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Abstract

We present a simple new algorithm for triangulating polygons and planar straightline graphs.
It provides “shape” and “size” guarantees:

e All triangles have a bounded aspect ratio.
e The number of “Steiner points” added is within a constant factor of optimal.

Such “quality” triangulations are desirable as meshes for the finite element method, in which
the running time generally increases with the number of triangles, and where the conver-
gence and stability may be hurt by very skinny triangles. The technique we use—successive
refinement of the Delaunay triangulation—extends a mesh generation technique of Chew by
allowing triangles that vary in size. Previous algorithms with shape and size bounds have
all been based on quadtrees. The Delaunay refinement algorithm matches their bounds, but
uses a fundamentally different approach. It is much simpler, and hence easier to implement,
and it generally produces smaller meshes in practice.

1 Introduction

Many applications in computational geometry, graphics, solid modeling, numerical simula-
tion and other areas require complicated geometric objects to be decomposed into simpler
pieces for further processing. For instance, in the finite element method, a planar domain is
divided into a mesh of elements, typically triangles. Differential equations representing some
physical property such as heat distribution or airflow are then approximated using functions
that are piecewise polynomial within each triangle. The running time and accuracy of these
algorithms often depends on properties of the decomposition, such as its size (the number
of pieces), and its shape (whether the pieces are “long and skinny”).

*This work was supported by an NSF Presidential Young Investigator Grant CCR-90-58840.
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Figure 1: A triangulation without Steiner points may require skinny triangles.

Figure 2: Aspect ratio of a triangle is }Ln where [ is the length of the longest edge and A is

the shortest altitude. For a general convex object, use the longest and shortest width: 1.

For instance, skinny triangles are known to slow the convergence of finite element com-
putations. A second example is the solution of systems of linear equations defined by the
vertices and edges of a triangulation. If all the triangles have bounded aspect ratio, then
the fast algorithm of [17] can be used to produce small “separators”, which yield efficient
orderings for nested dissection and other solution techniques. Other applications ask for a
non-obtuse triangulation, in which all angles are < 90°. Such triangles contain their circum-
centers, and by connecting adjacent circumcenters, we obtain a planar dual graph in which
the dual edges are perpendicular to the triangulation edges, simplifying certain calculations.

Our interest in this paper is the decomposition of 2-dimensional objects into triangles.
This is called mesh generation in most engineering literature, since the triangles form a
mesh used for the finite element method. (Specifically, we are referring to unstructured mesh
or grid generation.) In computational geometry, the same problem is called triangulation
or Steiner triangulation, since we will allow Steiner points: vertices of the mesh that are
not vertices of the input. We will use the terms “mesh generation” and “triangulation”
interchangeably. A triangulation must be a simplicial complez, that is, any two triangles
may intersect only in a common edge, a common vertex, or not at all. Figure 1 shows two
triangulations of a polygon, one using Steiner points. Quality mesh generation has been used
to describe techniques that offer a guarantee on some measure of the triangulation’s shape.

Typically the shape of a triangulation is determined by its worst-shaped triangle. Various
measures of triangle shape have been studied, including minimum angle, maximum angle and
aspect ratio. The aspect ratio of a triangle is the length of the longest edge divided by the
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length of the shortest altitude (see Figure 2). The aspect ratio is nice because it generalizes to
any convex object in any dimension: it is the ratio of the longest width to the shortest width,
where a width is the distance measured between two parallel supporting hyperplanes (lines
in our 2-dimensional figure). We will generally be concerned with bounding the minimum
angle a in any triangle; this guarantees a maximum angle < 7 — 2a and an aspect ratio
_between |1~ and |=2-|.

We give an algorithm for the problem of triangulating planar straightline graphs (PSLGs)
such that all triangles have bounded aspect ratio. PSLGs include polygons, polygons with
holes, and complexes (objects made of multiple polygons); dangling edges and isolated ver-
tices are also allowed. Steiner points may be used, but not too many: we desire a triangula-
tion that is size-optimal: the number of triangles is within a constant factor of the minimum
number possible in any bounded aspect ratio triangulation of the given PSLG. Algorithms
with both size and shape guarantees have been previously shown for triangulating point sets
[5], polygons [5], polygons with holes [15], PSLGs [15, 4], and even polyhedra in 3 dimensions
[18]. All of these techniques are based on grids or quadtrees, whereas we use a “Delaunay
refinement” approach, similar to [7]. Theoretically speaking, our algorithm matches the
PSLG algorithms of [15] and [5](modified as mentioned in [4]), but the Delaunay refinement
approach offers several advantages, as discussed in the next section. Qur algorithm is very
simple; essentially it boils down to the following: Start with the Delaunay triangulation of
the vertices of the input. Repeatedly add circumcenters of “skinny” triangles to the trian-
gulation, unless they are “too close” to an input edge, in which case divide that edge at its

midpoint.

2 Relation to Previous Work

The literature includes quite a few papers on the subject of mesh generation, many describing
heuristics intended to produce nicely-shaped triangulations. Ho-Le gives a survey of some
practical approaches in [14], see also the references in [4]. Here we mention only those
algorithms that carry guarantees on their output size or shape, or both. A more detailed
review of theoretical results in mesh generation is given in the excellent survey by Bern and
Eppstein in [4].

We group the work on guaranteed quality mesh generation into 3 categories:

1. No Steiner points allowed. Since no shape bounds can be guaranteed in this case, we
only touch on such techniques.

2. Rectangular decomposition based. The space including the input is first subdivided into
boxes, which are then triangulated. This includes grid and quadtree techniques.

3. Delaunay triangulation based. This includes our “Delaunay refinement” approach,
which generalizes an earlier technique due to Chew.



No Steiner Points Allowed

First we note that a minimum size triangulation can be generated by polygon triangulation,
since an n-vertex polygon can always be divided into n—2 triangles without using any Steiner
points. Many algorithms are known for polygon triangulation, with the most asymptotically
efficient being the linear time algorithm of Chazelle [6]. Other algorithms are discussed in
the book by Preparata and Shamos [20]. Since a given polygon might have many different
triangulations, one might wish to optimize some shape criterion. For instance, an algorithm
for minimizing the maximum angle was given by Edelsbrunner, Tan and Waupotitsch in
[10]. Their edge insertion technique optimizes other criteria as well, as was later shown
by Bern, Edelsbrunner, Eppstein, Mitchell and Tan [3]. Several other optimal non-Steiner
triangulation algorithms are discussed by Bern and Eppstein in their survey paper [4].

Since a non-Steiner triangulation may use only the vertices of the input, there are cases
in which arbitrarily skinny triangles are unavoidable. For example, the polygon in Figure 1
has only one triangulation, and the largest aspect ratio is determined by the small distance
from the base edge to the bottom of the notch. On the right we see that a careful choice of
Steiner points (here picked manually) can yield better-shaped triangles.

Techniques Using Rectangular Decompositions

There are two basic types of rectangular decompositions used for guaranteed quality mesh
generation: a uniform grid, in which all squares are the same size, and a quadiree, where
they are recursively subdivided into different sizes. The basic mesh generation steps are the
same in both cases:

1. Refine the decomposition until each box contains a small enough portion of the input.
2. Warp boxes to align with the input’s boundaries.
3. Triangulate boxes, using a variety of special cases.

The first algorithm to give a shape guarantee was due to Baker, Grosse and Rafferty [2].
They give a technique for producing a non-obtuse triangulation of polygons, in which all
angles are < 90°. In addition, the smallest angle is > 13°. (Of course, this 1s only possible if
all angles in the input are > 13°.) Together, these bounds guarantee an aspect ratio of < 4.6.
Their algorithm requires a uniform square grid over the polygon, with spacing roughly equal
to the smallest feature present in the polygon. Since the smallest feature determines the
mesh density throughout the polygon, the number of triangles can be very large.

Bern, Eppstein and Gilbert gave the first mesh generation algorithm with both shape and
size guarantees. In [5] they give a method for triangulating polygons so that every triangle
has aspect ratio < 5. In addition, they give a clever analysis to show that the number of
triangles produced is within a constant multiplicative factor of optimal. By optimal we mean
the minimum number of triangles in any triangulation of the given input achieving the same
aspect ratio bound. One of the key ideas in their algorithm is to replace the uniform grid of
[2] with a quadtree, which is a recursive subdivision into squares of varying sizes. This yields
large triangles in areas of large features. By keeping the quadtree balanced, aspect ratios are



bounded in the output. Melissaratos and Souvaine (15] give some extensions to the quadtree
algorithm. Mitchell and Vavasis (18] have shown how to extend the quadtree technique of
[5] to octrees in 3 dimensions. They give an algorithm for size-optimal bounded aspect ratio
triangulation of polyhedra.

Delaunay-Based Techniques

The well-known Delaunay triangulation (defined in Section 3, see also [20]) has been used
for many different problems. Its application to mesh generation has been discussed in [1},
(7], [11], [16], (8], and many others. This is in spite of a fundamental shortcoming: because a
Delaunay triangulation is defined only for a set of points, it does not take into account any
edges (or faces in 3D) of the object to be meshed. As a result, the Delaunay triangulation of
the input vertices alone may not contain portions of the boundary which are essential in a
mesh (see Figure 5 for an example). What is needed is a conforming Delaunay triangulation:
one in which all input edges are present, as the union of one or more Delaunay edges. The
general strategy for producing a conforming triangulation is to place additional Steiner points
on the edges of the input. Edelsbrunner and Tan [9] gave an algorithm which uses O(n®)
Steiner points (n is the number of vertices in the input). They also show a lower bound
of Q(n?). These are combinatorial bounds because they depend only on the combinatorial
complexity of the input; algorithms with size bounds dependent upon geometric factors have
been given in Nackman and Srinivasan {19] and Chew [7]. A conforming triangulation is
necessary for mesh generation, but is not sufficient to guarantee well-shaped triangles.

The first mesh generation algorithm with both size and shape bounds was based on
Delaunay triangulation, given by L.P. Chew in [7). Chew’s algorithm triangulates polygons
such that all angles are between 30 and 120 degrees. Since our algorithm is an extension
of Chew’s, we review it here. First, a parameter h is chosen. It must be smaller than the
smallest feature present in the input. A preprocessing step subdivides edges of the input to
lengths between h and V3h. Next, a Delaunay triangulation of the vertices is computed.
Then, if any triangle has a circumradius > h, its circumcenter is added to the triangulation.
This process of adding a point and updating the Delaunay triangulation is repeated until
all circumradii are less than . Chew shows that in the final triangulation, all edges are
between h and 2k, and all angles are between 30° and 120°. This guarantees aspect ratios
of < 2v/3 = 3.5. The algorithm produces uniform meshes, meaning that all triangles are
roughly the same size. The output mesh is size-optimal (to within a constant factor) amongst
all uniform meshes. However, as in (2], a uniform mesh may have many more triangles than
are necessary. See Figure 3(c) for an example of a uniform mesh. This mesh was produced
by a modified version of our algorithm, but is not too different from meshes produced by the
algorithm given in (7]. :

The algorithm we describe in the next section extends Chew’s work. We adopt the idea of
placing points at Delaunay circumcenters, but according to a different criterion which allows
triangles of varying sizes. An example output mesh is shown in Figure 3(d). The algorithm
triangulates planar straightline graphs (PSLGs) such that all triangles in the output have
angles between a and 7 — 2a, where o is a parameter that can be chosen by the user. In
practice, the algorithm succeeds for a < 30° (assuming all input angles are at least a). For



(a) Typical input PSLG and bounding box
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{c) Uniform mesh with minimum
angle 22.5 degrees

(b) Typical triangulation without
Steiner points

(d) Output of Delaunay refinement
algorithm with minimum angle 20 degrees

Figure 3: Sample input planar straightline graph (PSLG), and several triangulations of it.



a < 20°, we can show that the output mesh will be size optimal to within a constant factor
(the constant depends on the choice of a). PSLGs include polygons, polygons with holes,
and complexes (objects made of multiple polygons); dangling edges and isolated vertices are
also allowed (see Figure 3(a)). Theoretically speaking, our algorithm essentially matches the
PSLG algorithms of [15] and [5](modified as mentioned in [4]), but it is distinguished from
them in the following respects:

e The Delaunay refinement approach is fundamentally different from the quadtree tech-
niques.

e It is much simpler. With fewer special case constructions, it is easier to implement.
e It generally produces fewer triangles.

e It is “parameterized”: the user can ask for the “best mesh” with a given number of
triangles. In this way, the algorithm takes advantage of the inherent mesh size/shape
tradeoff.

o The output mesh is more “intrinsic” to the input. For instance, quadtree meshes
produce a sort of “scaffold” of mesh edges aligned with the coordinate axes. Such
alignment may affect subsequent computation. Edges in a Delaunay refinement mesh
have no preferred orientation.

e It produces a unique mesh, independent of the orientation of the input. (Strictly
speaking, this requires careful handling of input degeneracies such as co-circular points,
as well as elimination of the bounding box, see Section 6.)

A few words about the input to the algorithm: The input can be any planar straightline
graph (PSLG), with dangling edges and isolated points allowed (see Figure 3(a)). As shown
in the figure, the algorithm will triangulate a larger region, out to an enclosing box. To get
a triangulation of a particular region, say the interior of a polygon, exterior triangles can
be removed. (To maintain the size optimality guarantee in this case, the algorithm must be
modified slightly, as discussed in Section 6.)

3 The Delaunay Refinement Algorithm

The basic idea of the algorithm is to maintain a triangulation, making local improvements
in order to remove the skinny triangles. Each improvement involves adding a new vertex to
the triangulation and retriangulating. To pick good locations for these new vertices, we use
the following fact of elementary geometry:

Fact 1 If triangle T = abc has Zbac = 6, and p is the circumcenter of T, then Lbpc = 26.
(See Figure 4.)



Figure 4: Moving a to circumcenter doubles its angle.

As described below, we will generally be adding vertices that are circumcenters, though
when such locations are unsuitable, we will instead place new vertices on the input segments.

The particular triangulation we maintain is a Delaunay triangulation, which has been
extensively discussed in the literature (see, e.g., [20] or [12]). Several equivalent definitions of
the Delaunay triangulation can be given, for our purposes the “circumcircle” characterization
is most useful:

Definition 1 Given a set V of points in the plane, the Delaunay triangulation D7 (V)
consists of all triangles through & points whose circumcircle contains no other point of V.

Assuming the point set is non-degenerate (i.e. no 4 points are co-circular), the Delaunay
triangulation is unique and is a triangulation of the entire convex hull of the point set. The
degenerate case can be handled by triangulating co-circular points arbitrarily.

(At this point, we note that the use of the constrained Delaunay triangulation, which
takes into account segments as well as vertices of the input, will be discussed in a later
section.)

Edges of the input PSLG will be referred to as segments to distinguish them from the
edges of the Delaunay triangulation that is maintained. Also, a vertez is a vertex of the
input or the growing Delaunay triangulation, whereas a point is any point in the plane.
During the course of the algorithm, we will maintain a set V of vertices (initialized to the
vertices in the input) and a set S of segments (initially those in the input). Vertices are
added to the triangulation for two reasons: to improve triangle shape, and to insure that all
input segments are present in the Delaunay triangulation (i.e. so that we have a conforming
Delaunay triangulation).

The two basic operations in the algorithm are to split a segment by adding a vertex at
its midpoint, and to split a triangle with a vertex at its circumcenter. In each case, the new
vertex is added to V; and when a segment is split, it is replaced in S by its two subsegments.

For a segment s, the circle with s as a diameter is referred to as its diametral circle, and
we say that a vertex encroaches upon segment s if it lies within the diametral circle of s.
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diametral circle of s1

Figure 5: Input PSLG in bold, Delaunay triangulation of its vertices shown dotted. The
triangulation is non-conforming because s; is not present as a Delaunay edge. Vertex a
“encroaches upon” both segments s; and s,.

Figure 5 illustrates this: the vertex a encroaches upon both segments s; and sy (only s;’s
diametral circle is shown). It is easy to show that a segment not present in the Delaunay
triangulation is menaced by some vertex.

To simplify the description and analysis of the algorithm, we assume for now that all
angles of the input PSLG are at least 90 degrees. In Section 6, this restriction will be
removed.

Any triangle with an angle below « is called skinny. In a nutshell, the algorithm says
to split skinny triangles, unless the triangle’s circumcenter would encroach upon some input
segment, in which case split the segment instead. Here is the algorithm in detail, including
3 subroutines it uses:

subroutine SplitTri(triangle t )
Add circumcenter of t to V, updating DT (V)

subroutine SplitSeg(segment s )
Add midpoint of s to V, updating DT (V)
Remove s from S, add its two halves s; and s; to S

subroutine repair( )
repeat while any segment s of S is encroached upon in DT (V):
SplitSeg(s)

Algorithm DelaunayRefine
INPUT: planar straightline graph X;
desired minimum angle bound «
OUTPUT: triangulation conforming to X, with all angles 2> .
1. Initialize:
add a bounding square to X: 3 times as large and concentric wvith X
let segment list S = edges of X
let vertex list V = vertices of X



2. repair( )
3. repeat until all angles 2 a:
let { be (any) skinny triangle (min angle < a)
let p be t’s circumcenter
SplitTri(t) (x adds p to V %)
if p encroaches upon any segments 31,...,31;
remove p from V
SplitSeg( si,...,5k )
repair( )
4. output DT (V)

Figures 6 and 7 show the execution of the algorithm on a simple polygonal example.
For clarity, no bounding box is used. In each picture, the input is shown in thick lines, the
current Delaunay triangulation is overlayed in thin lines. The initial Delaunay triangulation
is shown in (b). Note that input segment s is not a Delaunay edge. This causes s to be split,
during the first call to the repair( ) subroutine. The updated Delaunay triangulation is
shown in (c). Next, we enter the repeat loop to split skinny triangles. At each iteration,
we can choose any triangle with a small angle to be split; our choice 1s the triangle with the
smallest angle. In Figures 6 and 7, the triangle about to be split is shown shaded, with a cross
indicating its circumcenter. In (d), we have attempted to add a vertex at the circumcenter
p, but it is discovered to encroach upon two segments: segment sq is not a Delaunay edge,
and the obtuse angle at p opposite s3 indicates that p is within s3’s diametral circle. In
(e), the encroached upon segments have been split and the triangle with the new minimum
angle is shown. The circumcenter of this triangle does not encroach upon any segments, so
we retain it, yielding the Delaunay triangulation shown in (f). Allowing the execution to
continue until all angles are at least 25° yields (g), and optionally we can remove triangles
outside the polygon, as shown in (h). (The observant reader might have noticed a slight
enhancement to the algorithm in the figure: if a segment s is encroached upon by a vertex
on another segment, s doesn’t have to be split as long as it appears in the triangulation, and
no skinny triangles are created. For instance, the vertex added in (c) encroaches upon two
segments that aren’t ever split.)

In the next section, we show that the algorithm halts for any a < 20°. (In practice, larger
values can be chosen, up to a = 30°.) Upon termination, all triangles will have aspect ratios
< |z%|, since all angles smaller than o will have been removed. Furthermore, it will be a
conforming triangulation, since any segments missing from the Delaunay triangulation are
encroached upon, and hence get split until they are present. Note that the algorithm specifies
no order for splitting skinny triangles. This and other implementation issues will be discussed
in Section 7.

4 Output Size

In this section we give an upper bound on the number of triangles in the output. The bound
depends upon the local feature size of the input. At every point in the mesh, the vertex
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(a) Input polygon (b) Delaunay triangulation of input vertices.
(bounding box not used Note that segment s is not a Delaunay edge.
in this example)

[

‘
l'
(c) Segment s "split* at midpoint, into s1 and s2.

Shaded tr|ang|e has sma”est ang|e' (d) V_erIeX_ P was added, but will be removed
5.9 degrees. Cross indicates its circumcenter. since it encroaches upon segments s3 and s4

Figure 6: Illustration of the algorithm on a simple example. For clarity, bounding box not
used.
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(@) 2 segments split atq andr,
minimum angle now 9.8 degrees.

N
\EK
~\

{g) Total of 22 Steiner points added,
minimum angle 25 degrees.

(f) New minimum angle 11.6 degrees.

(h) Optionally, external triangles can
be removed.

Figure 7: Continuation of example. In this case, minimum angle o = 25°.
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Figure 8: Local feature size at several points. Radius of disk D; is Ifs(p;).

spacing will be close to the local feature size. In the next section, we will show that the local
feature size is indeed the desired spacing, since it yields meshes within a constant factor of
the optimal size.

Definition 2 Given a PSLG X, The local feature size at a point p, sx(p), or simply
Ifs(p), is the radius of the smallest disk centered at p that intersects 2 non-incident vertices
or segments of X.

Figure 8 illustrates the definition of Ifs( ), the radius of the disk D; being Ifs(p;). Note
Dj in particular: a smaller disk would intersect 2 segments, but they are incident to each

other.

For a given input X, Ifs(p) is defined for all points p in the plane, and the entire function,
which we refer to as Ifs(X), is continuous. If Ifs(p) is interpreted as an elevation at p, then
Ifs(X) is a “not-too-steep” surface above the plane. The following Lemma shows that it has
a Lipschitz condition of 1, i.e. the slope in any direction is at most 1.

Lemma 1 Given any PSLG X, and any two points p and q in the plane,
|ifs(q) — Ys(p)| < dist(p, q),

where dist(p, q) is the distance between p and q.

Proof: See Figure 9. Assume without loss of generality that Ifs(p) < Ifs(q). The disk D of
radius 7 = Ifs(p) centered at p intersects 2 non-incident portions of X. The disk D’ of radius
r’ = r + dist(p, ¢) centered at ¢ contains D and hence intersects the same portions of X. So
Ifs(q) < r’. Putting this together, we have

\ifs(q) — Ifs(p)| = Ifs(q) — Ufs(p) < ' —r < r + dist(p,q) — r < dist(p, q).

13



- dist(p,q)™

Figure 9: Lemma 1: local feature size is not too “steep”.

Figure 10: Lemma 2 Case 1: p added as circumcenter of triangle T' with small angle § < a.

The next lemma is the crux of the mesh size analysis. It shows that as each vertex is
added, it is at the center of a “vertex-free” circle of radius at least a constant fraction of
the local feature size. Thus the density of added vertices is bounded by the geometry of the
input. _

First, we observe that for an input vertex p, the distance to the nearest vertex is at least

Ifs(p), by definition.

Lemma 2 At the time vertez p is added to the triangulation, the distance to its nearest
neighbor vertez is at least

o U—é.(? if p was added as the circumcenter of a skinny triangle.

. ’f—é(fl if p was added as the midpoint of an input segment.

Cr and Cs are fized constants we will specify below.
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Proof: Assume the lemma is true for all previously added vertices.

Case 1: We first consider the case where p is the circumcenter of a skinny triangle T'.
Since p is at the center of T's Delaunay circle, its nearest neighbors are the vertices of T (see
Figure 10), at a distance of r. Assume the vertices of T are a, b, ¢, with the smallest angle 6
at c. Then the shortest edge of T is from a to b. Without loss of generality, assume a was
added after b (or that both were in the input). We will use the fact that a and b are close
together to bound Ifs(a) in each of several cases, which in turn will bound Ifs (p)-

Case 1(a): a was a vertex of the input. Then so was b, so Ifs(a) < d.

Case 1(b): a was added as a circumcenter of some triangle with radius v < d (since
b was outside that triangle’s circumcircle). We can apply this lemma to a, yielding

lfs(a) < T'CT < dCT.

Case 1(c): a was the midpoint of a segment that was split. Applying this lemma to a
now yields Ifs(a) < dCs, since b was outside a’s vertex-free circle.

So we have Ifs(a) < dCs, assuming we have the condition FCS >Cr 2 J, which we will be

able to satisfy below. By Fact 1, Zapb = 26, so simple geometry gives sinf = %. Putting

this all together, Lemma 1 gives

ifs(p) < Ufs(a) +r

using our bound for Ifs(a) we have
<dCs+r

=2rCgsinf +r

or, since 8 < a,
lfs(p)

r> ——
— 14+ 2Cssina

So we get the desired bound on r as long as we can satisfy the condition [CT >1+4+2Cs singl.

Case 2: We now consider the case where the newly added vertex p is added to split a
segment s. Segment s is split because some vertex or circumcenter a is inside the diametral
circle of s. (See Figure 11.) We have two cases for a:

Case 2(a): a lies on some segment ¢, which can't be incident to s, since we're assuming
that all angles in the input PSLG are 2 90°. (Any segment incident to s makes a larger angle,
and hence would be completely outside the diametral circle.) So by definition, Ifs(p) < r.
Above we've assumed the condition Cs > 1, so this case is done.

Case 2(b): a was a circumcenter, proposed for addition to the Delaunay triangulation,
but rejected because it lay inside the diametral circle of S. Suppose it was the center of
circle C' with radius 7. By this applying this lemma to a, we know that r' > If—grﬂ Also, b

and c, the endpoints of S, must be outside the Delaunay circle C’, so r' < V2r. Lemma 1
gives

Ifs(p) < lfs(a) +7
<r'Cr+r
<V2rCr+r

15



Figure 11: Lemma 2 Case 2: p added to split segment s which is encroached upon by a.

or

Ifs(p)

r
~14+V2Cr
This yields the correct bound on r, provided that Cs>1+V2Cr| |

It can be checked that the 3 boxed conditions can be simultaneously satisfied for any
a < 20°. For instance, Ct = 1—;%%‘;%, Cs = % will work. For @ = 10°, we can
choose Cr = 2.8, and Cs = 5.

Since Cr < Cs, the lemma shows that when a vertex p is added, no other vertex is within
a distance 1%%2 of p. The following theorem shows that vertices added later cannot get much
closer to p.

Theorem 1 Given a vertezx p of the output mesh, its nearest neighbor vertez q is at a

distance at least —é%(f%

Proof: The previous lemma handles all but the case when ¢ was added after p, in which
case we can apply the lemma to g and get

Ifs(q)
Cs

dist(p, ¢) 2

Lemma 1 gives a bound for Ifs(q) in terms of Ifs(p) and ¢’s distance from p, so

Ifs(p) — dist(p, q)
Cs

dist(p, q) >

rearranging finishes the proof: dist(p,q) > gg{% [
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The next theorem uses an area argument to yield a bound on the number of vertices.
Intuitively, a region of small local feature size requires small triangles, i.e. the vertex spacing
should be proportional to the local feature size. Thus the triangle density in the mesh is
proportional to the inverse of the square of the local feature size. So we will “charge” the
cost for each vertex to the local feature size around it.

Theorem 2 The number of vertices in the output mesh is at most

1
¢ /B lfsz(x)dx’

where B is the region enclosed by the bounding square, and C, is a constant to be specified.

Proof: The previous theorem says that each vertex p in the mesh is at the center of an open

disk of radius c_'(% that contains no other vertex. Halving the radii gives non-intersecting
Ifs(p

disks: let D, be the open disk of radius r, = 2(_c(_+1L) centered on p. Since at least one-
fourth of each D, is contained in the bounding square B, we can lower bound the integral
by summing its value in the disks D, for every p in the vertex set V:

/Blfs __Z/ lfs

peEV

By Lemma 1, the maximum Ifs( ) attainable in D, is Ifs(p) + rp, which gives a bound for

fD,,3

1 1 1
|, e 2 e D)y 2 el D) s

Using area(D,) = 7r,?, and plugging in for r,, we get

[ dx><7r s’ (p) )( 4Cs + 1)’ )
D, Ifs(z) — \ 4(Cs+1)%) \(2(Cs + 1) + 1)*Ifs*(p)

> v
= (2Cs + 3)?
Substituting back in for the entire integral,

1 1 T
—_—dz>- Y —————
/B Ifs¥(z)  ~ 4 ;:; (2Cs + 3)?

TR ok

Since the summation merely counts the number of vertices in the output mesh the theorem
holds if we choose the constant C; > —(ﬁf;ﬁl- n

The choice of @ = 10° mentioned above yields C; = 216. This quite large value seems to
result from the proof techniques rather than the inherent behavior of the algorithm. This
issue will be discussed below.
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5 Size-Optimality

In this section we state and prove some properties that any bounded aspect ratio triangula-
tion must have, and then use these properties to show that even the optimal triangulation
isn’t too much better than the output of the Delaunay refinement algorithm. The following
properties of bounded aspect ratio triangulations are seemingly obvious, but a number of
technical details are required to state and prove them precisely:

e Small input features will be surrounded by proportionally small triangles.
o Nearby triangles have similar sizes.
o The size variation between distant triangles depends on their distance.

The basic idea would be to show that triangle sizes in an “optimal” mesh satisfy a
Lipschitz smoothness condition, and hence they are proportional to our local feature size
measure, yielding optimality within a constant factor for our meshes. The difficulty in doing
this directly is that triangle size is a step function, with potentially large discontinuities
between triangles, especially near mesh vertices of high degree. As a result, we must define
precisely what we mean by “triangle size”, and show that though it is a step function, it 1s
reasonably well-behaved. With a series of lemmas, we bound the “maximum triangle size”
at an arbitrary point, and show that triangle sizes within a Delaunay refinement mesh are
within a constant factor of the largest possible.

The analysis in this section is similar to that given by Mitchell and Vavasis in [18] for
their 3D algorithm. A basic notion in their proof is that of a “characteristic length function”,
which defines the “triangle size” at every point within the triangulation:

Definition 3 If a point p is contained in a triangulation T of input PSLG X, then we say
the edge length at p, elr x(p), or simply el(p), is the length of the longest edge among all
triangles of T containing p.

We shall now prove some properties about this function within bounded aspect ratio
triangulations. For the remainder of this section, we assume all triangles have a minimum
angle bound of a, which guarantees all aspect ratios are at most A = —2—. By considering
the shared edge between two triangles, we have the following:

Fact 2 If p and q lie in the interiors of distinct triangles T, and T,, which share an edge,
then <& < A.

el(p)
Repeated use of this fact gives the following lemma about points in arbitrary triangles:
Lemma 3 If p and q lie in the interiors of triangles T, and T,, respectively, then

el(q) — el(p) < Cy - el(p) + Cs - dist(p, q)

where Cy and Cx are constants to be specified.
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Figure 12: Triangles crossed by the segment from p to ¢ are divided into “fans”.

Pieq

Figure 13: Since line segment pq crosses edges e and f, it must cross €’ or f.

Proof: Consider the sequence of triangles crossed by the line segment from p to ¢, as shown
in Figure 12. (Here we are assuming that the triangulation fills a convex region, so that the
segment stays within the triangulation. More on this in the next section.) Any vertex on
the segment is treated as though it were to the “right” of the directed segment from p to g.
Label any vertices shared by more than two consecutive triangles py,ps,---. The “zigzag’
edges connecting successive p;’s divide the triangles into “fans” around each p;, indicated by
the bold arcs in Figure 12. Since at most |2 | triangles fit around a vertex, each fan contains
at most K = |Z] triangles, except the first and last, which may contain K + 1. We consider
two different cases, depending upon the number k of triangles between p and g, including T,
and T,

Case 1: k < K + 3: Using k applications of Fact 2, we see that the lemma holds as long
as Cg > AA+3 and C3 > 0.

Case 2: k > K + 3: Since zigzag edges are separated by at most k trlangles there exists
some zigzag edge p;pi+1 that is flanked by two triangles, neither of which contains p or g.
Consider the closest such edge to ¢q. In Figure 12, this is the edge psps. Figure 13 shows
edge p;pi+1 and its two flanking triangles. We now show that the length of the segment pq
is at least half of an altitude of one of these triangles. Let e and f be the two outer edges
crossed by pq, as shown. Let = be the midpoint of p;pi+1, and construct e’ and f’ through
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Figure 14: Triangle size along ry if r is a mesh vertex.

x)_—_pl ’

Figure 15: Triangle size along zy if z is not a mesh vertex.

r and parallel to e and f, as shown. Since pq crosses e and f, it must cross either €' or
f'. If it crosses €', then it is longer than half the altitude A from edge e to vertex p;;1, i.e.
dist(p,q) > % By the definition of aspect ratio, the edge p;pi+: has length at most A - A,
and with K + 2 applications of Fact 2, we see that el(q) < AK+3h < 24K+3dist(p,q). The
lemma holds for C3 = 245+3 since el(p) > 0, C; > 0. The case where f’ is crossed by pq is
handled similarly, within the same bound. The choice of Cy > AX*3 C; > 24K+3 satisfies

all the conditions. n

Lemma 3 gives a bound on how fast edge lengths can change in a bounded aspect ratio
triangulation. The following lemma shows that there must be small triangles near small

input features.

Lemma 4 Let r and y be points (not necessarily endpoints) of non-incident input segments.
Let d be the distance between z and y. Then, in any triangulation with aspect ratios bounded
by A, there is a point p on the line segment connecting z and y with el(p) < 2d - A.

Proof: See Figure 14(a).
Case 1: The easy case is when z or y is a vertex of the triangulation. Without loss of

generality, suppose z is a vertex. If there is a triangulation edge at z along the line segment
ry (see Figure 14(b)), then that edge has length < d. For any point p in the interior of the
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Figure 16: Points z and y on input segments determine edge length el(p) at some point p
along zy, and local feature size Ifs(q).

edge, el(p) < d- A. If the line segment zy is in the interior of some triangle T near z (see
Figure 14(c)), then the minimum altitude of T is no longer than T"s intersection with zy, so
for any point p on zy interior to T, el(p) < d- A. »

Case 2: This case, where z is in the interior of an edge of the triangulation, is illustrated
in Figure 15. Let z’ be the endpoint nearest z, and consider all triangles incident to z’ that
intersect the line segment zy. Let py, p2, ... be the intersections of zy with the edges of these
triangles, as shown. Finally, on the edge containing p;, label the endpoint closest to p; as p;.
Let j be the smallest index such that p; # z’. Such a j exists, because eventually zy will
reach an edge not incident to z’, for instance the edge containing y. By an argument similar
to that used in Case 2 of the previous lemma, we see that the minimum altitude of T, the
triangle containing p;—; and p; is at most 2d. Then for any point p in the interior of the line
segment p;_1p;, el(p) <2d-A. =

Next, we use the preceding lemmas to relate the edge length function el( ) to our local
feature size measure Ifs( ). Recall that we assume 7 is any triangulation in which all angles
are at least a.

Lemma 5 At any point q in the interior of a triangle of T, el(q) < Cy4lfs(q), where Cq is a
constant to be specified.

Proof: By definition, Ifs(q) is the radius r, determined by two points z and y on non-incident
segments of the input (see Figure 16). From Lemma 4, there must be some point p along
z,y with el(p) < 2-dist(z,y) - A. Since we always have dist(z,y) < 2r, el(p) < 4r - A. Using
dist(p, ¢) < r and Lemma 3,

el(q) < el(p) + Ca - el(p) + C5 - dist(p, q)
<(Cy+1)-ellp)+Cs-r
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<(Cy+1)-4r-A+Cs-r
<[(Cy+1)-4A+C5] -7
<[(Ca+1)-4A+ Cs) - Ifs(q)
Choosing Cy4 > (Cz + 1) - 4A + C3 concludes the proof. n

We can now state and prove the major result of this section: that the mesh output by the
Delaunay refinement algorithm is size-optimal to within a constant factor. First we recall
the situation: the input is a planar straightline graph X with all angles at least 90 degrees,
a < 20° is the minimum angle bound for the output, which guarantees all triangles have
aspect ratio < =2—. The algorithm triangulates the region inside B(X), a larger bounding
box of X, and the optimality is with respect to any triangulation of B(X) with minimum
angle bound a. The constant factor Cy depends on the choice of @, but not on X, i.e. the
algorithm is optimal on every input, not just in the worst case. (The 90° input restriction,

and the requirement that the mesh triangulates B(X), will be eliminated in the next section.)

Theorem 3 Given a < 20°, and input X, suppose T is any triangulation of X with min-
imum angle bound a. There is a constant C, such that if T has N triangles, then the
Delaunay refinement triangulation has at most Cy - N triangles. Letting T be the triangu-
lation with fewest possible triangles shows that our triangulation is within a factor Cy, of
optimal.

Proof: Theorem 2 bounds the number of vertices in the Delaunay refinement triangulation.

In any triangulation, the number of triangles is at most twice the number of vertices (true
by Euler’s relation, see [20], p. 19). Thus the triangulation has

1
< -
M < 20‘/3 Ifsz(x)dz

triangles. By Lemma 5 this is

1
<c-cf dz
=71 g el¥(z)
where the edge-length function el( ) is with respect to 7. (Strictly speaking, Lemma 5 does
not apply to edges of the triangulation, but since they have measure 0, they don’t contribute
to the integral.) We can instead sum the integrals over each triangle T € 7

1
=Ci- G 2, /T e12(:c)dx

TeT

In each triangle T, el( ) is constant, just the length of the longest edge. The area of T is at
most @612( ), which occurs if T is equilateral. So for T we have

/ 21 ~dz < _5?212(2) _\/E
T el*(z) el“(z) 4
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Figure 17: Do the polygon’s two “arms” determine a small feature at p?

Substituting back in,
Mgcl-cﬁ?zl

TeT

The )sCumrnation counts the number of triangles in 7, so the theorem holds for C, = C; -
042 43. [ ]

The constant factor C, depends on the choice of «, but not on X, i.e. our algorithm is
optimal on every input, not just in the worst case. We discuss C, more in Section 7.

6 Corner-Lopping and Riemann Sheets

Two issues must be resolved so that our algorithm produces optimal bounded aspect ratio
triangulations for general 2-dimensional inputs. First, we must deal with small input angles
reasonably (recall that we unreasonably assumed all angles were at least 90°!). The second
issue is subtler, and relates to our definition of local feature size in non-convex polygons: in
Figure 17, do the two “arms” of the polygon generate a small feature at p? Our definition
says they do, and produces small triangles around p accordingly. This could be suboptimal
if only an interior triangulation of p is desired. Fortunately, previous researchers have dealt
with both of these concerns, and we can adapt their solutions to our algorithm. These
modifications may increase the size of the mesh, but by at most a constant factor.

We handle small angles by “lopping off” the sharp corners during a preprocessing step.
Any input vertex p with a small angle is “shielded” by committing in advance to a specific
triangulation around p. This was previously done in [6] with a circle around p, and in the 3D
algorithm of [18], a cube was used. At any vertex p with an angle smaller than 90°, we will
intersect a circle with the input edges, as shown in Figure 18. The radius of the circle will be
Y(p) 5o that circles around different vertices do not intersect or get too close. Angles at p

3
that are > « are divided so as to be between « and 2a, introducing shield edges around the
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Figure 18: “Lopping off” sharp corners with a shielding circle (input segments in bold).
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Figure 19: Fixing shield edges that get split.

circle, and spoke edges from p to the circle. These edges, and new vertices, are henceforth
considered as part of a modified input PSLG X', and will appear in the output mesh. This
reduces the local feature size in X' compared with X, but only by a constant factor that
depends on a. ‘

Outside the shielding circles, all angles will be greater than 90°. Within the shielding
circles, our hope is to use the triangles shown in Figure 18 as the output triangles around p.
If we disallow such triangles to be split, then no vertices will be added within the shielding
circle, but still the shield edges may get split, as shown in Figure 19(a). When the algorithm
terminates, each shield edge will be split into at most a constant number of pieces, since the
local feature size along the edge is proportional to the edge length.

We now have two ways of dealing with split shield edges. Following [18], we place edges
between the split vertices and p, as shown in Figure 19(b). (In fact, these will be present as
the Delaunay edges.) As shown for the 3D case in [18], this means the minimum angle in
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the output mesh will be within a constant factor of optimal (depending on how many times
the small shield edges get split), while retaining the constant factor optimality for the mesh
size.

A more complicated construction can avoid splitting the smallest input angle at all. As
shown in [6], a construction like that in Figure 19(c) will work for polygon inputs. This
doesn’t work directly for PSLG inputs, since the vertices added to the spoke edges incident
to p may conflict with those used for another shield edge. This can be handled by applying
the construction to the smallest angle incident to p. The two spokes bounding this angle
become subdivided with new vertices, and we subdivide all other spokes identically.

Some practical issues concerning small input angles are discussed in Section 7.

The second issue is illustrated in Figure 17. We assumed our input was a planar straight-
line graph, and produced a triangulation that extended out to a larger surrounding box. If
only the interior of a polygon is to be triangulated, then we would not consider the clearance
between the two “arms” of the polygon in Figure 17 as a small feature. In particular, the lo-
cal feature size at p should be r, rather than d, as our definition states. Asin (18], we modify
the definition to use the geodesic distance to the 2 nearest non-incident portions of the input.
The geodesic distance is measured along the shortest path that stays within the region to
be triangulated (e.g. the interior of the polygon). The algorithm is modified to work using a
constrained Delaunay triangulation, say by using the Riemann sheet technique of Seidel [21].
This corresponds to Mitchell and Vavasis’ use of Riemann volumes with octrees [18].

7 Implementation and Discussion

The basic algorithm of Section 3 leaves unspecified some issues concerning its implementa-
tion. We now discuss these issues in general, and describe our own implementation, which
does not include the corner-lopping or Riemann sheet modifications of the previous section.
Figure 20 shows the output of our implementation on two examples.

An incremental Delaunay triangulation algorithm is ideal as a basis for the Delaunay
refinement algorithm. The simplest such algorithm works by swapping diagonals within a
quadrilateral formed by two triangles. Guibas and Stolfi [13] give pseudo-code for this, as
well as a useful data structure for manipulating triangulations.

The detection of “encroached upon” segments (those containing a point in their diametral
circle) can be done efficiently by checking some local criteria during each update of the
Delaunay triangulation. A segment is encroached upon if either:

1. It is not present as a Delaunay edge (e.g. s1 in Figure 5), or
2. It is present, but opposite an obtuse angle in a Delaunay triangle (e.g. s, in Figure 5).

The algorithm allows skinny triangles to be split in any order; by always splitting the
one with the smallest angle, the algorithm trades off nicely between mesh size and shape:
the overall minimum angle improves as the algorithm continues to run (see Figure 22).

The algorithm specifies a square bounding box 3 times as large as the input. In fact, any
constant multiple will work. For clarity in our examples, we have used a smaller bounding
box. The bounding box has both a theoretical and a practical purpose. Though a polygon
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Figure 20: Output on two sample PSLGs, minimum angle =~ 20°.

clearly has an interior, a PSLG input may have dangling edges, and it is not always clear
exactly what region is to be triangulated. The convex hull of the PSLG is a logical candidate,
but then an input vertex just inside the hull could generate a “small feature” that isn’t really
present in the input. The bounding box gives an unambiguous region to be triangulated,
without reducing the local feature size by more than a constant factor. An axis-aligned
bounding square also improves the algorithm’s stability, since splitting an edge of the box
gives a midpoint which is precisely collinear with the endpoints. Otherwise, if roundoff
were to occur, then the midpoint could fall inside the edge, causing a very skinny Delaunay
triangle to form between the midpoint and the endpoints.

Though the corner-lopping was required for the optimality analysis in the presence of
input angles below 90°, it is not generally necessary in practice. By redefining a skinny
triangle to exclude those with small input angles, the algorithm works well in most cases.
Figure 21 shows the output on an example with several input angles near 15°. The desired
minimum output angle is 20°, which is achieved everywhere except at the small input angles.
Input angles below 10° may present a problem, causing a large number of vertices to be
added near that angle. This occurs because the incident segments are split many times. A
reliable practical implementation would need to incorporate some technique, such as corner-
lopping, to handle all small input angles. Pre-processing steps such as corner-lopping tend to
greatly increase the size of the output mesh, so we have tried to avoid them. The following
technique for handling small angles is currently under investigation, and seems promising:
First, choose a parameter d near the smallest feature size. Then, when splitting segments
incident to a vertex p with a small input angle, don’t choose the segment’s midpoint, but
choose a nearby point on the segment at a distance 2¥ - d from p, for some integer k. The
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Figure 21: An input that contains angles smaller than a.

goal is to create circular “rings” of vertices around p, similar to those in the shielding circles
used in corner-lopping.

We now turn to the question of how size-optimal the algorithm is. The examples of
Figure 20 seem to be within a factor of 2-4 times the minimum possible size for the given
angle bound, so the “true” optimality constant lies somewhere between that and the value of
C, of Section 5. For a minimum angle bound of 20°, the best explicit value we were able to
prove for the optimality constant C, was C, & 2.1 x 10%°. Though this is the first explicitly
stated optimality constant for a bounded aspect ratio triangulation algorithm, the value is
clearly meaningless as a practical guarantee. Examination of the analysis shows much slack
that might be tightened up. For example, Cy includes a factor of A2A+¢ with A ~ 6, K = 4,
for a = 20°. We suspect that with a careful analysis of triangles packed around a vertex,
this factor can be replaced by 2% or A2, but even shaving off 10 or 15 orders of magnitude
would not yield a useful value for C,. One would really like a stronger proof technique.

We can make a non-rigorous argument about output size using the constant Cs of Sec-
tion 5. It bounds the density of points along input segments, and its value indicates that
at most 5 “layers” of triangles will appear between 2 nearby input vertices. In Figure 20,
we see that short segments are not broken up at all, and so there is usually only 1 layer.
This contrasts with the algorithm in [6], in which each input vertex must be isolated within
a 5-by-5 grid of quadtree squares, yielding at least 2-3 layers of triangles between any two
vertices.

Additional evidence concerning the behavior of the Delaunay refinement algorithm comes
from Figure 22, which charts the overall minimum angle during a lengthy run on a simple
input with about 15 vertices. We see the minimum rise to about 30° and then level off,
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Figure 22: Progress of minimum angle, during a typical run.

except for frequent downward spikes when a small angle gets divided in two, then quickly
improved. The optimality proof says that eventually, no spike will drop below the dotted
line (here, for a = 20°), which would be far to the right of the plotted portion of the graph.
The arrow points out when the algorithm would actually halt for this case.

We have not analyzed the running time of the Delaunay refinement algorithm in detail.
The running time is dominated by the time needed to maintain the incremental Delaunay
triangulation. The determination of encroached upon segments and skinny triangles can be
absorbed into this using the techniques described above. The worst-case running time for
incremental Delaunay triangulation is O(M?), where M is the output size. The algorithm
of {13} is one that achieves this bound. In practice, such algorithms usually run much faster.
Much of the time is typically taken up locating the triangle containing the new point. For
non-input vertices, this is simplified in our algorithm by starting at the skinny triangle or
encroached upon segment being split.

8 Generalization to Three Dimensions

Our greatest hope would be to generalize our 2D algorithm to perform 3D tetrahedral mesh-
ing of polyhedra and polyhedral complexes. In this regard, we are somewhat pessimistic: the
Delaunay refinement algorithm extends fairly readily to three dimensions, but its bounded
aspect ratio guarantee does not. It seems that significant new ideas are necessary in order
to get bounded aspect ratio tetrahedra using a Delaunay triangulation based approach.
The discrepancy between 2D and 3D boils down to the following: in 2D, a set of “evenly
spaced” points will have a Delaunay triangulation with no skinny triangles, but this does
not hold true in 3D. Figure 23 shows why skinny triangles, or “slivers”, are ruled out in 2D:
a sliver either has widely varying edge lengths, or a circumcircle much larger than any of its
edges. Such a circumcircle forms a large “gap” not containing any points. In 3D, however,
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Figure 23: A “sliver” triangle in 2D must have a circumcircle much larger than its shortest
edge.

Figure 24: “Sliver” tetrahedron: 4 points spaced around equator of a sphere, with d raised
slightly.
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tetrahedra can have roughly equal-length edges, a reasonable sized circumsphere, and yet be
arbitrarily skinny, as shown in Figure 24: four vertices spaced equally around the equator of
a sphere, with d raised slightly to a latitude of € above the equator.

These flat sliver tetrahedra appear quite often in 3-dimensional Delaunay triangulations.
The difficulties of avoiding them or removing them have been discussed in [11], [16], [1],
amongst others.

9 Conclusion

We have presented a new algorithm for bounded aspect ratio triangulation of planar straight-
line graphs. The algorithm is very simple, and quite different from previous techniques.

There are many opportunities for further work. Can small input angles be handled
without the corner-lopping preprocessing step? How useful would it be to incorporate the
constrained Delaunay triangulation? The algorithm is well-suited to adaptive analyses that
increase mesh density in regions of large error. For problems with a solution that changes,
mesh reduction is also useful—is there a Delaunay based criterion to indicate good vertices to
delete from the mesh? There are several questions regarding the size-optimality constants:
Can the analysis be significantly improved? Are there lower bounds for bounded-aspect ratio
triangulation, even for specific inputs like two e-separated points centered in the unit square?
Finally, can the Delaunay refinement algorithm be generalized to work for 3D triangulation
of polyhedra?
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