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Abstract: The problem of computing the intersection of parametric and algebraic
curves arises in many applications of computer graphics, geometric and solid modeling.
Previous algorithms are based on techniques from Elimination theory or subdivision
and iteration. The former is however, restricted to low degree curves. This is mainly
due to issues of efficiency and numerical stability. In this paper we use Elimination
theory and express the resultant of the equations of intersection as a matrix determi-
nant. The matrix itself rather than its symbolic determinant, a polynomial, is used
as the representation. The algorithm for intersection corresponds to substituting the
other equation to construct an equivalent matrix such that the intersection points
can be extracted from the eigenvalues and eigenvectors of the latter. Moreover, the
algebraic and geometric multiplicities of the eigenvalues give us information about
the intersection (mutiplicity, tangential intersection etc.). As a result we are able to
accurately compute higher order intersections in most cases. The main advantage of
this approach lies in its efficiency and robustness. Moreover, the numerical accuracy
of these operations is well understood. For almost all cases we are able to compute
accurate answers in 64 bit IEEE floating point arithmetic.
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1 Introduction

The problems of computing the intersection of parametric and algebraic curves are
fundamental to geometric and solid modeling. Parametric curves, like B-splines and
Bézier curves, are extensively used in the modeling systems and algebraic plane curves
are becoming popular as well [Hof89, MM89, SP86, Sed89]. Intersection is a primitive
operation in the computation of a boundary representation from a CSG (constructive
solid geometry) model in a CAD system. Other applications of intersection include
hidden curve removal for free form surfaces, finding complex roots of polynomials etc.
[EC90, CK92]. Algorithms for computing the intersection of these curves have been
extensively studied in the literature.

As far as computing the intersection of rational parametric curves is concerned,
algorithms based on implicitization [Sed83), Bézier subdivision [LR80] and interval
arithmetic [KM83] are well known. The implicitization approach is based on the fact
that every rational parametric curve can be implicitized into an algebraic plane curve
of the form F(zx,y) = 0, where F(z,y) is a bivariate polynomial. Algorithms for
implicitization make use of resultants and the computation involves expanding a sym-
bolic determinant [Sed83]. Given the implicit representation of one curve, substitute
the second parametrization and obtain a univariate polynomial in its parameter. The
problem of intersection corresponds to computing the roots of the resulting polyno-
mial. The Bézier subdivision relies on the convex hull property of Bézier curves and
de Casteljau algorithm for subdividing Bézier curves. The intersection algorithm pro-
ceeds by comparing the convex hulls of the two curves. If they do not overlap, the
curves do not intersect. Otherwise the curves are subdivided and the resulting convex
hulls are checked for intersection. At each iteration the algorithm rejects regions of
the curve that do not contain intersection points. With each subdivision, the new
curve segments become increasingly better approximated by a straight line. After the
two curves segments are approximated by straight lines up to certain tolerance, their
intersection point is accepted as the intersection of two curves. The algorithm per-
forms a linearly converging binary search. It has been improved by [SWZ89] by more
effective use of the convex hull property. The resulting algorithm has the flavor of
a geometrically based interval Newton method and has better convergence behavior.
The interval arithmetic approach uses an idea similar to subdivision. Each curve is
preprocessed to determine its vertical and horizontal tangents, and the curve is di-
vided into ‘intervals’ which have vertical or horizontal tangents only at the endpoints.
Thus, the convex hull is a rectangular bounding box and the subdivision amounts to
evaluating the coordinate of the midpoint of the interval and defining the resulting
rectangles. The rest is similar to subdivision.



The relative performance and accuracy of these algorithms is highlighted in [SP86).
In particular, implicitization based approaches are considered faster than other inter-
section algorithms for curves of degree up to four. This includes faster subdivision
based algorithms [SWZ89]. However, their relative performance degrades for higher
degree curves. This is mainly due to issues of numerical stability and their effect on the
choice of representation and algorithms for root finding. As far as computation of im-
plicit representation is concerned, stable algorithms are available for curves of degree
up to three [Hob91]. Furthermore, for curves of degree up to three, the entries of the
matrix are represented as polynomials in power basis and the roots of its determinant
are computed using a standard polynomial solver, such as Jenkins-Traub [SP86]. For
curves of degree greater than three, the resulting univariate polynomial has degree 16
or higher. The problem of computing real roots of such high degree polynomials is
frequently ill-conditioned [Wil59]. Furthermore, converting from power to Bernstein
basis introduces numerical errors [FR87]. As a result the algorithm involves repre-
senting matrix entries as linear combinations of Bernstein polynomials, multiplying
Bernstein polynomials for expanding the determinant and using subdivision for com-
puting the roots of the resulting polynomial. These have a considerable effect on the
efficiency of the resulting algorithms and therefore, algorithms based on subdivision
perform better.

The algorithms for algebraic curve intersection are analogous to those of intersect-
ing parametric curves. Resultants can be used to eliminate one variable from the two
equations corresponding to the curves. The problem of intersection corresponds to
computing roots of the resulting univariate polynomial. This approach causes numer-
ical problems for higher degree curves (greater than four). A robust algorithm based
on subdivision has been presented in [Sed89]. However, resultant based algorithms
are considered to be the fastest for lower degree curves.

In many applications, the intersection may be of higher order involving tangen-
cies and singular points. Such instance are rather common in industrial applications
[MM89]. Most algorithms require special handling for tangencies and thereby requiring
additional computation for detecting them. In fact algorithms based on subdivision
and Newton-type techniques often fail to accurately compute the intersections in such
cases. Special techniques for computing first order tangential contacts of parametric
curves are given in [MM89]. [Sed89] presents a modification of his algorithm for com-
puting all double points of an algebraic curve in a triangular domain. However, no
efficient and accurate techniques are known for computing higher order intersections.

In this paper we present efficient and robust algorithms for intersecting paramet-
ric and algebraic curves. For parametric curves we implicitize one of the curves and
represent the implicit form as a matrix determinant. However, we do not compute



the symbolic determinant and express the implicit formulation as a matrix. Given the
implicit form, we substitute the other parametrization into the matrix formulation
and use the resulting matrix to construct a numerical matrix such that the intersec-
tion points can be computed from its eigendecomposition. This is in contrast with
expanding the symbolic determinant and finding the roots of the resulting polyno-
mial. The advantages of this technique lie in efficiency, robustness and numerical
accuracy. The algorithms for computing eigenvalues and eigenvectors of a matrix are
backward stable® and fast implementations are available as part of packages like EIS-
PACK and LAPACK [GL89, ABB*92]. Furthermore, we effectively use the algebraic
and geometric multiplicities of the eigenvalues to determine the exact multiplicity of
the intersection. The exact multiplicity of the eigenvalues is computed using tech-
niques from matrix computations and their implementation is available in LAPACK
[BDMS89]. As a result the algorithm involves no special handling to deal with higher
order intersections. The algorithm for intersecting algebraic curves is rather similar,
except the relationship between algebraic and geometric multiplicities of the eigenvalue
and the multiplicity of intersection is different.

The rest of the paper is organized in the following manner. In Section 2 we present
our notation and review techniques from Elimination theory for implicitizing para-
metric curves. Furthermore, we show that the problems of intersecting parametric
and algebraic curves can be reduced to computing roots of polynomials expressed as
matrix determinants. We also highlight a number of properties of the matrix deter-
minants corresponding to the implicit representation and obtained by computing the
resultant of the polynomials. In Section 3, we review results from linear algebra and
numerical analysis being used in the algorithm. Section 4 deals with reducing the
problem of root finding to computing the eigendecomposition. Given the eigenval-
ues and eigenvectors, we compute the intersection points of parametric curves in the
domain of interest. We also discuss the performance and robustness of the resulting
algorithm. Section 5 deals with higher order intersections and illustrates the technique
for parametric and algebraic curves with some examples.

2 Parametric and Algebraic Curves

A rational Bézier curve is of the form [BBB87):

P(t) = (X(1), V(1) = “o2eat),

0<t<1

3An eigendecomposition algorithm is backward stable if it computes the exact eigendecomposition
of a slightly perturbed matrix.
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Figure 1: Intersection of Bézier curves

where P; = (X;,Y;) are the coordinates of a control point, w; is the weight of the
control point and B; ,(t) corresponds to the Bernstein polynomial

Bin = ( ’Z ) (1 - )it

For polynomial curves the denominator term is a constant. Other rational formula-
tions like B-splines can be converted into a series of Bézier curves by knot insertion
algorithms [BBB87]. Thus, the problem of intersecting rational curves can be reduced
to intersecting Bézier curves. Each of these curves is described by its corresponding
control polygon and the curve is always contained in the convex hull of the control
points. Therefore, the intersection of the convex hull of two such curves is a necessary
condition for the intersection of curves. One such instance has been highlighted in
Fig. 1.
Algebraic plane curves are generally expressed in standard power basis:

F(z,y)= Ei+j5n05jxiyj = 0.

They can also be represented in Bernstein basis. The problem of intersection corre-
sponds to computing the common points on such curves in a particular domain.

The set of rational parametric curves is a proper subset of algebraic plane curves
[Wal50]. In the following paragraphs we will highlight some algebraic properties of
algebraic curves and they are applicable to parametric curves as well.

2.1 Multiple Points

Any point on the curve in general is a regular point. A few points on the curve are
multiple or singular points [Wal50].



Definition: A multiple point of order k (or k-fold point, k£ > 1) of a degree n curve,
is a point p of the curve such that a generic line through p meets the curve in only
n — k further points.

Let us investigate the behavior of an algebraic curve at a multiple point. We can
assume that the point under consideration is the origin, i.e. p = (0,0, 1), else we can
bring it to the origin by a suitable linear transformation. The curve can be represented

as

F(z,y) = Uo(2,y) + Ur(z,y) + ... + Un-1(2,9) + Un(z,y) = 0,

where U;(z,y) is a homogeneous polynomial of degree ¢ in z and y. A generic line
through the origin can be represented in the form z/a = y/b. The point of this line
whose coordinates are (ka, kb), where k is a scalar, lies on the curve if k is any of the
roots of the equation

Uo(a,b) + kUy(a,b) + Uz(a,b) + ...+ k'Ui(a,b) + ... + k"Un(a,0) = 0. (1)

To make the curve have a k-fold point at the origin corresponds to making the equation,
(1), have k nonzero roots for every value of the ratio a /b. This can happen, if and
only if Uo(z,y), U1(2,9), -, Ur-1(z,y) vanish identically. A line corresponds to a
tangent at p, if it has k + 1 of its intersections with the curve at p and then —k — 1
intersections at other points on the curve. All lines of the form z/a" = y/ b, where
Uk(a',b') = 0 are tangent to the curve at p. There can be at most & such lines.

This formulation of multiple points is constructive. It can be used to identify
multiple points on the curve according to the following lemma:

Lemma 2.1 A point q = (X1,Y]) is a point of multiplicity k on the curve F(z,y) if
and only if every monomial of F(z — X1,y — Y1) has degree k or more.

As far as parametric curves are concerned, multiple points can be defined in a
similar fashion. In particular, a point q = P(#;) = (X1,11) = (f}-((%,%((%%) has
multiplicity & if any generic line passing through q intersects P(t) at n — k other
points, where n is the degree of P(t). A generic line passing through q is of the form
aX + bY + ¢ = 0 such that aX; + Y1 + ¢ = 0.

Typical examples of multiple points includes cusps and loops. Every rational
parametric curve has a finite number of singular points. Moreover the notion of
regular and singular points on a curve can also be explained in terms of the place of
a curve at a point.

In the neighborhood of a point q = P(t,), the curve can always be defined by
a formal power series. For example, (X(t),Y(t)) can be expressed as a power se-

ries representation in the neighborhood of q. The formal power series or the local
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parametrization is called a place of P(t) at q and exists because of Newton’s theorem
[SK59]. The notion of a place is more specific than that of a curve point. Correspond-
ing to every curve point the curve has a place. The curve may have more than one
place at a singular point and has one place at every non-singular point. In particular,
the curve has two or more places at a node or loop and one place at a cusp. More on
places and their representation as branches is given in [Abh88, Hof89, MC91, SK59].

A rational parametric curve P(t) is properly parametrized if it has one-to-one rela-
tionship between the parameter ¢ and points on the curve, except for a finite number
of exceptional points. Let S be one of these exceptional points. In other words, there
is more than one value of the parameter ¢, which gives rise to the point S. At such
points, the curve has more than one place. The exact relationship between the number
of parameter values corresponding to a point and the number of places at the same
point is given by the following lemma [SK59]:

Lemma 2.2 The number of values of t that give rise to a point q on a properly
parametrized curve P(t) is the number of places on the curve at q.

Example 2.3 Consider the cubic plane curve

P(t) = (2(t),y(t), w(t)) = (t* = 1, = 1,1)

which is a parametrization of f(z,y,w) = y’w — g*w — 2 = 0, a nodal cubic (as

shown in Fig. 2). Since the degree of Q(t) is equal to the degree of f(z,y,w) (which
is three), Q(t) is properly parametrized. The curve has one place at every point ezcept
at the origin, where it has two places corresponding tot =1 and t = —1.

The singular point, q on a rational curve can be classified according to the number
of places the curve has at that point.

e The curve has one place at q. These include cusps.

e The curve has more than one place at q. These include cases loops.

For our algorithm we assume that the curve P(t) is properly parametrization.
As a result all the singular points having more than one place have more than one
preimage (according to lemma 2.2). The cusps on a curve can be classified according
to the following theorem from [MC92]:

Theorem 2.4 Given a rational curve P(t) = (X(t),Y (t)) with a proper parametriza-
tion, the curve has a cusp at q = (X(t1),Y(t1)) if and only if

(X'(t1),Y'(t1)) = (0,0).
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Figure 2: A cubic curve with a loop

The singular points on the rational curve can be classified according to the following
lemma: '

Theorem 2.5 A point q = (X1,Y1) = (ﬂi—‘l%,ﬁ%))-) is a singular point on P(t) of
multiplicity k if and only if the following equations have k common roots (counted

with respect to multiplicity):
Xiw(t) —z(t) =

0,
Yiw(t) - y(t) = 0.
Proof: Let us consider the case when these equations have k common roots (counted

properly). Let the roots be t1,t3,...,%. Some of them may be repeated roots. It
turns out that for each t;, 1 <1 <k,

z(t:) = Xaw(ti), y(t:) = Yiw(t).

Lets consider the generic line passing through q of the form aX 4 Y + ¢ = 0, whose
coefficients satisfy the equation aX; + bY; + ¢ = 0. The intersections of this line and
P(t) are characterized by the roots of the equation f(t) = az(t) + by(t) + cw(t) = 0. -
For each t;,

&) = az(t;) + by(t:) + cw(t:) = wlti)(aX; + bY;1 +¢) = 0.

As a result, each #; corresponds to a root of f(t) and therefore, the curve has multi-
plicity k at q



To prove the other part of the theorem we assume that q is a point of multiplicity
k, where £ > 2. That implies that any line passing through q intersects the curve
at n — k points at most. Let us represent the line as aX + bY + ¢ = 0 where a,b,c
are chosen such that aX; + 8Y; + ¢ = 0. After substituting the parametrization of
the curve into the equation of the line we obtain f(t) = az(t) + by(t) + cw(t) = 0,
a polynomial of degree n. Its n roots correspond to the points of intersection. The
fact g is a point of multiplicity k implies that for k of the n roots, say #1,...,%,
P(t;) = q. Let us choose a line such that a = 0. Therefore, Y; = —f and ¢; is a root
of the equation y(t) — Yiw(t) = 0. Similarly one can show that ¢; is also a root of
the equation z(t) — Xjw(t) = 0. Thus, t3,1s,...,tx are the common roots of the two
equations.

Q.E.D.

A simple version of Bezout’s theorem is used for determining the number of inter-
sections between a curve of degree m and that of degree n [Wal50]. It is assumed that
the curves have no component in common. That is:

Two curves of degree m and n intersect at mn points, counted properly with respect to
multiplicity.

2.2 Elimination Theory

Elimination theory is a branch of classical algebraic geometry dealing with conditions
under which sets of polynomials have common roots. Its results have been known a
century ago [Mac02, Sal85]. The main result is the construction of a single resultant
polynomial such that the vanishing of the resultant is the necessary and sufficient
condition for the given system of equations to have a non-trivial solution. As far as
geometric and solid modeling are concerned, the use of resultants was resurrected by
Sederberg for implicitizing parametric curves and surfaces [Sed83]. In this paper we
will be dealing with resultants of two polynomials in one unknown. Surveys on various
formulations of resultants are given in [Chi90, Sed83, Stu91] and effective techniques
for computing and applying them are presented in [Man92].

Given two polynomials in one unknown, their resultant is a polynomial in their
coefficients. Moreover, the vanishing of the resultant is a necessary and sufficient
condition for the two polynomials to have a common root. Three methods are known
in the literature for computing the resultant, owing to Sylvester, Bezout and Cayley
[Sal85]. Each of them expresses the resultant as determinant of a matrix. The order of
the matrix is different for different methods. We use Cayley’s formulation as it results
in a matrix of lower order.



Given two polynomials, F'(z) and G(z) of degree m and n, respectively. Without
loss of generality we assume that m > n. Let consider the bivariate polynomial

F(z)G(a) = F(a)G(z)

Tr—«

P(z,a) =

P(z,a) is a polynomial of degree m — 1 in z and also in . Let us represent it as
P(z,a) = Py(z) + Pi(z)a+ Pi(z)e® + ...+ Puoi(z)a™ 7, (2)

where P;(x) is a polynomial of degree m — 1 in z. The polynomials P;(z) can be
written as follows:

1
Po(x) Po,o PO,l PO,m-—l .
B B | I ®)
Pm—l(iC) P10 FPrag ... Pm-1,m—1 gm=1

Let us denote the m x m matrix by M. The determinant of M is the resultant of
F(z) and G(z) [Sal85). Let us assume that z = zo is a common root of the two
polynomials. Therefore, P(zg,a) = 0 for all a. As a result Pi(zo) = 0for 0 <z < m.
This condition corresponds to the fact that M is singular and [1 zo 2 T
is a vector in the kernel of M.

The Cayley’s formulation highlighted above is used for implicitizing parametric
curves and eliminating a variable from a pair of bivariate algebraic equations, repre-
senting algebraic plane curves.

Let us consider the case when two polynomials, F(z) and G(z) have a root of

multiplicity k at £ = zo. In other words,
F(CE()) = 0, F,(ICo) = 0, G((Eo) = 0, G'(.’EQ) = 0, ldOtS, Fk_l(l‘o) = 0, Gk_l(.’lfo) = 0.

It turns out that the polynomial P(z,«) and the matrix M have some interesting
properties. Later on we make use of these properties in computing higher order inter-
sections of curves.

Lemma 2.6 Given F(z) and G(z) with a root of multiplicity k at x = zo, than the
vectors

T
2 -1
(1 To TG ... Tg ) ,

(0 1 2z0 322 ... (m—l)xgl—z)T,



T

(k+1)! , _(m—-1)! .
(O 0 ... 0 (k=1)! K!'zo 5 T (m-k—Z)!xo
are in the kernel of M.

Proof: We will highlight the proof for k¥ = 2 and it can be easily extended to arbitrary
k. Let us consider the polynomial, P.(z, @), which is the partial of derivative of P(z, )
with respect to z.

1

(z — &)(F (2)G(e) = F()G (2)) — (F(z)G(e) — F(a)G(2))

T [} - 4
P(z, ) o) )
Moreover it follows from (2)

Pi(z,a) = Py(z) + P{(z)a + Pye)a® + ...+ Py (z)a™! (5)

Since F(zo) = 0, G(x0) = 0, F'(z0) = 0 and G (z0) = 0 it follows that Pp(zo, ) =
0. Equating (4) and (5) and substituting x = zo results in
P.(zo, @) = Py(xo) + Pj(z0)a + Py(20)a® 4 ... + Pp_i(z0)a™ ! = 0.
This relationship is true for @. That implies that
Py(zo) =0, Pi(z0) =0, ..., P,_;(z0) = 0.

This can be expressed in a matrix formulation in the following manner:

0

PO,O PO,I o PO,‘m—l 1 0
P P, vee P

T,O T,l . 1,. 1 23:0 _ 0

Po-to Patn - Prcim- - :

1,0 1,1 1, 1 (m _ 1)3:'31 2 0

For arbitrary k, we know that F(zo) = 0,F (z¢) = 0,...,F¥!(zg) = 0 and
similarly for G(z). As a result we can show that the first k — 1 partial derivative of
P(z, ) with respect to z vanish at ¢ = zo. Therefore the k vectors corresponding to
the partials of (1 = z% ... z™ ') at z = zo vectors lie in the kernel of M.

Q.E.D.
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2.3 Implicitizing Parametric Curves

Given a rational Bézier curve, P(t), we express it in homogeneous form as
p(t) = (2(1), y(t), w(t)) = (ELowi X Bim (1), ELowiYiBim (1), Elowi Bim(1))-
We assume that the curve, P(t) has a proper parametrization and that moreover
GCD(z(t),y(t), w(t))

is a constant. Algorithms to compute the proper parametrizations of curves have been
described in {Man90, MC92, Sed86].

To implicitize the curve we consider the following system of equations

Fi(t): Xw(t) —z(t) = 0
F(t): Yw(t) —y(t) = 0. (6)

Consider them as polynomials in ¢ and X, Y are treated as symbolic coefficients. The
implicit representation corresponds to the resultant of (6).

The computation of the entries of M involves symbolic computation. We minimize
the symbolic computation in the following manner. Let

— Fl(t)Fz(Q’) — Fl(Q)Fg(t)

P(t,a) Py— ,
= P(t,0) = Xw(a)y(t) — w(t)y(a) N Y:v(a)w(t) — z(t)w(a) N z(t)y(a) — z(a)y(t)
’ t—a -« t— o ’

Each term of the form ﬂm%)%ﬁm corresponds to a polynomial and can be expressed
as product of matrices and vectors, as shown in (3). In other words,

1
3

P(t,a)=[laa® ... o™ (XM, + YM; + M) | £ |,
tm-—l

where M;, M, and M3 are m x m matrices whose entries are numeric constants. Let
us call them the coefficient matrices. The implicit representation of the curve is given
as

Given f(2),g(t), polynomials of degree m, we compute the m x m coeflicient ma-

trix, P corresponding to L(ﬂ&(%_:_f_(ﬂg_(ﬂ in the following manner. Let F[0]... F[m] and

t
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GJ0]...G[m] correspond to the coefficients of the polynomials, f(s) and g(s). More-
over, let a monomial in two variables s and ¢ be denoted as a;;s‘t’, where a;; is the
coefficient. We represent a monomial data structure by denoting the coefficient and
the exponents of s and ¢ as monomial.a, monomial.s and monomial.t. Furthermore,
let Poly[0]... Poly[maz] denote a collection of monomials. The algorithm is:

Algorithm I

1. indezx = 0.
2. for (0 £ ¢ < m)do

(a) for (0 £ 57 < ¢)do
i. monomial.a = F[i] * G[j].
i. bound = 1 —j — 1.
iii. for (0 < k < bound ) do
A. monomial.s = 1 —1—k.
B. monomialt = k+ .
C. Polylindex + +] = monomial.
(b) for (i4+1 < j < m)do
i. monomial.a = —F[i] * G[j].
il. bound = j—i—1.
iii. for (0 < k < bound ) do
A. monomial.s = j—1—k.
B. monomialt = k+:.
C. Polylindex + +] = monomual.

3. for (0 <i< indezx ) do

(a) monomial = Polyli].

(b) j = monomial.s.

(¢c) k = monomial.t. '
(d) P[j][k] = P[jl[k] + monomial.a.

12



One advantage of the algorithm lies in the fact that the computation involved is purely
numeric. As a result, we can use error analysis techniques and come up a with a tight
bound on the accuracy of each entry of P.

We express the resultant of Fy(t) and F3(t), M, as a matrix determinant. In this
case the matrix has order m. In fact we use the matrix formulation, M, to represent
the implicit form and do not compute its symbolic determinant.

The algorithm for computing the entries of the matrix assumes that the polyno-
mials z(t),y(t), w(t) are expressed in power basis. However, converting from Bézier
to power basis can introduce numerical errors [FR87]. To circumvent this problem we
perform a reparametrization.

Given

p(t) = (S ow:X; (T) (1-t)™t, 7 w,Y; (’?) (1=1)™ ', BT w; (’?) (1-2)™1h).
On dividing by (1 — ¢)™, we obtain

N m 4 " [ m 1t m. [ ™ t
p(t) = (¥ ow: X; ( ; ) H_—t)i?, TlowY; ( ; ) (1 __t),"zizowz ( ; ) (1 _t)i)

Let s = (lt_ 5 and the resulting parametrization is

p(s) = (¥ wi X; ( 7727, ) s, Sm ow;Y; ( T ) s, ET gwy; ( m ) s').

Z

The rest of the algorithm proceeds by computing the implicit representation of
P(s) and computing a matrix formulation by Cayley’s method as

1
s
M| s
Substitute s = (—1t—_t5 and multiply the right hand side vector by (1 — ¢)™~!. The
resulting linear system has the form
(1 _ t)m—l
t(1—t)™?
M| (1=t |, (8)
tm.—l

This relationship is used to compute the inverse coordinates of the intersection points.
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2.4 Properties of Implicit Representation

In the previous section we have proposed a matrix determinant formulation for the
implicit representation of the curve. In this section we highlight some properties of
this formulation, denoted as M = F(X,Y) in (7).

It follows from the properties of the implicit representation that F(X;,Y7) is a
singular matrix if and only if (X1,Y1) is a point lying on the curve. Furthermore,
let us assume that (X1,Y;) is a regular point and not a singular point on the curve.
Corresponding to a regular point, (X1,Y1), on the curve P(t), there exists a unique
preimage t; such that P(¢;) = (X1,Y1). Since F(X;,Y1) is a singular matrix, it has a
vector in the kernel of the form

(1ud .. t’;‘-l)T

Moreover, F(X;,Y;) has a kernel of dimension one.
Lets consider the case when (X;,Y;) corresponds to a singular point on a curve.

Theorem 2.7 Let q = (X1,Y1) = P(t1) correspond to a point of multiplicity k on the
curve. The kernel of the matriz F(X1,Y1) has dimension k.

Proof: The fact that q is a point of multiplicity & implies that the following
equations have k common roots: (according to Theorem 2.5)

X w(t) —z(t) =0,
Yiw(t) — y(t) = 0.
Let the common roots be t;,1s,...,1;, where t; is a root of multiplicity m;. Therefore
m4+me+...+m=k

and each t; corresponds to a distinct root.

The equations mentioned above correspond exactly to the parametric equations
(6), which are used for computing the implicit representation of the parametric curve.
Let t; be one of the roots of these equations. The derivation of Cayley’s resultant
implies that

| (0

’ 0

FX, V)| | =|.
t’.“"‘ 0
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As a rtesult v; = (1 ¢ t? ... t}”)T is a vector in the kernel of F(X;,Y;). Since
each ; is distinct it follows that vy, va,..., v; are independent vectors in the kernel of
F(X1,Y1).

Given that ¢; is a root of multiplicity m; of the above equations. According to
Lemma 2.6 the following vectors also belong to the kernel of F(X;,Y1):

T
vip=(1 & # .. 7)),
T
vip= (01 2t 32 ... (m—1)tr7?),
={00 0 0 g it Dby (oD :
Vlmi - PRI (mg - )- m,. t 2 i (m _mt — 2)! i .

For 1 < i <[ these vectors constitute a k dimensional kernel of F(X;,Y;).

Q.E.D.
Example 2.8 Consider the parametric curve:
p(t) = (2(t),y(t), w(t)) = (4 — 3t + 6t + 6>, 1 + 6t — 4¢°,1 + 6t + 6t + ¢°).
Using the algorithm we obtain its implicit representation as

=274 27y 6 — 6z + 18y 22 — bz — 2y
M= 6 —6x18y 58 —4lzxr — 56y 24 — 30x — 39y
92 — 52— 2y 24 — 30z — 39y 24 — 24z — 30y

Given (z,y) = (4,1), we see that the matriz obtained after substituting these values
is singular and the vector in its kernel is [1 0 0]7. As a result, preimage of (4,1) is
t=0.

2.5 Intersecting Parametric Curves

Given two rational Bézier curves, P(¢) and Q(u) of degree m and n respectively, the
intersection algorithm proceeds by implicitizing P(¢) and obtaining a m x m matrix
M, whose entries are linear combinations of symbolic coefficients X,Y. The second
parametrization Q(u) = (F(u),y(u),w(u)) is substituted into the matrix formulation.
It results in a matrix polynomial M(u) such that each of its entries is a linear combi-
nation of T(u),7(u) and wW(u). The intersection points correspond to the roots of

Determinant(M(u)) = 0. (9)
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Figure 3: Intersection and projection of two ellipses

2.6 Intersecting Algebraic Curves

In this section we consider the intersection of two algebraic plane curves, represented
as zeros of F(z,y) and G(z,y), polynomials of degree m and n, respectively. The
polynomials may be represented in power basis or Bernstein basis. Let the points
of intersection be (21,91),.-.,(Tmn,Ymn). To simplify the problem we compute the
projection of these points on the x-axis. Algebraically projection corresponds to com-
puting the resultant of F(z,y) and G(z,y) by treating them as polynomials in y and
expressing the coefficients as polynomials in z. The resultant R(z) is a polynomial of
degree mn. One such case corresponding to the intersection of two ellipses has been
shown in Fig. 3. In this case the resultant is a polynomial of degree 4 in z, say H(z),
such that
H(z,)=0, H(z;)=0, H(z3)=0, H(z4)=0.

Thus, given H(z), the problem of intersection reduces to finding its roots.
Let us express F(z,y) and G(z,y) as polynomials in y and the coeflicients are
polynomials in z. That is,

F(z,y) = Fo(z)+ Fi(z)y + ...+ Fa(z)y™

and

G(z,y) = Go(z) + Gi(z)y + ... + Galz)y",

where F(z) is a polynomial of degree m — i and G;(z) is a polynomial of degree
n — j. Without loss of generality we assume that m > n. We compute the resultant
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using Cayley’s formulation. In case, the curves are expressed in Bernstein basis, we
use the reparametrization highlighted in the previous section for implicitization. The
algorithm for computing the resultant matrix is similar to Algorithm I. In particular,

le
! F(z,y)G(z,a) — F(z,a)G(z,y)

P 1 9 = .
(2,9,) —
This can be expressed as
. =i g RSN
P(z,y,a) = Z,-z.oEj:O(F,-(:c)Gj(x)yjaJTa——) + E}’;OE;;,-H(E(:c)Gj(x)y‘a'——y_—a).

The main difference between Algorithm I and computation of P(z,y,a) lies in the
fact that the coefficients Fy(z) and G;(z) are polynomials in x, whereas in Algorithm
I they are constants. Let us denote the m x m matrix by M(z). The problem of
intersection corresponds to computing roots of

Determinant(M(z)) = 0. (10)
Example 2.9 Consider the algebraic curves:
F(z,y) = (z* - 2y)* + (2 —y)* - 5,
Glz,y) =2 —y> 222 +y* -1
We treat them as polynomials in y and the resulting curves are
F(z,y) = (=54 2z%) + (—42® — 42%)y + (4 + 62°)y* — 42y® + ¢*

G(z,y)=-1-22"+ 2 +y* — ¢
The matriz M(z) obtained after eliminating y is

422 + 423 + 824 + 425 — 425 —4 - 1422 + 423 — 142* + 625 4z + 823 — 224 —1 - 222 4+ 28

M(z) = —4 - 1422 + 42° — 142 + 62° 4z +422+122° - 22  —1-627 - 32° 0
- 4z + 823 - 22* —1-6z% - 32° 4 — 4z + 62° 1
~1-222 443 0 1 -1

The kernel of M(zo) has properties similar to that of the matrix corresponding to the
implicit representation of the parametric equations. We highlight some of them in
Section 5.
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3 Matrix Computations

In this section we review some techniques from linear algebra and numerical analysis.
We also discuss the numerical accuracy of the problems in terms of their condition
number and the algorithms used to solve those problems. In particular we highlight
some features of these techniques used in our algorithm for intersection in Section 4
and Section 5.

3.1 Hessenberg Matrix

A Hessenberg matrix is of the form

f hiy hiz his ... hin
h21 h22 h23 e hgn
O h32 h33 . e h3n
H=1"0 0 hg ... ha
0 oo 0 Bpncy Pun /

In other words it is like an upper triangular matrix, except all that the subdiagonal
elements may be non-zero. Given a matrix A, it can be converted into a Hessenberg
matrix using similarity transformations of the form QAQ™", where Q is an orthogonal
matrix. Q is an orthogonal matrix if QQT = L

3.2 QR Factorization

The QR factorization of an m x n matrix A is given by
A = QR,

where Q is an m x m orthogonal matrix and R is an m x n upper triangular matrix.
More details on its computations are given in [GL89].

3.3 Singular Value Decomposition

The singular value decomposition (SVD) is a powerful tool which gives us accurate
information about matrix rank in the presence of round off errors. The rank of a
matrix can also be computed by Gauss elimination. However, there arise many situa-
tions where near rank deficiency prevails. Rounding errors and fuzzy data make rank
determination a non-trivial exercise. In these situations, the numerical rank is easily
characterized in terms of the SVD.
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Given A, a m x n real matrix then there exist orthogonal matrices U and V such
that
A=UxnV’

where U is a m x n orthogonal matrix, V is n x n orthogonal matrix and Xisan xn
diagonal matrix of the form

Y = diag(o1,02,...,00).

Moreover, 0; > 03 > ... > o, > 0. The 0;’s are called the singular values and columns
of U and V, denoted as u;’s and v;’s, are known as the left and right singular vectors,
respectively [GL89]. The relationship between the elements of A, singular values and
singular vectors can be expressed as:

n
A =2_,0:Ui Vi,

where A;;, U;;, V;; represent the element in the ith row and jth column of A, U and
V, respectively.

The singular values give accurate information about the rank of the matrix. The
matrix A has rank k < n, if opy; = 0, 0g42 = 0,...,0, = 0. Furthermore, the
smallest positive singular value gives us information about the closeness to a rank

deficient matrix [GL89].

3.4 Eigenvalues and Eigenvectors

Given a n X n matrix A, its eigenvalues and eigenvectors are the solutions to the
equation
Ax = sx,

where s is the eigenvalue and x # 0 is the eigenvector. The eigenvalues of a matrix
are the roots of its characteristic polynomial, corresponding to determinant(A — sI).
As a result, the eigenvalues of a diagonal matrix, upper triangular matrix or a lower
triangular matrix correspond to the elements on its diagonal. Efficient algorithms
for computing eigenvalues and eigenvectors are well known, [GL89], and their imple-
mentations are available as part of packages EISPACK, [GBDM77], and LAPACK °
[Dem89, ABB*92]. Most algorithms make use of the similarity transformations of the
form A' = QAQ™!, where Q is any non-singular n X n matrix. This transformation
has the characteristic that the eigenvalues of A and A’ are identical. Furthermore,
if y is an eigenvector of A', Q~!y is an eigenvector of A. Standard algorithms for
eigenvalue computations, like the Q R algorithm, choose Q to be an orthogonal matrix,
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since similarity transformation by an orthogonal matrix is a numerically stable opera-
tion [GL89]. Given A the eigendecomposition algorithm converts it into a Hessenberg
matrix using a sequence of similarity transformations by orthogonal matrices. That

18,

H=Q"AQ,

where Q is an orthogonal matrix and H is an Hessenberg matrix. Given H, the
eigendecomposition algorithm proceeds by similarity transformations by orthogonal
matrices. Each of these similarity transformation corresponds to a QR iteration of
the form:

H - sI = UR, (11)

where s is a scalar referred to as a shift, U is an orthogonal matrix and R is an upper
triangular matrix. This step corresponds to @R factorization of the matrix H — sL.
Given U and R, the next step of the iteration computes a modified Hessenberg matrix
given by

H = RU + sL

The shifts are chosen appropriately such that the matrix converges to its to its real
Schur decomposition of the form [GL89, Wil65]:

Ry Ry ... Rin
0 R . Rom

QAQl=| . AT T (12)
0 0 ... RBum

where each R;; is either a 1 x 1 matrix or a 2 x 2 matrix having complex conjugate
eigenvalues. Given the real Schur decomposition, computing the eigenvalues is a trivial
operation. Many a times a matrix has complex eigenvalues, the above algorithm is
modified to double shift consisting of a complex number and its conjugate. More
details are given in [GL89]. We will use the QR algorithm with double implicit shift
strategy to compute the real Schur decomposition. Given the matrix eigenvalues, real
Schur decomposition and matrix Q, computing eigenvectors corresponds to solving
quasi triangular systems [GL89, Wil63]. The running time of these algorithms is
O(n®). However, the constant in front of n® can be as high as 25 for computing all
the eigenvalues and eigenvectors. In many cases we may a priori know some of the
eigenvalues of the given matrix. We use that information in choosing the appropriate
shifts.
For example if s is an eigenvalue and H — s'T can be decomposed as

H-sSI=UR. (13)
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Since H — s'I is singular, R’ is singular as well and a zero appears on its diagonal.
As a result the problem reduces to finding the real Schur form corresponding to a
Hessenberg matrix of lower order.

3.5 Generalized Eigenvalue Problem

Given n x n matrices, A and B, the generalized eigenvalue problem corresponds to

solving
Ax = sBx.

We represent this problem as eigenvalues of A — sB. The vectors x # 0 correspond
to the eigenvectors of this equation. If B is non-singular and its condition number
(defined in the mext section) is low, the problem can be reduced to an eigenvalue
problem by multiplying both sides of the equation by B! and thereby obtaining:

B lAx = sx.

However, B may have a high condition number and such a reduction can cause numer-
ical problems. Algorithms for the generalized eigenvalue problems apply orthogonal
transformations to A and B. In particular, we use the QZ algorithm for computing
the eigenvalues and eigenvectors for this problem [GL89]. Its running time is O(n®).
However, the constant can be as high as 75. Generally, it is slower by a factor of 2.5
to 3 as compared to QR algorithm for computing eigenvalues and eigenvectors of a
matrix.

3.6 Condition Numbers

The condition number of a problem measures the sensitivity of a solution to small
changes in the input. A problem is ill-conditioned if its condition number is large,
and ill-posed if its condition number is infinite. These condition numbers are used to
bound errors in computed solutions of numerical problems. More details on condition
numbers are given in [GL89, Wil65]. The implementations of these condition number
computations are available as part of LAPACK [BDM89).

In our intersection algorithm, we will be performing computations like matrix
inversion and computing eigenvalues and eigenvectors of a matrix. Therefore, we will
be concerned with the numerical accuracy of these operations.

3.7 Condition Number of a Square Matrix

The condition number of a square matriz corresponds to -g—j'-((%%, where o, and o, are
the largest and smallest singular values. This condition number is used in determin-
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ing the accuracy of A~! computation or solving linear systems of the form Ax = b.
Computing the singular values takes O(n®) time, which is rather expensive. Good es-
timators of O(n?) complexity, once Ax = b has been solved via Gaussian elimination,
are available in LINPACK and LAPACK and we use them in our algorithm.

3.8 Condition Number of Simple Eigenvalues

Let s be a simple! eigenvalue of the n X n matrix, A, with unit right eigenvector x and
unit left eigenvector y. That is, Ax = sx, yTA = sy and || x ||lo=|| ¥ ||2= 1. Here
|| v ||z stands for the 2-norm of a vector. Let P = (x- yT)/(yT - x) be the spectral
projector. Therefore, || P ||.= I—y—}ﬂ Let E be a perturbation of A, and ¢ =| E ||2.

Moreover, let s be the perturbed eigenvalue of A + E. Then
|s' —s|< e | Pll2+0(g).

Thus, for sufficiently small perturbations in the matrix, the perturbation in the eigen-
values is a function of || P ||

3.9 Condition Number of Clustered Eigenvalues

In many cases we are interested in computing the condition numbers of a cluster
of eigenvalues. We highlight the need for using clusters in Section 5. We use these
condition numbers in determining the accuracy of eigenvalues with multiplicity greater
than one. We represent the real Schur decomposition as

. A, A
A = 1n A
and the eigenvalues of the m x m matrix A,; are exactly those we are interested in.
In particular we are interested in bounding the perturbation in the average of the

eigenvalues of the cluster, represented as 3 = trace(A1)/m.
To compute the error bound, we define the spectral projector

I. R
*-(5 %)

where R satisfies the system of linear equations

A R —RAj; = A,

4A simple eigenvalue is an eigenvalue of multiplicity one.
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Thus, || P ll.= (1+ || R ||3)"/% Computing || P | is expensive and a cheaper
overestimate is obtained as

1P |'= (14 | R IF)"2

Let E be the perturbation of A and e =|| E ||>. Let 5 be the average of the
perturbed eigenvalues. Then

|5-3 [< e || P2 +0(c}). (14)

We substitute || P || to obtain a slightly weaker bound on the perturbation in s for
sufficiently small €;. The average of a cluster is often much better conditioned than
individual eigenvalues in the cluster.

3.10 Accuracy of Right Eigenvectors

As far as eigenvectors are concerned, bounds for their accuracy are given n detail in
[Wil65, ABB*92]. However, we will not be computing these bounds to analyze the
accuracy of our computation. The actual bounds tell us about the maximum error in
any term of the eigenvector. We only assume that each term of the eigenvector has
a similar bound on the absolute error. Thus, the terms of eigenvectors of maximum
magnitude have the smallest bound on their relative error.

4 Reduction to Eigenvalue Problem

In this section we consider the problem of intersecting parametric curves and reduce
it to computing the eigendecomposition of a matrix. The same reduction is applicable
to the intersection of algebraic plane curves.

In Section 2 we had reduced the problem of intersecting parametric curves, P(t)
and Q(u) of degree m and n, respectively, to finding roots of a matrix determinant
as shown in (9). Each entry of the m x m matrix, M(u), is a linear combination of
Bernstein polynomials of degree n in u. A similar formulation has been obtained for
the intersection of algebraic plane curves, F(z,y) and G(z,y), of degree m and n,
respectively, as shown in (10). Let us represent it as a matrix polynomial

M(u) = Muu” + Mpoju™ (1 — w) + Muoau™2(1 —w)® + ...+ Mo(1 — w)",

where M; is a matrix with numeric entries. On dividing the equation by (1 — u)" we
obtain a polynomial of the form

“ )n + Mn—l( e

u

M 1—u

)n—l + Mn—2( )n—2 +...+ MO.

1—u 1—u
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Substitute s = %= and the new polynomial is of the form
_M(S) = MnSn + Mn_ls"'l +...+ Mo. (15)

In the original problem we were interested in the roots of Determinant(M(u)) = 0
in the range [0,1]. However, after reparametrizing we want to compute the roots
of Determinant(M(s)) = 0 in the domain [0,00]. This can result in overflow prob-
lems if the original system has a root u ~ 1. In such cases M, is nearly singular or
ill-conditioned. Our algorithm takes care of such cases by performing linear transfor-
mations or using projective coordinates.

If Mg, My,...,M, are m x m numeric matrices, then the matrix-valued function
defined by

L(s) = % M;s*
is called a matriz polynomial of degree n. When M,, = I, the identity matrix, the
matrix polynomial is said to be monic. More details on matrix polynomials and their
properties are given in [GLR82]. In our application we will be dealing with matrix

polynomials in the context of finding the points of intersection. Our main interest is
in finding roots of the polynomial equation

P(s) = Determinant(L(s)) = 0. (16)

A simple solution to this problem is expand the determinant and compute the roots
of the resulting polynomial. However, the resulting approach is numerically unstable
and expensive in practice.

Let us consider the case when M,, is a non-singular and well conditioned matrix.
As a result computation of M_! does not introduce severe numerical errors. Let

L(s) = M'L(s), and M; = M;'M;, 0<i<n.

L(s) is a monic matrix polynomial. Its determinant has the same roots as that of
P(s). Let s = s be a root of the equation

Determinant(L(s)) = 0.

As a result L(sg) is a singular matrix and there is at least one non trivial vector in its
kernel. Let us denote that m x 1 vector as v. That is

L(so)v = 0, (17)

where 0 is a m x 1 null vector.
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Theorem 4.1 Given the matriz polynomial, L(s) the roots of the polynomial corre-
sponding to its determinant are the eigenvalues of the matriz

[0 0 0 |
0 0 L, 0
C= : : : : 3 (18)
0 0 0 ... I,
| M, -M, -M; ... M. |

where 0 and L, are m x m null and identity matrices, respectively. Furthermore, the
eigenvector of C corresponding to the eigenvalue s = so are of the form:

(v sov s2v ... si7iv]T,

where v is the vector in the kernel of L(so) as highlighted in (17).

Proof: The eigenvalues of C correspond to the roots of
Determinant(C — sI) = 0.

C is a matrix of order m?. Let s = 5o be an eigenvalue of C. As a result there is a
non-trivial vector V in the kernel of C — sgI. Furthermore, we represent V as

V=NVl v

and each v; is an m x 1 vector. The relationship between C, so and V can be

represented as

[0 L, 0 0 1T vi ] [ v, ]
0 0 I, 0 Vo A2
: : : : : = S0 : . (19)
0 0 0 L, V-1 V-1

| M, M, M, ... M || Ve | | Ve |

Multiplying the submatrices of C with the vectors in V and equating them with the '
vectors on the right hand side results in:

V2 = §gVi,

V3 = 5pVa,
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Vi = $0Vm-1

and
—M0V1 - M1V2 - M2V3 — e Mm_lvm = SoVm-

These relations imply
v;=s§,’1v1, for 1 <= 1 <= m.

and
—(Mp + soM; + $2M; + ...+ 857 M1 + 85 Ln)vi = 0.

Equating the above relation with (17) results in the fact that sg is a solution of L(s)=0
and vy is a vector in the kernel of L(sg) = 0. Thus, every eigenvalue of C is a root of
P(s). Since the leading matrix of L(s) is non-singular, P(s) is a polynomial of degree
mn. Furthermore, C is a matrix of order mn and therefore, has mn eigenvalues. Thus,
all the roots of P(s) correspond to the eigenvalues of C.

Q.E.D.

The matrix polynomials have been used to solve general systems of non-linear polyno-
mial equations. More details are highlighted in [Man92]. The relationship between the
eigenvalues of C the roots of P(s) has been proved using similarity transformations in
[GLRS82]. Many a times the leading matrix M, is singular or close to being singular
(due to high condition number). Some techniques based on linear transformations
are highlighted in later part of this section, such that the problem of finding roots of
determinant of matrix polynomial can be reduced to an eigenvalue problem. However,
there are cases where they do not work. For example, when the matrices have singular
pencils. In such cases, we reduce the intersection problem to a generalized eigenvalue
problem.

Theorem 4.2 Given the matriz polynomial, L(s) the roots of the polynomial corre-
sponding to its determinant are the eigenvalues of the generalized system Cis + Cy,

where
I, 0 O ... O | 0 L. 0 ... 0 ]
o L, o ... O 0 0 L. ... 0
Ci=| : &+ ... i C, = : : cee : ,
o o ...I1, O 0 0 0 1.
o 0o ... 0 M, -M, -M;, -M, ... -M,,
' ' " (20)

where 0 and I, are m x m null and identity matrices, respectively.

26



The proof of this theorem is similar to that of Theorem 2.4 and can also be proved
using similarity transformations as highlighted in [GLR82].

It follows from Theorem 4.1 that the eigenvalues of C correspond exactly to the
preimages of intersection points on Q(u). However, we are only interested in the
eigenvalues in the range so € [0,00] and the preimages on the curve are obtained by
substituting uo = 1130. This gives us a list of all the intersection points on Q(uo)
such that uo € [0,1]. However, these points on P(t) may not lie in the range ¢ € [0,1].
As a result it is important for us to compute the preimage of the intersection point
(20, Y0, wo) = Q(uo) With respect to P(t). We use the property of the linear system of
equations (8) and Theorem 4.1.

Let us assume that (2o, Yo, wo) is a simple point on P(t). Points of higher multi-
plicity are accounted for in the next section. Substitute for (X,Y, W) = (z0, Yo, wo) In
the matrix, M as shown in (8), corresponding to the implicit representation of P(t).
The resulting matrix is singular and let us assume that its kernel has dimension one.
Kernels of higher dimension are handled in the next section. The vector in the kernel
corresponds to v shown in (17). Given the eigenvector of C corresponding to the
eigenvalue sg, we use Theorem 4.1 to compute the eigenvector v. Given v we use the
structure of the linear system to compute the preimage of the point (zo,yo,wo) by
using the relation

(1 h to)m_l (51
to(1 —'io)m-2 L U'z ’
tg“‘l VU

where k # 0 is a constant. Thus, to = ﬁz The relationship between the eigenvalue

sg of C, elements vy, v, of the eigenvector V corresponding to so and the point of
intersection (zo, Yo, wo) can be expressed as '

S0 U2

=P .
1+So) (vl-i-vz)

(an Yo, wO) = Q( (21)
As a result we are able to compute all the points of intersection in the domain of
interest by computing the eigendecomposition of C.

Solving a generalized eigenvalue system is more expensive than the normal eigen-
value system (almost a factor of 3). In many cases, we can perform a linear transfor-
mation on the coordinate of the matrix polynomial and reduce the resulting problem
to an eigenvalue problem. The basic idea involves transforming

as+b
s+ d’
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where a,b,c and d are random numbers. The matrix polynomial M(s) in (15) is

transformed into
as+b

c3 + d)
= Mo(a5+b)"+M,_; (a5+ )" (5+d) + ... + My(a5+b)(cs+d)""! + Mo(c5+4d)"
=PGE) =P, 5" +P,. ;3 +...+ P53+ Py,

P(3) = (c5 + d)"M(

where P;’s are computed from the M;’s. If P, is a well-conditioned matrix then the
problem of intersection is reduced to an eigenvalue problem, otherwise use a different
transformation (by a different choice of a,b,c and d). The linear transformation is
performed up to four or five times. If all the resulting leading matrices, P, are ill-
conditioned, the intersection problem is reduced to a generalized eigenvalue problem.
There are cases when any linear transformation can result in an ill-conditioned leading
matrix. Furthermore, the domain of the eigenvalue system obtained after transforma-
tion is [s1, s3] or [s2, 1] depending upon the signs of a,b,c and d, where s5; = —% and

d

.

89 = —

4.1 Implementation and Performance

The reduction to an eigenvalue or a generalized eigenvalue system involves estimating
the condition number of a matrix, linear equation solving and finding the eigenvalues
of a matrix. The eigenvalue algorithm reduces the matrix to its real Schur form
using similarity transformations. For eigenvalues lying in the domain of interest, we
compute the corresponding eigenvectors. These eigenvectors are obtained by solving
quasi upper triangular systems and multiplying by an orthogonal matrix corresponding
to similarity transformations. Furthermore, we also compute the condition number of
each eigenvalue in the domain of interest. The condition number computation requires
the left as well right eigenvectors of the matrix.

We used LAPACK implementation of @R algorithms. Some of the routines were
modified to compute the eigenvalues in the domain of interest. Furthermore, the
domain was specified as a + j3, where @ > —¢, |f| < € and j = v—1. €is a small
positive constant used to account for the numerical errors. In particular, we make € a
function of the condition number of M,, or P, for eigenvalue problems. To compute
the inverse coordinate of the intersection point, the right eigenvector V corresponding
to the eigenvalue sg is computed. Let

V=[v11v12 .. Vi;m V21 --- V2ym +-- Un1 --- vn,m]T
Analysis of the accuracy of eigenvector computation indicates that each term of the
eigenvector has a similar bound on its absolute error. As a result we tend to use terms
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of maximum magnitude to minimize the relative error in the computation. In this

case we compute the entries of v = [v; vy ... vm)T as:
If Sg Z 1 )
[’01 Vg ... ’Um]T = (so)n [vn,l Un2 «-- vn,m]T
otherwise
[v1 v . ..vm]T =[vy V12 ... vlym]T

Given v the inverse coordinate, #g, is computed using vy, vz OF Up—1, v, by making use
of similar numerical properties.

The performance of the algorithm is largely governed by the eigendecomposition
routines. Roughly 80 — 85% of the time is spent in these routines. The eigenvalue
algorithms compute all the eigenvalues of the given matrix. It is difficult to restrict
them to computing eigenvalues in the domain of interest without using any heuristics.
The order of the matrix, say p, corresponds to the degree of the two curves and the
number of eigenvalues is equal to the order. The running time of the algorithm is
a cubic function of p. However, eigenvalue algorithms have good convergence. Each
iteration of the algorithm corresponds to a similarity transformation, whose complex-
ity is a quadratic function of the matrix order. The double shifted QR algorithm has
quadratic convergence for each eigenvalue. This is true for almost all instances of the
problem. Moreover, it is a long observed fact that the algorithm requires two itera-
tions per eigenvalue. As a result it is possible to bound the actual running time of the
eigenvalue computation by 10p® for most cases. Furthermore the eigendecomposition
algorithms are backward stable. We have been to able accurately compute the inter-
sections of curves of degree up to seven. In practice it is possible to obtain accurate
solutions for matrices of order 100 or more. This is in contrast with computing roots
of high degree univariate polynomials (which may be an ill-conditioned problems) or
using symbolic computation for determinant computation and finding the roots of
the resulting polynomial expressed in Bernstein basis using subdivision and iteration
(which is relatively expensive and has slow convergence).

The next step of the algorithm reorders the real Schur form (by similarity trans-
formations) such that the eigenvalues lying in the domain of interest are at the top
left of the Schur form. Let there be ¢ eigenvalues in the domain of interest. For each
such eigenvalue the eigenvectors are computed by solving the quasi upper triangular
systems. The resulting vectors are multiplied by an orthogonal matrix to obtain the
eigenvectors of C. The running time of these operations is O(gp?).

Example 4.3 We illustrate the algorithm by considering the intersection of two ra-
tional cubic Bézier curves. The example is taken from [Sed83]. The control points of
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Figure 4: Intersection of rational cubic Bézier curves

two Bézier curves (as shown in Fig. 4), expressed in homogeneous coordinates, are
(4,1,1), (5,6,2), (5,0,2), (6,4,1) and (7,4,1), (1,2,2),(9,2,2),(3,4,1). Thus,

P(t) = (z(t), y(t),w(t)) = (4(1 — ¢)® + 30(1 — )%t + 30(1 — t)¢* + 6¢°,
(1—t)2+36(1 — )% + 423, (1 — t)® + 6(1 — t)%t + 6(1 — t)t* + °).
The implicit representation has a matriz determinant formulation given as

—114 + 30z — 6y 30 — 6z — 6y —10+ 3z — 2y
M= 30 — 6z — 6y 1070 — 213z — 2y 96 — 12x — by
—104 3z — 2y 96 — 12z — 6y  —120 + 24z — 6y

The second parametrization, Q(u) is substituted into the matriz formulation (after
a reparametrization of the form s = {%-). The resulting matriz polynomial has the

form
—48 —-12 -9 864 —216 78
M(s) = | —12 423 36 [s°+ | —216 —5106 —144 | s
-9 36 -T2 78 —144 504
—576 72 —66 72 -36 3
+| 72 5118 432 |s+ | -36 —429 -—12
—66 432 —648 3 —12 24
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The ezact condition number of the leading matriz is 9.525. The LINPACK'’s esti-
mator returns the approzimate value as 7.0621 5.

Multiplying M(s) with the inverse of the leading matriz and constructing the equiv-
alent companion matriz results in

[ 0 0 0 1 0 0 0 0 0\
0 o 0 0 1 0 0 0 0
0 o 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
C= 0 o 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1481 —-1.07 0 —11.92 4.581 0.401 17.84 —8.248 0.401
0.133 0946 0 —0.534 -11.923 —0.229 1.069 1143 —0.23

\—0.076 0.440 0.333 0.306 —0.534 -9.165 -0.613 4.747 6.835/

The eigendecomposition of C results in 9 points of intersection. The intersections
points are computed using the relationship highlighted in (21). They are:

[Num [ s [ B [w=gplo=8]6=%t=55] *Y) |
1. 15.369 | 2.32e-14 0.9389 0.2173 | 0.0472 0.1785 (4.619,3.412)
11.802 | 2.85e-14 0.9219 0.6657 | 0.4432 0.3997 (4.911, 3.289)
5.507 | 2.71e-14 0.8463 0.0703 1.000 0.9343 (5.688,2.877)
1.4654 | 1.27e-13 0.5944 0.1614 | 1.000 0.8610 (5.467,2.321)
0.56361 | 2.32e-14 0.3490 1.00 0.066 0.0622 (4.298,2.378)
0.1534 | 2.98e-14 0.133 1.00 0.1233 0.1099 (4.455,2.971)
0.0974 | 2.38e-14 0.0888 1.00 0.7277 0.4212 (4.931,3.218)
1.145 | 1.18e-13 0.534 1.00 0.4644 0.683 (4.174,2.290)

0.0382 | 1.14e-14 0.0369 0179 | 0.00032 | 0.9823 (5.901, 3.615)

il Bl el Il ISl el ol R

Eigendecomposition and Intersection Points
where
e Num. is the number of intersection.
e 5o is the eigenvalue of the matrix.
e F; is the maximum error in the eigenvalue computation.
e ug is the parameter in the first curve obtained after reparametrization.

® vy, va, Ug and vy are the elements of the eigenvector corresponding to sq.

$Using double precision arithmetic we have reduced matrix polynomials with leading matrices of
condition numbers up to 100000 to eigenvalue problems.
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e {,is the parameter in the domain of other curve obtained after reparametrization.
e (X,Y) is the intersection point on the curve.

In the columns corresponding to the components of the eigenvectors we choose
the elements v; or vs depending upon their relative magnitudes. The error bounds in
the third column are obtained by using the condition number of the eigenvalues (as
explained in section 3) and matrix norm as

E,‘ =€ ” C || Cond;, (22)

where € = 2.2204e — 16 is the machine precision for 64 bit IEEE floating point arith-
metic and cond; is the condition number of the ith eigenvalue. As a result, the eigen-
decomposition algorithms computes the eigenvalues of C up to 12 digits of accuracy.
The other sources of error arise from the computation of the entries of M, the matrix
corresponding to the implicit representation, and inverting the leading matrix of the
matrix polynomial M(s). In our case, this can account for inaccuracy of one digit
(due to condition number of the matrix to be inverted). As a result, the intersection
points are computed up to 11 digits of accuracy.

Example 4.4 Lets again consider the intersection of algebraic plane curves high-
lighted in Ezample 2.9. In this case we are given two algebraic plane curves, F(z,y)
and G(z,y) of degrees four and three, respectively. The resultant matriz obtained after
eliminating y is:

M(z) = Moy + Mz + M,z? + M3z® + Myz* + Msz® + Mgz®

422 + 423 + 8z + 425 — 426 —4 — 1422 + 423 — 142* + 625 4z + 825 — 22 -1 — 222 + 23

| —4-1402 + 423 - 142t + 62 4z +407 +120%- 22 —1-627 - 32° 0
4z + 823 — 221 -1- 622 - 32° 4 — 4z + 622 1
-1-2z% +2° 0 1 -1

The entries of the matrix are polynomials of degree 6. However, the determinant of
M(z) is a polynomial of degree 12 as the two curves intersect in 12 points, according to
Bezout theorem. Therefore, the leading matrix, Mg, is singular and it is not possible
to reduce the matrix polynomial M(z) to an eigenvalue problem using Theorem 4.1.
It is however, possible to reduce it to a 24 x 24 generalized eigenvalue problem using
Theorem 4.2. This is relatively expensive as we are only interested in 12 roots.

Let us use the transformation, £ = 1/z and multiply M(1/z) by 2°. The new

matrix polynomial is M(z) = 26M(1/z). This implies that
DeterminantM(z) = 2** DeterminantM(1/z).
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The leading matrix, M is non-singular and therefore, the determinant of M(z) is a
polynomial of degree 24. The fact that the curves have 12 intersections implies that 12
of the 24 roots of Determinant(M(z)) = 0 correspond to zero. Moreover the condition
number of My is 6.5552325. As a result, we can reduce it to an eigenvalue problem of
a 24 x 24 matrix:

{ 0 I 0 0 0 0 \
0 0 | 0 0 0
0 0 0 I 0 0
M = 0 0 0 0 I 0
0 0 0 0 0 |

\-—MalMG —M61M5 —M61M4 —M51M3 —Male —M61M1)

The 12 known eigenvalues of M can be used in choosing the shifts in the QR algorithm,
as highlighted in (13). After choosing a sufficient number of shifts corresponding to
s = 0 (at most 12), the problem reduces to computing the eigendecomposition of a
12 x 12 Hessenberg matnx.

M has only two non-zero real eigenvalues z = 2.794796 and z = —1.787942. As a
result, the two real intersections correspond to z = 0.357807 and z = —0.559302. The
corresponding y values are obtained from the eigenvectors. The points of intersection
are (0.357807, —0.816289) and (—0.559302, —0.9587738).

4.2 Improving the Accuracy

The accuracy of the intersection points can be further improved by a few iterations of
Newton’s method. The solutions computed using the eigendecomposition algorithms
are used as the starting points for the Newton’s iteration. We highlight the method
for the intersection of parametric curves. It is also applicable to algebraic curve
intersection.

Given P(t) = (z(t),y(t),w(t)) and Q(u) = Z(u),y(u), w(u)) we formulate the

equations:

)
At each step of the Newton’s iteration we improve the current solution (2o, uo)T to
(tla ul)T by

(8)=(1) (o) G ) (Lo ).
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where Fy(to, ug) and G(to,uo) correspond to the partial derivatives. This is repeated
until we are able to achieve the desired accuracy (by looking at the norm of the vector
(F (40, u0) G(to, u))”. In almost cases we have been able to compute the intersections
accurately up to 11 or 12 digits using one or two steps of Newton’s iteration after the
eigendecomposition.

5 Higher Order Intersections

In the previous section, we presented an algorithm to compute the simple intersec-
tions of parametric curves. In this section we extend the analysis to higher order
intersections.

According to Bezout’s theorem two rational or algebraic curves of degree m and n
intersect in mn points (counted properly) [Wal50]. The intersection multiplicity of a
point, p, is defined in the following manner:

An intersection point, p, has multiplicity m, if a small perturbation in the coefficients
of the curve (the coefficients of the control polygon for rational parametric curves)
results in m distinct intersection points in the neighborhood of p.

Such intersections arise due to the tangential intersection of the two curves at p or
p is a singular point on one of the curves. Some examples are highlighted in Fig. 5.
They are:

(a) Tangential intersection of two ellipses. The intersection multiplicity is 2.
(b) Second order intersection of a parabola with a curve having a loop.

(c) Intersection of an ellipse and a curve with a cusp. The intersection multiplicity is
2.

(d) Tangential intersection of a parabola with a cubic curve having a loop. The
multiplicity of intersection is 3.

In the previous section we showed that the intersection points correspond to the
mn eigenvalues of C in (18) or the generalized eigenvalue problem, C,s + C; in (20).
As a result there is a direct relationship between the multiplicities of the eigenvalues
and the intersection multiplicity of the point. Eigenvalues of multiplicity greater than
one are the multiple roots of

Determinant(C —sI) =0 or Determinant(C;s — C;) = 0

and their multiplicity corresponds to the multiplicity of the roots. This multiplicity
is also referred to as the algebraic multiplicity of the eigenvalue. The geometric mul-
tiplicity of an eigenvalue, sq, is the dimension the vector space corresponding to the
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Figure 5: Higher order intersections
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kernel of C — sgI or C;sq — C,. It is bounded by the algebraic multiplicity of so.
The relationship between algebraic and geometric multiplicities of the eigenvalue and
that of the intersection point is different for intersection of parametric and algebraic

curves.

o Parametric Curve Intersection: The eigenvalues correspond to the roots of (9).
Except in some cases we may have used a linear transformation and therefore
they are the roots of a transformed equation. Each eigenvalue, sq, corresponds
to an intersection point, Q(sg). As a result, higher multiplicity eigenvalues
correspond to higher order intersections. In fact, the intersection multiplicity
of Q(so) is exactly equal to the algebraic multiplicity of the eigenvalue so. The
nature of intersection, whether it is a singular point or tangential intersection,
is determined from the algebraic and geometric multiplicities of the eigenvalue.

o Algebraic Curve Intersection: The eigenvalues correspond to the roots of (10).
As aresult, each eigenvalue sy corresponds to the z-coordinate of the intersection
point of the form (sg,y). It is possible that the curves intersect in two points
of the form p; = (so,%1) and p2 = (so0,y2). In such cases p; and p, may
be simple points of intersection (having intersection multiplicity equal to one),
whereas the so is an eigenvalue of multiplicity two at least. Thus, eigenvalues
of multiplicity greater than one may or may not correspond to an intersection
point of multiplicity greater than one. Such cases are again distinguished by the
algebraic and geometric multiplicities of the eigenvalues.

We initially describe the algorithm for computing higher multiplicity eigenvalues
and later on present a separate algorithm for computing the corresponding intersection
points of parametric and algebraic curves.

5.1 Multiple Eigenvalues

As such the problem of computing higher order roots of polynomial equations or
eigenvalues can be numerically ill-conditioned. We highlight the problem with a classic
example from matrix computations [BDM89]. Let A, be a 11 x 11 matrix of the form:

01 0 ...0 0)

00 1 ...0 0
A -

00 ...0 10

e 0 0 ... 0

00 .. 0 0 05)
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A is a block diagonal matrix with a 10 x 10 block at the upper left and a 1 x 1
block at the lower right. If € = 0, the upper left block is a 10 x 10 Jordan block
[Wil65]. As a result, it has a single eigenvalue, s = 0, of algebraic multiplicity 10
and geometric multiplicity 1. The corresponding eigenvector is v.=[100 ... 0}7.
For small values of € the eigenvalues become distinct numbers all with absolute value
¢! and the eigenvectors which have rotated away from v by about ¢! radians. For
¢ = le — 10, e! = 0.1, which is a much larger change. As a result the eigenvalue of A,
at € = 0 and the corresponding eigenvector is an ill-posed problem®. Such ill-posed
problems arise frequently whenever the curves have higher order intersections.

A better solution to this problem is obtained by considering the matrix to have a
cluster of 10 eigenvalues near zero. In general, the arithmetic mean of this cluster of
eigenvalues is much less sensitive to small perturbations than the individual eigenval-
ues. In Section 3.9 we summarized the bounds for condition numbers of clusters of
eigenvalues. In particular, it has been shown that the mean of the cluster of eigenval-
ues is well-conditioned and it is bounded by || € || as shown in (14). More details on
the analysis are given in [Kat80].

We apply this technique to identify clusters of eigenvalues using their condition
numbers. Given a cluster of eigenvalues, we compute the arithmetic mean of the eigen-
values of the cluster and the condition number of the mean. The latter information
tells us about the accuracy of the multiple eigenvalue. In the rest of this section we
demonstrate this method on the intersection of parametric curves.

Given two curves that intersect with multiplicity k at p, our algorithm computes
the implicit representation and reduces the problem to an eigenvalue problem. Let s
be the eigenvalue corresponding to p. The reduction to eigenvalue problem involves
floating point operations on the coefficients of parametric curves, linear transforma-
tions, matrix inversion and matrix multiplication. As a result, the matrix C or C,
and C, correspond to a slightly perturbed intersection problem’. Furthermore, k of

its eigenvalues, say s, S2,...,8 are close to s. We proceed by identifying the clus-
ter sy, 82, ..., Sk, computing the accurate number of digits and thereby expressing the
eigenvalues with right number of digits as 5’1, Spyerny s,. Finally we estimate the mean
as

' s’l+s;+...+s;
; .
The condition number of the mean tells us about the number of accurate digits in

s'. Depending upon the number of accurate digits we can also decide whether the

6This is due to the fact that the sensitivity of the eigenvalue is not proportional to the norm of
the perturbation ¢, but a root of e.

"The perturbed problem is the intersection of parametric curves whose coefficients have been
slightly perturbed.
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problem is ill-posed.

To identify a cluster we use the condition numbers of the eigenvalues. In particular
let the eigenvalues of C or Cys + C; be s1,82,...,5n and their condition numbers be
C,,Ca,...,Cn. Based on condition numbers we estimate the error in the eigenvalue
as

E; = €| C || cond;,

where ¢ is the machine precision. The exponent of E; tells us about the number
of accurate digits in s;. Let us denote the number of accurate digits in s; as d;.
Each s; consists of a mantissa of / digits® and an exponent. However, we only use
d; of the ! digits. As a result the mantissa of s; consists of d; digits at most. A
cluster consists of all those eigenvalues whose exponents and the mantissa (consisting
of up to d; digits) are equal. In other words a cluster consists of k eigenvalues,
1 = Siyy Sy = Sigs.- .,8; = si, such that they all have the same exponent and their
mantissas agree to the first d; digits, where

d; = minimum(d;,, di,, . - -, ds, ),

and si;, Siy, ..., Sq, is the largest subset of n eigenvalues satisfying this property. The
rest of the algorithm proceeds by taking the mean of this cluster. To speed up the
cluster identification process we sort the eigenvalues (containing up to d; digits of
mantissa) based on their magnitudes. The eigenvalues corresponding to the same
cluster would appear next to each other in the sorted list. We highlight this algorithm
on some examples.

Example 5.1 Consider the intersection of cubic curve, P(t) = (2(1),y(t)) = (t? —
1,43 — t) with the parabola Q(u) = (F(u),F(u)) = (v + u,u® —u) (as shown in Fig.
6). The cubic curve has a loop at the origin. We are interesting in all intersection
points corresponding to the domain t x u = [=2,2] x [~1,1}.

The implicit representation of P(t) is a matriz determinant of the form

-l1—-z -y 14z
M = —y T 0
142 0 -1

After substituting and reducing the problem to an eigenvalue problem we obtain a 6 x6

8In case the computations are being performed in IEEE 64 bit floating point arithmetic, { = 16.
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matriz

(0 00 1 0 0 )
0 00 0 1 O
0 00 0 0 1
C=l_101-1 0 o (23)
-101 -2 -1 0
\ -1 01 -2 -2 -1
The eigenvalues of this matriz and their error estimates are:
Intersection Eigenvalue Cond. Number | Accurate Digits
Number (i) s; C; d; 5 |
1. -2.58740105196 1.6402 15 -2.58740105196
2. -0.20629947401 + 1.38682 15 -0.20629947401 +
J 1.874729636 j1.8374729636
3. -0.20629947401 - 1.386829 15 -0.20629947401 -
- 1.374729636 -7 1.8374729636
4. -8.8380412e-17 + 1.79612e08 8 0.0
7 2.7275325842¢-9
5. -8.8380412e-17 - 1.79612¢08 8 0.0
j 2.7275325842¢-9
6. 0.0 56.35 14 56.35

Thus, the fourth and fifth eigenvalues have a high condition number. They are rep-
resented as s4 = 70.00000000272 and s; = —;0.00000000272.
accurate up to 8 digits only. As a result we find that Syy S5 and sg belong to the same

However, they are

cluster. Upon taking their average we find that their arithmetic mean is 0.0 and its
condition number is 26.82. As a result, the mean is correct up to 14 digits and there-
fore, s' = 0.0 is an eigenvalue of multiplicity three.

The procedure highlighted above is used for computing the intersection multiplicity
of the point. However, the higher order can intersection can be due to a tangential
intersection, one of the curves having a singular point at the point of intersection
or their combinations. In the following sections we present techniques to compute
the higher order intersection points and determine the nature of intersection. The
algorithm is similar for parametric and algebraic curves.
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Figure 6: Higher order intersection of a cubic curve and a parabola

5.2 Roots of Univariate Polynomials

In this section we present an algorithm which computes the common roots of two
univariate polynomials. The algorithm is used for finding the intersection points cor-
responding to multiple intersections.

Given two polynomials, f(¢) and g(t), the number of common roots of these poly-
nomials correspond to the roots of the polynomial corresponding to their greatest
common divisor (GCD). However, computing the GCD is rather difficult when the
coefficients of the polynomials are expressed in floating point. To circumvent the
problem we propose finding all roots of f(t) = 0 and determine which of them corre-
spond to the roots of g(t). We perform these procedures using matrix computations.
Let us assume that f(¢) and g(t) are expressed in power basis.

Given f(t) = fut"+ froat™ 4. ..+ fit + fo. Without loss of generality we assume
that f. = 1. It is a well known fact in linear algebra that the roots of f(t) correspond
exactly to the eigenvalues of the companion matrix [Wil65]:

0 1 0 ... 0 0
6 0 1 0 .. 0
F=| : @ i i i :
0 0 0 ... 0 1

_fO —fl —f2 —fn—2 —fn-l

A similar matrix G can be formulated corresponding to g(t). To compute the roots
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of f(t) we compute the eigenvalues of F using the QR algorithm. It can also be
used to accurately compute the roots of multiplicity greater than one by identifying
the corresponding clusters and computing their arithmetic mean. Given an eigenvalue
t = ; of F we verify whether it is a root of g(t) by computing the rank of G —¢;1 using
singular value decompositions. To verify whether ¢, is a root of multiplicity greater
than one, we compute the companion matrix G’ corresponding to the polynomial g @)
and compute the rank of G’ — ;1. The order of G’ is one less than the order of G.

5.3 Parametric Curve Intersection

Given the higher multiplicity eigenvalue s and the corresponding intersection point,
p = Q(s) = (Z(s),7(s),w(s)), we are interested in computing the preimage of p
with respect to P(t) and knowing the nature of intersection. The resulting algorithm
depends on the geometric multiplicity of the eigenvalue. We are mainly interested in
knowing whether the geometric multiplicity of the eigenvalue is one. The geometric
multiplicity corresponds to the rank of C — sI or Cys — C;. This can be accurately
computed using singular value decompositions (SVD) of C — sI or Cys — C;. The
number of singular values equal to zero (or very close to zero) correspond to the
geometric multiplicity of the eigenvalue.

Let us consider the case when the geometric multiplicity of s is one. According
to Theorem 2.7, p is not a singular point on P(t). The multiple intersection corre-
sponds either to tangential intersection or to the fact that p is a singular point on
Q(u). The unique eigenvector corresponding to s is of the form £((1 — o)™ to(1 —
to)™2 ... tg")T and therefore, we can compute the preimage ¢ from the eigenvector.

Theorem 2.5 can be used to determine whether p is a singular point on Q(u) or
not. In particular we formulate the equations:

X10(u) —F(u) =0

Kﬁ(u) - g(u) = Oa

where (X1,Y1) = (%%%, %((%) The number of common roots of these two equations is
computed by the algorithm highlighted in the previous section.

If p is not a singular point with respect to either of the curves, the two curves
intersect tangentially (or with higher order continuity) [Der85].

Let us now consider the case when the geometric multiplicity of s is greater
than one (say k). As a result there are k linearly independent vectors spanning the
eigenspace corresponding to s. The eigendecomposition routines compute a basis for

this space which may or may not have a structure of the form k({1 — o)™ #o(1 —
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to)™2 ... 71T, In fact, the eigenspace is spanned by vectors highlighted in Theo-
rem 2.7.
To compute the ¢ parameters we compute the roots of the equations

Yiw(t) —y(t) =0
using the algorithm for univariate polynomials highlighted in the previous section.

Example 5.2 Let us again consider the intersection of a parabola and a cubic curve
with a loop shown in Fig. 6. The curves are

P(t) = (t* - 1,12 — 1), Q(u) = (u? + u,u® — u).

In Ezample 5.1 we computed the entries of the matriz C, as shown in (28) whose
eigenvalues correspond to the intersection points. Based on the condition number
of the eigenvalues we concluded that A = 0 is an eigenvalue of multiplicity three.
Furthermore the intersection point is Q(0) = (0.0,0.0). Let us compute the t values
corresponding to this point.

The singular value decomposition of C results in two singular values equal to 0.0.
As a result the geometric multiplicity of s = 0 is two. The t values correspond to the
roots of the equations

f@): *=1=0
g(t): 2 —t=0.

The roots of f(t) are computed using the eigenvalues of the companion matriz

0 1
e-(21).
The eigenvalues are —1.0 and 1.0. We verify whether they are roots of g(t) by com-

puting the ranks of G — I and G + 1, where G is the companion matriz of g(t),

G =

oo O
—_— O =
O - O

It turns out that both the matrices mentioned above are rank deficient and therefore,
—1.0 and 1.0 are the the roots of f(t) as well as g(t). Furthermore, they are roots of
multiplicity one. As a result, P(t) has a loop at the origin. The fact that the curves
intersect with multiplicity 3 implies that Q(u) is tangential to one of the branches of
P(t) at the origin.
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5.4 Algebraic Curves

Given an eigenvalue s of multiplicity k. The eigenvalue corresponds to the X co-
ordinate of intersection. In this section we present techniques to compute the Y
coordinates of the point of intersection of the algebraic curves F(z,y) and G(z,y).
The analysis is very similar to that of intersecting parametric curve.

Let us consider the case when the geometric multiplicity of s is one. As a result
the unique vector lying in the kernel is of the form k(1 %o y3 --- yo~1)T. Therefore,
we can compute the Y coordinate from the eigenvector. Furthermore the intersection
multiplicity of the point (s,yo) on each curve can be computed by the degrees of the
lowest degree monomials of F(z — s,y —yo) and G(z — s,y — yo) (according to Lemma
2.1).

In case the geometric multiplicity of s is greater than one, the Y coordinates are
computed by solving the univariate equations F(s,y) = 0 and G(s,y) = 0. The
intersection multiplicity of each point is computed in a similar fashion.

We illustrate the algorithm on the intersection of quartic algebraic curves.

Example 5.3 Given
F(z,y) =2 +4y* —4y* =0

and

G(z,y) = 3z* — 52+ y* = 0.
These curves have been highlighted in Fig. 7. P(z,y) is a nodal quartic having a self
intersection at the origin, whereas Q(x,y) has a cusp at the origin. The algorithm
of intersection proceeds by computing by eliminating = from these two equations using
the Cayley’s resultant. In other words we treat them as polynomials in y and z is as
a symbolic constant. The resulting matriz 1s:

0 _2? 4+ 202° — 122° 0 —20z3% + 12z*
—z2 42023 — 122* 0 —20z3 + 1224 0
M =
(<) 0 —20z® + 122* 0 4
—20z8 + 12¢* 0 4 0

This is expressed as a matriz polynomial
M(z) = Mo + Mz + M,z? + Maz® + M,z?,
where the leading matrir is

0 -12 0 12

M, = -12 0 12 O



Figure 7: Intersection of quartic algebraic curves
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The condition number of My is 2.6180. As a result we are able to reduce the problem
of intersection to an eigenvalue problem. The resulting 16 x 16 matriz is

[0 0 0 0 1000 0 0000000\
00 © 0o 6100 0 0 00 O O 0 O
00 0 0o 0010 0 ©O0 00 O O o0 O
00 0 o 06001 0 0 00 O O 0 0
00 0 o 0000 1 ©0 00 O 0 0 0O
00 0 0 0000 O 1 00 0 O 0O O
00 O 6 o0O0OO O O 10 0 0 0 0
c-|00 0 o 0000 O oO0 01 0 0 0 O
00 O o o000 O O 0O 1 0 0 O
00 0 o 0000 O 0 OO0 O 1 0 0
00 O o o000 O O 0O O 0 1 0
00 0 o 0000 O O OO0 O 0 0 1
00 —-033 ©0 0000 O ©0 00166 0 0 0
o0 0O -033 0000 O 0O 0O 0 166 0 O
00 —03 0 00O00O00 0 00 0 0 166 0
o0 0 -033 0000 0 00800 0 0 0 166

C has 3 distinct real eigenvalues. However, they are eigenvalues of multiplicities
greater than one and account for 8 of the 16 eigenvalues of the matriz. In this case
the QR algorithm computes the higher multiplicity eigenvalues accurately. They are:

o s; = 0 of multiplicity 4.
o s, = 0.6620955 of multiplicity 2.
o s; = 0.051632 of multiplicity 2,

Let us consider each one of them and compute the corresponding points of in-
tersections. We start with s;. The geometric multiplicity of s; is two, computed
using singular values of C. To compute the corresponding y coordinate We substitute
z = s; = 0 in both the equations and solve for y.

F0,y) =4y* -4y =0
and
G(0,y) =y* =0.

Using the root finding algorithm (based on companion matrices) we find that y = 0 1s
a root of multiplicity 2. Furthermore we find at the origin both F(z,y) and G(z,y)
have multiplicity 2. Therefore, the two curves intersect with multiplicity four at the
origin.
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Let us consider s,. The geometric multiplicity of s, is 2, computed using the
singular value decomposition of C — s31. To compute the Y coordinates we solve for

F(sy,y) = 4y* — 4y® + 0.43837051834 = 0

and

G(sa,y) = —0.87470971486 + y* = 0.
The roots of F(s3,y) are the eigenvalues of

0 1 00
0 010
0 0 01
—0.109592 0 1 0

The eigenvalues are 0.9352589, —0.9352589,0.35396437, —0.35396437. Among these
four eigenvalues the first two are also the roots of G(sa, y) and therefore the two points

of intersection are

(z,y) = (0.66209555,0.935259169)

and
(z,y) = (0.66209555, —0.935259169).

Each of them is a regular point on F(z,y) and G(z,y)
A similar analysis hold for s3. The two points of intersection are

(z,y) = (0.516329456,0.0258250860)

and

(z,y) = (0.516329456, —0.0258250860).

They are also regular points.

6 Conclusion

In this chapter we have highlighted a new technique for computing the intersection of
parametric and algebraic curves. The algorithm involves use of resultants to represent
the implicit representation of a parametric curve as a matrix determinant. The in-
tersection problem is being reduced to an eigenvalue problem. The algorithm is very
robust and can accurately compute the intersection points. There is a nice relationship
between the algebraic and geometric multiplicities of the eigenvalues and the order of
intersection. We used this relationship in accurately computing such intersections.
Efficient implementations of eigenvalue routines are available as part of linear algebra
packages and we used them in our implementations.
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