LogP: Towards a Realistic Model of Parallel Computation *

David Culler, Richard Karp! David Patterson,
Abhijit Sahay, Klaus Erik Schauser, Eunice Santos,
Ramesh Subramonian, and Thorsten von Eicken

Computer Science Division,
University of California, Berkeley

Abstract

A vast body of theoretical research has focused either on overly simplistic models of parallel
computation, notably the PRAM, or overly specific models that have few representatives in
the teal world. Both kinds of models encourage exploitation of formal loopholes, rather than
rewarding development of techniques that yield performance across a range of current and
future parallel machines. This paper offers a new parallel machine model, called LogP, that
reflects the critical technology trends underlying parallel computers. It is intended to serve
as a basis for developing fast, portable parallel algorithms and to offer guidelines to machine
designers. Such a model must strike a balance between detail and simplicity in order to reveal
important bottlenecks without making analysis of interesting problems intractable. The model
is based on four parameters that specify abstractly the computing bandwidth, the communi-
cation bandwidth, the communication delay, and the efficiency of coupling communication
and computation. Portable parallel algorithms typically adapt to the machine configuration, in
terms of these parameters. The utility of the model is demonstrated through examples that are

implemented on the CM-5.

Keywords: massively parallel processors, parallel models, complexity analysis, parallel algo-
rithms, PRAM

1 Introduction

Our goal is to develop a model of parallel computation that will serve as a basis for the design and analysis
of fast, portable parallel algorithms, i.e., algorithms that can be implemented effectively on a wide variety of
current and future parallel machines. If we look at the body of parallel algorithms developed under current
parallel models, many can be classified as impractical in that they exploit artificial factors not present in any
reasonable machine, such as zero communication delay or infinite bandwidth. Others can be classified as
overly specialized, in that they are tailored to the idiosyncrasies of a single machine, such as a particular
interconnect topology. The most widely used parallel model, the PRAM][13], is unrealistic because it
assumes that all processors work synchronously and that interprocessor communication is free. Surprisingly
fast algorithms can be developed by exploiting these loopholes, but in many cases the algorithms perform
poorly under more realistic assumptions[30]. Several variations on the PRAM have attempted to identify
restrictions that would make it more practical while preserving much of its simplicity (1, 2,14, 19, 24, 25}.
The bulk-synchronous parallel model (BSP) developed by Valiant[32] attempts to bridge theory and practice

* A version of this report appears in the Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of
Paraliel Programming, May 1993, San Diego, CA.
t Also affiliated with International Computer Science Institute, Berkeley.

with a more radical departure from the PRAM. It allows processors to work asynchronously and models
latency and limited bandwidth, yet requires few machine parameters as long as a certain programming
methodology is followed. We used the BSP as a starting point in our search for a parallel model that would
be realistic, yet simple enough to be used to design algorithms that work predictably well over a wide range
of machines. The model should allow the algorithm designer to address key performance issues without
specifying unnecessary detail. It should allow machine designers to give a concise performance summary
of their machine against which algorithms can be evaluated.

Historically, it has been difficult to develop a reasonable abstraction of parallel machines because the ma-
chines exhibited such a diversity of structure. However, technological factors are now forcing a convergence
towards systems formed by a collection of essentially complete computers connected by a communication
network (Figure 1). This convergence is reflected in our LogP model which addresses significant common
issues while suppressing machine specific ones such as network topology and routing algorithm. The LogP
model characterizes a parallel machine by the number of processors(P), the communication bandwidth(g),
the communication delay(L), and the communication overhead(o). In our approach, a good algorithm
embodies a strategy for adapting to different machines, in terms of these parameters.

* | {MicroProcessor

Cache Memory

-~
1

priace

MicroProcessor

Cache Memory

Network Interfacej ™
DRAM Memory

Figure 1: This organization characterizes most massively parallel processors (MPPs). Current commercial
examples include the Intel iPSC, Delta and Paragon, Thinking Machines CM-5, Ncube, Cray T3D, and
Transputer-based MPPs such as the Meiko Computing Surface or the Parsytec GC. This structure describes
essentially all of the current “research machines” as well.

We believe that the common hardware organization described in Figure 1 will dominate commercial
MPPs at least for the rest of this decade, for reasons discussed in Section 2 of this paper. In Section 3
we develop the LogP model, which captures the important characteristics of this organization. Section 4
puts the model to work, discussing the process of algorithm design in the context of the model and
presenting examples that show the importance of the various communication aspects. Implementation
of these algorithms on the CM-5 provides preliminary data towards validating the model. Section 5
presents communication networks in more detail and examines how closely our model corresponds to
reality on current machines. Finally, Section 6 compares our model to various existing parallel models, and
summarizes why the parameters making up our model are necessary. It also addresses several concerns that
might arise regarding the utility of this model as a basis for further study.

2 Technological Motivations

The possibility of achieving revolutionary levels of performance has led parallel machine designers to
explore a variety of exotic machine structures and implementation technologies over the past thirty years.
Generally, these machines have performed certain operations very well and others very poorly, frustrating
attempts to formulate a simple abstract model of their performance characteristics. However, technological

2

180 JE U U OO R RS UUPPU PGS IIUUPIUR PSPPSR PR

160 1
140 + J R L e
120 { DEC
alpha
100 e lBM
80 "RS6000
.. 540
&0 MIPS... MIPS .
40] MZOOO 2 ",’
20 Sun4 M/120 e T "

1987 1988 1989 1990 1991 1892

~---m--- Integer —(C—— FP

Figure 2: Performance of state-of-the-art microprocessors over time. Performance is approximately number
of times faster than the VAX-11/780. The floating point SPEC benchmarks improved at about 97% per year
since 1987, and integer SPEC benchmarks improved at about 54% per year.

factors are forcing a convergence towards systems with a familiar appearance; a collection of essentially
complete computers, each consisting of a microprocessor, cache memory, and sizable DRAM memory,
connected by a robust communication network. This convergence is likely to accelerate in the future as
physically small computers dominate more of the computing market. Variations on this structure will involve
clustering of localized collections of processors and the details of the interface between the processor and
the communication network. The key technological justifications for this outlook are discussed below.

Microprocessor performance is advancing at a rate of 50 to 100% per year{17], as indicated by Figure 2.
This tremendous evolution comes at an equally astounding cost: estimates of the cost of developing the
recent MIPS R4000 are 30 engineers for three years, requiring about $30 million to develop the chip, another
$10 million to fabricate it, and one million hours of computer time for simulations[15]. This cost is borne
by the extremely large market for commodity uniprocessors. To remain viable, parallel machines must be
on the same technology growth curve, with the added degree of freedom being the number of processors
in the system. The effort needed to reach such high levels of performance combined with the relatively
low cost of purchasing such microprocessors led Intel, Thinking Machines, Meiko, Convex, IBM and even
Cray Research to use off-the-shelf microprocessors in their new parallel machines[5]. The technological
opportunities suggest that parallel machines in the 1990s and beyond are much more likely to aim at
thousands of 64-bit, off-the-shelf processors than at a million custom 1-bit processors.

Memory capacity is increasing at a rate comparable to the increase in capacity of DRAM chips:
quadrupling in size every three years[16). Today’s personal computers typically use 8 MB of memory and
workstations use about 32 MB. By the tumn of the century the same number of DRAM chips will offer 64
times the capacity of current machines. The access time falls very slowly with each generation of DRAMs, so
sophisticated cache structures will be required in commodity uniprocessors to bridge the difference between
processor cycle times and memory access times. Cache-like structures may be incorporated into the memory
chips themselves, as in emerging RAM-bus and synchronous DRAM technology[l?] Multiprocessors will
need to incorporate state-of-the-art memory systems to remain competitive.

Since the parallel machine nodes are very similar to the core of a workstation, the cost of a node is

comparable to the cost of a workstation. As the most expensive supercomputer costs less than 25 MS$ for
the processors and memory, and since the price of workstations have remained at about 5-10 K$, the largest
parallel machines will have a few thousand nodes. This economic observation is valid today, with no vendor
producing a system with more than two thousand nodes.!

Summarizing, we can expect that the nodes of parallel machines of the 1990s will be capable of
computing hundreds of Mflops and capable of storing hundreds of megabytes. The number of such nodes
will not scale into the millions, so parallel algorithms will need to be developed under the assumption of a
large number of data elements per processor. This has significant impact on the kinds of algorithms that
are effective in practice.

Network technology is advancing as well, but it is not driven by the same volume market forces as
microprocessors and memory. While new media offer much higher network bandwidth, their realizable
performance is limited by the interface between the network and the node. Currently, communication
bandwidth through that interface lags far behind internal processor memory bandwidth. The lack of
attention paid to the network interface in current microprocessors also means that substantial time is lost
on each communication operation, regardless of programming style. Although the interface is improving,
processors are improving in performance even faster, so we must assume that high latency and overhead of
communication, as well as limited bandwidth will continue to be problems.

There appears to be no consensus emerging on interconnection topology: the networks of new com-
mercial machines are typically different from their predecessors and different from each other. Operating
in the presence of network faults is becoming extremely important as parallel machines go into production
use, which suggests that the physical interconnect on a single system will vary over time to avoid broken
components. Finally, adaptive routing techniques are becoming increasingly practical. Thus, attempting
to exploit a specific network topology is likely to yield algorithms that are not very robust in practice. An
abstract view of the latency and bandwidth properties of the network provides a framework for adapting
algorithms to the target machine configuration.

No single programming methodology is becoming clearly dominant: shared-memory, message-passing,
and data parallel styles all have significant popularity. Thus, the computational model should apply regardless
of programming style. The technological factors discussed above make this goal tractable as most recent
parallel machines support a range of programming styles using roughly similar hardware mechanisms[33].

The essential message is clear: technological forces are leading to massively parallel machines con-
structed from at most a few thousand nodes, each containing a powerful processor and substantial memory,
interconnected by networks with limited bandwidth and significant latency. This renders both PRAM and
network models inappropriate as a foundation for algorithm development since they do not accurately pre-
dict performance of programs on real computers. Our conclusion is that a new model which captures the
technological reality more faithfully is needed.

3 LogP Model

Starting from the technological motivations discussed in the previous section, programming experience,
and examination of popular theoretical models, we have developed a model of a distributed-memory
multiprocessor in which processors communicate by point-to-point messages. The model specifies the
performance characteristics of the interconnection network, but does not describe the structure of the
network.

The main parameters of the model are:

!Mainstream workstations may contain multiple processors in the future, perhaps on a single chip. Current trends would indicate
that large parallel machines would comprise a few thousand of these multiprocessor nodes.

L: an upper bound on the latency, or delay, incurred in communicating a message containing a word (or
small number of words) from its source module to its target module.

o: the overhead, defined as the length of time that a processor is engaged in the transmission or reception
of each message; during this time, the processor cannot perform other operations.

g: the gap, defined as the minimum time interval between consecutive message transmissions or consecutive
message receptions at a processor. The reciprocal of g corresponds to the available per-processor
communication bandwidth.

P: the number of processor/memory modules. We assume unit time for local operations and call it a cycle.

Furthermore, it is assumed that the network has a finite capacity, such that at most [L/g] messages
can be in transit from any processor or to any processor at any time. If a processor attempts to transmit a
message that would exceed this limit, it stalls until the message can be sent without exceeding the capacity
limit.

The parameters L, o and g are measured as multiples of the processor cycle. The model is asynchronous,
i.e., processors work asynchronously and the latency experienced by any message is unpredictable, but is
bounded above by L in the absence of stalls. Because of variations in latency, the messages directed to a
given target module may not arrive in the same order as they are sent. The basic model assumes that all
messages are of a small size (a simple extension deals with longer messages).

In analyzing an algorithm, the key metrics are the maximum time and the maximum space used by any
processor. In order to be considered correct, an algorithm must produce correct results under all interleavings
of messages consistent with the upper bound of L on latency. However, in estimating the running time of
an algorithm, we assume that each message incurs a latency of L?

3.1 Discussion of parameters

This particular choice of parameters represents a compromise between faithfully capturing the execution
characteristics of real machines and providing a reasonable framework for algorithm design and analysis.
No small set of parameters can describe all machines completely. On the other hand, analysis of interesting
algorithms is difficult with a large set of parameters. We believe that LogP represents “the knee of the curve”
in that additional detail would seek to capture phenomena of modest impact while dropping parameters would
encourage algorithmic techniques that are not well supported in practice.

We have resisted the temptation to provide a more detailed model of the individual processors, such
as cache size, and rely on the existing body of knowledge in implementing fast sequential algorithms on
modem uniprocessor systems to fill the gap. An implementation of a good parallel algorithm on a specific
machine will surely require a degree of tuning, but if the issues raised by the level of detail embodied in
LogP are not addressed, it would seem that the algorithm design is incomplete.

Fortunately, the parameters are not equally important in all situations; often it is possible to ignore one
or more parameters and work with a simpler model. For example, in algorithms that communicate data
infrequently, it is reasonable to ignore the bandwidth and capacity limits. In some algorithms messages
are sent in long streams which are pipelined through the network, so that message transmission time is
dominated by the inter-message gaps, and the latency may be disregarded. In some machines the overhead
dominates the gap, so g can be eliminated. One convenient approximation technique is to increase o to be
as large as g, so g can be ignored. This is conservative by at most a factor of two. We hope that parallel

>There are certain anomalous situations in which reducing the latency of certain messages actually increases the running time
of an algorithm. These arise primarily when the computational schedule is based on the order of message arrival, rather than the
information contained in the message.

architectures improve to a point where o can be eliminated, but today this seems premature. More specific
rationale for the particular parameters and their role is provided in the remainder of the paper.

3.2 Discouraged loopholes and rewarded techniques

The LogP model eliminates a variety of loopholes that other models permit. For example, many PRAM
algorithms are excessively fine-grained, since there is no penalty for interprocessor communication. Al-
though the EREW PRAM penalizes data access contention at the word level, it does not penalize contention
at the module level.

The technique of multithreading is often suggested as a way of masking latency. This technique assigns
to each physical processor the task of simulating several virtual processors; thus, computation does not have
to be suspended during the processing of a remote request by one of the virtual processors. In practice, this
technique is limited by the available communication bandwidth and by the overhead involved in context
switching. We do not model context switching overhead, but capture the other constraints realistically
through the parameters o and g. Moreover the capacity constraint allows multithreading to be employed
only up to a limit of L/g virtual processors. Under LogP, multithreading represents a convenient technique
which simplifies analysis, as long as these constraints are met, rather than a fundamental requirement[27, 32].

On the other hand, LogP encourages techniques that work well in practice, such as coordinating the
assignment of work with data placement, so as to reduce the communication bandwidth requirement and
the frequency of remote references. The model also encourages the careful scheduling of computation
and overlapping of computation with communication, within the limits imposed by network capacity. The
limitation on network capacity also encourages balanced communication pattems in which no processor is
flooded with incoming messages.

Although the model is stated in terms of primitive message events, we do not assume that algorithms
must be described in terms of explicit message passing operations, such as send and receive. Shared memory
models are implemented on distributed memory machines through an implicit exchange of messages[22].
Under LogP, reading a remote location requires time 2L + 40. Prefetch operations, which initiate a read
and continue, can be issued every g cycles and cost 2o units of processing time. Some recent machines
migrate locations to local caches when they are referenced; this would be addressed in algorithm analysis
by adjusting which references are remote.

3.3 Broadcast and Summation

As a concrete illustration of the role of various parameters of the model, we sketch optimal algorithms for
two simple problems: broadcast and summation. The solutions are quite different from those on the PRAM.

First, we consider the problem of broadcasting a single datum from one processor to P — 1 others. The
main idea is simple: all processors that have received the datum transmit it as quickly as possible, while
ensuring that no processor receives more than one message. The source of the broadcast begins transmitting
the datum at time 0. The first datum enters the network at time o, takes L cycles to arrive at the destination,
and is received by the node at time L + 20. Meanwhile, the source will have initiated transmission to other
processors at time g, 2g, . ., assuming g > o, each of which acts as the root of a smaller broadcast tree. As
indicated in Figure 3, the optimal broadcast tree for p processors is unbalanced® with the fan-out at each
node determined by the relative values of L, o, and g. Observe that the processor overhead of successive
transmissions overlaps the delivery of previous messages. Nodes may experience idle cycles at the end of
the algorithm while the last few messages are in transit.

To obtain an optimal algorithm for the summation of » input values we first consider how to sum as many
values as possible within a fixed amount of time T. This produces the communication and computation

3A special case of this algorithm with o = 0 and ¢ = 1 appears in {4].

6

PO |ttt L
PI Lo 5 . R
P2 L s
P3 .“-\ _o_"T' L
P4 N sy
P5 "o—"'r'g'—4'r' L
P6 e g aly
P7 P6 P4 P7 Ay
0 l5 I10 l15 l20 Tlm;

Figure 3: Optimal broadcast tree for P = 8,L = 6,9 = 4,0 = 2 (left) and the activity of each processor
over time (right). The number shown for each node is the time at which it has received the datum and can
begin sending it on. The last value is received at time 24.

schedule for the summation problem. The pattern of communication among the processors again forms a
tree; in fact, the tree has the same shape as an optimal broadcast tree[20]. Each processor has the task of
summing a set of the elements and then (except for the root processor) transmitting the result to its parent.
The elements to be summed by a processor consist of original inputs stored in its memory, together with
partial results received from its children in the communication tree. To specify the algorithm, we first
determine the optimal schedule of communication events and then determine the distribution of the initial
inputs.

If T < L+2o0, theoptimal solution s to sum 7'+ 1 values on a single processor, since there is not sufficient
time to receive data from another processor. Otherwise, the last step performed by the root processor (at time
T —1)is to add a value it has computed locally to a value it just received from another processor. The remote
processor must have sent the value attime 7' — 1 — L — 20, and we assume recursively that it forms the root of
an optimal summation tree with this time bound. The local value must have been produced at time 7' — 1 — o.
Since the root can receive a message every g cycles, its children in the communication tree should complete
their summations at times T — (204+ L +1),T—(20+ L+ 1+4¢),T — (20+ L + 1 +2g),. . - The root
performs g — o — 1 additions of local input values between messages, as well as the local additions before it
receives its first message. This communication schedule must be modified by the following consideration:
since a processor invests o cycles in receiving a partial sum from a child, all transmitted partial sums must
represent at least o additions. Based on this schedule, it is straight-forward to determine the set of input
values initially assigned to each processor and the computation schedule. Notice that the inputs are not
equally distributed over processors. (The algorithm is easily extended to handle the limitation of p processors
by pruning the communication tree.)

The computation schedule for our summation algorithm can also be represented as a tree with a
node for each computation step. Figure 4 shows the communication schedule for the processors and the
computational schedule for a processor and two of its children. Each node is labeled with the time at which
the step completes, the wavy edges represent partial results transmitted between processors, and the square
boxes represent original inputs. The initial work for each processor is represented by a linear chain of
input-summing nodes. Unless the processor is a leaf of the communication tree, it then repeatedly receives
a value, adds it to its partial sum and performs a chain of g — o — 1 input-summing nodes. Observe that
local computations overlap the delivery of incoming messages and the processor reception overhead begins
as soon as the message arrives.

Figure 4: Communication tree for optimal summing (left) and computation schedule for a subsct of
processors (right) forT =28, P =8,L =5,9=4,0=2.

4 Algorithm Design

In the previous section, we stepped through the design of optimal algorithms for extremely simple problems
and explained the parameters of our model. We now consider more typical parallel processing applications
and show how the use of the LogP model leads to efficient parallel algorithms in practice. In particular,
we observe that efficient parallel algorithms must pay attention to both computational aspects (such as the
total amount of work done and load balance across processors) and communication aspects (such as remote
reference frequency and the communication schedule). Thus, a good algorithm should co-ordinate work
assignment with data placement, provide a balanced communication schedule, and overlap communication
with processing.

4.1 Fast Fourier Transform

Our first example, the fast Fourier transform, illustrates these ideas in a concrete setting. We discuss
the key aspects of the algorithm and then an implementation that achieves near peak performance on the
Thinking Machines CM-5. We focus on the “butterfly” algorithm [9] for the discrete FFT problem, most
easily described in terms of its computation graph. The n-input (n a power of 2) butterfly is a directed
acyclic graph with n(log n + 1) nodes viewed as n rows of (log » + 1) columns each. For 0 < r < n and
0 < ¢ < logn, the node (r, c) has directed edges to nodes (r,c + 1) and (7, ¢ + 1) where 7 is obtained
by complementing the (c + 1)-th most significant bit in the binary representation of r. Figure 5 shows an
8-input butterfly.

The nodes in column O are the problem inputs and those in column log » represent the outputs of the
computation. (The outputs are in bit-reverse order, so for some applications an additional rearrangement

Columns —

~«—— SMOY

Figure 5: An 8-input butterfly with P = 2. Nodes assigned to processor 0 under the hybrid layout are
circled.

step is required.) Each non-input node represents a complex operation, which we assume takes one unit of
time. Implementing the algorithm on a parallel computer corresponds to laying out the nodes of the butterfly
on its processors; the layout determines the computational and communication schedules, much as in the
simple examples above.

4.1.1 Data placement and work assignment

There is a vast body of work on this structure as an interconnection topology, as well as on efficient
embeddings of the butterfly on hypercubes, shuffie-exchange networks, etc. This has led many researchers
to feel that algorithms must be designed to match the interconnection topology of the target machine. In
real machines, however, the n data inputs and the nlogn computation nodes must be laid out across P
processors and typically P << n. The nature of this layout, and the fact that each processor holds many
data elements has a profound effect on the communication structure, as shown below.

A natural layout is to assign the first row of the butterfly to the first processor, the second row to the
second processor and so on. We refer to this as the cyclic layout. Under this layout, the first log $ columns
of computation require only local data, whereas the last log P columns require a remote reference for each
node. An alternative layout is to place the first rows on the first processor, the next £ rows on the second
processor, and so on. With this blocked layout, each of the nodes in the first log P columns requires a remote
datum for its computation, while the last log % columns require only local data. Under either layout, each
processor spends % log n time computing and (9% + L)log P time communicating, assuming g > 2o.

Since the initial computation of the cyclic layout and the final computation of the blocked layout are
completely local, one is led to consider hybrid layouts that are cyclic on the first log P columns and blocked
on the last log P. Indeed, switching from cyclic to blocked layout at any column between the log P-th and
the log $-th (assuming that n > P?) leads to an algorithm which has a single “all-to-all” communication
step between two entirely local computation phases. Figure 5 highlights the node assignment for processor
0 for an 8-input FFT with P = 2 under the hybrid layout; remapping occurs between columns 2 and 3.

The computational time for the hybrid layout is the same as that for the simpler layouts, but the
communication time is lower by a factor of log P: each processor sends 5; messages 10 every other,
requiring only g(% — ;) + L time. The total time is within a factor of (1 + =) of optimal, showing that

logn

this layout has the potential for near-perfect speedup on large problem instances.

4.1.2 Communication schedule

The algorithm presented so far is incomplete because it does not specify the communication schedule (the
order in which messages are sent and received) that achieves the stated time bound. Our algorithm is a
special case of the “layered” FFT algorithm proposed in [25] and adapted for the BSP model[32]. These
earlier models do not emphasize the communication schedule: [25] has no bandwidth limitations and hence
no contention, whereas [32] places the scheduling burden on the router which is assumed to be capable of
routing any balanced pattern in the desired amount of time.

A naive schedule would have each processor send data starting with its first row and ending with its last
row. Notice, that all processors first send data to processor 0, then all to processor 1, and so on. All but L/g
processors will stall on the first send and then one will send to processor 0 every g cycles. A better schedule
is obtained by staggering the starting rows such that no contention occurs: processor i starts with its —;-th
row, proceeds to the last row, and wraps around.

4.1.3 Implementation of the FFT algorithm

To verify the prediction of the analysis, we implemented the hybrid algorithm on a CM-5 multiprocessor
and measured the performance of the three phases of the algorithm: (I) computation with cyclic layout,
(IT) data remapping, and (I1I) computation with blocked layout. The CM-5 is a massively parallel MIMD
computer based on the Sparc processor. Each node consists of a 33 Mhz Sparc RISC processor chip-
set (including FPU, MMU and 64 KByte direct-mapped write-through cache), 8 MBytes of local DRAM
memory and a network interface. The nodes are interconnected in two identical disjoint incomplete
fat trees, and a broadcast/scan/prefix control network.* Figure 6 demonstrates the importance of the
communication schedule: the three curves show the computation time and the communication times for the
two communication schedules. With the naive schedule, the remap takes more than 1.5 times as long as the
computation, whereas with staggering it takes only -}th as long.

The two computation phases involve purely local operations and are standard FFTs. Figure 7 shows
the computation rate over a range of FFT sizes expressed in Mflops/processor. For comparison, a CM-5’s
Sparc node achieves roughly 3.2 MFLOPS on the Linpack benchmark. This example provides a convenient
comparison of the relative importance of cache effects, which we have chosen to ignore, and communication
balance, which other models ignore. The drop in performance for the local FFT from 2.8 Mflops to
2.2 Mflops occurs when the size of the local FFTs exceeds cache capacity. (For large FFTs, the cyclic phase
involving one large FFT suffers more cache interference than the blocked phase which solves many small
FFTs.) The implementation could be refined to reduce the cache effects, but the improvement would be
small compared to the speedup associated with improving the communication schedule.

4.1.4 Quantitative analysis

The discussion so far suggests how the model may be used in a qualitative sense to guide paralle] algorithm
design. The following shows how the model can be used in a more quantitative manner to predict the
execution time of an implementation of the algorithm. From the computational performance in Figure 7 we
can calibrate the “cycle time” for the FFT as the time for the set of complex multiply-adds of the butterfly
primitive. At an average of 2.2 Mflops and 10 floating-point operations per butterfly, a cycle corresponds
to 4.5us, or 150 clock ticks (we use cycles to refer to the time unit in the model and ticks to refer to the
33 Mhz hardware clock). In previous experiments on the CM-5[33] we have determined that o = 2us
(0.44 cycles, 56 ticks) and, on an unloaded network, L ~ 6us (1.3 cycles, 200 ticks). Furthermore, the

*The implementation does not use the vector accelerators which are not available at the time of writing.

10

14 ¢

Naive
12 + Remap
10 1
»n Computation
v 8+
c
g
» &7
4 4
2 Staggered
Remap

4
1

4 I I I
t T T T T

0 2 4 6 8 10 12 14 16 18
FFT points (Millions)

Figure 6: Execution times for FFTs of various sizes on a 128 processor CM-5. The compute curve represents
the time spent computing locally. The bad remap curve shows the time spent remapping the data from a
cyclic layout to a blocked layout if a naive communication schedule is used. The good remap curve shows
the time for the same remapping, but with a contention-free communication schedule, which is an order of
magnitude faster. The X axis scale refers to the entire FFT size.

3T
Phase llI
o 2
o)
i Phase |
4 15 +
o
b=
1+
05 +
0 { 4 " } et } |

0 2 4 6 8 10 12 14 16 18
FFT points (Millions)

Figure 7: Per processor computation rates for the two computation phases of the FFT in Mflops (millions
of floating-point operations per second).

11

bisection bandwidth’ is SMB/s per processor for messages of 16 bytes of data and 4 bytes of address, so
we take ¢ to be 4u5(0.44 cycles, 56 ticks). In addition there is roughly 1us(0.22 cycles, 28 ticks) of local
computation per data point to load/store values to/from memory. Analysis of the staggered remap phase
predicts the communication time is $ max(1us + 2o, g) + L. For these parameter values, the transmission
rate is limited by processing time and communication overhead, rather than bandwidth. The remap phase
is predicted to increase rapidly to an asymptotic rate of 3.2MB/s. The observed performance is roughly
2MB/s for this phase, nearly half of the available network bandwidth.

35 71
D Predicted
O Double Net
25 1 Synchronized
Q r\
g 2y
@ Staggered
o 1
= 1.5
1 4
05 +
S I — Naive
0 : : " e { | : —

0 2 4 6 8 10 12 14 16 18
FFT points (Millions)

Figure 8: Predicted and measured communication rates expressed in Mbytes/second per processor for
the staggered communication schedule. The staggered schedule is theoretically contention-free, but the
asynchronous execution of the processors causes some contention in practice. The synchronized schedule
performs a barrier synchronization periodically (using a special hardware barrier). The double net schedule
uses both data networks, doubling the available network bandwidth.

The analysis does not predict the gradual performance drop forlarge FFTs. In reality, processors execute
asynchronously due to cache effects, network collisions, etc. It appears that they gradually drift out of sync
during the remap phase, disturbing the communication schedule. To reduce this effect we added a barrier
synchronizing all processors after every s messages.® Figure 8 shows that this eliminates the performance
drop.

We can test the effect of reducing g by improving the implementation to use both fat-tree networks
present in the machine, thereby doubling the available network bandwidth. The result shown in Figure 8
is that the performance increases by only 15% because the network interface overhead (o) and the loop
processing dominate.

This detailed quantitative analysis of the implementation shows that the hybrid-layout FFT algorithm
is nearly optimal on the CM-5. The computation phases are purely local and the communication phase is

5The bisection bandwidth is the minimum bandwidth through any cut of the network that separates the set of processors into

halves.
SFor simplicity, the implementation uses the hardware barrier available on the CM-5. The same effect could have been achieved

using explicit acknowledgement messages.

12

overhead-limited, thus the processors are 100% busy all the time (ignoring the insignificant L at the end of
the communication phase). Performance improvements in the implementation are certainly possible, but
without affecting the algorithm itself.

4.15 Overlapping communication with computation

In future machines we expect architectural innovations in the processor-network interface to significantly
reduce the value of o with respect to g. Algorithms for such machines could try to overlap communication
with computation in order to mask communication time, as in the optimal summation example. If o is
small compared to g, each processor idles for g — 2o cycles between successive transmissions during the
remap phase. The remap can be merged into the computation phases, as in the optimal algorithms[28].
The initial portion of the remap is interleaved with the pre-remap computation, while the final portions
can be interleaved with the post-remap computation. Unless g is extremely large, this eliminates idling of
processors during remap.

4.2 Other examples

We now discuss three other problems that have been carefully studied on parallel machines and show how the
LogP model motivates the development of efficient al gorithms for them. Here we provide only a qualitative
assessment of the key design issues.

4.2.1 LU Decomposition

Linear algebra primitives offer a dramatic example of the importance of careful development of high
performance parallel algorithms. The widely used Linpack benchmark achieves greater than 10 GFLOPS
on recent parallel machines. In this section we examine LU decomposition, the core of the Linpack
benchmark, to show that the key ideas employed in high performance linear algebra routines surface easily
when the algorithm is examined in terms of our model.

In LU decomposition using Gaussian elimination, an n X n non-singular matrix A is reduced inn — 1
elimination steps to a unit-diagonal lower triangular matrix L and an upper triangular matrix U such that
PA = LU for some permutation matrix P. Since L and U are constructed by overwriting A, we will refer
only to the matrix A, with A(¥) denoting the matrix A at the start of step k. In the k-th elimination step, the
k-th row and column of A®) are replaced by the k-th column of L and the k-th row of U. This involves
partial pivoting to determine the pivot, i.e., the element in column k (below the diagonal) of largest absolute
value, swapping the k-th and pivot rows of A‘¥), and scaling of the k-th column by dividing it by the pivot.
Thereafter, the (n — k) x (n — k) lower right square submatrix of A(*) is updated 10 AL+

ASfH) = Aﬁf’ — LixUij, t,j=k+1,...,n

The row permutations that result from pivoting are carried along as part of the final result. The parallelism
in this algorithm is trivial: at step k all (n — k)? scalar updates are independent. The pivoting, swapping
and scaling steps could be parallelized with appropriate data layout.

To obtain a fast algorithm, we first focus on the ratio of communication to computation. Observe that
regardless of the data layout, the processor responsible for updating AS;‘) must obtain L;; and Uy;. A bad
data layout might require each processor to obtain the entire pivot row and the entire multiplier column.
Thus, step k would require 2(n — k)g + L time for communication ’ and 2(n — k)?/ P time for computation.

"We are assuming here that the 2(n ~ k) elements of the pivot row and multiplier column are distributed equally among
processors and are communicated by an efficient all-to-all broadcast.

13

The communication can be reduced by a factor of 2 by choosing a column layout in which n / P columns
of A are allocated to each processor. For this layout, only the multipliers need be broadcast since pivot
row elements are used only for updates of elements in the same column. A more dramatic reduction in
communication cost can be had by a grid layout in which each processor is responsible for updating a
(n — k)/v/P x (n — k)/+/P submatrix of A(¥). This requires each processor to receive only 2(n — k)/VP
values, a gain of /P in the communication ratio. Some of this advantage will be foregone due to the
communication requirements of pivoting and scaling down a column that is shared by many processors.
However, this cost is asymptotically negligible in comparison to the communication cost for update. ®

Our specification of the grid layout is incomplete since there are many ways to distribute A among P
processors so that each receives a submatrix of A determined by a set of n/+/P rows and columns. The
two extreme cases are blocked and cyclic allocation in each dimension. In the former case, the rows and
columns assigned to a processor are contiguous in A while in the latter they are maximally scattered WP
apart). It should be clear that blocked grid layout leads to severe load imbalance: by the time the algorithm
completes n/ VP elimination steps, 2+/P processors would be idle and only one processor is active for the
last n/ /P elimination steps. In contrast, the scattered layout allows all P processors to stay active for all
but the last /P steps. It is heartening to note that the fastest Linpack benchmark programs actually employ
a scattered grid layout, a scheme whose benefits are obvious from our model’

4.2.2 Sort

In general, most sorting algorithms have communication patterns which are data-dependent although some,
such as bitonic sort, do exhibit highly structured oblivious patterns. However, since processors handle
large subproblems, sort algorithms can be designed with a basic structure of alternating phases of local
computation and general communication. For example, column sort consists of a series of local sorts and
remap steps, similar to our FFT algorithm. An interesting recent algorithm, called splitter sort[7], follows
this compute-remap-compute pattern even more closely. A fast global step identifies P — 1 values that
split the data into P almost equal chunks. The data is remapped using the splitters and then each processor
performs a local sort.

4.2.3 Connected Components

Generally, efficient PRAM algorithms for the connected components problem have the property that the data
associated with a small number of graph nodes is required for updating the data structures at all other nodes
in the later stages of computation. For example, in [29] each component is represented by one node in the
component and processors “owning” such nodes are the target of increasing numbers of “‘pointer-jumping”
queries as the algorithm progresses. This leads to high contention, which the CRCW PRAM ignores, but
LogP makes apparent.

We consider a randomized PRAM algorithm given in [31] and adapt it to the LogP model. By carefully
analyzing various subroutines and performing several local optimizations, we are able to show that the

8We remark also that pipelining successive elimination steps appears easier to organize with column layout than with grid layout:
we could schedule the broadcast of multipliers during the k-th step so that the processor responsible for the (k + 1)-st column
receives them early, allowing it to initiate the (k + 1)-st elimination step while the update for the previous step is still under way.

9The variations that we have described above do not change the basic algorithm which is built around a rank-1 update operation
on a matrix. In blocked LU decomposition, the elimination step involves operations on sub-matrices. Instead of dividing by the pivot
element, the inverse of the pivot sub-matrix is computed and used to compute the multiplier submatrices. Similarly, the elimination
step involves multiplication of sub-matrices or rank-r updates where r is the side of the sub-matrices. Blocked decomposition has
been found to outperform scalar decomposition on several machines. (See, for example, [12].) The main reason for this is the
extensive use of Level 3 BLAS (which are based on matrix-matrix operations and re-use cache contents optimally) in the blocked
decomposition algorithm.

14

severe contention problem of naive imp