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Abstract

We give tight upper and lower bounds on the expected cover time of a random walk in an

undirected graph with colored edges. We show that for graphs with two colors the expected

cover time is exponential, and that for three or more colors it is double exponential. In

addition, we give polynomial bounds in a number of interesting special cases. We describe

applications of these results to understanding the eigenvalues of products and weighted

averages of matrices, and to problems on time-inhomogeneous Markov chains.

1 Introduction

We introduce the notion of a random walk in an undirected colored graph and analyze the

expected cover time of such walks. A colored graph is a set of n nodes with k distinctly-colored

sets of undirected edges. The colors are f1; 2; : : :kg. An in�nite sequence C = C1C2C3 : : :,

where each Ci is in f1; 2; : : :kg, de�nes a random walk on a colored graph from a �xed start

node s in the following way. At the i-th step, an edge, chosen randomly and uniformly from

the edges of color Ci at the current node, is followed.

We say that G can be covered from s if, on every in�nite sequence C of colors, a random

walk on C starting at s visits every node with probability one. The expected cover time of G

on C is de�ned as the maximum, over all nodes s of G, of the expected time to cover G from s

on C. The expected cover time of G is de�ned to be the supremum, over all in�nite sequences

of colors C, of the expected cover time of G on C.

In this paper we study the expected cover time of colored graphs. Throughout we only

consider graphs that can be covered from every node. This property is analogous to the con-

nectivity property for undirected graphs since without it there is no bound on the expected

cover time.

We �rst summarize our results and then describe motivation and applications. We use the

following notation in stating our results.
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We use (C1C2 : : :Cl)
! to denote the sequence consisting of an in�nite number of repetitions

of the �nite color sequence C1C2 : : :Cl. For c in f1; 2; : : :kg we call the graph obtained from G

by removing all edges except those of color c the underlying graph of color c. We denote by Ac

the n � n stochastic matrix whose fi; jg-th entry is the probability of reaching j from i in one

step of the random walk when an edge of color c is followed.

We obtain the following bounds.

1. Exponential upper and lower bounds on the expected time to cover undirected graphs

with two colors.

2. Double exponential upper and lower bounds on the expected time to cover undirected

graphs with three or more colors.

3. Polynomial bounds on the expected cover time of colored graphs when the underlying

graphs are aperiodic and have the same stationary distribution.

4. Polynomial bounds on the expected time to cover colored graphs on sequences of the form

(C1C2 : : :Cl)! when the matrix product AC1AC2 � � �ACl
is irreducible and all entries of

its stationary distribution are at least 1=poly(n).

We de�ne the expected cover time of G on a random sequence to be the expected cover time

of G on color sequence C = C1C2C3 : : :, where the Ci are i.i.d. random variables that take on

value j in f1; 2; : : :kg with constant probability �j . It is not hard to see that the expected cover

time of any graph on a random sequence is at most exponential in the number of nodes of G.

We prove the following bounds on the expected cover time of a graph on a random sequence.

5. An exponential lower bound on the expected time to cover colored graphs on a random

sequence.

6. Polynomial bounds on the expected time to cover colored graphs on a random sequence,

when all entries of the stationary distribution of
P

j �jAj are at least 1=poly(n).

As we will see, (undirected) colored graphs are a natural generalization of 2-colored directed

graphs. Results on the expected cover time of 2-colored directed graphs were critical in deter-

mining the complexity of space bounded interactive proof systems [4], and that work motivated

our de�nition of the expected cover time of a colored graph (in terms of the supremum). Undi-

rected colored graphs are also a natural generalization of both directed and undirected graphs.

Along with known polynomial bounds on the expected time to cover undirected graphs, our �rst

two results give a complete characterization of cover times for colored graphs. Our de�nition

of the expected cover time of a colored graph on a random sequence is a natural alternative

de�nition of cover time, and our �fth result above, together with some straightforward obser-

vations, provides a complete characterization of the expected cover time of colored graphs on a

random sequence.
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These results have applications to understanding the eigenvectors of products and weighted

averages of matrices. Our later results show that it is possible for the stationary distribution

of a product or weighted average of matrices to contain exponentially small entries, even when

all entries of the stationary distributions of the individual matrices are inversely polynomial.

Our results also have applications to the theory of time inhomogeneous Markov chains,

de�ned by a sequence of stochastic matrices P1; P2; P3; : : : A �nite set of stochastic matrices

de�nes a family of time inhomogeneous Markov chains; each chain of the family corresponds to

an in�nite sequence of matrices from the set. Such families of Markov chains arise in coding

theory [8]. Our techniques can be used to bound the rate of convergence of such chains to their

absorbing states and to bound the time needed for ergodicity properties to be achieved. In this

way, our results introduce a complexity theory perspective to problems on time inhomogeneous

Markov chains.

The rest of the paper is organized as follows. In Section 2 we present our exponential and

double exponential bounds on the expected cover time of undirected colored graphs. In Section

3 we strengthen the exponential lower bound of Section 2 by showing it holds for a restricted

class of graphs, even on a random sequence of colors. Finally, in Section 4 we describe a number

of conditions under which a colored graph can be covered in polynomial expected time.

2 General Bounds on the Cover Time

In this section we present tight bounds on the expected cover time of colored undirected graphs.

We show that the expected cover time of a 2-colored undirected graph is 2�(poly(n)), whereas

the expected cover time of an undirected graph with 3 or more colors is 22
�(n)

. We �rst present

upper bounds in Theorems 2.1 and 2.2 and then present the lower bounds in Theorems 2.3 and

2.4.

Before presenting the upper bounds we make the following de�nitions.

Let G be an undirected colored graph and let s and t be two nodes of G. We say that

t is reachable from s on the color sequence C = C1 : : :Ck, if there is a sequence of nodes

s = v0; v1; : : : ; vk = t such that G contains an edge of color Ci between vi�1 and vi, for

i = 1; 2 : : :k. We call v0; v1; : : : ; vk a path from s to t on C.

Theorem 2.1 Let G be an undirected colored graph with n nodes. Then the expected cover

time of G is 22
O(n)

.

Proof: Suppose G can be covered from node s. Fix a color sequence C1C2C3 : : : We

consider the random walk on this sequence from node s in intervals of l = 2n steps. Order the

nodes 1; : : : ; n. Suppose that in the �rst i intervals, nodes 1; : : : ; t� 1 have been visited but t

has not been visited. We will show that node t is visited with probability � 1=nl in the (i+1)st

interval. Thus, the expected number of intervals after the ith interval until node t is visited is
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at most nl. Hence, the expected number of intervals until all nodes are visited is at most nnl.

Since each interval consists of l = 2n steps, the total expected time needed to cover G from s

is at most n2nn2
n

= 22
O(n)

.

We now show that node t is visited with probability � 1=nl in interval (i+ 1), given that

it has not been visited in the �rst i intervals. Let si be a node reachable from s in exactly il

steps, given that t has not been reached in the �rst i intervals. It is su�cient to show that node

t is reachable from si in interval i+1, that is, on color sequence Cil+1 : : :Cil+l0 , for some l0 � l.

If this is the case, the probability that node t is visited, given that si is the node reached in il

steps, is � 1=nl. This is because at each of the �rst l0 steps of interval i+ 1, with probability

� 1=n, the path to node t is followed from si.

Suppose to the contrary that node t is not reachable from si in interval i+1. Let S0 = fsig

and for j = 1; 2; : : :l, let Sj be the set of nodes reachable from si on the color sequence

Cil+1Cil+2 : : :Cil+j . Since each set Sj is a subset of f1; : : : ; ng, by the pigeonhole principle

Sj = Sk for some 0 � j < k � l.

Now, let C0 be the color sequence C1C2 : : :Cil+j(Cil+j+1 : : :Cil+k)!. On this sequence, with

probability > 0 node t is never reached from s. This is because with probability > 0, node si
is reached in exactly il steps on a path that does not visit t, and then node t is not reached

in further steps since the reachable nodes are those in Sl, 1 � l � k. This contradicts our

assumption that G can be covered from s. 2

Later we'll show that this bound is tight for graphs with three or more colors. Undirected

two-colored graphs, however, are coverable in expected time 2n
O(1)

. We give a proof of this

now.

Theorem 2.2 Let G be a 2-colored undirected graph with n nodes. Then the expected cover

time of G is 2poly(n).

Proof: Suppose G can be covered from node s. Fix a color sequence C1C2C3 : : :, where

the two colors are red and blue, denoted R and B, respectively. As in Theorem 2.1, we consider

the random walk from node s on this sequence in intervals. In this case the intervals are of

length l = (4n� 3)(n� 1). Order the nodes 1; : : : ; n. Suppose that in the �rst i intervals nodes

1; : : : ; t � 1 have been visited but t has not been visited. We will show that node t is visited

with probability � 1=nl in the (i + 1)st interval. From this the theorem follows in a manner

similar to that of Theorem 2.1.

Again as in Theorem 2.1, it is su�cient to show that node t is reachable from si in interval

i+ 1, given that t was not visited in the �rst i intervals, where si is a node reachable from s in

exactly il steps. This is equivalent to showing that node t is reachable from si on the sequence

Cil+1Cil+2 : : :Cil+l0 , for some l0 � l. To keep the notation simple, we prove this in the case that

i = 0, in which case si = s. The argument is identical for i � 1.

We �rst consider the special case that the sequence C1C2 : : :Cl is a pre�x of (BR)! or
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(RB)!, and then extend that argument to arbitrary sequences. In fact, in this special case an

interval of length 2n� 1 su�ces.

Lemma 2.1 Node t is reachable from s on a pre�x of the sequences (BR)! or (RB)! of length

� 2n� 1.

Proof: We prove the lemma for the sequence (BR)! . The argument for the sequence

(RB)! is analogous. Call a �nite pre�x C0 of (BR)! good if t is reachable from s on C 0. Since

G can be covered from s, a good pre�x exists. We show that there exists a good pre�x of length

� 2n� 1.

Let C0 be the shortest good pre�x and let k be the length of C0. For contradiction assume

that k � 2n. Let s = w0; w1; : : : ; wk = t be a path from s to t on C. Since k is � 2n, some node

w appears in this path at least three times. So w appears twice in even numbered positions

or twice in an odd numbered positions of the path. Without loss of generality, assume that w

appears twice in even numbered positions, and let those positions be 2i and 2j, with i < j. Let

W be the sequence of nodes s = w0; w1; w2; : : : ; w2i�1; w2j; : : : ; wk = t. Then W is a path from

s to t corresponding to a pre�x of (BR)! of length < k, contradicting of our choice of C0. 2

We now generalize the argument to arbitrary sequences C1 : : :Cl. To do this, we relate

arbitrary color sequences to pre�xes of (BR)!, using the in�nite line graph L shown in Figure

1. Alternate edges of this graph are colored R and B. Thus, any sequence of colors de�nes a

unique path from any �xed starting point p on the line.

u u u u u u u

R R R RB B B B

: : : : : :

Figure 1: Line graph L

For clarity, we refer to the nodes of L as points in what follows, to distinguish them from

the nodes of G.

We say that two �nite color sequences C and C0 are similar if starting from any given point

on the line L, the unique point reached on the color sequence C equals the unique point reached

on C0. The following simple lemma is the key to extending Lemma 2.1 to general sequences.

Lemma 2.2 Suppose C is similar to C0, where C0 is a pre�x of (BR)! or (RB)!. Let x and

y be nodes of G. If y is reachable from x on C0, then y is reachable from x on C.

Proof: Intuitively, this lemma is true for the following reason. Suppose from a point p

on the line L, point q is reached on the sequences C and C0. Since in the graph G node y is

reachable from node x on color sequence C0, C0 de�nes a line embedded in G from x to y, along

which edges are colored just as are edges from p to q in L. On color sequence C, we construct

a path from x to y in graph G that wanders along this embedded line in the same way that the
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path from p to q on the sequence C wanders along the line L. Of course, the path from p to q

on C may visit nodes that do not lie between p and q. In constructing our path from x to y,

we need to extend our embedded line in G accordingly.

We now make this precise. Let x = x00; x
0
1; : : : ; x

0
k = y be the path from x to y in G and let

p = p00; p
0
1; : : : ; p

0
k = q be the path from p to q in L, both on the sequence C0 = C0

1C
0
2 : : :C

0
k. Let

p = p0; p1; : : : ; pl0 = q be the path from p to q in L on the color sequence C = C1 : : :Cl0 . We

construct a path x = x0; x1; : : : ; xl0 = y in G on the color sequence C1 : : :Cl0 .

This path is de�ned inductively as follows. We let x0 = x. Suppose 0 < j � l0 and that

x1; : : : ; xj�1 are de�ned. Then xj is de�ned as follows.

xj =

8><
>:

xi; if pj = pi, for some i < j

x0i; if pj = p0i
r; otherwise, where r is any node connected to xj�1 by an edge of color Cj .

2

We now continue the proof that t is reachable from s on C1 : : :Cl0, for some l0 � l. There

are two cases. Consider the (unique) path in the line L from any �xed point p on the sequence

C1 : : :Cl. By our choice of l = (4n�3)(n�1), it must be the case that either (i) 2n�1 distinct

points to the right of p or to the left of p are visited on the sequence C1 : : :Cl, or (ii) some point

of L is visited n times on the sequence C1 : : :Cl. In the next two lemmas we show that in both

cases t is reachable from s on C1 : : :Cl0 , for some l0 � l.

Lemma 2.3 Suppose that 2n�1 distinct points to the right of p (or to the left of p) are visited

on the sequence C1 : : :Cl. Then t is reachable from s on a pre�x of C1 : : :Cl.

Proof: We do the proof for the case that 2n� 1 distinct points to the right of p are visited

and the edge from p to the point to its right is colored B.

From Lemma 2.1, on some pre�x C0 = C0
1 : : :C

0
k of (BR)

!, where k � 2n� 1, t is reachable

from s in G. Let q be the point reachable from p on L on the color sequence C0
1 : : :C

0
k. Since

2n� 1 points to the right of p are visited on the sequence C1 : : :Cl, the point q is reached from

p the sequence C = C1 : : :Cl0, for some l0 � l. Thus, the sequences C and C0 are similar. Then

from Lemma 2.2, t is reachable from s on C1 : : :Cl0 as required. 2

Lemma 2.4 Suppose that some point of L is visited n times on the sequence C1 : : :Cl. Then t

is reachable from s on a pre�x of C1 : : :Cl.

Proof: Suppose that point q is visited at steps j1 < j2 < : : : < jn � l. Let Si be the set

of nodes reachable from s on the sequence C1 : : :Ci, 1 � i � l. If t is contained in some Sl0 , for

1 � l0 � jn � 1, we are done since then t is reachable on the sequence C1 : : :Cl0 . Suppose that

t is not contained in any Si, 1 � i � jn � 1. We show that t is contained in Sjn , and hence t is

reachable from s on C1 : : :Cl0 , where l
0 = jn.
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To show that t is contained in Sjn , we show that Sji is a proper subset of Sji+1 ; 1 � i < n.

Then, since Sj1 contains at least 1 node, Sjn must contain n nodes and hence must contain t.

The fact that Sji � Sji+1 follows from Lemma 2.2 because the color sequences C1 : : :Cji and

C1 : : :Cji+1 are similar. Now suppose that for some i, Sji is not a proper subset of Sji+1 ; that is,

Sji = Sji+1 . Then on the in�nite sequence C1C2 : : :Cji(Cji+1 : : :Cji+1)
! t is never reached. This

is because the only nodes reached on this sequence are those in the sets S1; : : : ; Sji+1�1, and we

are assuming that t is not contained in any of these sets. This contradicts the assumption that

G can be covered from s. 2

2

Theorem 2.3 shows that the bound of Theorem 2.2 is tight. The proof is based on the

following lemma.

Lemma 2.5 For every (uncolored) strongly-connected directed graph G there is a 2-colored

undirected graph G0 with the following properties:

1. the number of nodes in G0 is twice the number of nodes in G,

2. G0 can be covered from all its nodes, and

3. the expected cover time of G0 on (RB)! is the same (up to constant factors) as the cover

time of G.

Proof: Let G be a strongly-connected directed graph with vertex set V = fu1; u2; : : :ung

and edge set E.

Let G0 be a 2-colored undirected graph with vertex set V 0 = fv1; v2; : : : ; vn; w1; w2; : : : ; wng

and edge set ER [ EB. ER and EB are the sets of red and blue edges, respectively, and

are de�ned as follows. ER = ffvi; wigj1 � i � ng [ ffwi; wjgj1 � i � j � ng and EB =

ffwi; vjgj(ui; uj) 2 Eg [ ffvi; vjgj1 � i � j � ng.

We now prove (2), that G0 is covered from all its nodes. Suppose to the contrary that from

some start node s, on some sequence of colors C = C1C2C3 : : : a node v in G0 is visited with

probability < 1. Without loss of generality assume that v 2 fv1; : : : ; vng. (The case when v 2

fw1; : : : ; wng is similar.) First, note that C must contain in�nitely many B's. Otherwise, C =

C1 : : :CiR
! and since (V 0; ER) is a connected undirected graph, v is reached with probability

1 on this sequence.

Moreover, there must be some node t 2 fv1; : : :vng such that (i) on the color sequence

C1 : : :Ci, there is a path from s to t which does not visit v, and (ii) v is not reachable from t

on any pre�x of Ci+1Ci+2 � � �. Because of the way G
0 is constructed, (ii) implies that no node

in fv1; : : : ; vng is reachable from t on Ci+1 : : :Ci+j , where j � 0 and Ci+j+1 = B. It follows

that C must be of the form C1 : : :Ci(RB)
! .
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But we claim that a random walk from t on (RB)! visits v with probability 1. This is

because a random walk on this color sequence simulates a random walk of G starting at an

arbitrary vertex. Because G is strongly-connected, this implies that the random walk covers G0

from s, contradicting our assumption that v is visited with probability < 1. Hence G0 can be

covered from all of its nodes, completing the proof of (2).

This argument also proves (3), that on (RB)!, the expected cover time of G0 from a node

vi is the same (up to constant factors) as the expected cover time of G from node ui. 2

Theorem 2.3 There are 2-colored undirected graphs that can be covered from all nodes and

have expected cover time 2
(n).

Proof: We can simply apply Lemma 2.5 to the strongly-connected directed graph with

vertex set fu1; u2; : : :ung and edge set f(ui; ui+1)j1 � i � n � 1g [ f(ui; u1)j2 � i � ng. 2

We can generalize this argument to show that the double exponential upper bound of Theo-

rem 2.1 is tight for graphs with three or more colors. To do this we need the notion of a strongly-

connected, directed 2-colored graph. A 2-colored directed graph G is strongly-connected if for

every sequence of colors C = C1C2C3 : : :, Ci 2 fR;Bg, and every pair of vertices u and v, u

is reachable from v on some pre�x of C. Note that a strongly-connected graph can be covered

from all its nodes.

Lemma 2.6 For every strongly-connected 2-colored directed graph G there is a 3-colored undi-

rected graph G0 with the following properties:

1. the number of nodes in G0 is twice the number of nodes in G,

2. G0 can be covered from all its nodes, and

3. for every 2-color sequence C, there exists a 3-color sequence C0 such that the expected

cover time of G0 on C0 is the same (up to constant factors) as the expected cover time of

G on C.

Proof: The construction here is similar to the one in Lemma 2.5. Let G be a strongly-

connected 2-colored directed graph with vertex set fu1; u2; : : :ung and edge set ER[EB, where

ER and EB are directed red and blue edges, respectively. Let G0 be the following 3-colored

undirected graph. The vertex set of G0 is fv1; v2; : : :vn; w1; w2; : : :wng and the edge set is E0
R [

E0
B[EY , where E

0
R, E

0
B, EY are sets of red, blue, and yellow edges, respectively, and are de�ned

as follows. EY = ffvi; wigj1 � i � ng [ ffwi; wjgj1 � i � j � ng, E0
R = ffwi; vjgj(ui; uj) 2

ERg [ ffvi; vjgj1 � i � j � ng, and E0
B = ffwi; vjgj(ui; uj) 2 EBg [ ffvi; vjgj1 � i � j � ng.

The argument that G0 can be covered from all its nodes is similar to that of Lemma

2.5. Note that if there is a sequence of colors on which a vertex v 2 fv1; : : : ; vng is visited

from some start node s with probability < 1, the sequence would have to be of the form
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C1 : : :CiY C
0
1Y C

0
2Y C

0
3Y : : :, where the C0

j 2 fR;Bg, and on the sequence C1 : : :Ci, a node t in

the set fv1; : : :vng is reachable. But a random walk from t on this subsequence would simulate

a 2-color random walk of G. Because G is strongly-connected this implies that the random

walk will cover G0 with probability one.

For part (3), if C = C1C2C3 : : :, with Ci 2 fR;Bg, then let C0 = Y C1Y C2Y C3Y : : : 2

Theorem 2.4 There are 3-colored undirected graphs that can be covered from all nodes and

have expected cover time 22

(n)

.

Proof: In [4] Condon and Lipton construct a family of strongly-connected directed 2-

colored graphs with O(n) nodes and expected cover time 22

(n)

. On a particular sequence of

colors a random walk in the nth graph in the family simulates 2n tosses of a fair coin and

reaches an absorbing state only if all outcomes were heads. The result follows immediately by

applying Lemma 2.6 to this graph. 2

3 Graphs with Self-Loops and Random Color Sequences

In this section we strengthen the exponential lower bound of Theorem 2.3 on the expected cover

time of undirected 2-colored graphs. We consider graphs with self loops in which there is a self

loop of each color at each node. Note that if all underlying graphs in a graph with self-loops

are connected, the graph can be covered from any node. This is because for all nodes s and t,

and all color sequences C of length 2n, t is reachable from s on C.

It might seem that graphs with self-loops have polynomial expected cover time. Certainly

if a self-loop of each color is added to each node of the graph of Theorem 2.3, the resulting

graph has polynomial expected cover time. In the following theorem we show that this does

not happen in general. We prove that the expected cover time of graphs with self-loops is

exponential, strengthening the result of Theorem 2.3.

The theorem strengthens Theorem 2.3 in another way. It shows that the expected cover

time is exponential, even on a random sequence. This fact, together with the results of the next

section, has applications in understanding the eigenvectors of weighted averages of matrices.

Theorem 3.1 There are undirected colored graphs with self loops which have expected cover

time 2�(n) on the sequence (RB)! and, in fact, on a randomly chosen sequence of colors.

Proof: We present in Figure 2 an example of a two-colored graph with self-loops which

has exponential expected cover time on a randomly chosen sequence of colors. The solid lines

are the red edges and the dotted lines are the blue edges; there is also a self-loop of each color

at each node, but they have been left out of the diagram.

We show that the expected time to reach node n of the graph from node 1, is exponential

in n, on a random sequence of colors. In what follows, we call the nodes 1; : : : ; n the primary
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nodes of the graph, and the nodes 10; : : :n0 the secondary nodes of the graph. Suppose a random

walk from i is performed on a random sequence of colors, until a primary node other than i is

reached. This primary node must be either i+ 1 or i� 1. Let p(i; i+1) be the probability that

the next primary node reached is i+ 1.

The construction ensures that for 2 � i � n � 1, p(i; i+ 1) = 1=2 � �, for some constant

� > 0, which is independent of i.

To get an intuitive understanding of why p(i; i+1)< p(i; i� 1), observe that the walk from

primary node i to primary nodes i+1 and i� 1 may or may not go through a secondary node.

The last edge on a direct path (one that is not completed via a secondary node) to primary node

i+1 goes through an edge that is one of four of the same color, whereas the corresponding path

to primary node i� 1 goes through an edge that is one of three of the same color. The color at

each step, however, is decided by the toss of a fair coin. On the other hand, if secondary node

(i� 1)0 is reached, primary node i� 1 is much more likely than primary node i to be next. But

if secondary node i0 is reached, primary node i is much more likely than primary node i+1. In

fact, a brute force calculation of the probabilities shows that p(i; i+ 1) = 35=78.

We use this to prove a lower bound on the expected time to reach node n from node 1 on

a random sequence of colors. Suppose we de�ne a some primary node i and ends as soon as

primary node i + 1 or i � 1 is reached. Since each superstep takes at least one step of the

random walk, a lower bound on the expected number of supersteps is a lower bound on the

expected number of steps of the random walk.

Let T (i; i+1) be the expected number of supersteps to reach node i+1 from node i. Then,

T (n�1; n) is a lower bound on the expected time to reach n from 1. Clearly, T (i; i+1) satis�es

the following recurrence.

T (i; i+ 1) = p(i; i+ 1) + (1� p(i; i+ 1))(1+ T (i� 1; i) + T (i; i+ 1)) and T (1; 2) = 1

The solution to this recurrence shows that T (i; i+1) � ((1�p)=p)i�1. Hence, T (n�1; n) �

cn, where c = (1=2 + �)=(1=2� �) > 1.
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Figure 2: Exponential time graph with self-loops
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This argument shows the existence of a sequence on which the expected cover time is

exponential. The proof that (RB)! is one such sequence is straightforward but tedious; we

omit it here. 2

4 Polynomial Special Cases

In this section we identify several conditions under which undirected colored graphs are cover-

able in polynomial expected time. Our results are summarized below.

� (Theorem 4.1) We show that colored graphs are covered in polynomial expected time if

the underlying graphs are aperiodic and have a common stationary distribution.

� (Theorems 4.2 and 4.4) We also consider the expected cover time of colored graphs on

sequences of the form (C1C2 : : :Cl)
!, where l is a constant. We show that the expected

cover time of colored graphs on such sequences is polynomial if the product AC1AC2 � � �ACl

is irreducible and all entries of its stationary distribution are at least 1=poly(n).

� (Theorem 4.3) We also consider the expected cover time of colored graphs on randomly

chosen sequences, where at each step of the walk color j is chosen with probability �j .

We show that the expected cover time of colored graphs on such sequences is polynomial

if all entries of the stationary distribution of
P

j �jAj are at least 1=poly(n).

We use the following notation in this section. Let c be a color. We use Ec to denote the set

of edges of color c. For a node i, let Nc(i) denote the set of neighbors of i along edges of color

c and let dc(i) be jNc(i)j. Let Ac denote the n � n stochastic matrix whose fi; jg-th entry is

the probability of reaching j from i in one step, when an edge of color c is followed. Then the

fi; jg-th entry of Ac is 1=dc(i) if there is an edge of color c connecting i and j, and 0 otherwise.

Let �c be an n-vector satisfying �c = �cAc. If the underlying graph colored c is connected, �c
is the unique vector of stationary probabilities and has i-th entry dc(i)=2jEcj.

In the following theorem we show that colored graphs are covered in polynomial expected

time if the underlying graphs are aperiodic and have the same stationary distribution.

Theorem 4.1 Let G be an undirected colored graph with n nodes which is is connected in each

color. If the underlying graphs are aperiodic and have the same stationary distribution, then

the expected cover time of G is O(n5 logn).

Proof: Let � be the common stationary distribution of the underlying graphs. Suppose

for now that our color sequence is (C1)! (that is, we are taking a random walk in an aperiodic

undirected graph). We will generalize this later to arbitrary sequences.

Let vt be the n-vector whose i-th entry (denoted vt(i)) is the probability of being at node i

after t steps of a random walk starting at j. Let v0 be the n-vector with a 1 in the j-th position

11



and 0's everywhere else. Then vt = (AC1)
tv0 and, as t !1, vt ! �. Let �t be the discrepancy

vector at time t, de�ned as �t = vt � �, and let k �t k=
P

i�
2
t (i). Then k �t k measures the

distance of vt from �, so a bound on the rate at which k �t k approaches 0 gives a bound on

the rate at which vt approaches �.

Results of Alon [2], Jerrum-Sinclair [6], and Mihail [7] show that for some t = poly(n),

k �t k� 1=exp(n). The exact polynomial depends on the cutset expansion of the graph and is

bounded above by n3. The proof in [7] shows this by obtaining the appropriate lower bound on

k �t k � k �t+1 k, the amount by which the discrepancy drops in one time step. This bound

depends only on k �t k and probability matrix AC1 and, in particular, does not depend on

how the discrepancy k �t k was arrived at. The incremental nature of this argument makes it

readily applicable to random walks on arbitrary sequences.

If C1C2C3 : : : is the color sequence, let v
0
t be the probability vector for a random walk on

C1C2 : : :Ct starting at j and let �0
t be the discrepancy at time t. Then v0t = ACt

� � �AC2AC1v0
and �0

t = v0t � �. Applying the previous results we get that for t = n3, k �0
t k� 1=exp(n). By

de�nition, for all i, �(i) � 1=n2, so v0t(i) � 1=cn2, c a constant > 0.

From this we derive bounds on the expected cover time by viewing the process as a coupon

collector's problem on cn2 coupons, where sampling one coupon takes n3 steps of a random

walk. This analysis gives an O(n5 log n) bound on the expected cover time. 2

An extension of this argument shows that the aperiodicity requirement can be somewhat

relaxed, while still obtaining the same bound. If the underlying graphs have the same stationary

distribution and some (or all) of them are bipartite, the graph can still be covered in polynomial

expected time, provided that the bipartitions in the underlying bipartite graphs are the same.

It is an open question whether the expected cover time is polynomial when the bipartitions do

not all coincide.

In the following theorem we show that undirected colored graphs are covered in polyno-

mial expected time on sequences of the form (C1C2 : : :Cl)
!, if the product AC1AC2 � � �ACl

is

irreducible and all entries of its stationary distribution are at least 1=poly(n).

Theorem 4.2 Let G be an undirected colored graph with n nodes which is connected in each

color, and let C1C2 : : :Cl be a sequence of colors, for some constant l. Suppose that the matrix

product AC1AC2 � � �ACl
is irreducible, and that all entries of its stationary distribution � are at

least 1=p(n), for some polynomial p(n).

Then the expected cover time of G on the sequence (C1C2 : : :Cl)
! is O(nl+2p(n)).

Proof: Let GP be the weighted directed graph with n nodes and transition probability

matrix P = AC1AC2 � � �ACl
. Then the expected cover time of GP is at least as large as the

expected cover time of G on (C1C2 : : :Cl)
!. In what follows we show that the expected cover

time of GP is at most 2nl+2p(n).

12



Since P is irreducible, there is a directed walk in GP from any starting node that visits

every node at least once and has length � n2. We bound the expected time for a random walk

in GP to complete such a walk.

Let i and j be a pair of nodes in GP such that Pi;j > 0. We bound the expected time for a

random walk that begins at i to traverse the edge from i to j.

Each time the walk is at node i it traverses the edge from i to j with probability Pi;j . Hence,

the expected number of returns to i until the edge from i to j is traversed is 1=Pi;j.

If Pi;j = 1, the expected time to traverse the edge from i to j is 1, and we are done. In

what follows we assume that Pi;j < 1.

Let T (i; i) denote the mean recurrence time of node i. Then the expected time to return

to i, given that the edge from i to j is not traversed, is at most T (i; i)=(1� Pi;j). Hence, the

expected time for the walk to traverse the edge from i to j is at most T (i; i)=Pi;j(1� Pi;j).

Since P = AC1AC2 � � �ACl
and each non-zero entry of the ACi

is � 1=n, Pi;j > 0 implies that

Pi;j � 1=nl. Also note that 1� Pi;j � 1=nl. Hence, Pi;j(1� Pi;j) � (1=nl)(1� 1=nl) � 1=2nl,

and the expected time for the walk to traverse the edge from i to j is � 2nlT (i; i).

Then, from the fact that the mean recurrence time of node i is the reciprocal of its stationary

probability �(i), we get that the expected time for the walk to traverse the edge from i to j is

� 2nlp(n).

It follows that the expected time to cover GP is � 2nl+2p(n).

2

Together Theorems 4.2 and 3.1 have the following interesting interpretation. They show

that, in general, the stationary distribution of a product of matrices can contain exponentially

small entries, even when the entries of the stationary distributions of the individual matrices

are bounded below by 1=poly(n).

Let GP be a weighted, directed graph with probability transition matrix P . What the proof

of Theorem 4.2 shows is that if P is irreducible and has all non-zero entries at least 1=poly(n),

and all entries of the stationary distribution of P are at least 1=poly(n), the expected time to

cover GP is polynomial.

Using this idea again we get a similar result about the expected time to cover undirected

colored graphs on random sequence of colors.

Theorem 4.3 Let G be an undirected colored graph with n nodes which is connected in each

of its k colors, and let �1; �2; : : :�k be constants such that 0 � �i � 1 and
P

i �i = 1. Suppose

that all entries of the stationary distribution of the matrix
P

i �iAi are at least 1=p(n), for some

polynomial p(n).
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Then the expected cover time of G on a randomly chosen sequence of colors, where at each

time step color i is chosen with probability �i, is polynomial.

Proof: The matrix
P

i �iAi is irreducible and has all entries at least 1=poly(n). Having

made this observation the rest of the proof is analogous to that of Theorem 4.2. 2

Together Theorems 4.3 and 3.1 show that the stationary distribution of a weighted average

of matrices can contain exponentially small entries, even when the entries of the stationary

distributions of the individual matrices are bounded below by 1=poly(n).

A more re�ned argument based on the techniques of Aleliunas et al. [1] and G�obel and

Jagers [5] improves upon Theorem 4.2 in the following special case. We omit the proof here.

Theorem 4.4 Let G be an undirected colored graph with n nodes which is connected in each

color, and let C1; C2 be a pair of colors. Suppose that matrices AC1 and AC2 have the same

stationary distribution and that the product AC1AC2 is irreducible.

Then the expected cover time of G on the sequence (C1C2)! is O(nminfjEC1j; jEC2jg).

5 Conclusions and Open Problems

We give tight bounds on the expected cover time of undirected colored graphs. We show that,

in general, the expected cover time is exponential for two colors, and double exponential for

three or more colors.

We identify two properties of the underlying graphs and consider their e�ect on the expected

cover time. The �rst property is that the underlying graphs are aperiodic, and the second that

they all have the same stationary distribution.

We show that if both properties are satis�ed, the expected cover time is polynomial, and

that if neither holds, it is exponential. We show that if the stationary distributions di�er even

slightly (as in the example of Theorem 3.1) the expected cover time is again exponential, even

when the underlying graphs are aperiodic. An open question is whether the expected cover

time is polynomial when the stationary distributions are the same, but some of the underlying

graphs are periodic. If all bipartitions in the underlying periodic graphs are the same, the

expected cover time is polynomial, but when the bipartitions do not all coincide the question

remains open.

We also give polynomial bounds on the expected time to cover colored graphs on repeated

sequences and randomly chosen sequences when all entries of the associated stationary distribu-

tions are at least 1=poly(n). These results show that it is possible for the stationary distribution

of a product or weighted average of matrices to contain exponentially small entries, even when

all entries of the stationary distributions of the original matrices are at least 1=poly(n).
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