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ABSTRACT. The fastest parallel algorithm for a problem may be signi�cantly less stable
numerically than the fastest serial algorithm. We illustrate this phenomenon by a series of
examples drawn from numerical linear algebra. We also show how some of these instabilities
may be mitigated by better 
oating point arithmetic.
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Introduction

The most natural way to design a parallel numerical algorithm is to take an existing numer-
ically stable algorithm and parallelize it. If the parallel version performs the same 
oating
point operations as the serial version, and in the same order, one expects it to be equally
stable numerically. In some cases, such as matrix operations, one expects that the parallel
algorithm may reorder some operations (such as computing sums) without sacri�cing nu-
merical stability. In other cases, reordering sums could undermine stability, e.g. ODEs and
PDEs.

Our purpose in this paper is to point out that designing satisfactorily fast and stable
parallel numerical algorithms is not so easy as parallelizing stable serial algorithms. We
identify two obstacles:

1. An algorithm which was adequate on small problems may fail once they are large
enough. This becomes evident when the algorithm is used on a large parallel machine
to solve larger problems than possible before. Reasons for this phenomenon include
roundo� accumulation, systematically increasing condition numbers, and systemati-
cally higher probability of \random instability."



2. A fast parallel algorithm for a problem may be signi�cantly less stable than a fast
serial algorithm. In other words, there is a tradeo� between parallelism and stability.

We also discuss two techniques which sometimes remove or mitigate these obstacles. The
�rst is good 
oating point arithmetic, which, depending on the situation, may mean care-
fully rounding, adequate exception handling, or the availability of extra precision without
excessive slowdown. The second technique is as follows:

1. Solve the problem using a fast method, provided it is rarely unstable.

2. Quickly and reliably con�rm or deny the accuracy of the computed solution. With
high probability, the answer just (quickly) computed is accurate enough to keep.

3. Otherwise, recompute the desired result using a slower but more reliable algorithm.

This paradigm lets us combine a fast but occasionally unstable method with a slower, more
reliable one to get guaranteed reliability and usually quick execution. One could also change
the third step to just issue a warning, which would guarantee fast execution, guarantee not
to return an unreliable answer, but occasionally fail to return an answer at all. Which
paradigm is preferable is application dependent.

The body of the paper consists of a series of examples drawn both from the literature
and from the experience in the LAPACK project [3]. As our understanding of problems
improves, the status of these tradeo�s will change. For example, until recently it was
possible to use a certain parallel algorithm for the symmetric tridiagonal eigenvalue problem
only if the 
oating point arithmetic was accurate enough to simulate double the input
precision [19, 35, 73, 10]. Just recently, a new formulation of the inner loop was found
which made this unnecessary [48]. The fact remains that for a number of years, the only
known way to use this algorithm stably was via extra precision. So one can say that the
price of insu�ciently accurate arithmetic was not an inability to solve this problem, but
several years of lost productivity because a more straightforward algorithm could not be
used.

Section 1. describes how algorithms which have been successful on small or medium
sized problems can fail when they are scaled up to run on larger machines and problems.
Section 2. describes parallel algorithms which are less stable than their serial counterparts.
The bene�t of better 
oating point arithmetic will be pointed out while discussing the
relevant examples, and overall recommendations for arithmetic summarized in section 3.

1. Barriers to Scaling up Old Algorithms

1.1. Sparse Cholesky on the Cray Y-MP and Cray 2

We discuss the experience of Russell Carter in porting an existing code for sparse Cholesky
factorization to a Cray Y-MP [15]. Cholesky is a very stable algorithm, and this code
had been in use for some time. The Cray Y-MP was larger than machines previously
available, and Carter ran it on a large linear system Ax = b from a structural model. A



Computer Bits Nominal Displacement
precision

Cray 2 128 1.e-29 .447440341
Convex 220 64 1.e-16 .447440339
IRIS 64 1.e-16 .447440339
IBM 3090 64 1.e-17 .447440344
Cray 2 64 4.e-15 .447440303
Cray Y-MP 64 4.e-15 .447436106

Table 1: Sparse Cholesky Results

had dimension 16146. Results are shown in table 1. The �rst column is the computer
with which the problem is solved, the second is the number of bits in the 
oating point
format, the third column is the approximate relative accuracy with which the 
oating point
arithmetic can represent numbers (which is not the accuracy of computation on the Cray
[55]), and the last column records one of the solution components of interest. The top line,
which is done to about twice the accuracy of the others, is accurate in all the digits shown.
In the other results the incorrect digits are underlined.

It can be seen that the Cray Y-MP loses two more digits than the Cray 2, even though
both are using 64 bit words, and their 48-fraction-bit arithmetics are quite similar. The
reason for this discrepancy is that both the Cray 2 and Cray Y-MP subtract incorrectly,
but the Cray 2 does so in an unbiased manner. In particular, the inner loop of Cholesky
computes aii�

Pi�1
j=1 a

2
ij , where aii is positive and the �nal result is also positive. Whenever

the Cray 2 subtracts an a2ij , the average error is 0; the computed di�erence is too large as
often as it is too small. On the Cray Y-MP, on the other hand, the di�erence is always a
little too big. So the error accumulates with each subtract, instead of averaging out as on
the Cray 2. The accumulating error is very small, and makes little di�erence as long as
there are not too many terms in the sum. But n = 16146 was �nally large enough to cause
a noticeable loss of 2 decimal places in the �nal answer. The �x used by Carter was to use
the single precision iterative re�nement routine SGERFS in LAPACK [3].

The lessons of this example are that instability may become visible only when a problem's
dimension becomes large enough, and that accurate arithmetic would have mitigated the
instability.

1.2. Increasing condition numbers

The last section showed how instability can arise when errors accumulate in the course of
solving larger problems than ever attempted before. Another way this can arise is when
the condition number of the problem grows too rapidly with its size. This may happen, for
example, when we increase the mesh density with which we discretize a particular PDE.
Consider the biharmonic equation uxxxx + uyyyy = f on an n by n mesh, with boundary
conditions chosen so that it represents the displacement of a square sheet �xed at the edges.
The linear system Ax = b resulting from the discretization has a condition number which
grows like n4. Suppose that we want to compute the solution correct to 6 decimal digits (a



relative accuracy of 10�6).

Generally one can solve Ax = b with a backward error of order ", the machine precision.
Write " = 2�p, where p is the number of bits in the 
oating point fraction. This means the
relative accuracy of the answer will be about "n4 = 2�pn4. For this to be less than or equal
to 10�6, we need 2�pn4 � 10�6 or p � 4 log2 n + 6 log2 10 � 4 log2 n + 20. In IEEE double
precision, p = 52 so we must have n � 259, which is fairly small.

One might object that for the biharmonic equation, Laplace's equation, and others from
mathematical physics, if they have su�ciently regularity, then one can use techniques like
multigrid, domain decomposition and FFTs to get accurate solutions for larger n (for the
biharmonic, use boundary integral methods or [12]). This is because these methods work
best when the right hand side b and solution x are both reasonably smooth functions, so
that the more extreme singular values of the di�erential operators are not excited, and the
bad conditioning is not visible. One often exploits this in practice. So in the long run,
clever algorithms may become available which mitigate the ill-conditioning. In the short
run, more accurate arithmetic (a larger p) would have permitted conventional algorithms
to scale up to larger problems without change and remain useful longer. We will see this
phenomenon later as well.

1.3. Increasing probability of random instabilities

Some numerical instabilities only occur when exact or near cancellation occurs in a numer-
ical process. In particular, the result of the cancellation must su�er a signi�cant loss of
relative accuracy, and then propagate harmfully through the rest of the algorithm. The
best known example is Gaussian elimination without pivoting, which is unstable precisely
when a leading principal submatrix is singular or nearly so. The set of matrices where this
occurs is de�ned by a set of polynomial equations: det(Ar) = 0, r = 1; :::; n, where Ar is
a leading r by r principal submatrix of the matrix A. More generally, the set of problems
on or near which cancellation occurs is an algebraic variety in the space of the problem's
parameters, i.e. de�ned by a set of polynomial equations in the problem's parameters.
Geometrically, varieties are smooth surfaces except for possible self intersections and cusps.
Other examples of such varieties include polynomials with multiple roots, matrices with
multiple eigenvalues, matrices with given ranks, and so on [23, 24, 40, 41].

Since instability arises not just when our problem lies on a variety, but when it is near one,
we want to know how many problems lie near a variety. One may conveniently reformulate
this as a probabilistic question: given a \random" problem, what is the probability that it
lies within distance � of a variety? We may choose � to correspond to an accuracy threshold,
problems lying outside distance � being guaranteed to be solved accurately enough, and
those within � being susceptible to signi�cant inaccuracy. For example, we may choose
� = 10d" (where " is the machine precision) if we wish to guarantee at least d signi�cant
decimal digits in the answer.

It turns out that for a given variety, we can write down a simple formula that estimates
this probability as a function of several simple parameters [24, 41]: the probability per



second P of being within � of an instability is [55]

P = C �Mk � S � �

where C and k are problem-dependent constants, M is the memory size in words, and S is
the machine speed in 
ops per second.

For example, consider an SIMD machine where we assign each processor the job of LU
decomposition of an independent random real matrix of �xed size n, and repeat this. We
choose LU without pivoting in order to best match the SIMD architecture of the machine.
We assume that each processor has an equal amount of memory, so that M is proportional
to the number of processors M = p �Mp. From [41], we use the fact that the probability
that a random n by n real matrix has a condition number kAkF kA

�1k2 exceeding 1=� is
asymptotic to n3=2�. Finally, suppose that we want to compute the answer with d decimal
digits of accuracy, so that we pick � = 10d". Combining this information, we get that the
probability per second that an instability occurs (because a matrix has condition number
exceeding 1=�) is at least about

P = p�
S
2
3
n3

� n3=210d" =
3

2n3=2Mp
�M � S � 10d � "

The important features of this formula is that is grows with increasing memory size M ,
with increasing machine speed S, and desired accuracy d, all of which are guaranteed to
grow. We can lower the probability, however, by shrinking ", i.e. by using more accurate
arithmetic.

One might object that a better solution is to use QR factorization with Givens rotations
instead of LU, because this is guaranteed to be stable without pivoting, and so is amenable
to SIMD implementation. However, it costs three times as many 
ops. So we see there is
a tradeo� between speed and stability.

If we instead �ll up the memory with a single matrix of size M1=2 by M1=2, then the
probability changes to P = 1:5 �M�3=4 � S � 10d � ". Interestingly, the probability goes down
with M . The reason is that the time to solve an M1=2 by M1=2 matrix grows like M3=2, so
that the bigger the memory, the fewer such problems we can solve per second.

Another consequence of this formula is that random testing intended to discover insta-
bilities in a program is more e�ective when done at low precision.

2. Trading O� Numerical Accuracy and Parallelism in New Algorithms

2.1. Fast BLAS

The BLAS, or Basic Linear Algebra Subroutines, are building blocks for many linear algebra
codes, and so they should be as e�cient as possible. We describe two ways of accelerating
them that sacri�ce some numerical stability to speed. The stability losses are not dramatic,
and a reasonable BLAS implementation might consider using them.

Strassen's method is a fast way of doing matrix multiplication based on multiplying 2-by-
2 matrices using 7 multiplies and 15 or 18 additions instead of 8 multiplies and 4 additions



[1]. Strassen reduces n by n matrix multiplication to n=2 by n=2 matrix multiplication and
addition, and recursively to n=2k by n=2k. Its overall complexity is therefore O(nlog2 7) �
O(n2:81) instead of O(n3). The constant in the O(�) is, however, much larger for Strassen's
than for straightforward matrix multiplication, and so Strassen's is only faster for large
matrices. In practice once k is large enough so the n=2k by n=2k submatrices �t in fast
memory, conventional matrix multiply may be used. A drawback of Strassen's method is
the need for extra storage for intermediate results. It has been implemented on the Cray 2
[9, 8] and IBM 3090 [50].

The conventional error bound for matrix multiplication is as follows:

jflConv(A �B)�A �Bj � n � " � jAj � jBj

where the absolute values of matrices and the inequality are meant componentwise. The
bound for Strassen's [13, 14, 49] is

kflStrassen(A �B)� A �BkM � f(n) � " � kAkM � kBkM + O("2)

where k � kM denotes the largest component in absolute value, and f(n) = O(nlog2 12) �
O(n3:6). This can be extended to all the other BLAS, such as triangular system solving
with many right hand sides [49], as well as many methods besides Strassen's [11].

These bounds di�er when there is signi�cant di�erence in the scaling of A and B. For
example, changing A to AD and B to D�1B where D is diagonal does not change the error
bound for conventional multiplication, but can make Strassen's arbitrarily large. Also,
if A = jAj and B = jBj, then the conventional bound says each component of A � B is
computed to high relative accuracy; Strassen's can not guarantee this.

On the other hand, most error analyses of Gaussian elimination and other matrix routines
based on BLAS do not depend on this di�erence, and remain mostly the same when Strassen
based BLAS are used [27]. Only when the matrix or matrices are strongly graded (the
diagonal matrix D above is ill-conditioned) will the relative instability of Strassen's be
noticed.

Strictly speaking, the tradeo� of speed and stability between conventional and Strassen's
matrix multiplication does not depend on parallelism, but on the desire to exploit memory
hierarchies in modern machines. The next algorithm, a parallel algorithm for solving tri-
angular systems, could only be of interest in a parallel context because it uses signi�cantly
more 
ops than the conventional algorithm.

The algorithm may be described as follows. Let T be a unit lower triangular matrix (a
nonunit diagonal can easily be scaled to be unit). For each i from 1 to n � 1, let Ti equal
the identity matrix except for column i where it matches T . Then it is simple to verify T

= T1T2 � � �Tn�1 and so T�1 = T�1n�1 � � �T
�1
2 T�11 . One can also easily see that T�1i equals

the identity except for the subdiagonal of column i, where it is the negative of Ti. Thus
T�1i comes free, and the work to be done is to compute the product T�1n�1 � � �T

�1
1 in log2n

parallel steps using a tree. Each parallel step involves multiplying n by n matrices (which
are initially quite sparse, but �ll up), and so takes about log2n parallel substeps, for a total
of log22n. Error analysis of this algorithm [66] yields an error bound proportional to �(T )3"
where �(T ) = kTk � kT�1k is the condition number and " is machine precision; this is in



Figure 1: Parallel Pre�x on 16 Data Items
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contrast to the error bound �(T )" for the usual algorithm. The error bound for the parallel
algorithm may be pessimistic | the worst example we have found has an error growing
like �(T )1:5" | but shows that there is a tradeo� between parallelism and stability.

2.2. Parallel pre�x

This parallel operation, also called scan, may be described as follows. Let x0; :::xn be data
items, and � any associative operation. Then the scan of these n data items yields another
n data items de�ned by y0 = x0, y1 = x0 �x1, ... , yi = x0 �x1 � � �xi; thus yi is the reduction
of x0 through xi. The attraction of this operation, other than its usefulness, is its ease of
implementation using a simple tree of processors. We illustrate in �gure 1 for n = 15, or f
in hexadecimal notation; in the �gure we abbreviate xi by i and xi � � �xj by i : j. Each row
indicates the values held by the 16 processors; after the �rst row only the data that changes
is indicated. Each updated entry combines its current value with one a �xed distance to
its left.

Parallel pre�x may be used to solve linear recurrence relations. For example, to evaluate
zi+1 = aizi + bi, i � 0, z0 = 0, we do the following operations:

Compute pi = a0 � � �ai using parallel pre�x multiplication
Compute �i = bi=pi in parallel
Compute si = �0 + � � �+ �i�1 using parallel pre�x addition
Compute zi = si � pi�1 in parallel

This approach extends to n term linear recurrences zi+1 =
Pn�2

j=0 ai;jzi�j + bi, but the
associative operation becomes n � 1 by n � 1 matrix multiplication. Basic linear algebra
operations which can be solved this way include tridiagonal Gaussian elimination (a three



term recurrence), solving bidiagonal linear systems (two terms), Sturm sequence evalua-
tion for the symmetric tridiagonal eigenproblem (three terms), and the bidiagonal dqds
algorithm for singular values (three terms) [63].

The numerical stability of these algorithms is not completely understood. For some ap-
plications, it is easy to see the error bounds are rather worse than the those of the sequential
implementation [20]. For others, such as Sturm sequence evaluation [76], empirical evidence
suggests it is stable enough to use in practice.

Another source of instability besides roundo� is susceptibility to over/under
ow, be-
cause of the need to compute extended products (such as pi = a0 � � �ai above). These
over/under
ows are often unessential because the output will eventually be the solution
scaled to have unit norm (inverse iteration for eigenvectors). But to use parallel pre�x,
one must either scale before multiplication, or deal with over/under
ow after it occurs;
the latter requires reasonable exception handling [25]. In the best case, a user-level trap
handler would be called to deal with scaling after over/under
ow, requiring no overhead
if no exceptions occur. Next best is an exception 
ag that could be tested, provided this
can also be done quickly. The worst situation occurs when all exceptions require a trap
into operating system code, which is then hundreds or thousands of times slower than a
single 
oating point operation; this is the case on the DEC � chip, for example. In this
case it is probably better to code defensively by scaling every step to avoid all possibility
of over/under
ow. This is unfortunate because it makes portable code so hard to write:
what is fastest on one machine may be very slow on another, even though both formally
implement IEEE arithmetic.

2.3. Linear equation solving

In subsection 2.1., we discussed the impact of implementing LU decomposition using BLAS
based on Strassen's method. In this section we discuss other variations on linear equation
solving where parallelism (or just speed) and numerical stability trade o�.

Parallelism in LU decomposition (and others) is often attained by blocking. For example,
if A is symmetric and positive de�nite, its Cholesky factorization A = RTR may be divided
into three blocks as follows:

A = RTR =

2
64 RT

11 0 0
RT
12 RT

22 0
RT
13 RT

23 RT
33

3
75 �

2
64 R11 R12 R13

0 R22 R23

0 0 R33

3
75

LAPACK uses the Level 3 BLAS which perform matrix multiplication and triangular system
solving in its implementation of this algorithm [3]. On some machines, solving triangular
systems is rather less e�cient than matrix multiplication, so that an alternative algorithm
using only matrix multiplication is preferred. This can be done provided we compute the
following block decomposition instead of standard Cholesky:

A = LU =

2
64 I 0 0
L21 I 0
L31 L32 I

3
75 �

2
64 U11 U12 U13

0 U22 U23

0 0 U33

3
75



Pivoting Pivot Worst Average
Method Search Pivot Pivot

Cost (serial) Growth Growth

Complete n2 O(n1+x) n1=2

Partial n 2n�1 n2=3

Pairwise 1 4n�1 O(n)

Parallel 1 2n�1 en=4 logn

Table 2: Stability of various pivoting schemes in LU decomposition

In [28] it is shown that using this block LU to solve the symmetric positive de�nite system
Ax = b yields a solution x̂ satisfying (A+ �A)x̂ = b, with k�Ak = O(")(�(A))1=2kAk, where
�(A) = kAk � kA�1k is the condition number. This contrasts with the standard backward
stability analysis of Cholesky which yields k�Ak = O(")kAk. So the �nal error bound from
block LU is O(")(�(A))3=2, much bigger than O(")�(A) for Cholesky. This is the price paid
in stability for speed up.

Another tradeo� occurs in the choice of pivoting strategy [77]. The standard pivot
strategies are complete pivoting (where we search for the largest entry in the remaining
submatrix), partial pivoting (the usual choice, where we only search the current column for
the largest entry), pairwise pivoting [72] (where only rows n and n� 1 engage in pivoting
and elimination, then rows n � 1 and n� 2 and so on up to the top) and parallel pivoting
(where the remaining rows are grouped in pairs, and engage in pivoting and elimination
simultaneously). Neither pairwise nor parallel pivoting require pivot search outside of two
rows, but pairwise pivoting is inherently sequential in its access to rows, whereas parallel
pivoting (as its name indicates) parallelizes easily. Table 2 summarizes the analysis in [77]
of the speed and stability of these methods1. The point is that in the worst case partial,
pairwise and parallel pivoting are all unstable, but on average only parallel pivoting is
unstable. This is why we can using partial pivoting in practice: its worst case is very rare,
but parallel pivoting is so often unstable as to be unusable. We note that an alternate kind
of parallel pivoting discussed in [42] appears more stable, apparently because it eliminates
entries in di�erent columns as well as rows simultaneously. A �nal analysis of this problem
remains to be done. We also note that, on many machines, the cost of partial pivoting is
asymptotically negligible compared to the overall computation; the bene�t of faster pivoting
is solving smaller linear systems more e�ciently.

We close by describing the fastest known parallel algorithm for solving Ax = b [18]. It is
also so numerically unstable as to be useless in practice. There are four steps:

1) Compute the powers of A (A2, A3, ... , An�1) by repeated squaring (log2 n
matrix multiplies of log2 n steps each).
2) Compute the traces si = tr(Ai) of the powers in log2 n steps.
3) Solve the Newton identities for the coe�cients ai of the characteristic poly-

1Some table entries have been proven, some are empirical with some theoretical justi�cation, and some

are purely empirical. Alan Edelman believes the n2=3 average case pivot growth for partial pivoting should

really be n1=2.



nomial; this is a triangular system of linear equations whose matrix entries and
right hand side are known integers and the si (we can do this in log22 n steps as
described above).
4) Compute the inverse using Cayley-Hamilton Theorem (in about log2 n steps).

The algorithm is so unstable as to lose all precision in inverting 3I in double precision,
where I is the identity matrix of size 60 or larger.

2.4. The symmetric eigenvalue problem and singular value decomposition

The basic parallel methods available for dense matrices are summarized as follows. We
assume the reader is acquainted with methods discussed in [47].

1. Jacobi, which operates on the original (dense) matrix.

2. Reduction from dense to tridiagonal (or bidiagonal) form, followed by

(a) Bisection (possibly accelerated), followed by inverse iteration for eigenvectors (if
desired).

(b) Cuppen's divide and conquer method.

(c) QR iteration (and variations).

Jacobi has been shown to be more stable than the other methods on the list, provided
it is properly implemented, and only on some classes of matrices (essentially, those whose
symmetric positive de�nite polar factor H can be diagonally scaled as D � H � D to be
well-conditioned [30, 71]; for the SVD we use the square of the polar factor). In particu-
lar, Jacobi is capable of computing tiny eigenvalues or singular values with higher relative
accuracy than methods relying on tridiagonalization. So far the error analyses of these
proper implementations have depended on their use of 2-by-2 rotations, as used in conven-
tional Jacobi. Therefore, the inner loop of these algorithms perform operations on pairs
of rows or columns, i.e. Level 1 BLAS [56]. On many machines, it is more e�cient to do
matrix-matrix operations like level 3 BLAS [31], so one is motivated to use block Jacobi

instead, where groups of Jacobi rotations are accumulated into a single larger orthogonal
matrix, and applied to the matrix with a single matrix-matrix multiplication [67, 68, 70].
It is unknown whether this blocking destroys the subtler error analyses in [30, 71]; it is
easy to show that the conventional norm-based backward stability analysis of Jacobi is not
changed by blocking.

Reduction from dense to tridiagonal form is eminently parallelizable too. Having reduced
to tridiagonal form, we have several parallel methods from which to choose. Bisection and
QR iteration can both be reformulated as three-term linear recurrences, and so implemented
using parallel pre�x in O(log2 n) time as described in section 2.2. The stability is unproven.
Experiments with bisection [76] are encouraging, but the only published analysis [20] is
very pessimistic. Initial results on the dqds algorithm for the bidiagonal SVD, on the other
hand, indicate stability may be preserved in some cases [63]. On the other hand, bisection
can easily be parallelized by having di�erent processors re�ne disjoint intervals, evaluating



the Sturm sequence in the standard serial way. This involves much less communication,
and is preferable in most circumstances, unless there is special support for parallel pre�x.

Having used bisection to compute eigenvalues, we must use inverse iteration to compute
eigenvectors. Simple inverse iteration is also easy to parallelize, with each processor inde-
pendently computing the eigenvectors of the eigenvalues it owns. However, there is no guar-
antee of orthogonality of the computed eigenvectors, in contrast to QR iteration or Cuppen's
method [53]. In particular, to achieve reasonable orthogonality one must reorthogonalize
eigenvectors against those of nearby eigenvalues. This requires communication to identify
nearby eigenvalues, and to transfer the eigenvectors [51]. In the serial implementation in
[53], each iterate during inverse iteration is orthogonalized against previously computed
eigenvectors; this is not parallelizable. The parallel version in [51] completes all the inverse
iterations in parallel, and then uses modi�ed Gram-Schmidt in a pipeline to perform the
orthogonalization. To load balance, vector j was stored on processor j mod p (p is the
number of processors), and as a result reorthogonalization took a very small fraction of the
total time; however, this may only have been e�ective because of the relatively slow 
oating
point on the machine used (iPSC-1). In any event, the price of guaranteed orthogonality
among the eigenvectors is reduced parallelism.

Cuppen's method has been analyzed by many people [19, 35, 73, 51, 54, 10, 48]. At
the center of the algorithm is the solution of the secular equation f(�) = 0, where f is a
rational function in � whose zeros are eigenvalues. This algorithm, while simple and attrac-
tive, proved hard to implement stably. The trouble was that to guarantee the computed
eigenvectors were orthogonal, it appeared that the roots of f(�) = 0 had to be computed
in double the input precision [10, 73]. When the input is already in double precision (or
whatever is the largest precision supported by the machine), then quadruple would be
needed, which may be simulated using double provided double is accurate enough [22, 64].
So the availability of Cuppen's algorithm hinged on having su�ciently accurate 
oating
point arithmetic [73, 10]. Recently, however, Gu and Eisenstat [48] have found a new way
to implement this algorithm which makes extra precision unnecessary. Thus, even though
carefully rounded 
oating point turned out not to be necessary to use Cuppen's algorithm,
it took several years of research to discover this, so the price paid for poorly rounded 
oating
point was several years of delay.

2.5. The nonsymmetric eigenproblem

Five kinds of parallel methods for the nonsymmetric eigenproblem have been investigated:

1. Hessenberg QR iteration [6, 79, 78, 21, 45, 37, 82, 81, 75],

2. Reduction to nonsymmetric tridiagonal form [46, 32, 43, 44],

3. Jacobi's method [38, 39, 74, 61, 69, 65, 80],

4. Divide and conquer based on Newton's method or homotopy continuation [16, 17, 83,
57, 58, 34]

5. Divide and conquer based on the matrix sign-function [59, 7, 60]



In contrast to the symmetric problem or SVD, no guaranteed stable and highly parallel
algorithm for the nonsymmetric problem exists. Reduction to Hessenberg form (the pre-
requisite to methods (1) and (4) above) can be done e�ciently [33, 36], but Hessenberg
QR is hard to parallelize, and the other approaches are not guaranteed to converge and/or
produce stable results. We summarize the tradeo�s among these methods here; for a more
detailed survey, see [26].

Hessenberg QR is the serial method of choice for dense matrices. There have been a
number of attempts to parallelize it, all of which maintain numerical stability since they
continue to apply only orthogonal transformations to the original matrix. They instead
sacri�ce convergence rate or perform more 
ops in order to introduce higher level BLAS
or parallelism. So far the parallelism has been too modest or too �ne-grained to be very
advantageous. In the paradigm described in the introduction, where we fall back on a
slower but more stable algorithm if the fast one fails, Hessenberg QR can play the role of
the stable algorithm.

Reduction to nonsymmetric tridiagonal form (followed by the tridiagonal LR algorithm)
requires nonorthogonal transformations. The algorithm can break down, requiring restart-
ing with di�erent initial conditions [62]. Even if it does not break down, the nonorthogonal
transformations required can be arbitrarily ill-conditioned, so sacri�cing stability. By mon-
itoring the condition number and restarting if it exceeds a threshold, some stability can
be maintained at the cost of random running time. The more stability is demanded, the
longer the running time may be, and there is no upper bound.

Jacobi's method can be implemented with orthogonal transformations only, maintaining
numerical stability at the cost of linear convergence, or use nonorthogonal transformations
which retain asymptotic quadratic convergence but can be arbitrarily ill-conditioned, and
so possibly sacri�ce stability. Orthogonal Jacobi could play the role of a slow but stable
algorithm, but linear convergence makes it quite slow. The condition number of the trans-
formation in nonorthogonal Jacobi could be monitored, and another scheme used if it is
too large.

Divide and conquer using Newton or homotopy methods is applied to a Hessenberg ma-
trix, setting the middle subdiagonal entry to zero, solving the two independent subproblems
in parallel, and merging the answers of the subproblems using either Newton or a homotopy.
There is parallelism in solving the independent subproblems, and in solving for the separate
eigenvalues; these are the same sources of parallelism as in Cuppen's method. These meth-
ods can fail to be stable for the following reasons. Newton's method can fail to converge.
Both Newton and homotopy may appear to converge to several copies of the same root
without any easy way to tell if a root has been missed, or if the root really is multiple.
To try to avoid this with homotopy methods requires communication to identify homotopy
curves that are close together, and smaller step sizes to follow them more accurately. The
subproblems produced by divide and conquer may potentially be more ill-conditioned than
the original problem. See [52] for further discussion.

Divide and conquer using the matrix sign function (or a similar function) computes an
orthogonal matrix Q = [Q1; Q2] where Q1 spans a right invariant subspace of A, and then



divides the spectrum by forming QAQT =

"
A11 A12

0 A21

#
. To attain reasonable e�ciency,

Q1 should have close to n=2 columns, where n is the dimension, or if the user only wants
some eigenvalues, it should span the corresponding, or slightly larger, invariant subspace.
One way to form Q is via the QR decomposition of the identity matrix plus the matrix sign
function s(A) of A, a function which leaves the eigenvectors alone but maps left half plane
eigenvalues to �1 and right half plane eigenvalues to +1. A globally and asymptotically
quadratically convergent iteration to compute s(A) is Ai+1 = :5(Ai + A�1i ). This divides
the spectrum into the left and right half planes; by applying this function to A � �I or
(A� �I)2 or ei�A � �I , the spectrum can be separated along other lines.

This method can fail if the iteration fails to converge to an accurate enough approximation
of s(A). This will happen if some eigenvalue of A is too close to the imaginary axis (along
which the iteration behaves chaotically). A symptom of this may be an intermediate Ai

which is very ill-conditioned, so that A�1i is very inaccurate. It may require user input to
help select the correct spectral dividing line. It can monitor its own accuracy by keeping
track of the norm of the (2,1) block of QAQT ; since the method only applies orthogonal
transformations to A, it will be stable if this (2,1) block is small.

We close with some comments on �nding eigenvectors, given accurate approximate eigen-
values; this is done if only a few eigenvectors are desired. The standard method is inverse
iteration, or solving (A � �)xi+1 = �ixi until xi converges to an eigenvector; �i is chosen
to keep kxi+1k = 1. This involves triangular system solving with a very ill-conditioned
matrix, the more so to the extent that � is an accurate eigenvalue. This ill-conditioning
makes over
ow a reasonable possibility, even though we only want the scaled unit vector
at the end. This means the code is to compute the answer despite possible over
ow, since
this over
ow does not mean that the eigenvector is ill-posed or even ill-conditioned. To do
this portably currently requires a \paranoid" coding style, with testing and scaling in the
inner loop of the triangular solve [2], making it impossible to use machine optimized BLAS.
If one could defer the handling of over
ow exceptions, it would be possible to run the fast
BLAS, and only redo the computation with relatively slow scaling when necessary. This is
an example of the paradigm of the introduction. IEEE standard 
oating point arithmetic
[5] provides this facility in principle. However, if exception handling is too expensive (on
the DEC � chip, 1 arithmetic requires a trap into the operating system, which is quite
slow), over
ow can cause a slowdown of several orders of magnitude.

For the generalized nonsymmetric eigenproblem A � �B we do not even know how to
perform generalized Hessenberg reduction using more than the Level 1 BLAS. The sign-
function and related techniques [60, 7] promise to be helpful here.

3. Recommendations for Floating Point Arithmetic

We summarize the recommendations we have made in previous sections regarding 
oating
point arithmetic support to mitigate the tradeo� between parallelism (or speed) and stabil-
ity: accurate rounding, support for higher precision, and e�cient exception handling. The
IEEE 
oating point standard [5], e�ciently implemented, is a good model. We emphasize



the e�ciency of implementation because if it is very expensive to exercise the features we
need, it defeats the purpose of using them to accelerate computation.

Accurate rounding attenuates or eliminates roundo� accumulation in long sums as de-
scribed in section 1.1. It also permits us to simulate higher precision cheaply, which often
makes it easier to design stable algorithms quickly (even though a stable algorithm which
does not rely on higher precision may exist, it may take a while to discover). This was
the case for Cuppen's method (section 2.4.), and also for many of the routines for 2-by-2
and 4-by-4 matrix problems in the inner loops of various LAPACK routines, such as slasv2,
which computes the SVD of a 2-by-2 triangular matrix [3, 29]. Higher precision also makes
it possible to extend the life of codes designed to work on smaller problems, as they are
scaled to work on larger ones with larger condition numbers (section 1.2.), or with more
random instabilities (section 1.3.). It is important that the extra precision be as accurate as
the basic precision, because otherwise promoting a code to higher precision can introduce
bugs where none were before. A simple example is that arccos(x=(x2 + y2)1=2) can fail
because the argument of arccos can exceed 1 if rounding is inaccurate in division or square
root [15]. Extra range and precision are very useful, since they permit us us to forego some

testing and scaling to avoid over/under
ow in common computations such as
qP

i x
2
i .

E�cient exception handling permits us to run fast \risky" algorithms which usually
work, without fear of having program execution terminated. Indeed, in some cases such as
condition estimation, over
ow permits us to �nish early (in this case over
ow implies that
0 is an excellent approximate reciprocal condition number). In particular, it lets us use
optimized BLAS, thereby taking advantage of the manufacturer's e�ort in writing them
(see section 2.5.). In analogy to the argument for using RISC (\reduced instruction set
computers"), we want algorithms where the most common case | no exceptions | runs
as quickly as possible.

This is not useful if the price of exception handling is too high; we need to be able to
run with 1 and NaN (Not a Number) arithmetic at nearly full 
oating point speed. The
reason is that once created, an 1 or NaN propagates through the computation, creating
many more 1's or NaN's. This means, for example, that the DEC � implementation of
this arithmetic, which uses traps to the operating system, is too unacceptably slow to be
useful. The LAPACK 2 project will produce codes assuming reasonably e�cient exception
handling, since this is the most common kind of implementation [4].
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