operations while the tree shown in Figure 19(b)
minimizes the number of comparisons.

Furthermore it is clear any region-pair where two regions contain those in Example
1 (or in Example 2) will exhibit the same difficulty; that is, there will be one tree that
minimizes the aritimetic operations and another one that minimizes the number of
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< >

y n

xo=%)
Yo=Ys

< >

y n
Yi=Yr x, -2
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Figure 13: Optimal tree for Figure 12(1).

comparisons. However, any other region-pair whose two regions do not contain those in
cither example will not have this shortcoming. That is, there will be a tree that minim-
izes simultaneously (i) the number of additions and subtractions, (i) the number of multi-
plications and divisions, and (iii) the number of comparisons.

In those cases where is is not possible to minimize simultaneously all these
categories of operations ((i)-(iii)), then we will favor minimization of arithmetic opera-
tions ((i) and (ii)) over that of the comparisons ((iii)). Thus, we define the shortest tree
of a region-pair as a tree that, first, absolutely minimizes the number of arithmetic opera-
tions ((i) and (iii)) and, further, if there is more than one such tree, as the particular tree
among these that has the fewest number of comparisons.

This leads to the question regarding the existence, construction, and uniqueness of
this shortest tree. To address these questions, we will first introduce irreducible region-
pairs and find the shortest tree of the irreducible region-pairs and then transform the
problem into minimizing the single quantity corresponding to the number of comparis-
ons. :

VI. Absolutely and Relatively Irreducible Optimal (A/O and RIO) Region-Pairs

A key idea in our approach is the judicious subdivision of region-pairs that contain a
trivial reject region-pair of a visible region-pair (that is, as was defined at the end of Sec-
tion I). Consider a non-key region-pair. We will call it an absolutely irreducible
optimal (denoted by AIO) region-pair if the shortest tree of this region-pair contains no
nodes that have primary comparisons. Furthermore, we will call a non-key region-pair a
relatively irreducible optimal (denoted by RIO) region-pair if the root node of the shor-
test tree of this region-pair is a secondary comparison and the shortest tree contains some
nodes that have primary comparisons. A non-key region-pair that is neither A/O nor RIO
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reject Yo=Yk Teject
<l > o
y n y n
-2 o=
n-% nex
nen ez J
”- .
"-{L -~ 1=¥r N=N

Figure 15: Optimal tree for Figure 14(a).

N
NN

%~ \a
Figure 16: Region-pair for Example 1.

is a reducible region-pair.

To investigate the AIO and RIO region-pairs, some further distinctions are helpful.
Consider a non-key region-pair. We will call this a secondary comparison region-pair if
there exists a tree for this region-pair that has no nodes having primary comparisons.

Thus, a secondary comparison region-pair can have line clipping solved by using
secondary comparisons exclusively. Note that an AIO region-pair must be such a
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n-2 -7 ‘
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y a y n
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Figure 17: Two different line clipping trees for the region-pair in Figure 16.

(a) The tree minimizing the number of arithmetic operations.
(b) The tree minimizing the number of comparisons.

secondary comparison region-pair. Hence, we will now enumerate the secondary com-
parison region-pairs.

There are five types of secondary comparison region-pairs, two of which are AIO,
two of which are RIO, and one of which is reducible. These five types of region-pairs
will be denoted by AIO-1, AIO-2, RIO-1, RIO-2, and R, respectively. We will also name
them to indicate their geometric arrangement, by considering the regions in the following
ways: if a region is the window, if a region is not the window but contains it, if the two
regions share only a common point, and if the two regions are located on opposite sides
of the window.
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.

7

..... Z
Y~ No
Figure 18: Region-pair for Example 2.
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Figure 19: Two different line clipping trees for the region-pair in Figure 18.

(a) The tree minimizing the number of arithmetic operations.

V1.1. AIO-1: Opposite Type Region-Pair
The AIO-1 type region-pair has one of its regions that is a strip of three partitions
outside the window (this could be to the left, above, to the right, or below the window)
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Figure 19: Two different line clipping trees for the region-pair in Figure 18.
(b) The tree minimizing the number of comparisons.

where its other region is one partition on the opposite side of the window and central.
Since the two regions are located on opposite sides of the window, we call this the oppo-
site type region-pair. there are eight possibilities for the AIO-1 type region-pair and they
are illustrated in Figure 20.

V1.2. AlO-2: Window Type Region-Pair

The AIO-2 type region-pair has the window as onc of its regions where its other
region is a strip of three partitions outside the window. This is similar to the A/O-1
opposite type region-pair except that instead of the single partition region being outside
the window, it actually is the window. Since one of the regions is the window, we call
this the window type region-pair. Similar to the AIO-1 type region-pair, there are eight
possibilities for the AIO-2 type region-pair and they are depicted in Figure 21.

V1.3. RIO-1: Balanced-Pivotal Type Region-Pair

The RIO-1 type region-pair has both of its region containing two partitions and
sharing only 2 common point. Since the two regions are of equal size and the join at a
single point, we dub this the balanced-pivotal type region-pair. There are cight arrange-
ments for the RIO-1 type region-pair and they are shown in Figure 22.

V1.4. RIO-2: Unbalanced-Pivotal Type Region-Pair

The RIO-2 type region-pair is similar to the RIO-1 region-pair in that its regions
share a single point; however, instead of both regions containing two partitions, the RIO-
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Figure 20: AIO-1: Opposite type region-pair.

2 region-pair has one of its regions being a single partition that is located outside of and
adjacent to the window. Since the two regions join ata single point, but are not the same
size, we refer to the RIO-2 region-pair as the unbalanced-pivotal type region-pair. There
are sixteen possibilities for the RIO-2 type region-pair and they are given in Figure 23.

VL5. R: Strip Type Region-Pair

The R region-pair has its regions together forming a strip of three partitions includ-
ing the window. More specifically, one region has two partitions, one of which is the
window and the other is a partition that shares a common edge with the window; the
other region has one partition that shares the opposite edge of the window such that the
two regions form a strip. Due to this configuration, we denote an R region-pair as a strip
type. There are eight possibilities for a strip region-pair and they are shown in Figure 24.

VIL Framework of Program and Modules

For each of the five types of secondary comparison region-pairs, we will provide a
simple clipping procedure. These five procedures cover all cases; any given line segment
can be clipped by calling at most one procedure. '
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Figure 21: AIO-2: Window type region-pair.

The overall structure of the program is a careful analysis for the line segment to be
clipped. The line segment is classified and then at most one procedure is invoked to clip
it. The basic framework of the program is shown in Figure 25.

There are a total of 19 cases depicted in Modules A through E. In Module E, one
. case is a trivial accept, and two cases are intersection computations. Thus, there are a
total of 16 instances of absolutely and relatively irreducible optimal region-pairs. These
16 cases are handled with five procedures, each of which can cover all geometric sym-
metries.

These 16 region-pairs comprise two instances of the opposite type, four of the win-
dow type, four of the balanced-pivotal type, four of the unbalanced-pivotal type, and two
of the strip type region-pair. We turn now to the generic clipping procedures for each of
the five types of region-pairs, and the appropriate calling sequence to accommodate all
the 16 instances.

For efficiency, the procedures are developed so as to use multiplications instead of
divisions. Also, the procedures for the relatively irreducible optimal region-pairs (that is,
RIO-1, the balanced-pivotal type and RIO-2, the unbalanced-pivotal type are based on a
parametric approach.
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Figure 22: RIO-1: Balanced-pivotal type region-pair.

VIIL Clipping Procedures for the Five Types of Region-Pairs

VIIL1. AIO-1: Opposite Type Region-Pair Clipping Procedure

The opposite type region-pair occurs twice, once each in Module A and Module B.
These instances have Py in a horizontal strip of three partitions below and above the win-
dow, respectively, and P; in a central partition that is above and below the window,
respectively. For the generic clipping procedure, the boundary line adjacent to the strip
of three partitions is denoted bl and the boundary line alongside the centrally-located
partition is denoted b2, and the procedure definition is clip_opposite (b1, b2).

Figure 31 gives the procedure and Figure 32 shows the instances of the opposite
type region-pair with the associated procedure calling sequences.

VIIL2. AIO-2: Window Type Region-Pair Clipping Procedure

The window type region-pair occurs four times, once each in Module A and Module
B and twice in Module E. In Module A, Py is in the window and P; is in a horizontal
strip of three partitions below the window. The instance in Module B is similar except
that Py is in a horizontal strip that now is above the window. The two instances in
Module E duplicate the instances of Module A and B except that it is P; that is in the
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Figure 23: RIO-2: Unbalanced-pivotal type region-pair.

window and Py that is in the horizontal strip. For the generic clipping procedure, the
point inside the window is denoted (x_window, y_window), the point in the strip is
denoted (x_strip, y_strip), and the boundary linc between them is denoted bl, and the
procedure definition is clip_window (x_window, y_window, x_strip, y_strip, bl). Figure
33 provides the procedure and Figure 34 shows the instances of the window type region-
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pair with the associated procedure calling sequences.
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Figure 33: clip_window (x_window, y_window, x_strip, y_strip, bl).
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if y0 < yB (* Py below bottom *)
then if yl <yB
then reject (* Po and P both below bottom *)
else (* Pp below bottom and P; above bottom
in one of four cases of Module A shown in Figure 26 *)

else (* Py above bottom *)
if y0 > yT (* Pg above top *)
then if yl > yT
then reject (* Po and P; both above top *)
else (* Py above top and P; below top in
one of four cases of Module B shown in Figure 27 *)

else (* Py above bottom and below top *)
if x0 > xR
then if x1 > xR
then reject (* Py and Py both right of right *)
else (* Py is above bottom, below top, and right of right and Py
is left of right in one of four cases of Module C shown in Figure 28 *)

else (* Py is above bottom, below top, and left of right *)
if x0 <xL
then if x1 <xL
then reject (* Py and P; both left of left *)
else (* Py is above bottom, below top, left of left, and Py
is right of left in one of four cases of Module D shown in Figure 29 *)

else (* P, is above bottom, below top, left of right, and right of left,
and thus Py is inside window and P, is in one of five cases
of Module E shown in Figure 30 *)

Figure 25: The basic framework of the program.

VIIL3. RIO-1: Balanced-Pivotal Type Region-Pair Clipping Procedure

The balanced-pivotal type region-pair occurs four times, twice each in Module A
and B. These instances have two regions both containing two partitions and joining at a
common point. In all four instances, the point Py is in the horizontally-oriented region
and P; is in the vertically-oriented region. For the generic clipping procedure, the fol-
lowing notation is established: bl denotes the horizontal boundary along the longer side
of the region containing P, b2 denotes the vertical boundary slicing through this region,
b3 denotes the vertical boundary along the longer side of the region containing Py, b4
denotes the horizontal boundary slicing through this region, flag0 indicates if Po is on the
invisible side of the vertical boundary b2, and flag1 indicates if P, is on the invisible side
of the horizontal boundary b4, and the procedure definition is clip_balanced_pivotal
(b1, b2, b3, b4, flag0, flagl). Figure 35 gives the procedure and Figure 36 depicts the
instances of the balanced-pivotal type region-pair with the associated procedure calling
sequences.
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Figure 26: Module "A" comprises these four cases.
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Figure 27: Module "B" comprises these four cases.
VIIL4. RIO-2: Unbalanced-Pivotal Type Region-Pair Clipping Procedure

The unbalanced-pivotal type region-pair occurs four times, twice each in Module C
and D. These instances have a central partition joining a horizontally-oriented region
containing the partitions. The point Py is in the central partition which is to the right of
the window in Module C and to the left of the window in Module D. For the generic
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Figure 28: Module "C" comprises these three cases.
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Figure 29: Module "D" comprises these three cases.
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Figure 30: Module "E" comprises these five cases.
clipping procedure, the following notation is established: b2 denotes the vertical boun-

dary line between the window and the central partition containing Po, b3 denotes the
other vertical boundary line slicing through the horizontally-oriented region containing
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Figure 31: clip_opposite (b1, b2). -
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clip_opposite(yB, yT) clip_opposite(yT, yB)

Figure 32: clip_opposite procedure calling sequences.

two partitions, b4 denotes the horizontal boundary along the longer side of this region
and flag indicates if P; is on the invisible side of the vertical boundary b3, and the pro-
cedure definition is clip_unbalanced_pivotal (b2, b3, b4, flag). Figure 37 gives the pro-
cedure and Figure 38 illustrates the instances of the unbalanced-pivotal type region-pair
with the associated procedure calling sequences.
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clip_window(x1, y1, x0, y0, yB)  clip_window(x1, y1, x0, y0, yT)

N
| NN\

clip_window(x0, y0, x1,y1,yT)  dip_window(x0, y0, x1, y1, yB)

Figure 34: clip_window procedure calling sequences.

VIILS. R: Strip Type Region-Pairs

The strip type region-pair occurs twice, once in Module C and once in Module D.
These instances have two regions forming a horizontal strip of three partitions including
the window. One region has two partitions, one of which is the window, while the other
region is a single partition. In module C, the two-partition region contains the window
and the partition to its left while the other region is the partition to the right of the win-
dow. In module D, the two-partition region contains the window and the partition to its
right while the other region is the partition to the left of the window. For the generic
clipping procedure, the following notation is established: bl denotes the vertical boun-
dary line between the two regions, b2 denotes the other vertical boundary line slicing
through the two-partition region, and flag indicates if Py is outside the window in the
two-partition region, and the procedure definition is clip_strip (b1, b2, flag). Figure 39
gives the procedure and Figure 40 depicts the instances of the strip type region-pair with
the corresponding procedure calling sequences. .

IX. Putting It Altogether

All the necessary details for the construction of the complete algorithm have now
been covered. The structure is depicted schematically in Figure 41. This shows the
Modules A through E as well as the appropriate procedure calling sequence for each
case. The actual program coded in Pascal is provided in Appendix L Finally, a fully
annotated version of the program code, complete with symbolic depictions of the cases is
provided in Appendix IL
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X. Extending to Three Dimensions
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X.1. Explanation of Set-up

For three-dimensional clipping, line segments are clipped against a viewing
pyramid. In the coordinate system where the center of projection is at the origin, this
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Figure 35: clip_balanced_pivotal (b1, b2, b3, b4, flag0, flagl).

Page 28



The Optimal Tree Algorithm for Line Clipping

S //\\\

clip_balanced_pivotal clip_balanced_pivotal
_ (yB., xR, xL, yT, x0 > xR, y1 > yT) (yB.xL,x'R,yT,xOprI..yl>yT)

\\

N\ B

clip_balanced_pivotal ‘clip_balanced_pivotal .
(T, xR, xL, yB, x0 > xR, y1 <yB) (yT.xL.xk.yB.xOEPxL.ykyB)

V/

Figure 36: clip_balanced_pivotal procedure calling sequences.
volume is described by the following two pairs of inequalities:

O,
-z, S cot (-—2--) X, <2,

-z <cot(-e—y) <z,
e - 2 ye— e

where ©, and ©, are the angles of view with respect to the x- and y- axes, respectively.
Note that either pair of these inequalities implies —z, <z, which implies z,20.

From these inequalities, a more natural coordinate system suggests itself for clip-
ping. This transformation is given by

O,
x = cot (-—2—) X,

9,
y = cot (") Ve
z= 2,
Geometrically, this transformation scales the viewing pyramid so that it becomes a right
pyramid. This volume then corresponds to the following inequalities:
-zSxSz
-z<ySsz
and again z 2 0 is implied.
This can be extended to cover the case of a finite viewing volume. Here, the view-
ing pyramid is truncated by hither and yon clipping planes to form a frustum of vision.
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Figure 37: clip_unbalanced_pivotal (b2, b3, b4, flag).

Note that the location of these planes is completely independent of the position of the
picture plane. This requires the addition of constraints for z. If the hither and yon clip-
ping planes are z=h and z=f, respectively, then these constraints are: :

hszsf

X.2. Optimal Tree Algorithm for Three Dimensions

One question that might arise is whether the above insights and method for success-
fully clipping a line segment in two dimensions extend to the problem of clipping a line
segment in three dimensions. The answer is a qualified yes. Rather than attempt to
describe the algorithm in detail, a brief overview will now be provided instead.

The same general approach as was used in the two-dimensional case is also used in
the three-dimensional version. The 27 regions that are formed by slicing the viewing
frustum with hither and yon clipping planes are partitioned into six modules. Each
module was designed and optimized to clip a line segment whose endpoints are in partic-
ular sets of regions. By parametrizing the modules, the algorithm can exploit the sym-
metry of the clipping problem; for example, by switching P and P; or the hither and yon
clipping planes, the six modules are generalized to clip any line segment with endpoints
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Figure 38: clip_unbalanced_pivotal procedure calling sequences.

£ 0y-Yprex -39
b
Yo Yo+sx(by-29

y  §
r
l‘ .‘3 doms
Y1 onesnthy-zp

Figure 39: dip_strip (bl, b2, flag).

in any of the regions. The heart of the three-dimensional algorithm is the module that
handles the case where both endpoints are between the hither and yon clipping planes.
This notable module is simply a slightly modified version of the two-dimensional algo-
rithm.

Again, as with the two-dimensional algorithm, an optimized decision tree is used to
map line segments into modules. Each module then makes full use of comparisons,
delaying arithmetic operations until such computations are necessary, either to more fully
classify endpoints or to clip endpoints to a boundary. The comparisons are based on
boundary intersection values, and once the endpoints of a line segment are completely
determined, then the same intersection values are then used to calculate the clipped line
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clip_strip(R, L, x1 <xL) clip_strip(L, R, x1 > xR)
Figure 40: clip_strip procedure calling sequences.

segment.

The three-dimensional version of the new optimal tree algorithm was implemented
and its performance was tested. The tables of performance tests below affirm the success
of the three-dimensional algorithm; however, the length and complexity of the algorithm
mitigate this success. Although fast, the code is also quite lengthy. (Our implementation
exceeds 16 pages). In addition to the length, the extensive and not necessarily obvious
uses of parametrization and symmetry conspire to cause the algorithm to be difficult to
follow and understand. Nonetheless, it is worth mentioning that despite the length of the
algorithm, our experience found that due to the modularity, debugging the code was no
more difficult than for the two-dimensional algorithm.

XI. Analysis and Performance

X1.1. Performance Tests of the Two-dimensional Algorithms

The two-dimensional optimal tree line clipping algorithm was compared to the trad-
itional Sutherland/Cohen algorithm, to both the original and improved versions of the
Liang/Barsky parametric algorithm, as well as to the Nicholl/Lee/Nicholl algorithm, and
to the Slater/Barsky subdivision algorithm. All algorithms were coded in Pascal. Pascal
code for the two-dimensional case of the Sutherland/Cohen algorithm was copied verba-
tim from pages 66-67 of.14 For the two-dimensional case of the Liang/Barsky parametric
algorithm, Pascal code for the original version is given in!! and the improved version is
provided in.!3 The comparison with the Nicholl/Lee/Nicholl algorithm used Pascal code
supplied by the authors of that algorithm. The appendix of20 contains Pascal code for the
Slater/Barsky subdivision algorithm. Pascal code for the optimal tree algorithm is shown
in Appendix L '

The tests were performed both on a Sun 3/160 with a floating point coprocessor
under Sun UNIX 4.2 and on a DECStation 5000/200 (MIPS architecture) under Ultrix
4.1.

The algorithms were executed on four different sets of data, each containing a
thousand line segments whose endpoints were randomly generated according to uniform
distributions. The four sets of data correspond to different sizes of data space;
specifically, the four sets contain line segments having endpoints randomly generated
from uniform distributions in a square whose base is of size 3000, 5000, 7000, and 9000,
respectively. For each data set, the clipping window is a square whose base is of size
1000 and which is located in the middle of the data space. Hence, the four data sets
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Figure 41: Schematic depiction of the algorithm.

correspond to decreasing ratios of clipping regions to data space.

Each line segment was clipped a thousand times to reduce the effects of random
variation. Thus, for each of the four different sizes of data space, a million clipping
operations were performed. The results presented here are given in seconds per million
clips. Equivalently, this could be interpreted as the mean time, measured in
microseconds, to clip a line segment whose endpoints are uniformly distributed as
described above. Finally, these results are averaged over the four different sizes of data
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space.

Table 1 reports the performance test results for the two-dimensional algorithms exe-
cuted on the Sun 3/160. The column headings "3000", "5000", "7000", and "9000" are
meant to indicate the size of the square in the uniform distribution used to generate the
endpoints of the line segments, and "Average" shows the average over the four different
sizes of data space. The entries in the columns under the rubric "Time" provide the time
in seconds to accomplish a million clipping operations, and the corresponding entries in
the columns with the rubric "Imp." indicate the percentage improvement over the
Sutherland/Cohen algorithm.

From this, it can be seen that the Sutherland/Cohen algorithm used an average of
383 seconds, the original version of the Liang/Barsky parametric algorithm required an
average of 305 seconds (an 20% improvement), the improved version of the
Liang/Barsky parametric algorithm used an average of 268 seconds (a 30% improve-
ment), the Nicholl/Lee/Nicholl algorithm was slightly faster, using an average of 264
seconds (a 31% improvement), the Slater/Barsky subdivision algorithm used an average
of 161 seconds (a 58% improvement), and finally the new optimal tree algorithm used an
average of 128 seconds, which constituted a 67% improvement relative to the
Sutherland/Cohen algorithm.

Serformance tests of the two-dlmensional algorithms executed on & Sun 3/160

17 **‘l*'“ «m“
| 4% e o o ‘ 378 . e o0

e ".v". l - - X ,7. -

| 341 376

358 | 16% " 309 | 18% 21% E m | 19% || 307 | 18%
Tmproved Liang/Barsky parametric’s “

336 21% 272 28% 32% 232 | 32% 27 28%
Nicholl/Lee/Nicholl™

294 31% 274 28% 29% 248 21% 268 29%
Slater/Barsky®

199 53% 163 57% 60% 139 59% 162 57%
New Liang/Barsky optimal tree ﬂ ]

151 4% 131 66% 119 67% 114 6% 129 66%

Table 1.

The same timing experiments were performed on a DECStation 5000/200 (MIPS
architecture) and the results are shown in Table 2. In these timing tests, the
Sutherland/Cohen algorithm used an average of 9.14 seconds, the original version of the
Liang/Barsky parametric algorithm required an average of 9.81 seconds (a 7% deteriora-
tion), the improved version of the Liang/Barsky parametric algorithm used an average of
8.4 seconds (an 8% improvement), the Nicholl/Lee/Nicholl algorithm required an aver-
age of 10.48 seconds (a 15% deterioration), the Slater/Barsky subdivision algorithm used
an average of 5.51 seconds (a 40% improvement), and finally the new optimal tree algo-
rithm used an average of 4.53 seconds, which constituted a 50% improvement relative to
the Sutherland/Cohen algorithm. ,

The performance times for the MIPS architecture of the DECStation 5000/200 are
much quicker than for the 68000-based CISC architecture of the Sun 3/160. The absolute
values of the figures are not particularly important, since these are obviously machine
dependent. For the DECStation 5000/200, the percentage improvements are less, and
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Comparison of the performance tests of the two-dimensional algorithms executed on a DECStation 5§000/200 (MIPS architecture)
3000 OO0 '
-_ | tine" | tmp. | Time o
] '10.17 | - 9.22 8.46 9.14 ot
Original Liang/Barsky parametric'
10.94 4% 9.85 -1% 9.35 -7% || 9.10 -8% 9.81 1%
Improved Liang/Barsky parametric’®
1027 -1% 845 8% 7.63 12% i 7.26 14% 8.40 8%
i /N choll™®
Nicholl/Lee/Nicholl
1123 | -10% || 1055 | -14% || 1017 | -17% || 996 | -18% | 1048 | -15%
Slater/Barsky®
6.25 39% 554 | 40% 520 | 40% I 5.05 40% 5.51 40%
New Liang/Barsky optimal tree
498 | S51% 454 | S1% 434 | S0% || 426 50% 453 | 50%

Table 2.

some of the more recent algorithms actually performed worse than Sutherland-Cohen.
The relative change in performance of the algorithms may be due in part to the disparity
in the number of procedure call parameters in the various algorithms. Some simple
benchmarking experiments showed that procedure call parameters were relatively more
expensive on the MIPS architecture (although in absolute terms many times faster) than
on the 68000-based CISC architecture. This does indicate that operations counts by
themselves are not sufficient to compare the performance of these algorithms and we are
currently contemplating alternatives.

X1.2. Performance Tests of the Three-dimensional Algorithms
The tests for the three-dimensional algorithms were performed in the same manner

as the tests for the two-dimensional algorithms. The same machines, a Sun 3/160 with a

floating point coprocessor under Sun UNIX 4.2 and a DECStation 5000/200 under Ultrix
4.1, were used. Similarly, the algorithms were run on four sets of a thousand line seg-
ments whose endpoints were uniformly distributed in a cube whose edge was of size
3000, 5000, 7000, and 9000, respectively, and each line scgment was clipped a thousand
times. For each data set, the viewing pyramid was fixed and the hither and yon clipping
planes were set at 500 and 1000, respectively. Since the four data sets correspond to
increasing size of data space, this means that the viewing pyramid occupies a relatively
smaller portion of each successive data space. Again, the results presented here are the
times in seconds to accomplish a million clipping operations, or equivalently, the mean
time per clip, in microseconds, together with the percentage improvement over the
Sutherland/Cohen algorithm.

Four algorithms, all implemented in Pascal, were compared. The first one, used as a
basis for comparison, was the traditional Sutherland/Cohen algorithm. The Pascal code
for the three-dimensional case of this algorithm is based on that provided on page 345
of 4 with the correction explained in!! and with the addition of hither/yon clipping. The
second and third algorithms are the original and improved Barsky/Liang parametric algo-
rithms, respectively. For the three-dimensional case of the Liang/Barsky parametric
algorithm, Pascal code for the original version is given in1! and the improved version is
provided in.!3 The fourth algorithm is the three-dimensional version of the optimal tree
algorithm presented in this paper.
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When the timing tests were performed on the Sun 3/160, the Sutherland/Cohen
algorithm used an average of 449 seconds, the original version of the Liang/Barsky
parametric algorithm required an average of 306 seconds (a 32% improvement), the
improved version of the Liang/Barsky parametric algorithm used an average of 264
seconds (a 41% improvement), and the new optimal tree algorithm used an average of
146 seconds, which represents a 68% improvement over to the Sutherland/Cohen algo-
rithm. These performance test results are summarized in Table 3. ‘

Table 4 reports the performance test results for the three-dimensional algorithms
executed on the DECStation 5000/200. In these timing tests, the Sutherland/Cohen algo-
rithm used an average of 8.5 seconds, the original version of the Liang/Barsky parametric
algorithm required an average of 8.8 seconds (a 4% deterioration), the improved version
of the Liang/Barsky parametric algorithm used an average of 6.5 seconds (a 23%
improvement), and the new optimal tree algorithm used an average of 4.0 seconds, which
constituted a 53% improvement relative to the Sutherland/Cohen algorithm.

berformance tests of the three-dimensional algorithms executed on a Sun 3/160

~ Average
"Time I_,_u

31% u 295

449
E 306 | 32%
“ 265 | 41% “ 237 | 39% 264 | 41%
New Liang/Barsky optimal tree “ “
193 | 65% || 146 | 68% || 126 | 68% || 117 | 1% || 146 | 63%

X1.3. Results of Performance Tests

For both the two-dimensional and three-dimensional cases, and on both the Sun
3/160 and the DECStation 5000/200, the new algorithm performed uniformly faster than
all the other "standard" algorithms for each of the four different sizes of data space.

XI1. Conclusion

A new algorithm for line clipping has been developed based on the concept of the
optimal tree. A careful analysis results in an algorithm that classifies a given line seg-
ment in such a way that at most one procedure is invoked to clip it; furthermore, there are
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five such procedures that cover all cases. The result is an algorithm that is provably
optimal and according to experimental tests outperforms previous algorithms. For both
the two-dimensional and three-dimensional cases, and on both the Sun 3/160 and the
DECStation 5000/200, the new algorithm performed uniformly faster than all the other
nstandard” algorithms for each of four different sizes of data space. Only the two-
dimensional case was described in detail. Although in the three-dimensional case this
algorithm is significantly faster than the other known algorithms, the code is huge and
more complex than the new two-dimensional algorithm, and there are more special cases
that need to be handled.
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#define setP0{exprl, expr2) \

begin \
x0 := (exprl); \
y0 := (expr2) \
end

#define setPl(exprl, expr2) \
begin \ )

x1 := (exprl); \

yl := (expr2) \
end

program oétimal_;ree_plip(input, output);
var x0, y0, x1, yl1, rx0, ry0, rxl, ryl, top, bottom, right, left : real;
reject : boolean;
clipNum, 3 : integer;
(t
* Clip the line segment represented by (x0, y0), (x1, yl).
* The clipping window is a rectangle with sides ’left’, ‘top’,
* 'right’, and ’‘bottom’. ‘reject’ is true if the line segment
* does not intersect the clipping window.
*)
.procedure subclip(var x0, y0, x1, yl : real; var reject : boolean);

procedure clip_strip(bl, b2 : real; flag : boolean);
var slope : real;

begin
slope := (yl - y0) / (x1 - x0):; (* slope of P0-Pl line ¥*)
y0 := y0 + slope * (bl - x0); (* clip y0 to bl ¥*)
x0 := bl; (* set x0 to bl *)
if flag then begin (* clip P1 to b2 if outside b2 *)
yl := yl + slope * (b2 - xl);
x1l := b2;
end
end;

procedure clip_window(var x_window, y_window, x_strip, y_strip : real; bl : real);
var invslope : real;
begin
invslope := (x_strip - x window) / (y_strip - y_window); (*inverse slope of POP1l line*)
x_strip := x window + invslope * (bl - y _window); (* clip x_strip to bl *)
'if x_strip < " left then begin
x_strip := left;
y_strip := y window + (left - x window) / invslope)
end
else if x_strip > right then begin
x_strip := right;
y_strip := y window + (right - x_window) / invslope)
end
else y _strip := bl
end;

procedure clip unbalanced pivotal(b2, b3, b4 : real; flag : boolean):
var 4, b, ¢, dx, dy : real;
begin
dx := x1 - x0;
dy := yl - y0;
d :=dx * (b4 - yl);
b :=dy * (b2 - x1);
if abs(d) > abs(b) then reject := true
else begin
setP0 (b2, yl + b/dx); (* clip PO to b2 *)
if flag then begin
c := (b3 - x1) * dy;



2

if abs(c) > abs{(d) then setPl (b3, yl + c/dx)
else setPl(xl + d/dy, b4)
end
else setPl(xl + d/dy, b4)
end
end;

procedure clip_balanced_pivotal(bl, b2, b3, b4 : real; £flag0, flagl : boolean):
var dx, dy, a, b, ¢, d, x0val, yOval : real;
begin
dx := x1 - x0;
dy := yl - yO0;
xOval := x0; (* x0 and y0 must be saved because their values are ¥*)
yOval := y0; (* used in calculations after they have been clipped *)
a :=dx * (bl - y0);
if flag0 then begin (* PO outside both bl and b2 *)
if flagl then begin (* P1 outside both b3 and b4 *)
b := dy * (b2 - x0);
if abs(a) > abs(b) then begin
c :=dy * (b3 - x0);
if abs(a) > abs(c) then reject := true
else begin
d := (b4 - y0) * dx; (* to test Pl against b3 and b4 *)
setP0 (x0 + a/dy, bl); (* clip PO to bl *)
end
end
else begin
d := (b4 - y0) * dx;
if abs(b) > abs(d) then reject := true
else begin
‘c = dy * (b3 - x0); (* to test P1 against b3 and b4 *)
setP0 (b2, y0 + b/ax) (* clip PO to b2 *)
end
end;
if not reject then
if abs(c) > abs(d) then setPl(xOval + d/dy,. b4)
else setPl(b3, yOval + c/dx);
end
else begin (* PO outside bl and b2, Pl outside b3 but inside b4 *)
c := (b3 - x0) * dy:
if abs(a) > abs(c) then reject := true
else begin
setP1l(b3, y0 + c/dx); (* clip P1 to b3 *)
d := (b2 - xOval) * dy;
if abs(a) > abs(d) then setP0(x0 + a/dy, bl)
else setP0 (b2, y0 + d/dx)
end
end
end
else begin (* PO outside bl but inside b2 *)
c := (b3 - x0) * dy:;
if abs(a) > abs(c) then reject := true
else begin
setP0(x0 + a/dy, bl):;
if flagl then begin (* Pl outside b3 and b4 *)
d := (b4 - yOval) * dx;
if abs(c) > abs(d) then setPl(xOval + d/dy, b4)
else setPl (b3, yOval + c/dx)
end
else setPl (b3, yOval + c/dx) (* we know to clip P1 to b3 *)
end :
end
end;



procedure clip_opposite(bl, b2 : real):
var invslope : real;
begin
invslope := (x1 - x0)/(yl - y0);
x1 := x0 + invslope * (b2 - y0):
if (x1 < left) or (x1 > right) then reject := true
else begin
yl := b2;
x0 := x0 + invslope * (bl - y0);
if x0 < left then setP0O(left, yl + (left - x1) / invslope)
else if x0 > right then setPO(right, yl + (right - x1) / invslope)
else y0 := bl;
end
end;

begin (* subclip *)
if y0 < bottom then
if yl < bottom then reject := true
else if x1 < left then
if x0 < left then reject := true
else clip_balanced pivotal (bottom, right, left, top, x0>right, yl>top)
else if x1 > right then
if x0 > right then reject := true
else clip_balancod;pivotal(bottpm,left,:ight,top,x0<1e£t,y1>top)
else if yl > top then clip opposite(bottom, top)
else clip_window(xl, yl, x0, y0, bottom)
else if y0 > top then
if yl > top then reject := true
else if x1 < left then
if x0 < left then reject := true
else clip_palanced;pivotal(top,:ight,left,bottom,xo > right,yl < bottom)
else if x1 > right then
if x0 > right then reject := true
else clip_balanced;pivotal(top,left,right,bottom,x0<left,y1<bottom)
else if yl < bottom then clip_opposite (top,bottom)
else clip_window(xl,yl,x0,y0,top)
else if x0 > right then
if x1 > right then reject := true
else if yl > top then clip_pnbalanced_pivotal(right,left,top,x1<left)
else if yl < bottom then clip_unbalanced pivotal(right,left,bottom, x1<left)
else clip_strip(right,left,xl<left)
else if x0 < left then
if x1 < left then reject := true
else if yl > top then clip_pnbalanced;pivotal(left,right,top,x1>right)
else if yl < bottom then clip_pnbalanced;pivotal(left,right,bottom,x1>right)
else clip_strip(left,right,x1>right)
else if yl < bottom then clip_window(x0,y0,x1,yl,bottom)
else if yl > top then clip window(x0,y0,x1,yl,top)
else if x1 > right then begin
yl := y0 + (right - x0) * (yl - y0)/(x1 - x0);
x1 := right;
end
else if x1 < left then begin
yl := y0 + (left - x0) * (yl - y0)/(xl - x0);
x1 := left;
end
end; (* subclip ¥*)

begin (* optimal_ tree_clip *)
left := 0.0; right := 1000.0;
bottom := 0.0; top := 1000.0;
clipNum := 1; )
reject := false;
while not eof do begin



readln (rx0, ry0, rxl, ryl):;
for § := 1 to clips do begin
x0 := rx0; y0 := ry0;
x1l := rxl; vyl := ryl;
: subclip(x0, y0, x1, yl, reject);
$ifdef printresults
if reject then reject := false
else begin
write (clipNum:5, ‘.’, x0:11:3, y0:11:3);
writeln(x1:11:3, y1:11:3);
end;
#endif
end;
clipNum := clipNum + 1
end
end.
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#define setP0 (exprl, expr2) \

begin \
x0 := (exprl); \
y0 := (expr2) \
end

#define setPl (expril, expr2) \
begin \

x1 := (exprl); \

yl := (expr2) \
end

program optimal tree_clip(input, output) ;

var x0, y0, x1, yl, rx0, ry0, rxl, ryl, top, bottom, right, left : real;
reject : boolean;
clipNum, j : integer;

(*

* Clip the line segment represented by (x0, y0), (x1, yl).

The clipping window is a rectangle with sides ’'left’, ’‘top’,
'right’, and ‘bottom’. ‘reject’ is true if the line segment

* does not intersect the clipping window.

*)

procedure subclip(var x0, y0, x1, yl : real; var reject : boolean);

* *

* PO is outside of bl, in the middle. If ’flag’ is true, then P1 = ====-
* is outside of b2, in the middle, otherwise Pl is in the window. 01111
* bl is nominally ‘left’ and b2 ‘right’, but works in the opposite - =-=-—-
* case. Would work for any rotation if (x0, y0) and (x1, yl) were 1|
* parametrized, but would not be used by the algorithm. bl b2
*

)
procedure clip_strip(bl, b2 : real; flag : boolean);
var slope : real;

begin
slope := (yl1 - y0) / (x1 - x0); , (* slope of PO-P1 line ¥*)
y0 := y0 + slope * (bl - x0); (* clip y0 to bl ¥*)
x0 := bl; (* set x0 to bl *)
if flag then begin (* clip P1 to b2 if outside b2 *)
"yl := yl + slope * (b2 - x1);
xl := b2;
end
end;
(* ' I
* p0 is in the clip window. P1 is outside bl in any of the —————
* three regions. bl is nominally 'bottom’, but works when 10}
* bl is top. Would work for any boundary if ’left’ and ‘right’ -==== bl
* were parametrized, but would not be used by the algorithm. 14111

*)
procedure clip_window (var x_window, y_window, x_strip, y_strip : real; bl : real);
var invslope : real;
begin
invslope := (x_strip - x_window) / (y_strip - y_window); (*inverse slope of POP1 1li
x_strip := x_window + invslope * (bl - y_window); (* clip x_strip to bl *)
(* if P1 is in either of the corner regions outside bl, clip y_strip to the
* side boundaries, otherwise clip y_strip to bl *)
if x_strip < left then begin '
x_strip := left;
y_strip := y_window + (left - x_window) / invslope)
end
else if x_strip > right then begin

x_strip := right;



y_strip := y window + (right - x_window) / invslope)

end
else y_strip := bl
end;
(* 111}
* PO is outside b2, in the middle. Pl is above b4, and = ===-- b4
* inside b2. b2 is nominally ‘right’, b3 ’‘left’, and b4 ‘top’, 110
* but works for any combination in which b2 is either 'left’ = -----
* or 'right’. |
* b3 b2

*)
procedure clip_unbalanced_pivotal (b2, b3, b4 : real; flag : boolean);
var 4, b, ¢, dx, dy : real;
begin
dx := x1 - x0;
dy := yl - yO0;
d :=dx * (b4 - yl);
b :=dy * (b2 - x1);
(* if the slope of the P0-Pl line is greater than the slope of the line
* from Pl to the intersection of b2 and b4, then the P0-Pl line does not
* intersect .the clip window *)
if abs(d) > abs(b) then reject := true
else begin
setP0 (b2, yl + b/dx); (* clip PO to b2 *)
if flag then begin
c := (b3 - x1) * dy;
(* if the slope of the P0-Pl line is smaller than the slope of the line
* from Pl to the intersection of b3 and b4, then clip Pl to b3, otherwise
* clip Pl to b4 *)
if abs(c) > abs(d) then setP1l(b3, yl + c/dx)
else setPl(xl + d/dy, b4)

end
else setPl(xl + d/dy, b4)
end
end;

(* 1 | ,
* P0) is outside bl, but inside b3, and Pl is outside b3 and = = = -===- b4
* inside bl. ‘flag0’ is true if PO is outside both bl and b2, 1 |
* and ‘flagl’ is true if Pl is outside both b3 and b4. @  ===—- bl
* bl is nominally bottom, b2 right, b3 left, and b4 top. 1010
* b3 b2

*)
procedure clip_balanced pivotal(bl, b2, b3, b4 : real; flag0, flagl : boolean):;
var dx, dy, a, b, ¢, d, x0Oval, yOval : real;
begin
dx := x1 - x0;
dy := yl - y0;
x0val := x0; (* x0 and y0 must be saved because their values are ¥*)
yOval := y0; (* used in calculations after they have been clipped *)
a := dx * (bl - y0);
if flag0 then begin (* PO outside both bl and b2 *)
if flagl then begin (* P1 outside both b3 and b4 *)
b := dy * (b2 - x0);
(* if the slope of the PO-P1l line is smaller than the slope of the line
* from PO to the intersection of bl and b2 then... *)
if abs(a) > abs(b) then begin
c :=dy * (b3 - x0);
(* if the P0-P1 slope is smaller than the slope of the line from PO to the
* intersection of bl and b3, then the P0-P1 line does not intersect
* the clip window; otherwise, clip PO to bl and set up test to see if
* P1 should be clipped to b3 or to b4 ¥*)
if abs(a) > abs(c) then reject := true



else begin :
d := (b4 - y0) * dx; (* to test Pl against b3 and b4 *)
setP0(x0 + a/dy, bl); (* clip PO to bl ¥)

end
end
(* if the slope of the P0-Pl line is greater than the slope of the line
* from PO to the intersection of bl and b2 then... *)
else begin '

d := (b4 - y0) * dx;
(* if the P0-Pl slope is greater than the slope of the line from PO to the
* intersection of b2 and b4, then the P0-Pl line does not intersect
* the clip window; otherwise, clip PO to b2 and set up test to see if
* Pl should be clipped to b3 or to b4 *)
if abs(b) > abs(d) then reject := true
else begin
c :=dy * (b3 - x0); (* to test Pl against b3 and b4 *)
setP0(b2, y0 + b/dx) (* clip PO to b2 *)
end
end;
if not reject then
(* if the P0-Pl1 slope is greater than the slope of the line from PO to the
* intersection of b3 and b4, then clip Pl to b4, otherwise clip Pl to b3 ¥)
if abs(c) > abs(d) then setPl(xOval + d/dy, b4)
else setPl(b3, v0val + c/dx);
end
else begin (* PO outside bl and b2, Pl outside b3 but inside b4 *)
c := (b3 - x0) * dy;
(* if the P0-Pl slope is smaller than the slope of the line from PO to the
intersection of bl and b3, then the P0-Pl line does not intersect
* the clip window; otherwise, clip Pl to b3 ¥*)
if abs(a) > abs(c) then reject := true
else begin
setPl(b3, y0 + c/dx); (* clip P1 to b3 *)
d := (b2 - x0Oval) * dy:
(* if the P0-P1l slope is smaller than the slope of the line from PO to the
* intersection of bl and b2, then clip PO to bl, otherwise clip PO to b2 ¥*)
if abs(a) > abs(d) then setP0(x0 + a/dy, bl)
else setP0(b2, y0 + d/dx)
end
end
end
else begin (* PO outside bl but inside b2 *)
c := (b3 - x0) * dy:;
(* if the PO-Pl slope is smaller than the slope of the line from PO to the
* intersection of bl and b3, then the P0-P1l line does not intersect
* the clip window; otherwise, clip PO to bl and determine where to clip Pl *)
if abs(a) > abs(c) then reject := true
else begin
setP0(x0 + a/dy, bl):
if flagl then begin (* Pl outside b3 and b4 *)
d := (b4 - yOval) * dx;
(* if the P0-P1l slope is larger than the slope of the line from PO to the
* intersection of b3 and b4 then clip Pl to b4, otherwise clip Pl to b3 *)
if abs(c) > abs(d) then setPl(xOval + d/dy, b4)
else setPl(b3, yOval + c/dx)

*

end
else setPl(b3, yOval + c/dx) (* we know to clip Pl to b3 *)
end
end
end;
(* i1
* P0 is outside bl, and Pl is outside b2 in the middle. @  <====-

* bl is nominally ’‘bottom’ and b2 ‘top’, but also serves (|



* in reverse. . deaam
* 0i01}0
*)
procedure clip_opposite(bl, b2 : real);
var invslope : real;
begin
invslope := (x1 - x0)/(yl - y0);
(* clip x1 to b2; if it is less than left or greater than right then
* the line P0-Pl does not intersect the clip window *)
x1 := x0 + invslope * (b2 - y0);
if (x1 < left) or (x1 > right) then rejsct := true
else begin
vyl := b2;
(* clip x0 to bl; 4if it is less than left, then clip PO to left; if
* it is greater than right, then clip PO to right; otherwise, just
* gset y0 to bl *)
x0 := x0 + invslope * (bl - y0);
if x0 < left then setPO(left, yl + (left - x1) / invslope)
else if x0 > right then setPO(right, yl + (right - x1) / invslope)
else y0 := bl;

end
end;
begin (* subclip *) XIXIX (* PO in region -/
----- Pl in region - '\’
XIX|X Both in region == /X’ *)
XIXix
\I\I\ if y0 < bottom then
----- if yl < bottom then reject := true
AYAYAY
----- AN AN AN
XIXIX = ====-
ANAYAN (* PO below bottom, and Pl above bottom *)
AVAY)
AW else if #1 < left then (* P1 above bottom, left of left, and... *)
----- if x0 < left then reject := true
\
1171/ \
----- (* ...P0 below bottom, right of left. *)
\l
----- else clip_balanced pivotal (bottom, right, left, top,
/17 x0 > right, yl > top)
| I\ else if x1 > right then (* Pl above bottom, right of right, and... *)
----- if x0 > right then reject := true
(I AN
/1717 [N
----- (* ...P0 below bottom, left of right *)
(I A
----- else clip_balanced pivotal (bottom, left, right, top,
/1/1 x0 < left, yl > top)

(* P1 in the middle, above top, and P0 below bottom *)

AN else if yl > top then clip_opposite (bottom, top)



YAVAY) b
----- (* P1 in window, and PO below bottom *)
1/1
----- else clip_window(xl, yl, x0, y0, bottom)
AVAY)
X|X|X else if y0 > top then (* PO above top, and... *)
----- if yl > top then reject := true
ANAVAY
----- JAVAY)
AN A ANttt (* ...P1 below top *)
| AVAYAY
ANAYA
/1/1/ else if x1 < left then (* P1 below top, left of left, and... *)
----- if x0 < left then reject := true
N
\ VAV,
----- (* ...P0 above top, right of left *)
\
----- else clip_balanced pivotal (top, right, left, bottom,
\ x0 > right, yl < bottom)

/1/1/ else if x1 > right then (* P1 below top, right of left, and... *)
----- if x0 > right then reject := true

(AN
PN /171
----- (* ...P0 above top, left of right *)
[ A
----- else clip balanced pivotal(top, left, right, bottom,
[ AN x0 < left, yl < bottom)

(* P1 in middle, below bottom, and PO above top *)

/1/1/ else if yl < bottom then clip opposite(top, bottom)

Y| AVAV)
----- (* ...P1 in window, and PO above top *)
AY '
———— else clip window(xl, yl, x0, y0, top)

\I\I\ else if x0 > right then (* PO in middle, right of right, and... *)

----- if x1 > right then reject := true
ARANR.¢
----- ANAY
VNI e (* ...P1 left of right ¥*)
NN/
WAV

ANAY!

(* PO in middle, right of right, and Pl below bottom, left of right *)



- -

\I\I\ else if x0 < left then (* PO in middle, left of left, and... *)

----- if x1 < left then reject := true
XININ
----- ININ
AU A (* P1 right of left ¥)
ARYA
ININ
(* PO in middle, left of left, and Pl above top, right of left ¥*)
NI
/1 else if yl > top then clip_unbalanced_pivotal(left, right, top, x1 > right)

(* PO in middle, left of left, and Pl below bottom, right of left *)

/1 else if yl < bottom then clip_unbalanced pivotal(left,right,bottom,x1>right)

(* PO in middle, left of left, and Pl in middle, right of left *)

(* PO in window, and Pl below bottom ¥*)

1/ else if yl < bottom then clip_window(x0, y0, x1, yl, bottom)

(* PO in window, and Pl above top *)

1/1 else if yl > top then clip_window(x0, y0, x1, yl, top)

(* PO in window, and Pl in middle, right of right *)
P else if x1 > right then begin

----- yl := y0 + (right - x0) * (yl - y0)/(x1 - x0);
WARY x1 := right;



(* PO in window, and Pl in middle, left of left *)
(. else if x1 < left then begin

----- vyl := y0 + (left - x0) * (yl1 = y0)/ (x1 - x0);
\i/1 x1l := left;
----- end
[
(I
X1 (* PO and Pl in window, do nothing *)

end; (* subclip *)

begin (* optimal tree_clip *)
left := 0.0; right := 1000.0;
bottom := 0.0; top := 1000.0;
clipNum := 1;
reject := false;
while not eof do begin
readln(rx0, ry0, rxl, ryl):;
for j := 1 to clips do begin
x0 := rx0; y0 := ry0;
x1 := rxl; yl := ryl;
subclip(x0, y0, x1, y2, reject);
$¢ifdef printresults
if reject then reject := false
else begin
write (clipNum:5, ’.’, x0:11:3, y0:11:3);
writeln(x1:11:3, y1:11:3);
end; :
#endif
end;
clipNum := clipNum + 1
end
end.





