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Abstract

Advances in robotic devices and storage media now make it possible to design near-line

automated storage systems. These systems aim to provide responsive performance to users of

tertiary storage devices. The Jaquith system is a prototype archive server that lets network users

archive their own files using automated storage. It provides semi-interactive file access to its clients

by combining a high-density robotic tape system with disk-based indexing.

Jaquith presents an FTP interface whereby whole files are moved between the client and

its storage archive. Each client’s archive is separately governed to provide independent namespaces,

added security, and parallel operation. A wildcard query mechanism lets users manipulate arbitrary

subsets of their files. Two important aspects of the query system are abstracts, text tags that can be

associated with files, and versions, date-stamps that are applied to archived files.

Jaquith throughput is about 135 KB/second when archiving small (10 KB) user files to

disk buffers. The use of synchronous disk writes by the server to ensure durability of each user

file degrades throughput to 40 KB/second. The performance when writing disk buffers to Exabyte

or Metrum tape is severely limited by the time to write a hardware filemark. Consequently, it is

important to write several megabytes of data between filemarks for good performance.
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1 Introduction

The recent coupling of inexpensive but powerful computers with networked file systems

has dramatically increased the amount of information being stored and manipulated digitally. As

the quantity of data increases, it becomes more difficult to keep it organized, to locate specific items,

to avoid duplication, and to perform data synthesis.

This report describes Jaquith,1 a prototype tertiary storage manager that combines disk

and high-density tape devices to address the “data glut” problem. Jaquith’s storage facilities let

clients move files from disk to tertiary storage without having to know the location or physical

attributes of the storage device. Jaquith is written in C and runs on most Unix systems. The

code runs as user-level processes which has simplified the port to multiple platforms including

SunOS 4.1.1, Ultrix 4.2, and HP-UX 8.05.

The design of a tertiary storage manager is dominated by two issues, the masking of

hardware latency and the user model. Latency is the single most difficult aspect of tertiary storage

management, and Jaquith has several features specifically designed to address this issue including

on-line indexing information, an intelligent buffering scheme, a structured tape layout, and user-

supplied file tags, called abstracts. Together, these features reduce retrieval time for data stored in

a tertiary archive.

Jaquith’s user model provides simple but powerful access to archive data. Users move

whole files between secondary and tertiary storage with specialized utility programs. A wildcard

query facility enables the user to locate and recall specific versions of files, directories, or complete

subtrees. An X-based graphical user interface makes the query facility easy to use. Jaquith is an

archiver so it does not have a delete facility.

This report first motivates the Jaquith design with a discussion of the current generation

of hardware and the related latency issues. Latency constraints drive the discussion of the user

model and the client interface in Section 3. Section 4 describes the structure and implementation

of the server including indexing, buffering, and administration facilities. Section 5 details Jaquith

performance. Related work is covered in Section 6. The report finishes with a discussion of Jaquith

as a base for future work.
1The work describedhere was supported in part by the National Aeronautics and Space Administration and the Defense

Advanced Research Projects Agency under contract NAG2-591.
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2 Background

A current problem in networked computer systems is the storage of massive quantities

of information, where “massive” may mean anything from many gigabytes to several petabytes,

or more. Presently, secondary storage such as magnetic disk is too expensive to hold this data,

so tertiary storage is essential. Of the common tertiary media, helical-scan magnetic tape is the

medium of choice because of its high density and low cost. For example, an Exabyte drive costs

approximately $2000 and a single tape cartridge (a volume) costs $6 and holds five gigabytes of

data.

The drawback of these tape systems is their low transfer rate and long load delays (the

time to mount the volume and locate the beginning of tape). Long term reliability is also an open

issue, see [10]. Ampex D-2 tape systems combine high-density storage with very high throughput

rates, but carry very high prices that make them more suitable for specialized purposes. Other

forms of tape, such as IBM 3480 cartridge tape have transfer rates comparable to disk but hold only

200 MB of data per volume.

The primary goal of the Jaquith project is to overcome these hardware latencies and

develop a testbed for automated tape storage systems. The interesting question is: How does one

design a robotic tape system with current hardware that provides useful near-line storage? The

term near-line means that it is important to support access rates that are much superior to off-line

shelf storage, though not quite on par with on-line disk storage. A related question is: How do

users employ near-line tape storage? Do they view it as extended disk space, temporary swap space

when disk space is tight, or as archival storage? The Jaquith testbed was created to help answer

these questions. The first implementation of Jaquith stresses simplicity, flexibility and portability.

Experience with the testbed will give insight into usage patterns and provide guidance in extending

the testbed with advanced aspects of massive storage including indexing techniques, data striping,

interactive browsing, and file migration.

The design of Jaquith was influenced heavily by the characteristics of the available

hardware. The primary hardware environment for development of the Jaquith system was an

Exabyte EXB-120 Cartridge Handling Subsystem. The EXB-120 stores one half terabyte of data

in 8mm cassettes arranged in an X-Y plane. Near the end of the development cycle a Metrum robot

was acquired. It stores about nine terabytes of data with VHS cartridges placed around two rotating

cylinders. Table 1 gives various specifications for both robots and tape readers. See [5, 4, 3, 6]

for more information. While the two systems differ in detail, they have the following important
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characteristics in common:

� The combined latency to load a tape volume into a reader, seek to the proper location, and

read a file is measured in minutes. Unlike disk accesses which are measured in milliseconds

and are unnoticed by humans, every single tape access will be visible to the user. Therefore

it is important to avoid any extraneous tape accesses.

� The total number of volumes is low and the capacity per volume is high. Therefore data from

different sources must be packed onto a single volume. It must be possible to quickly locate

a piece of data without reading all of the intervening tape.

� The throughput of a single reader is low enough that the time to transfer a large buffer of data

is significant. The latency to transfer data from tape to disk is noticeable by the user.

� The robot arm can load any of the tapes into any of the readers. Jaquith can thus ignore

issues of physical partitioning. (In contrast, the Comtex ATL-8 uses a compartmentalized

arrangement whereby the archive is divided into carousels, one per drawer. Tapes can only

be loaded into drives residing in the same drawer as its carousel.)

EXB-120 Metrum RSS-600
with EXB-8500 with RSP-2150

Max. number of robot arms 1 1
Max. number of tape readers 4 5
Max. number of tapes 116 600
Tape capacity in GB (type) 5 (8mm) 14.5 (S-VHS)
Throughput per drive (MB/sec) 0.5 1.5
Time to write filemark (sec) 2 8
Time to pick & load tape (secs) 35 16
Time to rewind longest tape (secs) 180 120
Approx. robot price (US$) 90,000 275,000
Approx. reader price (US$) 2,000 35,000
Approx. cartridge price (US$) 6 8

Table 1: Specifications for two robotic tape systems. Important common characteristics: very long user-
visible latencies, large capacity, and very low cost per byte.

3 User Model

This section describes the Jaquith user model. The model defines how the user will

conceptualize the storage server. The important features are described below: whole-file operations,
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versions, wildcard queries with abstracts, and logical archives.

3.1 Overview

To the user, a Jaquith archive is a series of snapshots of the disk file space taken at various

points in time. Snapshots are created by “putting” whole disk files to the archive with the jput

utility and retrieved by “getting” them with the jget utility. The utilities never manipulate pieces

of a file.

The disk name space is preserved in the archive by the snapshot operation. Files are

stored in the archive with their original disk file names and the hierarchical relationship between

directories and their files is maintained.

The snapshot operation creates a new version of a file (or directory) in the archive which

is distinguished by a time stamp. Previous versions are not replaced, but remain accessible. No

data is ever deleted from the archive.

Figure 1 shows a small disk namespace and a corresponding Jaquith archive. The two

namespaces are largely identical, but there are multiple versions of several files in the archive.

There are also files in the archive that have been deleted from disk, and files on disk that have never

been archived.
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Figure 1: Jaquith user model. On the left is the current filesystem for a small disk. On the right is the
corresponding Jaquith archive. The archive has multiple versions of directory B and file C, and no copy of
file H. File E has been deleted from disk, but old versions are still present in the archive.

3.2 Whole-file Operations

A fundamental decision was made to move whole files between the user and the archiver.

The interface to the user is “put” and “get”, not “open”, “read”, “write” as in a typical disk file
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system. This model is not only easy to implement and understand, but adapts well to the hardware

and software environment.

Moving whole files to tapes keeps tape motion operations to a minimum and increases

performance. Complete files are written in contiguous blocks onto the end of the tape, causing no

unnecessary tape motion. In contrast, a partial-file model would write parts of files onto the end of

the tape in a piecemeal fashion. This would result in fragments of a single file being spread across

a large span of tape, or worse, across several tape volumes. Retrieving the data would then require

multiple seek (or load) operations to reconstruct the file, and would pay a very high performance

price. Table 1 shows the large time penalties for performing tape seek and load operations.

Furthermore, Unix file access patterns are well suited to a get/put scheme. Measurements

have shown that Unix files often have sequential access patterns, and are frequently read in their

entirety [7, 19]. These patterns suggest that our simple whole-file access model will work well in

this environment.

While a whole-file interface is natural at the tape level, it is not the only possibility at the

user level. One possibility is to use the whole-file tape transfers as a base on which to build an

NFS-like filesystem interface. A migration mechanism would move whole units from tape to disk

where they would be modified by read and write commands. Modified files would be flushed back

to tape as whole units when the disk cache became full. Such an NFS interface has two drawbacks:

it cannot support multiple file versions and it makes latency unpredictable to the user. Jaquith’s

whole-file interface provides multiple file versions and consistent performance.

Additionally, an NFS interface with a successful migration policy should do intelligent

prefetching, construct file summaries for quick browsing, and be integrated with the kernel. The

first two item are research topics beyond Jaquith’s scope (see for example [11]), and the last requires

system dependencies (mostly in the file descriptor to know whether a file is on disk or not) that we

wanted to avoid.

3.3 Wildcard Queries

Two utility programs, jput and jget, are used to move files between the archive and

the disk. Jput takes as arguments a list of file names and copies the disk files to the archive. Jget

takes a list of file names and copies the files from the archive to the disk, restoring their original

disk names.

When retrieving information with jget, it is possible to specify the files to be retrieved
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using several different selection criteria. The criteria are logically ANDed together, so only files that

match all the criteria are retrieved from the archive. Jget requests are called wildcard queries and

support four types of selection criteria on the command line. The following discussion describes

each of the criteria with example queries.

� File name pattern
� Date specification
� Version numbers
� User-specified text tag (abstract)

The basic retrieval criterion is the file name pattern. Jaquith file name patterns follow the

Unix globbing model as described in the reference manual pages for csh. In brief, globbing is a

weak form of pattern matching where a single character in the pattern can represent many characters

in the actual file name. For example:

jget example1

retrieves the file example1 and

jget example?

retrieves all files that have an 8 character name beginning with the 7 characters ’example’. Jaquith

uses Unix globbing instead of the more powerful regular expression pattern matching because the

shell languages have made it the defacto standard for file name matching in the Unix world.

In addition to file name patterns, wildcard queries can give date specifications. Date

specifications are used to restrict retrievals to specific date ranges. While the previous example

retrieved the latest (most recent) version of example1 in the entire archive, the following query

retrieves the version that was current as of July 12th 1990:

jget -asof 12-jul-1990 example1

and this query restricts the range even further:

jget -range (1-jul,12-jul-1990) example1

Older versions of a file are retrieved with version numbers, positive integers that specify the first

and last versions to be retrieved. Any range of versions can be retrieved with this facility. For

example, the oldest version can be retrieved with

jget -first 1 -last 1 example1

and all versions except the first can be retrieved with

jget -first 2 -last -1 example1

The ’2’ indicates the second copy of the file, counting from the front of the list of versions, and
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’-1’ indicates the first copy counting from the rear of the list. With this notation users can refer to

the end of the list without having to know how many copies currently exist in the archive. This is

particularly useful for writing retrieval scripts that must run under different archive conditions.

Files are not assigned permanent version numbers since we believe that they would have

little meaning to the user. Who can remember what version example1 had when it was archived

last July? Instead, we think that users will browse the archive using the other selection criteria

and then request a particular version from the resulting file set. Consequently, a wildcard query is

processed in two steps. A set of files is produced ignoring the version numbers, but that matches all

the other selection criteria. Then a version number is logically assigned to each file in the set and

the version specifiers are applied to produce a final set of files. For example:

jget -range (1-jul,12-jul-1990) -first -2 -last -1 example1

restricts the date to the specified range, producing a set of candidate files, and then retrieves the last

two versions from that set, if they exist.

3.4 File Abstracts

In addition to the file name, date and version selectors already mentioned, jget has an

additional selection criterion, called an abstract. An abstract is a user-specified tag that is attached

to each file or directory as it enters the archive. The abstract is free-form human-readable text; it

need not have any particular structure (though it is limited to 16 KB) and is not interpreted by the

system. Tagging files with meaningful abstracts at archive time makes it much easier to browse the

archive at a later time. For example:

jput -abs "version 1.0" source.tree

archives the user’s source tree, tagging each file with the abstract “version 1.0”. A more powerful

use of abstracts is

jput -absfilter file source.tree

which invokes the Unix file utility to generate a tailored abstract on the fly for each file as it is

archived.

With tagged items in the archive, users can retrieve arbitrary subsets of their data using

regular expression pattern matching. (See the Unix documentation for grep for a complete

description of regular expression metacharacters.) Using regular expressions makes it easier to do

“approximate searches” in the archive. For example:

jget -abs "[Vv]er*1.0" source.tree
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retrieves the version of the user’s source tree that was archived in the example above.

Using abstracts with regular expression searching is preferable to other forms of “content

searching”. The common alternative is to keep the firstN blocks of the file on disk at all times. For

many files the front of the file is not a good indicator of the file’s contents or version. Also, storing

4 KB per file consumes massive amounts of disk space; abstracts are smaller and consume no space

when they’re not needed. Abstracts are more flexible than a fixed-block system. For example, a

group of previously unrelated files can be assigned a common abstract that effectively ties them

together for easy retrieval.

Jaquith has an additional utility, jls, with all the features of jget, that retrieves only

a file’s descriptive information (metadata), not its contents. The jls command mirrors the Unix

shell’s ls command and helps users locate particular files or versions of files before actually

restoring them with jget.

3.5 Logical Archives

Jaquith supports the partitioning of the physical archive into disjoint domains called

logical archives. Conceptually, a logical archive is a private storage area within the physical

archive with its own name space. Files in one logical archive are completely independent of

those in another archive. In fact, the same file may exist in several different logical archives

simultaneously. wildcard queries are always directed to a single archive; they do not span archives.

Physically, logical archives maintain their own set of volumes within the jukebox. Once a volume

has been allocated to a logical archive, it is never retracted or shared.

Partitioning the physical archive into logical archives has several benefits. A logical

archive is an administrative unit. All files related to a specific person, group, or project can be

grouped together into a a single archive which has its own set of tapes. This makes it possible

to remove the group’s data from the physical archive when the project ends or the user leaves the

organization.

The enforced locality also makes searches through the index faster and reduces the

number of tapes mounted and scanned. For example, retrieving all versions of a file which have

been archived over a long period of time is likely to be much faster with logical archives than

without.

The logical archive is also a valuable protection unit. Jaquith does record protection on

a file basis but this is not sufficient. For example, a public logical archive can be made private
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by the Archive Administrator without having to worry about the permissions of individual files.

As a second, more severe, example consider a situation where nightly system backups are done to

one large, public archive. (If the archive is not public the tape system is not interactive because

users must still request operator intervention to retrieve their own file.) If a user accidentally leaves

a private file unprotected for even a short period of time during which it is archived (with that

protection), it becomes publicly readable for all time. Large disk-based systems do not suffer from

this problem because the security window can be closed as soon as it is detected. With write-once

media the security hole is permanent. Logical archives help solve the problem by letting scripts

backup files to specific private archives. Full system dumps may also be done to a secure logical

archive as a fall-back.

3.6 The X-based Browser

This section describes an alternative client interface to the Jaquith system called xjaq for

X-Jaquith. The motivations for a second interface are to expand Jaquith’s appeal and to experiment

with the Tcl/Tk [17, 18] interface-building tools.

The jget, jput, jls programs described in the previous section, along with the status

utility jstat comprise Jaquith’s command line interface. A command line interface is a powerful

tool for advanced users who are interested in creating automated script files, but it is a daunting

obstacle to casual users. Casual users will gladly trade some flexibility and power for simplicity

and guidance.

Xjaq is a browser utility that runs in theX environment. It merges most of the functionality

of the jget, jput, jls commands into a single program. Whereas the command line interface

is based on the concept of a query, xjaq is based on the concept of a view. The query interface

marshals all its arguments, scans the archive, and gathers a set of (potentially disparate) files which

match the criteria. In contrast, the viewer interface presents the user with a view of the current

working directory within the tertiary namespace. From this current location, the user can move

up and down through the tree hierarchy, viewing one directory’s worth of files at a time. Figure 2

shows the main xjaq viewer screen.

The details of any particular view can be customized by the user using buttons, pull-down

menus, and other graphical interface elements. For example, the quantity and format of information

displayed for each file can be tailored by the user. Also, the set of files displayed in the directory

viewer can be restricted by the use of various filter parameters, including date, owner, filename
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Figure 2: The main xjaq viewer screen. The scrollbox of files is in the center of the window. Along the top is
a series of pull-down menus in the Motif style. At the bottom is an optional “speed-bar” of useful functions.
The Actions menu provides access to jget and jput features.

extension, etc. Filter parameters mask certain files from view, thus simplifying the display. Setting

the filename filter to *.tex would restrict the viewer to TEX documents.

In addition to the main view screen, there are secondary screens for invoking backup

(jput) and restore (jget) functions. Users can browse through tertiary store, select some inter-

esting files with the mouse, and then invoke the restore function with a button click.

Because the directory-at-a-time viewport is sometimes too restrictive xjaq also includes

a separate find screen for large-scale searching. Wildcard queries issued from this screen will

generate a list of results in the find window, independent of the main viewer.

The browser interface is simpler than the command line interface. While it has slightly

restricted functionality, and relies on the command-line utilities to carry out Jaquith operations,

it enjoys all the benefits of the X environment including display independence, point-and-click

operation, and customization.

4 Server Design

The following sections describe the main components of the Jaquith system starting with

the process architecture and finishing with the major subsystems. With the exception of the physical

tape layout, the design has not been specialized for use with a tape robot. An optical jukebox would

work as well or better.
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4.1 Overview

The overall Jaquith system structure is shown in Figure 3. From right to left, the three

main divisions are: the client programs, the Jaquith server, and the jukebox manager. The three

parts communicate using the Unix socket mechanism [1].

mgr Server

Buffer Index

Client

Client

Client

Jukebox

Figure 3: The Jaquith process structure. From right to left: Users run the clients programs jget, jput
at their workstations. The server spawns processes to handle client requests which perform indexing and
buffering. The Jukebox manager is responsible for physical device allocation.

Users at workstations on the network run the client programs jget, jput, and jls.

These programs request service from the central Jaquith server by connecting to a public socket.

In fact there may be several Jaquith servers on the net so the client must choose the appropriate

one. Clients are ignorant of all other Jaquith details including the nature of the physical archive, the

volume number where their data is stored, and the other users of the archive.

The Jaquith server, in the middle of Figure 3, is responsible for answering client requests

by spawning a handler process: each jput request generates a writer process; each jget and jls

request generates a reader process. The handler processes share the local disk for buffering user

data and for managing the on-line index. A reader process converts a user file name to a buffer

number using the index and then extracts the file from the buffer, bringing the buffer from tertiary

storage into the buffer pool, if necessary. A writer process appends new user data to the current

buffer and updates the corresponding index file entry. Independent cleaner processes write full

buffers to tertiary storage, see Section 4.3.

The Jukebox manager is the back-end of the Jaquith system. Its primary purpose is to

control access to the shared Jaquith resources: robot arm, volumes, and volume readers. A Jaquith
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process that needs access to tertiary data issues an RPC to the Jukebox manager, which enqueues

it. When the specified volume has become available and has been loaded into a volume reader,

the Jukebox manager returns control to the caller. In the testbed, RPC queuing is first-come-first-

served, but this policy can be changed. Once allocated, a volume and its associated reader cannot

be preempted.

A secondary goal of the Jukebox manager is to hide the physical attributes of storage

devices from the rest of the Jaquith system; this goal was compromised slightly in the interests of

performance. The Jukebox manager completely hides the physical location of the volumes in the

cabinet and the activity of the robot arm. However, it exposes the volume reader to the caller so the

caller can manipulate the device directly. Allowing the caller to open and write to a device directly

improves throughput since the Jukebox manager does not need to set up or manage a data channel

between the caller and the device: it is simply a lock manager. However, allowing direct device

manipulation means that the Jukebox manager and its callers must be running on the same machine,

so that they can share the devices.

The following sections describe the major server components: tape layout, buffering,

indexing, and synchronization.

4.2 Tape Layout

Tape layout is critical because it directly affects the performance of the tape drive hardware

and because it is the base on which the higher Jaquith software relies. If the high-level software

fails or is unavailable, system administrators will be forced to deal with the raw tape format.

A first decision was that the tape layout should adhere to some Unix system standards

so that tapes can be exchanged between sites and read with standard Unix tools, when necessary.

Consequently, all Jaquith data is written to tape in POSIX tar (Tape ARchive) format [2]. The

tar format has a 512 byte overhead per file but this is balanced by its convenience and portability.

More serious is its limit of 255 characters for full file pathnames and its 100 character limit for link

pathnames. For the testbed, these values were accepted and warning messages are printed if they

are exceeded.

Jaquith uses a standard tar format at the low level, but imposes a higher level structure to

take best advantage of the hardware features. The features of importance are the sequential access,

the long latency for hardware filemarks, and the high-speed search feature.

The tape medium is a sequential access medium and does not support update-in-place
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operations. (Some 4mm DAT tapes can be pre-formatted to allow update-in-place operations but

performance and capacity are sacrificed, see [27]. This dataDat mode has not caught on and neither

8mm nor VHS tape supports it.) The design of the tape layout cannot include rewritable index

blocks, or updatable data.

Hardware filemarks are the universal file separator for tape systems. A filemark is a

unique bit pattern created by a specialized write command that is distinguishable from all user data.

The latency to create a filemark, the space it consumes on tape, and its internal format are properties

of the hardware and cannot be altered.

A high-speed search feature is available on both the Exabyte and Metrum readers. The

search feature lets the hardware locate a particular filemark without having to read the intervening

portion of the tape. Searches can be done in both the forward and reverse directions.

Jaquith takes advantage these features by formatting a tape as a series of large data units

separated by hardware filemarks. New data is written in large I/Os to the end of the tape followed

by a new filemark. Old data is retrieved from tape by using the high-speed search facility to locate

a specific filemark. The data immediately following the filemark is staged back to disk as a single

unit. Once on disk, the unit is broken open and the required user file is extracted.

There are two types of data units on a Jaquith tape: buffers and headers. Every even

numbered data unit is a buffer that holds user data packed in tar format as detailed in the next

section. Each intervening unit is a header (also in tar format) that contains a copy of Jaquith’s

indexing information for the user files in the adjoining buffer. If the Jaquith disk structure is

destroyed the header files provide a backup. See Figure 4.

Header 1 Buffer 1 Header 2 Buffer 2

Filemark

Figure 4: Jaquith tape layout. The tape consists of a series of variable-size units separated by hardware
filemarks. Every other unit is data buffer which contains user data packed into tar format. The intervening
units are headers that contain the indexing information for all the files in the associated buffer.

Filemarks are the critical aspect of Jaquith’s tape layout. They are the only feasible way

to navigate quickly on tape, so they are essential. (Some tape hardware supports a block-level

search, but this is not universal.) A tape format with many filemarks will position itself to the

desired buffer more precisely than one with few filemarks. On the other hand tape marks consume

space and hurt write performance. On an EXB-8500 drive a single tape mark consumes 48 KB of
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space (more than twice the size of a typical Unix file; see Table 3), so writing data in small units

separated by filemarks will significantly reduce volume capacity. Filemarks on older Exabyte 8200

drives are even worse – 2.2 MB each [5].2 Reducing the number of filemarks also saves write time

since writing a single filemark takes about two seconds on the Exabyte 8500 and eight seconds on

Metrum RSP-2150.

Interleaving data buffers and metadata headers is superior to placing all the metadata at

the end of the tape. An end-of-tape strategy requires rewriting the metadata after each new buffer

is appended to tape. As the amount of data grows, this becomes a significant overhead. With the

interleaving strategy each buffer is self-describing since its associated metadata is directly adjacent.

A premature end-of-tape indication (due to media failure or software error) will not render the

entire tape useless, as would a single end-of-tape index. A single front-of-tape index is not feasible

because the tape does not support update-in-place operation. There is no way to grow the index as

data buffers are added to the tape.

In normal operation, Jaquith ignores the metadata and seeks directly to the buffer contain-

ing the users’s file. (The conversion of user file names to buffer numbers is done by the indexes as

described in the next section.) In the event that a Jaquith disk index becomes corrupted and needs to

be rebuilt, the metadata can be extracted efficiently by using the drive’s high-speed search feature

to skip from filemark to filemark directly. If individual buffers were formed by writing a file’s data

and metadata together, the entire tape would have to be read to extract the index. A sequential scan

of either an Exabyte or Metrum tape is a multi-hour process.

Each tape is self-contained: There is no “master tape” responsible for the entire archive’s

indexing information. Such a tape would be a single point of failure for the system. A master tape

would also be a bottleneck, limiting parallelism for systems with many tape drives (all needing

to do index operations simultaneously). Conversely, a master tape would permanently consume a

precious tape reader in systems with only a few readers. Another major benefit of self-contained

tapes is the ability to remove an individual tape from the Jaquith system easily. Tapes need to be

removed when the physical archive is full, and when a user wants to take her data traveling.

4.3 Buffering

The previous section described how buffers are arranged on tertiary storage. This section

describes how buffers are managed on disk. Figure 5 shows the buffering strategy. First, the

2In Exabyte terminology, 48 KB is the size of the rewritable or long filemark. A terminating, short, filemark is 1K;
data cannot be appended to it so it is useless.
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mechanisms for creating and managing this strategy are described, and then motivations for the

design decisions are presented.

Buffer
New

Buffer
New

Buffer
New

Buffer
Old

Buffer
Old

Buffer
Old

Cleaner

Reader

Writer

Figure 5: Jaquith buffer handling. Client data is packaged by a writer process into buffers and appended to
the new-buffer queue. The new-buffer queue is emptied by a cleaner process which writes buffers to tape
in sequential order. There is also an old-buffer pool managed using least-recently-used replacement. Reader
processes may satisfy client jget requests from either buffer pool.

Every logical archive is an append-only log composed of a sequence of data buffers

numbered 0 toN . Buffers are created and filled with user data on the fly; they are not preallocated.

Only the last buffer is active and receiving new user data. The active buffer is packed with incoming

files until it is “full”, that is, until it has passed the target buffer size, typically two megabytes. User

files are never split across buffers, so the active buffer may grow beyond its target size.

All user data that is bound for the same logical archive is packed sequentially into the

active buffer. This means that data archived by different clients may be put in the same buffer, if

the first user did not fill the buffer. As soon as the last of the user’s data has been buffered on disk,

the jput operation is considered complete and a “success” status is returned to the client program.

Buffering is the point at which Jaquith takes responsibility for the user file. Jaquith keeps

the state of the active buffer in a log file and updates it only after each user file has been appended

and indexed. If a disk or network failure occurs while appending to the buffer, the log file will

not be updated to reflect the new buffer status. The next write to the buffer will use the old status,

overwriting the partial file and effecting a rollback. The client receives a confirmation on each file

so it knows how many files were successfully archived.

Full buffers are subsequently written to tertiary storage and removed from disk by special

cleaner processes. A cleaner process is spawned when disk consumption reaches a high-water level

and terminates when the disk has been cleaned down to a low-water mark. (Users can explicitly
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request synchronous writing to tape at a severe performance penalty.) Until they are written out,

these buffers reside in the new buffer pool where they can be read by reader processes if necessary.

A buffer/header pair represents the unit of failure at the tape level. If either part of the

pair fails to be written, the failure is noted by Jaquith and the pair is retained on disk.3

Reader processes satisfy user jget requests by looking for the desired buffer in the disk

buffer pool. If the buffer is not there it restores it from tape to the pool.

The purposes of the buffer design are threefold:

� To improve throughput by using large I/O operations,
� To minimize robot activity via the cache, and
� To balance response time against disk space use.

Clearly, packing user data into buffers is necessary for good I/O performance. Large I/Os

are more efficient than small ones and the cost of preparing a volume (loading and seeking it) is

too high to justify many small I/O operations. The overriding factor driving the choice of buffer

size is the hardware-dependent filemark, as described in Section 4.2. Large buffers use fewer tape

marks reducing space overhead and improving write performance. Buffers on the testbed were set

to 2 megabytes for the Exabyte readers. With a 12 KB header file and a 48 KB filemark this yields

about 2000=(2000+ 12 + 48 + 48) � 100 � 95% volume utilization.

The overhead to move a two megabyte buffer in order to satisfy a small user file request

is justified by an assumption of temporal locality. We believe that users will archive and retrieve

data on a directory basis. This means that buffers will typically be collections of files from the same

disk subtree, and that each buffer will be used to satisfy multiple file requests as the directory is

restored. Whether or not this assumption has merit will be proved by the testbed.

Jaquith’s LRU buffer cache helps minimize device activity. As Figure 5 shows, the cache

includes old buffers previously read from tape and new buffers not yet removed by the cleaner.

This cache can be used to satisfy jget requests without causing any tape or robot motion. The

effectiveness of the cache depends on the amount of disk space available versus the archive reference

pattern.

The target buffer size can be set differently for each logical archive. Larger buffers

increase latency to the user and use more disk space, but amortize overhead costs over more data.

3Data may be lost even though the write to tape succeeded. Both Exabyte and Metrum drives have internal buffers
and the SCSI firmware returns a success message when the last data byte is received by the buffer, not after it has been
written to tape. Neither drive will run with a buffer size of zero bytes.
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Item Size (bytes) Item Size (bytes)
Simple filename 12 Owner name 8

File size 4 Group name 8
Permissions 4 Link name (soft links only) 40

Last access time 8 File list (directories only) 100
Last mod time 8 Buffer number 4

Archive time 8 Offset within buffer 6

Table 2: A Jaquith index record. This table lists the indexing information that Jaquith stores for each archived
file or directory. Directory entries contain a list of the files residing in the directory, so they tend to be larger
than file entries. All index data is stored in ASCII.

4.4 Indexing

This section describes the structure and content of the indexing information that Jaquith

maintains for each user file. The main purpose of the disk index is to let users browse the archive

without making any accesses to tape, since each access is noticeable by the user. A backup copy of

the disk index is maintained on tape in the header data unit, as described in Section 4.1.

For each file archived, Jaquith creates an index record of approximately 70 bytes which is

used for responding to lookup queries. Table 2 shows the record items that Jaquith stores for each

file. The precise size of the index entry depends on the type of file being archived. Index entries

for directories are substantially larger than entries for regular files because they contain a list of the

file and subdirectory names.

The price paid for quick lookup performance is disk space. Even at 70 bytes/entry, an

Exabyte jukebox can consume a 2 GB disk with indexing information. Using Tables 1, 2 and 3 we

can make some assumptions and do a quick calculation about index space. Assuming an average

file to be 12 KB, the ratio of files to directories to be 10:1 and index entries to be 70 and 170 bytes for

files and directories respectively. Then, the Exabyte has an upper bound of (116 �5GB)=12KB � 50

million files and a total index space consumption of (50M � 70B) + (5M � 170B) � 4:4 GB. Actual

experience shows that the index space is about three-quarters of one percent of the total bytes

stored, includingtar overhead but not abstracts. This check corroborates our back-of-the-envelope

calculation: 560GB � 0:0075 � 4:2 GB of space.

Our index scheme was designed for the half-terabyte Exabyte jukebox. The larger Metrum

jukebox would consume (600 � 14:5GB � 0:0075)=2GB � 32 two-gigabyte disks with indexing

information, which is infeasible. Jaquith should either compress the index or store it on tertiary

storage and cache the the active index information on disk.
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Source code disk User disk 1 User disk 2
Total # directories 3961 3321 5400
Total directory space in KB 4393 3951 6892
Total # files 26377 35828 66257
Total file space in KB 863884 394937 838589
File size in KB 28/3/55 (185.0) 11/2/16 (76.2) 12/2/19 (98.9)
Pathname length 50/51/61 (8.3) 35/33/50 (10.2) 52/55/70 (15.2)
Filename length 10/11/16 (3.8) 8/8/15 (4.2) 10/10/16 (4.4)
Files/directory 7/4/19 (12.9) 8/3/21 (37.7) 12/7/22 (26.0)
Non-zero dirs/directory 2/2/6 (3.6) 3/3/7 (5.9) 6/3/16 (10.7)

Table 3: Statistics for three Unix file systems. Notation: X/Y/Z shows average value, 50th percentile, and
90th percentile while standard deviations are in parentheses. Values were gathered by a scan of the static
filesystem; statistics weighted by file use may be different.

A simple access method governs the reading and writing of index records. The client’s

tree structure is replicated on the indexing disk as a subtree of the logical archive’s root (slash).

When a file is put into the logical archive, its pathname is broken into components and the full tree

structure is constructed on the indexing disk, leading down to the subdirectory where the file would

reside. In place of the file itself, however, is an index file jaquith.files that contains an

index record for every file located in that directory. Record entries are appended to this index file

each time a file from this directory is archived. Figure 6 shows the structure created for a simple

disk name space.

Managing the index file as a log lets readers and a writer share the index file without any

locking. (At worst, a reader may get an incomplete last entry, which it discards.)

The use of a standard Unix tree structure, coupled with the fact that all information is

stored in ASCII, means that the index can be read and repaired using standard Unix tools (find,

grep, etc.). Since the index is crucial to Jaquith’s behavior, and it is the most exposed part of the

system, designing it for easy maintenance by people is worthwhile. The index can be placed on a

disk array for even more reliability.

The indexer strategy is quite simple; it is based on the same hypothesis that supported the

assumption of locality within data buffers, namely that users will tend to use the disk directory as a

file grouping mechanism. With this assumption, the indexer will have good performance. It keeps

the metainformation for files in the same disk directory close together in the index and it keeps

all versions of the same file in the same jaquith.files file. Therefore, the time to answer

a client query is independent of the query options (date, owner, abstract, etc.), provided that the
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Figure 6: Jaquith indexing structure. On the left is a hypothetical disk name space. On the right is the
corresponding index structure. The disk structure is copied beneath the logical archive, and each leaf file is
replaced by an entry in the file jaquith.files. For example, mottsmth/ jaquith.files contains
an entry for both dir1 and fileA.

query specifies a directory. The indexer simply opens and scans one index file to answer any such

query. However, the time is dependent on the amount of data in the file, since the file has no internal

structure and must be read in its entirety. Queries with wildcard characters for the directory name

will be slow since Jaquith maintains no auxiliary indices and will have to scan a large part of the

archive index. An access method on the abstract field might be a valuable addition if it turns out

the users often do large non-directory-based queries using abstracts.

One way to add multiple access methods is to use a relational database system (RDBMS)

to do all the indexing. Using a full RDBMS with a query language would make it possible

to research various indexing techniques (for example [23]), but wouldn’t contribute to Jaquith’s

immediate goals. We considered using the Postgres RDBMS [26, 25] for the initial testbed, but its

size and complexity did not seem to warrant its use. For example, Postgres version 4.0 has a storage

overhead of 50-60 bytes/tuple [16], which would almost double the size of a standard index entry.

Requiring the installation of a full DBMS would make Jaquith much less portable.

4.5 Synchronization

Parallelism is achieved by the use of multiple reader and writer processes. Multiple

readers are always allowed and multiple writers on different logical archives are allowed. However,

for a given logical archive there can be only one active writer process because there is only a single

write point on the archive, namely the end of the log.
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The single writer limitation is enforced by the server process, rather than by mutual

coordination among writers using locks. While a writer is active, the server enqueues all incoming

jput requests for the same logical archive. Each of these requests is converted into a writer process

when the previous writer completes. Each writer process can perform indexing and buffering without

the complexities and overhead of locking since it has no competitors.

Locking is necessary to avoid inconsistencies between writer and cleaner processes (or

between multiple cleaners). Jaquith uses lock files for interprocess coordination. These short-term

locks add some filesystem overhead but do not significantly limit throughput since they are held

just long enough to update Jaquith’s buffer-location information. Until Jaquith has updated this

information and flushed it to disk, it cannot delete the disk copy of the buffer.

4.6 System Administration

Jaquith system administration is concerned with (1) configuring the system, (2) monitoring

activity, and (3) maintaining the physical and logical resources. Items (1) and (2) are controlled

by configuration and logging files, and their use is straightforward. Appendix I describes each file

and its purpose. This section focuses on item (3) and the three administrative utility programs for

managing Jaquith resources:

jctrl — Manages the physical jukebox.
jcopy — Duplicates physical volumes.
jbuild — Rebuilds the on-line index.

Collectively, these utility programs keep Jaquith’s world, as described by its files, coordi-

nated with the actual state of the real world. Each utility is run by the Archive Administrator at the

server’s site (there are no remote administration facilities), and performs the following functions:

Jctrl provides manual control over the jukebox when the jukebox manager is not

running. Manual control is useful for resetting the system to a known physical state before putting

Jaquith on-line. For example, it might be necessary to unload a volume from a reader:

jctrl -cmd unload -vol 123 -dev /dev/nrmt3a

unloads volume 123 from the specified device and returns it to its slot in the jukebox. Volumes can

be completely removed from the jukebox, if the jukebox has an entry/exit port. Jctrl is careful

to update the Jaquith support files which describe the volume’s current status when it removes a

volume.

Jcopy is used to perform a full volume-to-volume copy operation. A volume-copy
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feature is important because tapes have a limited lifetime, determined by usage patterns and storage

conditions. Archived data must be rolled forward from old tapes to new tape periodically. A typical

invocation:

jcopy -v -srcvol 1 -destvol 101

acquires two readers from the jukebox manager and copies volume 1 to volume 101. Elapsed time

is several hours for a full tape. The source volume is unavailable during this period, but Jaquith

remains on-line otherwise. Presently, Jaquith has a mechanism for doing the copy, but no policy

for deciding when to do the copy. It would be valuable to add usage counters to Jaquith’s device

module. These counters would record the number of tape loads, unloads, seeks, reads and writes

on a volume-by-volume basis. The counters would not only guide the Archive Administrator in

copying tapes, but would also confirm (or not!) manufacturers’ claims about tape reliability and

shelf-life.

Jbuild rebuilds Jaquith’s disk index structure from the header units stored on tape. A

complete or partial rebuild is possible, as determined by command line parameters. Files can be

restored by name, buffer number, or date, as necessary. For example:

jbuild -matchpath "/home/mottsmth/src/*" -dev /dev/nrmt3a

reads the volume in the specified device and rebuilds the index entries for all files which match the

given pathname. Restoring the complete index for a 400 MB file system (approximately 40000

entries in 200 files), takes about 35 minutes.

The Jaquith testbed does not tackle two additional topics which are related to system

administration: quotas and security. These are described below for completeness.

The Jaquith testbed provides no quota system. Any client who has been granted write

access to some logical archive can fill the physical archive to capacity by consuming all the volumes

in the global free-volume pool. Such greediness will use enough CPU and network resources that

an Archive Administrator will probably notice the activity, but there is currently no automated way

to prevent this. (Jaquith does automatically send mail to the administrator when the number of

free volumes drops below a threshold.) Either of two automatic quotas systems seems reasonable:

(1) limit the number of files (or bytes) that a user can write to an archive in one day, or (2) preallocate

a certain number of volumes to an archive. The first solution resembles some Unix printing quota

mechanisms. It is a soft limit used mainly to discourage resource hogging (paper or tape drives).

The second solution imposes a hard limit on the archive, but not necessary a specific user.

The testbed’s second weak area is its security. The security model is simplistic and the

base on which it is built is insecure. The model is weak because it treats login names as unique
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identifiers. We recognize that login IDs are not unique and that this is naive for a large network

with many (possibly duplicate) user names.

The model is built on the Unix privileged port mechanism, which is known to be insecure.

Jaquith client programs are installed with setuid root privilege, and then call the server on

a privileged port. The server trusts all callers who use a privileged port to be who they claim to

be, using their hostname and username to do validation. The MIT Kerberos project has solved the

authentication problems in a networked environment [24] and Jaquith should be “kerberized” for

better security.

5 Performance

Jaquith’s performance has two distinct parts: (1) packaging user files into disk buffers with

associated index information and (2) writing full buffers to tertiary storage. Part one is dominated

by the cost of synchronous disk writes to guarantee the durability of user data. If the guarantees are

disabled then Jaquith’s latency is about 1.5 times that of tar. Part two is dominated (on both tape

systems) by the cost of writing hardware filemarks. Filemarks take several seconds each to create,

but act as “search markers” to make retrievals much faster. The read and write performance of the

two parts are discussed in more detail below. Further information about the testing environment is

in Appendix II.

5.1 Performance of Disk Buffers

Jaquith buffering performance is most easily compared to the tar utility since it serves

much the same purpose and uses the same data format. To compare tar with Jaquith, two sets of

source data were prepared: one with a single 10 MB file, and the other with a balanced 10-ary tree

of 1000 files, each 10 KB long. Tar packaged the 10 megabytes into a single tar file on a local

disk. Jaquith packaged the data into two-megabyte buffers with an associated header file.

Table 4 compares tar with Jaquith for the two test cases. Six runs were made for each

test case, two with tar and four with Jaquith. Tar was run first in standard mode and then with its

output forced through a socket. For this purpose, two very simple TCP socket stubs were written

in C. The data from tar was piped to one stub which copied it across the socket to the receiving

stub, which wrote it into a local disk file. The Jaquith runs varied the two parameters index and

fsync. The index option tells Jaquith to do an index lookup on each file to determine whether or not
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it has been modified since it was last archived (that is, it does an incremental dump). The client

waits for a synchronous go-ahead message from the server in this case. No index does a full dump

so no lookups are done; Fsync means that Jaquith should maintain database semantics by forcing

all buffer and index changes to disk before updating the log file; no fsync means that Jaquith should

run without any guarantees of durability (though it still performs an fsync when it closes each

buffer). For the 1000 file case Jaquith wrote about 124 KB of indexing information.

1 file 1000 files
Buffer write test of 10 MB of 10 KB
tar 27.1 (0.15) 51.9 (0.42)
tar – with socket 22.1 (3.56) 60.9 (0.84)
Jaquith – no fsync, no index 29.8 (0.28) 72.9 (0.99)
Jaquith – no fsync, index 29.6 (0.41) 84.4 (0.55)
Jaquith – fsync, no index 29.9 (0.09) 219.0 (1.57)
Jaquith – fsync, index 29.8 (0.03) 238.6 (1.45)

Table 4: Buffer write performance. This table shows the time, in seconds, to package 10 MB of data using
tar and Jaquith. Two scenarios are given: a single file of 10 MB, and 1000 files of 10 KB each. No
index indicates that Jaquith archived the data without doing any index lookup operations; index indicates that
Jaquith checked the index before determining that the file needed archiving. Fsync indicates that Jaquith
performed an fsync operation after each file to guarantee data consistency; no fsync means that Jaquith did
an fsync only when the buffer was closed. Standard deviations are in parentheses.

The tar results make two points. First, the network overhead is minimal. This is

expected because the client and server were running on the same machine. There is no actual

transmission time, only software socket overhead. Second, packaging 10 MB from 1000 files is

slower than from a single file: 369 KB/second vs. 193 KB/second. This drop in throughput is due

to the extra stat and open operations.

The Jaquith results show that Jaquith is competitive for large files but its per-file overhead

diminishes its performance in the multiple file case. With multiple files, its throughput ranges from

137 KB/second in the best case to 42 KB/second in the worst case.

The overhead in the optimum (no index, no fsync) case is due to general bookkeeping.

Bookkeeping involves the management of four I/O streams: the buffer, the header, the log file and

the index file. The data is copied to the buffer stream, the index information is copied to the header

and index file streams, and then the log is updated to record the transaction. The log record is

necessary for roll-back in case the client or network crashes while a file is being processed.

The index parameter adds a fixed cost for the synchronous client-server handshake plus

overhead time proportional to the size of the index file ( jaquith.files file) since it must read
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and parse the entire file to do the lookup. The tests in Table 4 were run with a null index so file

processing time was a minimum. To assist more realistic situations, Jaquith caches the last index

file it has read so that sequential lookups from the same directory do not repay the file I/O or parsing

costs.

The huge overhead in the worst cases is due to the cost of synchronousfsync operations.

The cost of a single fsync is roughly 40 ms and Jaquith must do four of them (one for each I/O

stream) for each user file in order to guarantee that the file has been archived. This increases the per-

file overhead from about 50 ms to 210 ms with a corresponding drop in throughput. A command-line

argument lets the Archive Administrator control the frequency of the fsync operations.

Jaquith’s overhead provides value that tar doesn’t offer. The indexing provides fast

file retrieval and the fsyncs provide guarantees in the face of crash recovery. Table 5 compares

Jaquith’s disk read performance with that of tar.

Retrieve one Retrieve 1000
10 KB file 10 KB files

Buffer read test from 10 MB from 100 MB from 10 MB from 100 MB
tar 9.1 (0.20) 80.3 (0.42) 67.3 (1.38) 138.2 (0.36)
Jaquith 1.0 (0.06) 1.0 (0.08) 82.5 (0.54) 81.9 (0.42)

Table 5: Buffer read performance. This table shows the time, in seconds, to retrieve 10 KB and 10 MB of
data from a group of files using tar and Jaquith. In the first case a single 10 KB file is retrieved, in the
second case a balanced tree containing 1000 10 KB files is retrieved. Standard deviations are in parentheses.

When retrieving single files, Jaquith’s performance is independent of the file’s location in

the archive; it knows the buffer number and the offset of the file within the buffer. Tar’s retrieval

time grows with the size of the archive since it scans the entire tar package to locate the file. When

retrieving whole subtrees of small files, Jaquith achieves a throughput of about 127 KB per second.

5.2 Performance of Tape

The second part of Jaquith’s performance is writing disk buffers to tape. Table 6 compares

the time to write a two-megabyte file to a prepared tape using a specialized C program and Jaquith.

The Exabyte time can be summarized as 3.5 seconds to copy the data and 2.8 seconds to

write the filemark. The corresponding values for the Metrum are 2.1 and 14.6. The times listed in

Table 6 are only approximate due to the large fluctuations in the physical tape handling on both tape

systems. For example, the 14.6 seconds for the Metrum is twice the nominal time. Repeated tests

show that Jaquith pays the nominal 7 seconds for the filemark after the header and 14 seconds for
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Tape write test Exabyte Metrum
C program – memory 4.2 (0.52) 2.8 (1.81)
C program – FDDI 4.2 (0.44) 3.3 (1.78)
C program – FDDI, fmark 6.4 (0.07) 16.6 (0.14)
Jaquith 8.8 (0.06) 25.0 (0.09)

Table 6: Tape write performance. This table shows the time, in seconds, to write two megabytes of data to
a tape drive under different conditions. The vanilla C program writes the data in 32 KB units three ways:
Memory indicates that the source is a memory buffer, FDDI indicates that the source is a remote NFS disk
served via FDDI, fmark indicates that the program wrote a file mark after the data. The Jaquith time includes
the buffer, associated header file (� 26 KB), and the two terminating filemarks. Standard deviations are in
parentheses.

the one following the buffer. The variations are probably due to the reader’s internal cache which

makes it hard to predict actual tape head motion and leads to large standard deviations in throughput.

Using two-megabyte buffers, Jaquith achieves approximately 235 KB/second throughput.

The large filemark penalty suggests that a larger Jaquith buffer should be used, perhaps 8

megabytes on the Exabyte and 32 megabytes on the Metrum. The increased disk space needed is a

minor inconvenience. The only other problem is the increased buffer transfer time, which may be

perceived by users who are retrieving single files and must wait for the read to complete.

In addition to the latency of the filemark, there is a huge cost to pick and load the tape,

followed by a potentially large seek penalty. These costs are measured in minutes and dominate

the actual write time. For good performance, it is important to correctly set the high- and low-

water marks which control the cleaner process so that tape loading costs will be amortized over the

writing of many dozens of data buffers.

The filemarks which limited write performance now provide fast read performance. Ta-

ble 7 shows the tape read performance (excluding tape load time). The values include the time for

Jaquith to seek past the filemark after the first header. Tar does no seeks. All values also include a

25-35 second delay that is characteristic of both tape readers after a rewind operation.

Jaquith uses the filemarks and the high-speed search feature to position the tape directly to

the correct buffer. Then it transfers the single buffer to disk and extracts the file. Jaquith’s retrieval

time is therefore dominated by tape seek time. In contrast, tar’s retrieval time is dominated by

tape read time since it reads the entire tar package from tape to locate the file. Searching is more

than an order of magnitude faster than reading for both Exabyte and Metrum systems so Jaquith’s

advantage increases as the amount of data increases.
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Retrieve one 10 KB file Retrieve one 10 KB file
from 10 MB on tape from 100 MB on tape

Tape read test Exabyte Metrum Exabyte Metrum
tar 54.0 (1.02) 53.6 (3.34) 253.7 (4.30) 173.5 (0.42)
Jaquith 40.8 (1.14) 39.1 (1.02) 40.6 (1.08) 38.8 (1.12)

Table 7: Tape read performance. This table shows the time, in seconds, to retrieve a single 10 KB file from
a group of files using tar and Jaquith. In the first case the file is being retrieved from 10 MB of data (1000
files), in the second case it is being extracted from 100 MB of data (10000 files). All the data is located at the
beginning of the tape. Standard deviations are in parentheses.

6 Related Work

This section describes several recent projects in automated storage systems, highlighting

some of the differences between their goals and those of Jaquith.

6.1 Mass Storage System Reference Model

The Mass Storage System Reference Model [8] is a high-level specification for data

storage, movement and access. The specification evolved from the mainframe environment so its

main goals are:

Interface — Support for common interfaces: NFS and FTP.
Integration — Merging of second and third level store with automatic file migration.
Modularity — Separation of name service, from control path from data path.

Heterogeneity — Support for multiple network interfaces and robotic devices.

Several large-scale automated systems have been built around the Mass Storage Reference

Model. They include the Common File System (originally from Los Alamos National Labs, now

sold as DataTree by General Atomics), Unitree (originally from Livermore National Labs now sold

by General Atomics), MSS-II at the National Center for Atmospheric Research, and NASA Ames

[28, 15, 20, 14, 21].

The supercomputer centers running MSS-style code are primarily concerned with moving

huge files though several levels of storage automatically. Therefore they provide file migration

where Jaquith does not. They traditionally support both NFS and FTP interfaces since they have the

luxury of integrating their code with the operating system. Jaquith runs at user level and provides

only an FTP interface.

Additionally, MSS systems strive to integrate tertiary storage invisibly into the secondary

filesystem using the standard filesystem interface. Therefore they do not provide added features
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such as Jaquith’s query mechanism or abstracts.

The MSS model specifies separate modules for the primary functions: name services

(nameserver), file movement (bitfile mover), and storage management (storage server). Jaquith

takes a more integrated approach, combining several functions into one process. A subroutine

library isolates the implementation of a particular function to a single piece of code.

6.2 Systems with Jaquith Features

Beyond the MSS model are several smaller storage products. Many of them share some

of Jaquith’s features, but none of them has support for all of them: interactive browsing, abstracts,

versions, incremental update, and parallel operation.

Automated backup programs, such as Legato Networker, are typical of the class of non-

interactive programs. Legato is a software-only product which performs automated backup over a

LAN of Unix workstations. It has an assortment of system administrator’s criteria for controlling

the flow of files to the backup devices. These backup programs do no extra indexing or special tape

layout to make restoration fast. Restoring a tape typically means reading a large tar (or dump) file

from beginning to end.

The Renaissance package from Epoch Systems is an example of a system offering a more

interactive approach, similar to Jaquith. Epoch keeps the first 8 KB of each file on disk as a form of

fixed abstract. This uses more space and is less flexible than Jaquith’s abstracts. In other respects

Renaissance falls somewhere between the MSS systems and the simplistic backup packages. Epoch

uses a dedicated server running a version of SunOS with their own modifications, to manage three

levels of storage, magnetic disk, optical disk and tape. The Renaissance package has a built-in

migration policy. Jaquith does not have a migration policy.

A form of Jaquith’s versioning feature is found in the “3D” filesystem from AT&T Bell

Labs [22]. Roome’s system retrieves old versions of files using data from incremental backups. It is

therefore a read-only system. Like Jaquith it trades space for speed by storing complete versions of

files, rather than rebuilding them on the fly. The 3D system does not keep a list of files belonging to

each directory. Jaquith does keep such a list so it can restore complete, consistent subtrees. Where

3DFS runs with optical disk and presents an NFS interface, Jaquith uses tape and a get/put interface.

The 3D filesystem is integrated into the shell. Normal shell syntax is extended with an ’@’ symbol

to provide command-line access to the file versions. Jaquith relies on the shell-like jls, which is

more complex, but offers more features.
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Andrew Hume presented an automated backup system called the “File Motel” in 1987

[12] which was notable for being able to perform incremental dumps. A background process

quietly archives files that have been changed without user intervention. Jaquith’s jput can also

archive files incrementally. Nightly backups can be automated with a cron script. Interestingly,

while the File Motel’s file backup operation is hidden from the user, file restoration requires human

intervention to perform a database lookup. Jaquith hides the database from the user. The File Motel

does not have Jaquith’s buffering or query features.

Finally, A special network backup system called Amanda was built at the University of

Maryland [9]. Amanda’s goal is performance through parallelism. Amanda is an automated backup

program built on top of the Unix dump utility that dumps filesystems over the network to multiple

disk buffers simultaneously, Jaquith can support multiple concurrent I/O streams provided that they

are directed to distinct logical archives. Parallelism can be increased by creating more logical

archives, up to the number of readers in the jukebox. Other than parallel operation, Amanda does

not offer any of Jaquith’s features. It is non-interactive, has no disk index, and provides no query

support.

7 Future Work

This section summarizes the Jaquith project and considers how its fundamental design

decisions might lead to future research. Three fruitful areas of further research are: data layout,

file migration, and tape striping. Data layout concerns the (re)packing of data on tertiary storage

to improve locality and performance. File migration is concerned with the automatic staging of

files from tertiary to secondary storage, and Tape Striping involves the spreading of large datasets

over several tapes in parallel to improve I/O bandwidth. The impact of these research goals on the

Jaquith design is discussed below.

7.1 Data Clustering

There is ample room to explore data repacking in the current Jaquith system. Old tapes

can be read, reorganized, and rewritten as desired. In fact, this would make it possible to lift a

current Jaquith restriction: Jaquith has no delete feature. By design, all data written to the archive is

kept forever. This decision was made to simplify both the indexing code and the tape management

code.



29

Tape management is simpler without deletion because no holes are formed in the tapes by

deleted data. This avoids the complexities of file compaction which would be necessary to recover

deleted tape space. Once archive tapes become rewritable it is possible to reorganize user files to

achieve better clustering and performance, as well as to recover dead-file space.

Indexing is made simple in the current system because no information is ever deleted

from the index tree, consequently no in-place modifications are ever made to the disk index files;

new data is simply appended to the file. Reader and a writer processes can share the index file

without the overhead of locking.

7.2 File Migration

Jaquith is a potential base for file migration experiments. The client interfaces can be

jettisoned and the server can be used purely as a bitfile mover. To be effective the migration policy

must be integrated into the Operating System so that it runs without user intervention. This implies

the need for kernel modifications, something the testbed avoids. It also implies that there must be

an “up-call” mechanism whereby the kernel policy can invoke the Jaquith mechanism at user level.

7.3 Tape Striping

The immediate hardware limitation for Jaquith is latency because the Unix environment

uses small files. In a different environment where the average file size is many megabytes or

gigabytes (for example satellite data), tape throughput becomes a problem. One solution to the

bandwidth problem is to apply disk RAID [13] ideas to tape systems. The main idea is to write a

large file out across several tapes in parallel, with parity written to an additional tape for recovery

purposes.

Jaquith’s current indexing technique needs to be expanded to handle tape striping experi-

ments; it currently assumes that a file does not span a tape. Some additional work must be done to

reassemble a buffer from several tapes, and to rebuild a tape from parity in the event of a failure.

There remain, of course, the primary problems associated with striping itself: no synchronization

among tape drives (unlike disk drives), poor media reliability, and no random data access.
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8 Conclusions

Jaquith addresses multiple issues in tertiary storage, many of them successfully, others

less so. Jaquith provides robotic storage space to remote network users using a flexible query

interface. Its wildcard search capability lets users locate their data easily, and its use of an on-line

index with abstracts assists the user in browsing the large namespace. Additionally, Jaquith does

intelligent buffering and tape management.

The current implementation also has two notable weaknesses. First, the indexing scheme

consumes too much space, over 3/4 of one percent of data space, in our Unix environment. This

means that the current generation Metrum jukebox cannot be supported with 1 or 2 current generation

disks. Future systems need to compress the index or maintain an on-line cache of a larger index

on tertiary storage. Second, Jaquith performance is constrained by the numerous synchronous

operations between server and client. The overheads for logging and acknowledging each user file

are costly, particularly on a slow network. These costs need to be amortized by batching user files

into larger request units and performing the client-server handshake once for each unit.
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1 Appendix I

Jaquith maintains a number of files describing the state of the physical and logical archive.

All of these files reside in the Jaquith root (usually /arch but settable with the -root flag). In

the following description, archive refers to the name of the containing logical archive.

freevols The global pool of available volumes. These will be consumed as
needed by the cleaner process.

devconfig The list of device names to be controlled by the jukebox manager.
volconfig The list of volumes and their slot locations in the jukebox.
tbuf.lru The global least-recently-used buffer list. Buffers at the top of the list

are prime candidates for removal if disk space is tight.
rebuild.pid Temporary work file created by jbuild.
thdr.pid.num Emergency work file created by jbuild when it can’t parse the thdr

file it got from tape.
archive/config Jukebox server info and target buffer size
archive/tbuf Current buffer number. i.e. the current buffer is tbuf.num.
archive/tbuf.num Tape buffer files. These files contain user file data in POSIX tar format.
archive/thdr Tape header files. These files contain the indexing information in case

the disk index structure is destroyed.
archive/meta.num Meta information about tbuf.num maintained while buffer is being

built, in case of crash.
archive/log The list of operations which have been requested on this logical archive.
archive/filemap The list of volumes assigned to this archive along with the starting

buffer number on the volume.
archive/auth The authorization information for the logical archive. The file consists

of single-line entries in no particular order. Each entry has the form
username groupname hostname permission. The first 3 items are
globbing patterns, and permission is R, W, or O for read, read-and-write
or ownership respectively. Ownership means that the specified user
or group has ’root’ access to this logical archive. Client requests are
validated by first looking for an entry with a corresponding user name.
If none is found then an entry with a matching group name is used,
else permission is denied.

archive/volinfo Physical volume information for this logical archive. Entries are:
current volume id, next location on volume where buffer is to be
written, remaining space in KB on volume, last buffer number written,
current buffer number.

archive/tbufinfo Current buffer information for this logical archive. Entries are: buffer
size in bytes, buffer header size in bytes, number of user files in buffer.
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2 Appendix II

Testing configuration and parameters.

Host DS5000/200 with 32 MB of memory, 1 SCSI bus, 1 ethernet adapter,
and 1 FDDI adapter.

Local disks one RZ55, one RZ57.
Exabyte hardware EXB-120 with microcode version 2.24. EXB-8500 with microcode

version 0446
Metrum hardware RSS-600 with RSP-2150 with microcode version 3.02/3.00.
Operating system Ultrix 4.2.
I/O operation size 32768 bytes.
Jaquith buffer unit size 2 megabytes.

The source data for the Jaquith and tar tests was placed on a separate NFS filesystem

served by FDDI. The destination filesystem was a local RZ57 disk. This arrangement minimized

contention on the local SCSI bus and ensured that access to the data source was not the limiting

factor in the tests. Below are the times for tar-ing a ten megabyte file to a local disk.

Source and destination sharing same disk 44 secs
Source and destination on separated disks on same SCSI chain 32 secs
Source data served by FDDI over NFS, destination on local disk 27 secs
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