Input/Output Performance Evaluation:
Self-Scaling Benchmarks, Predicted Performance

Peter Ming-Chien Chen

Report No. UCB/CSD-92-714

November 1992

Computer Science Division (EECS)
University of California, Berkeley
Berkeley, CA 94720

Input-Output Performance Evaluation:
Self-Scaling Benchmarks, Predicted Performance

by
Peter Ming-Chien Chen
B.S. (Pennsylvania State University) 1987
M.S. (University of California at Berkeley) 1989
A dissertation submitted in partial satisfacﬁon of the
requirements for the degree of
Doctor of Philosophy
in
Computer Science
in the
GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY
Committee in Charge:
Professor David A. Patterson, Chair

Professor Randy H. Katz
Professor Ronald Wolff

The dissertation of Peter Ming-Chien Chen is approved:

:Dcﬁx% ' (13042

ﬁ [, /J;-z,;g 1 /f15/72

Date

University of California at Berkeley

1992

Input-Output Performance Evaluation:

Self-Scaling Benchmarks, Predicted Performance

Copyright © 1992

by \

Peter Ming-Chien Chen

Abstract

Input-Output Performance Evaluation:

Self-Scaling Benchmarks, Predicted Performance

by

Peter Ming-Chien Chen

Doctor of Philosophy in Computer Science
University of California at Berkeley

Professor David A. Patterson, Chair

Over the past 20 years, processor performance has been growing much faster than
input/output (1/0) performance. As this occurs, overall system speed becomes more and more
limited by the speed of 1/0 systems and hence 1/0 systems are evolving to keep up with proces-
sor performance. This evolution renders current I/O performance evaluation techrﬁque§
obsolete or irrelevant, despite their increasing importance. This dissertation investigates two

new ideas in I/O evaluation, self-scaling benchmarks and predicted performance.

This dissertation's self-scaling benchmark seeks to measure and report relevant workloads
for a wide range of input/output systems. To do so, it scales aspects of its workload to account
for the differences in 1/O systems. For example, it dynamically discovers the size of the

system’s file cache and reports how performance varies both in and out of the file cache. The

1

general approach taken is to scale based on the range of workloads the system performs well.

The self-scaling benchmark helps the evaluator gain insight into the system's performance
by displaying how performance varies against each of five workload parameters: amount of file
space, request size, fraction of reads, fraction of sequential accesses, and number of simultane-
ous accesses. The utility of the benchmark is demonstrated by running it on a wide variety of
/O systems, ranging from a single disk, low-end workstation to a mini-supercomputer with an
array of four disks. On each system, the benchmark helps provide performance insights, such as
the size of the file cache, the performance increases due to larger requests, the file cache’s write

policy, and the bencfits of higher workload concurrency.

Predicted performance restores the abil_ity to compare two machines on the same work-
load, which was lost in the self-scaling benchmark. Further, it extends this ability to workloads
that have not been measured by estimating performance based on the graphs from the self-
scaling benchmark. Prediction is accurate to within 10-15% over a wide range of I/O workloads
and systems. This high level of accuracy demonstrates how a large workload space can be

described using a few tens of points and a simple product form performance equation.

D A Pdizran.

Professor David A. Patterson, Chair

-

Dedicated to my wife, Janet

for your help in persevering,
your reminders for me to keep an eternal perspective,

and your unconditional love and commitment.

i i 30 At 0 e Sl N e Y T R N N L R A o e T SR S . i A S i S e

Table of Contents

Chapter 1: Introduction 1
1.1 Why /O Performance?
12 Overview of the Dissertation
13 Metrics
14 Trends in I/O Systems
15 References
Chapter 2: Previous Work 17
2.1 1/0 Benchmarks
22 The Ideal /O Benchmark
2.3 System Platforms
24 Overview of Current I/O Benchmarks
24.1 Application Benchmarks
24.1.1 Andrew
2412 TPC-B
2413 Sdet
24.2 Synthetic Benchmarks
24.2.1 Bonnie
. 24.22 1OStone
24.2.3 Sample Scientific Workload
2424 LADDIS
25 Critique of Current Benchmarks
2.6 References
Chapter 3: Workload Model 36

iv

N AW

12

17
18
20
21
22
22
23
25
26
26
27
28
28

32

3.1

3.2

33
34
34.1
34.1.1
34.12
34.13
34.2
3.5

3.6

3.7

Overview

I/O Workloads Used in Research
1/0 Tracing Studies

Willy

Workload Parameters
Locality A
Request Characteristics
Load

Other Workload Issues
Modeling Real Applications
Representativeness of Willy

References

Chapter 4: A Self-Scaling Benchmark

4.1
4.2
43
44
44.1
44.2

45
45.1
45.1.1
45.12
4513
45.14

Overview

Single Parameter Graphs

The Knee Point

A Global Knee Self-Scaling Benchmark
Example Run of Global-Knee, Self-Scaling Benchmark
Problems

A Better Self-Scaling Benchmark
Examples

SPARCstation 1+

DECstation 5000/200

HP 730

Convex

49

36
37
38

&

41
42
42

43

49
50
53
58

66
69
70

45.1.5 Solboume
45.1.6 Raw Disk Interface
4.5.1.7 Client-Server
45.1.8 Unannounced Workstation
45.2 Running Time
4.6 Conclusions
4.7 References
Chapter 5: Predicted Performance 81
5.1 Introduction
52 Prediction Models
53 Verification of Prediction Model
5.3.1 SPARCstation 1+
53.2 DECstation 5000/200, HP 730, Convex C240
54 Comparison Against Orthogonal Sampling
55 Application of Predicted Performance—Performance Ratios
5.6 Conchisions
5.7 References
Chapter 6: Conclusions and Future Work 104
6.1 Conclusions
6.2 Future Work
Appendix A: Data Used in Prediction 109
Appendix B: Prediction Algorithm 120
Appendix C: Proof of Performance Equation 123

70
74
74
75

78
79

81
82

86
88
98
100
100
103

104
106

List of Figures

Figure 1.1
Figure 1.2
Figure 1.3
Figure 2.1
Figure 2.2
Figure 2.3
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
‘Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 5.1
Figure 5.2
Figure 5.3

Contrasting trends of CPU and disk performance improvements
Example response time versus throughput graph

Combining multiple smaller disks to. improve performance
TPC-B results

Sdet results

Current stzﬁe of I/O benchmarks

Results from a self-scaling benchmark that scales all parameters
Workloads reported by a set of single parameter graphs
Difficulty in defining the knee

Global knee point with two parameters

Instability in graphs on the border of performance regions
Slope of uniqueBytes curve for SPARCstation 1+

Results from a better self-scaling benchmark for a SPARCstation 1+

Self-scaling benchmark for DECstation 5000/200—Part 1

Self-scaling benchmark for DECstation $000/200—FPart 2
Self-scaling benchmark for HP 730

Self-scaling benchmark for Convex C240

Self-scaling benchmark for Solbourne

Self-Scaling Results using the Raw Disk Interface

Self-Scaling Results for Two Client-Server Configurations
Self-scaling benchmark for unannounced workstation (beta release)
Predicting performance of unmeasured workloads

Predicting performance of four traditional benchmarks

Evaluation of prediction accuracy for SPARCstation 1+ with one disk

vii

23

30
52
53
55
57
61
63
65
67
68
69
71

0y

73
75
76
83
85
87

Figure 5.4 What parameters cause errors for SPARCstation 1+ 89

Figure 5.5 Evaluation of prediction accuracy for Sprite DECstation 5000/200 9%
Figure 5.6 What parameters cause errors for DECstation 5000/200)
Figure 5.7 Evaluation of prediction accuracy for HP 730 92
Figure 5.8 What paramcicrs cause errors for HP 730 93
Figure 5.9 Evaluation of prediction accuracy for Convex C240 94
Figure 5.10 What parameters cause errors for Convex C240 95
Figure 5.11 Enhanced prediction accuracy 97
Figure 5.12 Prediction accuracy using interpolation on an orthogonal sample 99
Figure 5.13 Measured versus predicted ratio , - 102

viii

List of Tables

Table 1.1
Table 1.2
Table 1.3
Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 3.1
Table 3.2
Table 4.1
Table 5.1
Table 5.2
Table A.1
Table A.2
Table A.3
Table A4

Table A.S

Metrics for two I/O systems

Magnetic disk performance improvement over the past 20 years
1992 storage capacity

System platforms

List of contacts for various benchmarks

Résults from the Andrew benchmark

Results from Bonnie

Results from 10Stone

Results from two sample scientific workloads

Workload characterization of benchmarks/applications

Representativeness of Willy

Description of other machines used in self-scaling benchmark examples

Summary of median prediction errors
Workloads to be run on all systems

Raw data for SPARCstation 1+ scatter plot
Raw data for DECstation 5000/200 scatter plot
Raw data for HP 730 scatter plot

Raw data for Convex C240 scatter plot

Raw data for ratio prediction

10
20
21‘
22
26
27
28

45

96
101
112
114

116

119 -

119

Acknowledgements

I am grateful to many people for helping me finish this thesis. My advisor, David Patter-
son, has been the best advisor I could imagine. Since the ume he welcomed me on board the
RAID project, he has been providing interesting research ideas, encouragement to persevere
through graduate school, wise advice through the *‘fallacies and pitfalls®’ o}m academic career,
enthusiasm to learn and teach, and fatherly friendship. He has been a great role model for me as
I begin my vocation as a university professor, and I hope to be, like him, a teacher and

researcher who genuinely cares for my students.

Randy Katz has been a very supportive secondary advisor. As Principal Investigator of
the Berkeley RAID project, he gave me the opportunity to be involved in an interesting research
project, RAID-II. Through this project, 1 have gained valuable, hands-on implementation
experience. I am thankful to Randy and my third reader, Ronald Wolff, for giving me insight-

ful, timely feedback and suggestions for this thesis.

Most Ph.D. students have only one advisor; I was lucky enough to have not only Dave
Paterson and Randy Katz but also another mentor, fellow graduate student (now professor)
Garth Gibson. He, with Dave and Randy, guided me through graduate school and shaped the

way I approach research problems and write papers.

1 have enjoyed working with the RAID and Sprite project members. Students from both
projects have been good sounding boards for this research. In particular, Garth Gibson and Ed
Lee have helped shape much of my research, from discussions on striping units to 1/O work-
Joads. Mende!l Rosenblum and John Hartman helped me understand file systems and file
caches. Ken Shirriff helped me develop an informal proof about the global knee of Chapter 4.
Ken Lutz taught me countless tips on how to debug real hardware in the context of RAID-II.

My parents have consistently supported me through life, teaching me the value of educa-
tion and helping me form a sensible priority system. Without my parents, I would not have
striven for an academic position and may not have persevered through graduate school.~ The
friends I met through Campus Crusade for Christ have been my family in California and have

given zest to my life here.

One of those friends in Campus Crusade for Christ eventually has become my closest
family. My wife, Janet, has been a wonderful partner in life while I've written this dissertation.
Our first one and a half years of marriage have been the best period of my life, both personally

and academically.

Finally, I would like to explain, in story form, a truth I have understood while in graduate
school. Let us say you are a judge and I am a drunk driver. Not only are you a judge, you are
also my father. While driving through town, I crash through a very expensive store window.
The penalty for this crime is either paying for the store window (worth, say, $100,000) or work-
ing without pay for the store until the debt is paid off. As my father, you know I am broke and
can not pay the $100,000. The dilemma is this: naturally, you love me and do not want me to
work the rest of my life paying back the store. But, being a just judge, you can not arbitrarily

overlook my crime.

Here is a possible solution to this quandary: you could offer to pay the penalty for me,

thus accepting the cost of my error on yourself. I need only accept your offer.

This hypothetical situation describes fairly closely our situation before God. All of us
(including myself) are naturally selfish and have done wrong things, whether of the more
heinous variety, such as murder, or the more everyday variety, such as hatred. The penalty for
these wrongdoings is spiritual death, which is etemal separation from God. God, as a Father
who loves us, does not wish for us to pay this penalty, but, nonetheless, the penalty must be

paid for God to be just. He solves this dilemma by penalizing Himself in the form of Jesus.

Xi

Jesus’s death was God’s payment for our mistakes. God offers to apply this payment for each
person, but not everyone has accepted His offer, either due to misunderstanding or due to a
desire to trust solely in one's own ability to pay. If you are willing to accept God’s payment for
your mistakes, simply tell God of your acceptance and begin to yield to Him as your new mas-

ter.

For the wages of sin is death, but the free gift of God is eternal life in Christ Jesus our Lord.

(Romans 6:23)

xii

A o A L S L 3 R A R S € R e S A A R S 4 R e L

Chapter 1

Introduction

1.1. Why /O Performance?

In the last decade, innovations in technology have led to extraordinary advances in com-
puter processing speed. These advances have led many of those who evaluate a computer’s per-
formance to focus their attention on measuring processor performance to the near exclusion of
all other metrics; some have even equated a computer system’s performance with how well its
CPU performs. This viewpoint, which makes system-wide performance synonymous with CPU
speed, is becoming less and less valid. One way to demonstrate this declining validity is illus-
trated in Figure 1.1, where IBM disk performances represented by the throughput of accessing a
random 8 KB block of data, and IBM mainframe CPU performance [Patterson90]. For the sake

of comparison, both CPU and disk performance are normalized to their 1971 levels. As can

1

soPisk and CPU Performance

8 &

w
W
s

IBM_mainframe_CPU

0OTT0M~0aY OON=mpEn0'Z
3 5 8 B 8

W
2

et IBM disk .eP®

v

0

1970 1975 1980 1985 1990
Year

Figure 1.1: Contrasting trends of CPU and disk performance improvements. Over the past two de-
cades, improvements in CPU performance have far outstripped those in disk performance. In this graph,
CPU performance refers to IBM mainframe performance; disk performance refers to IBM disk (33x0
series) throughput on a random 8 KB access. Both are normalized to their 1971 levels. The data for IBM
mainframe performance comes from Figure 1.1 on page 4 of [Patterson90).

readily be seen, over the past two decades, IBM mainframe CPU performance has increased
more than 30-fold, while IBM disk performance has barely doubled. Microprocessor perfor-
mance has increased even faster than mainframe performance [Myers86, Gelsinger89]. lf CPU
performance continues to improve at its current pace and disk performance continues to obtain
more moderate improvements, eventually the performance of all applications that do any input
or output (1/0) will be lﬁni@ by that I/O component—further CPU performance improvements
will be wasted [Amdahl67).

In light of this developing trend toward I/O-limited applications, I/O performance and
architecture become increasingly more crucial to a system'’s overall performance. Researchers
are rapidly developing new types of I/O architectures to match the improvements in processor
performance; I contend that these new 1/O architectures must be evaluated using new bench-
marking techniques. In this dissertation, I propose a new approach to I/O benchmarks, which
I've called self-scaling evaluation and predicted performance, that scales more comprehen-
sively, provides more understanding of the system being measured, and estimates performance

to within 10-15% over a wide range of I/O workloads and systems.

1.2. Overview of the Dissertation

The rest of this chapter presents background material on I/O performance evaluation. I
discuss common metrics that researchers use to evaluate I/O systems. After this, I highlight

current trends in 1/O systems and how these trends affect I/O performance evaluation.

In Chapter 2, I survey and evaluate current I/O benchmarks, testing them on three Unix
workstations. After doing so, I list desirable characteristics for I/O benchmarks and use these to
critique current 1/0 benchmarks. 1 also summarize other research done in the modeling of /O

and file system performaxicc.

In Chapter 3, I describe in detail the workload model that provides a framework for my
new benchmarking approach. I discuss the process of developing the workload model and some

alternatives. I then trace real applications and describe their I/O workload.

In Chapter 4, I propose the first part of my new approach to I/O evaluation—a self-scaling
benchmark. This benchmark scales the workload used to evaluate a system based on that
system's capabilities. 1 show that benchmarks must scale to be useful and that this method
scales more effectively than any current benchmarking method. I also show how the self-

scaling benchmark provides insight into a computer system by giving information on what

workload might be appropriate to run on each system. I demonstrate the utility of the self-
scaling benchmark by showing benchmark results gathered on a wide variety of I/O systems,

ranging from a one disk, low-end workstation to a four disk mini-supercomputer.

In Chapter 5, I propose the second part of my new approach—predicted performance,
which uses measurements from a small set of workloads to accurately estimate performance for
arbitrary workloads. I show that predicted performance estimates performance very accurately,
within 10-15%, on a wide range of 1/O systems and investigate how error is correlated to each
workload parameter. I compare my method of predicting performance against using an orthog-
onal sampling of many workloads and show how my method gives lower error while using
fewer workload measurements. I end by applying predicted performance to predict the relative

performance ratio between two systems.

In Chapter 6, I conclude with a summary of the contributions made by my thesis and I

look at some future directions for this research.

1.3. Metrics

More than other areas of computer performance evaluation, I/O evaluation involves a
great variety of metrics. This section contains an overview of some of the metrics commonly
used today in choosing and evaluating 1/0 systems. The value of most metrics depend strongly

on the workload used.

The most basic metric for 1/O performance is throughput. Throughput is a measure of
speed—the rate at which an I/O system delivers data, and it is measured in two ways: 1/O rate,
measured in accesses/second, and data rate, measured in bytes/second or megabytes/second
(MB/s). 1/0 rate is commonly used for applications where the size of each request is small, such
as transaction processing [Anon85]; data rate is commonly used for applicaiions where the size

of each request is large, such as scientific applications [Miller91a).

Response Time vs. Throughput
$00+

slower

E & &

wwl~ 0Bew] OupOoYwoN

8

faster

-y 2 g g .

0O 02 04 06 08 10
Throughpat (MB/s)

o

&

slower=—— ® faster

Figure 1.2: Example response time versus throughput graph. Increasing the utilization of a system
usually leads to higher throughput but slower response time. This figure was adapted from [Chen90b].

Response time is the second basic performance metric for /O systems, and it measures
how long an /O system takes to access data. This time can be measured in several ways. For
example, one could measure I/O response time from the user’s perspective, the operating
system's perspective, or the disk controller’s perspective, depending on what is considered the

1/0 system.

The usefulness of a /O system not only includes how fast data can be accessed but also
how much data can be stored. Capacity is not normally iipplied as a metric to non-storage com-
ponents of a computer system, but it is an integral par of evaluating an 1/O system. If capacity
were ignored as a metric, tape and disk manufacturers would soon find their customers switch-

ing to solid-state (memory-based) storage systems, which offer much higher performance but

5

less capacity per dollar.

Because users store valuable data on /O systems, they demand a level of reliability much
higher than for other parts of a computer. If a memory chip develops a parity error, for exam-
ple, the system will (hopefully) crash and be restarted. On the other hand, if a storage device
develops a parity error in a database of bank accounts, banks could unwittingly lose millions of

dollars. Thus, reliability is a metric uniquely important to storage systems.

Cost, of course, applies to all components in computer systems, particularly to disk sub-
systems, which are often the most expensive componcm in a large computer installation
[Bodega89]. Cost is usually expressed as a composite metric, such as cost per capacity (dollars

per MB) or throughput cost (dollars per MB/s).

Table 1.1, adapted from [Gibson91], shows the values of the above metrics for two dif-

ferent disk systems.

These five metrics— throughput, response time, capacity, reliability, and cost—are com-
monly used in various combinations to evaluation I/O systems. One popular combination is a
response time versus throughput graph (Figure 1.2). These graphs vary a parameter, such as the
number of users on the system, to display the tradeoff between improving throughput and
degrading response time. With more users, the system can often be utilized more efficiently,
which increases throughput. On the other hand, higher utilization leads to slower response .
times. Because a single performance number is easier to use than a full graptl_z__gany evaluators
combine throughput and response time by reporting throughput at a givéh‘ response time
[Anon8S, Chen90b). The TPC-B benchmark, for example, reports maximum throughput with
90% of all requests completed within 2 seconds [TPCB90] (see Section 2.4.1.2).

Another composite metric is data temperature, which is defined as 1/O rate divided by
capacity [Katz90]. Data temperature measures how many I/Os per second a I/O system can
support for a fixed amount of storage. This is a valuable metric for users who are limited by 1/0

6

rate rather than capacity because it tells them that they should buy systems with high data tem-

perature.

A general parameterizable composite metric can be formulated for any combination of the
above metrics. For example, one could imagine a system administrator who wanted a system
with the highest capacity per dollar, as long as it satisfied minimum demands for reliability,
throughput, and response time.

1.4. Trends in IO Systems

To understand how developments in 1/O systems are straining the capabilities of current
I/O benchmarks, I highlight some of the trends in I/O systems in this section. I discuss
advances in magnetic disk technology, arrays of disks, file caching and solid state disks, mag-

netic tape, and log-structured file systems.

Magnetic disks have long been the mainstay of I/O systems, but since 1970, disk perfor-
marice has improved only modestly. Table 1.2 compares two disks, the IBM 3330, introduced
in 1971, and the IBM 0661, introduced in 1989. The average yearly improvement in perfor-
mance has inched forward at a few percent a year. Cost per capacity, on the other hand, has
improved at a much faster pace, averaging a 23% reduction per year from 1977 to 1986 [Gib-
son91). Moreover, individual disks have also been gradually decreasing in physical size and

. . Redundant Disk Array of

Type of Metric Specific Measure IBM 0661 disks

Throughput Max Read I/O Rate 609 1/O’s per second 3889 1/O's per second

Throughput Max Read Data Rate 15 MB per second 130 MB per second
Response Time Min Response Time 20 ms 20 ms

Capacity GB 23GB 22GB
Reliability Mean Time to Data Loss 6-28 years 753 years
Cost $ (estimated) $156,000 - $260,000 $67.000 - ?

Table 1.1: Metrics for two L/O systems. Above are the differences in the values of several types of
metrics for an IBM 3390 disk system and a redundant disk array made of IBM 0661 3.5" drives
[IBMO0661). This table is adapted from [Gibson91].

cost. The most common diameter of a disk in the 1970’s and 1980°s was 14". Those disks are
disappearing and are being replaced with 5.25" and 3.5" diameter disks. The performance of

these smaller disks is comparable to that of their larger, more expensive predecessors.

The trend toward smaller, less expensive disks makes it possible to combine many of
them into a parallel 1/O system known as a disk array. Arrays of multiple disks have been used
for many years for special purposes [Johnson84] but they are only now becoming popular for
general use. The list of companies developing or marketing disk arrays is quite long, and it
includes Array Technology, Auspex, Ciprico, Compag, Cray, Datamax, Hewlett-Packard, IBM,
Imprimis, Intel Scientific, Intellistor, Maximum Strategy, Pacstor, SF2, Storage Concepts,
Storage Technology, and Thinking Machines. Some analysts have projected thzh the disk array
market will expand to $8 billion by 1994 [Montgomery91].

The idea behind disk arrays is straightforward—combine many small disks and distribute
data among them (Figure 1.3), which increases the aggregate throughput available to an appli-
cation. An array of disks can service either many small accesses in paraliel or cooperate to
deliver a higher data rate to a single, large access [Patterson88, Gibson91, Livny87, Salem86).
Disk arrays compensate for the lower reliability inherent in using more disks by storing redun-
dant, error-correcting infc;x'mation. Current research into disk arrays is focusing on 1) how to
distribute (stripe) data across disks to get optimal performance [Chen90a, Lee9la, Lee91b,

Weikum90] and 2) how to spread redundant information across disks to increase reliability and

Average Yearly Improvement

Metric | IBM 3330
Year Introduced 1981 1989
Average Seek Time 30ms 125 ms
Average Rotational Delay 8.3ms 7 ms
Transfer Rate 806 KB/s | 1700 KB/s

Table 1.2: Magnetic disk performance improvement over the past 20 years. This table shows the
slow average improvement in disk performance over the past 20 years. The IBM 3330 was introduced in
1981 and is 14 inches in diameter; the IBM 0661 was introduced in 1989 and is 3.5 inches in diameter
[Harker81, IBM0661].

e e e e S bt i i i

minimize the effects of disk failures [Holland92, Gibson91, Muntz90].

Although disk arrays improve throughput by using more disks to service requests, requests
that are serviced by a single disk still see the same response time. Techniques for improving
response time include file caches, disk caches, and solid state disks, all of which use dynamic
RAM (random access memory). Caches can be located in a vﬁcty of places in a system’s
memory hierarchy [Smith85). Two common places are the disk controller, as in the IBM 3990
disk cache [Menon87], and main mcuiory. as in the Sprite operating system’s file cache
[Ousterhout88, Nelson88). Response times for writes are decreased by writing the data to

- - - o
- -~ -

- -
S m—--—-

0
D000

Figure 1.3: Combining multiple smaller disks to improve performance. Performance of single disks
is not improving rapidly (Table 12); however, disks are rapidly becoming physically smaller and
cheaper. Disk arrays take advantage of this downsizing to provide higher aggregate throughput by simul-
taneously operating many small disks.

RAM, acknowledging the request, then transferring the data to disk asynchronously. However,
this technique, called write-behind, leaves the data in RAM more vulnerable to system failures
until it is written to disk. Some systems, such as the IBM 3990, mitigate this problem of vul-
nerability by storing the cached data in non-volatile memory, which is immune to power
failures [Menon87]. As with any cache, read response time is decreased if the requested data is
found in cache RAM.

Solid state disks are similar to caches in that they improve response time by storing
requests in RAM rather than on magnetic disks. The principal difference between solid state
disks and caches is that solid state disks speed up all accesses while caches speed up access only
to the most cohunonly requested data. Although solid state disks costs 50-100 times more per
capacity than magnetic disks [Gibson91], they are dramatically faster. Response times for solid
state disks are commonly less than 3 ms [Cassidy89, Jones89], while response times for mag-

netic disks are approximately 10-30 ms.

Two I/0O metrics have been addressed, throughput and response time. Dramatic improve-
ments to capacity per cost have occurred in magnetic tapes (Table 1.3). These improvements
are due in part to cvér-inéreasing bit densities on tapes and partly to the acceptance of helical
scan technology. Helical' scan is a2 method of writing and reading tapes which can increase the

capacity of a single tape from 0.1-0.2 GB to 5-20 GB [Katz91, Tan89, Vermeulen89]. Tapes

Device Total Capacity | CosyCapacity | e | Latency
Magnetic Disk__| 1GB__| $2.500/GB_| 1GB 0.01 sec.
Dilog DAT Stacker 10GB $527/GB__ | 1.3GB | 75 sec.
Exabyte 120 Tape Library 500 GB $80/GB__ | SGB | 100 sec.
Metrum RSS-600
Taoe Ly 8700 GB $62/GB | 145GB | S50sec.

Table 1.3: 1992 storage capacity. This table, adapted from [Fine92), shows the extraordinary capacity
of today’s tape systems.

10

i IR o S 3 3 s aind fats SR N e RS e R i s D 4 e e v ik

are extremely slow, however, with response times ranging from 20 seconds to a few minutes;
throughput for these devices is less dismaying, ranging from 0.1 to 2.0 MB/s. Current research
related 1o tape devices addresses how to migrate data from tape to faster storage [Smith81,
Thanhardt88, Hac89, Miller91b, Henderson89], how to increase tape throughput using strip-
ing [Katz91), and how to decrease résponse times by prefetching and caching [Gibson92,
Fine92).

Reported disk reliability has improved dramatically over the past ten years, though actual
reliability has improved more slowly. The most common metric used to gauge reliability,
mean-time-to-failure, has increased from 30,000 hours to 150,000-200,000 hours. This jump in
apparent reliability comes mostly from changing the method by which mean-time-to-failure is

computed and is not expected to continue improving as quickly [Gibson91].

1/0 innovation is also taking place in file systems. A good example of how file systems
have improved 1/0O system performance is the Log-Structured File System (LFS) [Rosen-
blum91, Ousterhout89], which allocates data on disk in the same order that it is written. This
leads to highly sequentialized disk writes and so improves the sustainable disk write

throughput.

Although the raw performance of 1/O technology has improved much more slowly than
processor technology, innovation such as file caches, disk arrays, robot-driven tape systems, and
new file systems have helped close the gap. At the same time, these innovations have created
new challenges for I/O benchmarks. For instancg. solid state disks, file caches, and disk caches
all use dynamic RAM (DRAM), whose capacity has been quadrupling every three years
[Myers86). Due to this rapid growth, benchmarks that had, at one time, exercised the disk sys-

tem will no longer do so.

11

A L N PN R A i

1.5. References
[Amdahl67]

[Anon85])

[Bodegag9]

[Cassidy89]

[Chen%0a)

[Chen9%0b]

{Fine92]

[Gelsinger89]

[Gibson91]}

[Gibson92]

G. M. Amdahl, **Validity of the single processor appraoch to achieving large
scale computing capabilities’’, Proceedings AFIPS 1967 Spring Joins
Computer Conference 30 (April 1967), 483-485.

Anon and et al., *‘A Measure of Transaction Processing Power*’, Datamation,
31,7 (April 1, 1985), 112-118.

National Science Foundation Workshop on Next Generation Secondary
Storage Architecture, National Science Foundation, Bodega Bay, CA, May
1989.

C. Cassidy, ‘'DEC's ESE20 Boosts Performance’’, DEC Professional, May
1989, 102-110.

P. M. Chen and D. A. Patterson, ‘‘Maximizing Performance in a Striped Disk
Array™', Proceedings of the 1990 ACM SIGARCH Conference on Computer
Architecture, Seattle WA, May 1990, 322-331.

P. M. Chen, G. Gibson, R. H. Katz and D. A. Patterson, *‘An Evaluation of
Redundant Arrays of Disks Using an Amdahl 5890'", Proceedings of the 1990
ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, Boulder CO, May 1990.

J. A. Fine, T. E. Anderson, M. D. Dahlin, J. Frew, M. Olson and D. A.
Patterson, *‘Abstracts: A Latency-Hiding Technique for High-Capacity Mass
Storage Systems'’, Sequoia Technical Report 92/11, University of California
at Berkeley, March 1992,

P. P. Gelsinger, P. A. Gargini, G. H. Parker and A. Y. C. Yu,
*‘Microprocessors Circa 2000, IEEE Spectrum, October 1989, 43-47.

G. A. Gibson, “‘Redundant Disk Arrays: Reliable, Parallel Secondary
Storage’’, UCB/Computer Science Dpt. 91/613, University of California at
Berkeley, December 1991. also available from MIT Press, 1992.

G. A. Gibson, R. H. Patterson and M. Satyanarayanan, *‘Disk Reads with
DRAM Latency'’, Third Workshop on Workstaion Operating Systems, Key
Biscayne, Florida, April 23-24, 1992.

12

[Hac89]

[Harker81]

[Henderson89)

[Holland92)

[IBMO0661)

{Johnson84)

[Jones89]

[Kaz90)
°

[Kaz91]

[Kim86)

A. Hac, *‘A Distributed Algorithm for Performance Improvement Through
File Replication, File Migration, and Process Migration'’, IEEE Transactions
on Software Engineering 15, 11 (November 1989), 1459-1470.

J. M. Harker, D. W. Brede, R. E. Pattison, G. R. Santana and L. G. Taft, “A
Quarter Century of Disk File Innovation'’, IBM Journal of Research and
Development 25, 5 (September 1981), 677-689.

R. L. Henderson and A. Poston, *‘MSS II and RASH: A Mainframe UNIX
Based Mass Storage System with a Rapid Access Storage Hierarchy File
Management System*’, Winter USENIX 1989, January 1989, 65-83.

M. Holland and G. Gibson, *‘Parity Declustering for Continuous Operation in

_ Redundant Disk Arrays'’, Proceedings of the Sth International Conference on

Architectural Support for Programming Languages and Operating Systems
(ASPLOS-V), October 12-15, 1992, 23-35.

IBM 0661 Disk Drive Product Description--Model 371, IBM, July 11, 1989.

O. G. Johnson, **Three-Dimensional Wave Equation Computations on Vector
Computers'’, Proceedings of the IEEE 72, 1 (January 1984). v

A. L. Jones, SSD is Cheaper than DASD, Storage Technology Corporation,
October 1989.

R. H. Katz, D. W. Gordon and J. A. Tuttle, “‘Storage System Metrics for
Evaluating Disk Array Organizations'’, UCB/Computer Science Dpt. 90/611,
University of California at Berkeley, December 1990.

R. H. Katz, T. E. Anderson, J. K. Ousterhout and D. A. Patterson, *‘Robo-line
Storage: Low Latency, High Capacity Storage Systems over Geographcially
Distributed Networks’’, UCB/Computer Science Dpt. 91/651, University of
California at Berkeley, September 1991.

M. Y. Kim, “Synchronized Disk Interleaving’’, IEEE Transactions on
Computers C-35, 11 (November 1986), 978-988.

13

[Lee91a)

[Lee91b)

[Livny87]

{Menon87]

[Metrum91)

[Miller91a])

[Miller91b)

E. K. Lee and R. H. Katz, “‘An Analytic Performance Model of Disk Arrays
and its Applications’’, UCB/Computer Science Dpt. 91/660, University of
California at Berkeley, 1991.

E.K. Lee and R. H. Katz, *‘Performance Consequences of Parity Placement in
Disk Arrays", Proceedings of the 4rd International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IV), April 1991, 190-199.

M. Livny, S. Khoshafian and H. Boral, *‘Multi-Disk Management
Algorithms™’, Performance Evaluation Review, Special Issue 15, 1 (May
1987), 69-77. ACM SIGMETRICS 1987.

J. Menon and M. Hartung, *‘The IBM 3990 Model 3 Disk Cache*’, RJ 5994
(59593), IBM, December 9, 1987.

RSS-600 Rotary Storage System Product Information, Metrum, 1991.

E. L. Miller and R. H. Katz, “‘Input/Output Behavior of Supercomputing
Applications’’, Proceedings of Supercomputing '91, 1991, 567-576.

E. L. Miller, “‘File Migration on the Cray Y-MP at the National Center for
Atmospheric Research”’, UCB/Computer Science Dpt. 91/638, University of
California at Berkeley, June 1991.

[Montgomery91]J. B. Jones(Jr.) and T. Liu, editors. *‘RAID: A Technology Poised for

[Munz90]

[Myers86]

[Nelson88]

Explosive Growth'’, Report DJIA: 2902, Montgomery Securities, December
17, 1991.

R. R. Muntz and J. C. S. Lui, **Performance Analysis of Disk Arrays under
Failure™, Proceedings of the 16th Conference on Very Large Data Bases,
1990. VLDB XVI.

G. J. Myers, A. Y. C. Yu and D. L. House, ‘‘Microprocessor Technology
Trends’’, Proceedings of the IEEE 74, 12 (December 1986), 1605-1622.

M. N. Nelson, B. B. Welch and J. K. Ousterhout, *‘Caching in the Sprite
Network File System'’, ACM Transactions on Computer Systems 6, 1
(February 1988), 134-154.

14

[Ousterhout88]

[Ousterhout89)

[Patterson88]

[Patterson90]

[Rosenblum91]

[Salem86]

[Smith81]

[Smith85]

[TPCB90]

(Tang9)

[Thanhardt88]

J. K. Ousterhout, A. Cherenson, F. Douglis and M. Nelson, *“‘The Sprite
Network Operating System'', JEEE Computer 21, 2 (February 1988), 23-36.

J. K. Ousterhout and F. Douglis, ‘‘Beating the I/O Bottleneck: A Case for
Log-Structured File Systems'*, SIGOPS 23, 1 (January 1989), 11-28.

D. A. Patterson, G. Gibson and R. H. Katz, **A Case for Redundant Arrays of
Inexpensive Disks (RAID)", International Corference on Management of
Data (SIGMOD), June 1988, 109-116.

D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

M. Rosenblum and J. K. Ousterhout, ‘‘The Design and Implementation of a
Log-Structured File System®’, Proceedings of the 13th ACM Symposium on
Operating Systems Principles, October 1991.

K. Salem and H. Garcia-Molina, *‘Disk Striping'’, Proceedings of the Second
International Conference on Data Engineering, 1986, 336-342.

A. J. Smith, **Optimization of 1/O Systems by Cache Disk and File Migration:
A Summary®’, Performance Evaluation 1, 3 (November 1981), 249-262.

A. J. Smith, *‘Disk Cache-Miss Ratio Analysis and Design Considerations’’,
ACM Transactions on Computer Systems 3, 3 (August 1985), 161-203.

TPC Benchmark B Standard Specification, Transaction Processing
Performance Council, August. 23, 1990.

E. Tan and B. Vermeulen, “‘Digital audio tape for data storage', JEEE
Spectrum, October 1989, 34-38.

E. Thanhardt and G. Harano, *‘File Migration in the NCAR Mass Storage
System”’, Proceedings of the Ninth IEEE Symposium on Mass Storage
Systems, October 1988.

15

(Vermeulen89] B. Vermeulen, ‘‘Helical Scan and DAT--a Revolution in Computer Tape
Technology*, Systems Design and Networks Conference (SDNC), May 1989,
79-86.

[Weikum90] G. Weikum, P. Zabback and P. Scheuermann, Dynamic File Allocation in
Disk Arrays, ETH Zurich, December 1990. .

16

Chapter 2

Previous Benchmarks

2.1. VO Benchmarks

Chapter 1 highlighted some trends and developments in disks, disk arrays, file caches,
solid state disks, tapes, and file systems which create new challenges for the evaluation of
storage systems. As a result, benchmarks used in the evaluation process must evolve to
comprehensively stress these new 1/O systems. For example, because disk arrays are able to
service many 1/Os at the same time, benchmarks need to issue many simultaneous I/Os if they
hope to stress a disk array. Caches create distinct performance regions based on the capacity
used by a program, so benchmarks likewise should measure thcse. different performance

regions.

17

In this chapter, I list standards that I will use to critique I/O benchmarks. I then review,

run, and evaluate 1/0 benchmarks in use today.

22. The Ideal 'O Benchmark

In this thesis, I define I/O benchmarks as measuring the data I/O performance seen by a
program issuing reads and writes. Specifically, I am nor using 1/0 benchmarks to measure the
performance of file system commands, such as deleting files, making directories, or opening and
closing files. While these are perfectly valid and important metrics, they are more a measure of

the operating system and processor speed than they are of the storage components.

It is unfortunate that most people use trivial benchmarks when purchasing and evaluating
I/O systems. These include, for example, the time it takes to write 1 MB to disk, the average
disk access time, or the raw disk transfer rate. These metrics are similar to the CPU clock rate
in processor performance evaluation in that they are better than nothing but do not translate
easily into performance that an end user can see. To correct this blind acceptance of trivial

benchmarks, I list six desirable characteristics of I/O benchmarks in this section.

First, a benchmark should help system designers and users understand why a system per-
forms as it does. This is-because computer architects and operating system programmers need
to have benchmarks to evaluate design changes and isolate reasons for poor performance. In
addition, users should be also able to use benchmarks to understand the optimal ways of using
their machines. For instance, if a user wanted to have his application fit within the file cache,
the ideal I/O benchmark should be able to provide information on the size of a machine's file
cache. This criterion may require reporting results for several different workloads, which would
enable the user to compare these results. These multiple workloads should require little human

interaction to run.

18

Second, to maintain the focus of measuring and understanding I/O systems, the perfor-
mance of an I/O benchmark should be limited by the /O devices. The most intuitive test of
being 1/O-limited is the following: if the spoedub resulting from taking out all }/Os from an
application is greater than the speedup resulting from taking out all CPU operations (leaving
only 1/O), then the application is 1/O-limited. Unfortunately, this test is quite hard to perform in
practice—almost any non-trivial application will not function when its I/O is eliminated.
Instead, I test for how 1/O-limited an application is by measuring the fraction of time it spends

in doing reads and writes.

Third, the ideal I/O benchmark should scale gracefully over a wide range of current and
future machines. Without a well planned scaling strategy, 1/O benchmarks quickly become
obsolete as machines evolve. For instance, JOStone tries to exercise a system’s entire memory
hierarchy, but touches only 1 MB of user data. Perhaps at the time 10Stone was written, 1 MB
was a lot of data, but, of course, this is no Jonger true. Another example of an 1/O benchmark’s
need to scale is provided by disk arrays. As mentioned above, disk arrays allow multiple 1/Os
to be in progress simultaneously. But, because most current 1/0O benchmarks do not scale the
number of processes issuing 1/O, they are unable to properly stress disk arrays. Unfortunately,
it is difficult to find widespread agreement on a scaling strategy, especially for benchmarks
intended for a broad range of audiences.

Fourth, a good 1/O benchmark should allow fair comparisons across machines and should
include two aspects. First, a fair comparison across machines should be able to be made fof I/OA
workloads identical to the benchmark. However, since users rarely have the same workload as
a standard benchmark, the results from a benchmark should predict performance for workloads
that differ from itself.

Fifth, the ideal /O benchmark should be relevant to a wide range of applications. It is

cenainly easier to target a benchmark to a specific audience, and benchmarks that do a good job

19

representing their target applications are invaluable for those applications. But, benchmarks

usable by many audiences would be better still.

Finally, in order for results to be meaningful, benchmarks should be tightly specified.
Results should be reproducible by general users; optimizations that are allowed and disallowed
should be explicitly stated; the machine environment on which the benchmarking takes place
should be well-defined and n:poned (CPU type and speed, operating system, compiler, network,
disk, other load on the system); the starting state of the system (file cache state, data layoin on
disk) should be well-defined and consistent, and so on.

In summary, the six characteristics of the ideal 1/O benchmark are as fq}lows: it should
help the evaluator understand system performance; its performance should be 1/O limited; it
should scale gracefully over a wide range of current and future machines; it should allow fair
comparisons across machines; it should be relevant to a wide range of applications; and it

should be tightly specified.

23. System Platforms

SPARCstation 1+
Year Released
CPU MIPS R3000
SPECmarks 8.3 19.9 76.8
Disk System CDC Wren IV 3disk (Wren) RAIDO | HP 1350SX
1/0 Bus SCSI-1 SCSI-1 Fast SCSI-II
Memory Size 28 MB 32MB .~ 32MB.
Mem. Bus Peak Speed 80 MB/s 100 MB/s = 264 MB/s
Mem. Bus Sustained Speed 25-30 MB/s 7 " 125 MB/s
Operating System SunOS 4.1 Sprite LFS - HP/UX 8.07

Table 2.1: System platforms. This table shows the three systems on which benchmarks were run. The
DECstation [DECstation90] uses a three disk RAID disk array [Patterson88] with a 16 KB striping unit
[Chen90] and is configured without redundancy. The SPECmark rating is 2 measure of the processor
speed; ratings are relative to the speed of a VAX 11/780. The full name of the HP 730 is the HP Series
700 Model 730 [HP730).

20

o A A S i SR L A e 5 L i i, L AT A5 8 S s ARSI b i it s

In this chapter, I run standard I/O benchmarks on three systems. Additional systems are
testéd in Chapters 4 and 5 (sce Table 4.1 on page 64). All systems in this chapter are high-
performance workstations with differing 1/O systems; Table 2.1 summarizes their characteris-
tics. Note that these computers were introduced in different years—this study is not meant to
be a competitive market analysis of the competing products.

In order to better understand these benchmarks, I modified their software slightly. For
example, 1 compiled in special /O routines that traced 1/O activity. To accomplish this, I used
publicly available code for as many programs as possible. In general, I used GNU (Gnu's Not
Unix) code developed by the Free Software Foundation. To make results directly comparable
between machines for benchmarks that used the compiler, I took the same step as Ousterhout
[Ousterhout90] in having the GNU C compiler generate code for an experimental CPU called
SPUR [Hill86). '

2.4. Overview of Current I/O Benchmarks
In this section, I describe, critique, and run five common benchmarks used in /O system
evaluation: Andrew, TPC-B, Sdet, Bonnie, and I0Stone. Table 2.2 contains information about

how to obtain these benchmarks. 1 categorize them into two classes: application benchmarks

and synthetic benchmarks.
Benchmark Contact E-mail address
National Computer g .
SPEC SDM Graphics Corp. spec-ncga@cup.portal.com
TPC Shanley Public Relations shaniey@cup.portal.com
Bonnie Tim Bray tbray@watsol. Waterloo. EDU
10Stone Jeffrey Becker becker@iris.ucdavis. EDU
. spec-preladdis-beta-test@
LADDIS Bruce Keith riscee.pko.dec.com

Table 2.2: List of contacts for various benchmarks.

21

2.4.1. Application Benchmarks

Application benchmarks use standard programs, such as compilers, utilities, editors, and
databases, in various combinations to produce a workload. Each benchmark targets a single
application area, such as transaction processing or system development. Although these bench-
marks usually do a good job of accurately representing their target application area, as will be

seen, they are often not /0O limited.

2.4.1.1. Andrew

Andrew was designed at Camegie Mellon University to be a file system benchmark for
comparing the Andrew File System against other file systems [Howard88]. It was originally
meant to act only as a convenient yardstick for measuring file systems and not necessarily as a
representative workload for benchmarking. Despite this intent, however, it has become a
widely used, de facto benchmarking standard [Ousterhout90].

Andrew is meant to represent the workload gencrated by a typical set of software system
developers. It copies a file directory hierarchy, examines and reads the new copy, then com-
piles the copy. The file directory contains 70 files totaling 0.2 MB. Camegie Mellon's experi-

ence in 1987 suggests the load generated roughly equals that generated by five users.

{| Copy Phase Compile Phase || Total

System

Table 2.3: Results from the Andrew benchmark. This table shows the results obtained from running
the Andrew Benchmark. Andrew is divided into two sections: the copy phase, consisting of the copy, ex-
amination, and reading stages; and the compile phase. In each column, the percentage of time spent per-
forming reads and writes is listed. Each of these numbers represents the average of three runs; each run
starts with an empty file cache. Note the small percentage of time spent in [/O.

22

In Table 2.3, I list results derived from Andrew on the three system platforms. As in
[Ousterhout90], 1 divide Andrew into two sections: the copy phase, consisting of the copy,
examination, and reading stages; and the compile phase. Note that on all machines Andrew
spends only 6%-13% actually doing data reads and writes. Also note that the HP 730, which
has the fastest CPU, spends a higher fraction of time in I/O than the others, a result that supports
my contention that systems with faster and faster CPUs will become more and more /O Lim-

ited.

24.12. TPC-B

TPC-B measures transaction processing performance for a simple, database update
[TPCB90). The first version of this benchmark, TP1, first appeared in 1985 {Anon85] and

quickly became the de facto standard in benchmarking for transaction processing systems.

10 SPARCstation 1+ 10q DECstation 50007200 1004 HP 730
90+ 904 904
1 %01 « ¥ A
. .
. peak throughput 9.1 tramacuoos/second * peak throughput 13.2 samacticns/mcand o W peak throughyat 11.0 samsactions/secand
7
7 701 (concurrency of 2) ? ! (eomcwrency of 2) f (eomcuryency of 2)
-) &)
I 604 sverage ®spanse tine 166 ms '5 604 everage response tine 96 s E swnge mepas tine 126 o=
B 0% 5
) 504 90% respcner tize 300 ms 2 S04 0% responee tise 300 =8 :ao' *nmu
. e s $1% wx o 1O : 9% iz 010
s S1% une i 1YO : f 40
: ‘ !
o 304 o %0 :
H ' *
24
10
104 104 A
o — o ° 'Y oS _ 10 1.8
[y 15 Respanse Timme (seconds)

o0 v Ticoe (socuads) 1 .':i" T ()
Figure 2.1: %B results. These figures show TPC-B results for three experimental systems. As a da-
tabase program, Seltzer’s simple transaction processing library LIBTP [Seltzer92] were used. Due to 2
deadlocking bug in the software package, however, concurrencies higher than two were not run. This is
reflected by response times much faster than those required by TPC-B.

23

TPC-A' [TPCA89] and TPC-B [TPCB90] are more tightly specified versions of TP1 and have
replaced it as the standard transaction processing benchmark. As a transaction processing
- benchmark, TPC-B not only measures the machine supporting the database but also the data-

base software.

TPC-B repeatedly performs Debit-Credit transactions, each of which simulates a typical
change to an account on a bank’s database, which consists of customer accounts, bank branches,
and tellers. Using a random customer request, a Debit-Credit transaction reads and updates the
necessary account, branch, and teller balances. Requests are generated by a number of simu-

lated customers, each requesting transactions as quickly as possible.

‘TPC-B’s main metric is maximum throughput measured in transactions-per-second,
qualified by a response time threshold demanding that 90% of all transactions be completed
within two seconds. TPC-B also reports the price of the system and the required storage. The
number of accounts, branches, and tellers specified by TPC-B is proportional to throughput—
for each additional transaction-per-second of performance reported, the test system’s database
must add 10 MBs of account information. Using a database of this size, TPC-B reports a graph
of throughput versus the average number‘o'f outstanding requests as well as a histogram of
response times for the maximum throughput. In Figure 2.1, I show TPC-B's response time
characteristics on the three systems, using Seltzer’s simple, transaction supporting package
LIBTP [Seltzer92].

The main difference between TPC-A and TPC-B is the presence of real terminals. TPC-A
demands that the test be done with actual terminals providing input at an average rate of one request
every 10 seconds. TPC-B generates requests with internal drivers running as fast as possible. This thesis
discusses only TPC-B.

24

2.4.13. Sdet

The System Performance Evaluation Cooperative (SPEC) was founded in 1988 to estab-
lish independent standard benchmarks [Scott90]. Their first set of benchmarks, SPEC Release
1, primarily measures CPU performance. Their second set of benchmarks, System Develop-
ment Multi-tasking (SDM) Suite, measures overall system performance for software develop-
ment and research environments. SDM consists of two benchmarks, Sdet [Gasde81, Gaede82]
and Kenbus1 [McDonell87]. Sdet and Kenbus1 are quite similar in benchmarking methodol-
ogy. their main difference is the specific mix of user commands. Because Sdet does much more

1/0 than Kenbus]1, I discuss only Sdet.

Sdet’s workload consists of a number of scripts running concurrently. Each script con-
tains a list of user commands in random order. These commands are taken from a typical

software-development environment and include edmng text formatting, compiling, file creating

1004 SPARCstation 1+ 100 DECstation 5000/200 100+ HP 730

T T s — T

] b b

4 4 4

© 804 © 80 © 80¢

. 1) L]

£ 1 4 . .

P P : poak 463 scripwhaonr (2 scripts)

) L]

1 60¢ peak 26.7 scriptaour (6 seripes) t 60 peak 968 scripu/hour (S saripu) t 604 22% time sponx in VO (2 scripts)

§ 10% titne spem: i VO (6 scripus) ; 10% tinass spesx i 1O (S scripus) §

< (3 (4 —\

H'Y i 40 e Y —

| 4 P | 4

t t 1

| i

H

o ° 0 °

. s ’

1 4 1 4

)))

" 6 B 6 1 6 n 16 6 n 16

Number of Cancurrent Scripus Nuzber of Concarvent Saripes Number of Cancrvent Scripts

Figure 2.2: Sdet results. These figures show results from the SPEC SDM benchmark Sdet. Sdet varies
the number of scripts running simultaneously but spends little time in /O.

25

and deleting, as well as miscellaneous other UNIX utilities [SPEC91]. Sdet increases the
number of scripts running concurrently until it reaches the system’s maximum throughput,
which is measured as the script-completion rate (scripts per hour). Sdet reports this maximum
rate, along with a graph of throughput versus script concurrency (Figure 2.2). Once again, only
a small percentage of time, 10%-22%, is spent in 1/0.

2.4.2. Synthetic Benchmarks

Unlike application benchmarks that use standard programs, which in tumn issue I/O, syn-
thetic benchmarks exercise an I/O system by directly issuing read and write commands. By
* issuing reads and writes directly, synthetic benchmarks are able to generate more I/O-intensive
workloads. However, synthetic benchmarks oftch yield less convincing results because they,
unlike application benchmarks, do not perform useful work. I review four synthetic bench-
marks here. Two of the most popular benchmarks are Bonnie and 10Stone. I also create a third
one to demonstrate a typical scientific I/O workload. Finally, I review an emerging benchmark

for network file systems called LADDIS.

2.4.2.1. Bonnie

Bonnie measures l/b performance on a single file for a variety of simple workloads. One

workload reads sequentially the entire file one character at a time while another writes the file

Workload [SPARCstation 1+ || DECstation 5000 || HP 730 '

% 10

Sequential Char Write
Sequential Block Write . 558 63% 1 84%
Sequential Block Rewrite 230 74% 604 87%
Sequential Char Read 193 2% 995 15%
Sequential Block Read 625 63% 2023 87%
Random Block Read 3110s/sec | 78% 3910s/sec | 95%

Table 2.4: Results from Bonnie. This table shows results from running Bonnie. A 100 MB file was
used for all runs.

26

one character at a time. Other workloads exercise block-sized sequential reads, writes, or reads
followed by writes (rewrites). The final workload uses three processes to simultaneously issue
random 1/Os. The size of the file is set by the evaluator and should be several times larger than
the system's file cache, thus preventing the entire file from fitting in the cache. For each work-
load, Bonnie reports throughput, measured in KB per second or 1/0s per second, and CPU utili-
zation. I show results for the three systems in Table 2.4. Most of Bonnie's workloads are 1/0-
limited, though the character reads and writes are CPU-limited.

2.4.22. 10Stone

10Stone is a synthetic I/O benchmark [Park90] based on system traces of Unix minicom-
puters and workstations [Ousterhout85, Hu86) and IBM mainframes [Smith78, Smith81].
Using 400 files totaling 1 MB, 10Stone reads and writes data in pattemns which approximate the
locality found in [Ousterhout85). One process performs all the accesses—no 1/O paralielism is
present. 10Stone reports a single throughput result, measured in 10Stones per second (Table
2.5). Though the file caches of the HP 730 and the SPARCstation 1+ are large enough tb con-
tain all of the data of 10Stone, HP/UX and SunOS limit the number of files present in the file
cache to approximately 300. Since I0Stone touches 400 files, many references access the disk.
10Stone runs much faster on the DECstation 5000, because Sprite imposes no such limit, and

all accesses can be satisfied from the file cache.

SPARCstation 1+

DECstation 5000
HP 730

Table 2.8: Results from 10Stone. This table shows results from running IOStone. HP/UX and SunOS
timit the number of files resident in the file cache, so many references need to access the disk. Because
Sprite allows all]OStone data files 1o reside in the file cache, its performance is 2-4 times better, and
much less 1/O limited, than the other systems.

27

2.4.23. Sample Scientific Workload

Andrew, SDM, I0Stone, and Bonnie all target system development or workstation
environments. Other application areas, such as scientific or supercomputing code, have sub-
stantially different workload characteristics [Miller91]. Typical scientific applications generally
touch much more data and u‘se much larger request sizes than workstation applications. To
illustrate 1/O performance for a supercomputing environment, I define two simple workloads: a
large file read workload, which reads a 100 MB file in 128 KB units, and a large file write work-
load, which writes a 100 MB file in 128 KB units. In Table 2.6, I show results for the three sys-

tem platforms.

2.4.2.4. LADDIS

Network file systems provide file service to a set of client computers, connected by a net-
work. The computer providing this file service is called the server. One popular protocol for
network file service is Sun Microsystem's NFS [Sandberg85]. In 1989, Shein, Callahan, and
Woodbury created NFSStone, a synthetic benchmark to measure NFS performance [Sheing9).
NFSStone generated a series of NFS file requests from a single client to stress and measure
server performance. These operations included reads, writes, and various other file operations
such as examining a file. The exact mix of operations was patterned after a study done by Sun

[Sandberg85]; the sizes of the files were patterned after the study done in [Ousterhout85).

System Larpe File Reads || Large File Writes
[SPARCstation 1+
DECstation 5000 98%
HP 730 98%

Table 2.6: Results from two sample scientific workloads. This table shows the results obtained from
running two simple workloads typical of scientific applications. Large File Reads consists of sequential-
ly reading a 100 MB file in 128 KB units. Large File Writes consists of sequentially writing a 100 MB
file in 128 KB units.

Later, Legato Systems refined NFSStone and called it NHFSStone to avoid copyright infringe-
ment. Nevertheless, NFSStone and NHFSStone had several problems: one client could not
always fully stress a file server; different versions of the benchmarks abounded; file and block

sizes were not realistic; and only SunOS clients could run them.

In 1990, seven companies, joined forces to create a NFS benchmark capable of stressing
even the most powerful file servers. The result was LADDIS, named after the seven companies
(Legato, Auspex, Digital Equipment Corporation, Data General, Interphase, and Sun). It will be
incorporated as part of the SPEC SFS (System Level File Server) Suite of benchmarks.
LADDIS is based on NHFSStone but, unlike NHFSStone, runs on multiple, possibly hetero-
geneous, clients and networks [Nelson92, Levitt92]. Like NHFSStone, LADDIS is a synthetic
benchmark with a set mix of operations. As of this writing, LADDIS is still under develop- |
ment. Its current form includes default percentages for the mix of operations, although it allows
the evaluator to modify that mix. In its final release, SPEC will likely standardize the operation
mix. Currently, LADDIS can vary many parameters. For example, besides the percentage of
each operation in the workload, LADDIS gives the evaluator the freedom to change the number
of clients issuing requests to the server, the rate at which each client issues requests, the total
size of all files, and the block size of /O requests. Reads are weighted to produce 85% block-
sized requests and 15% partial-block requests; Writes are weighted to produce 50% of each.

Moreover, LADDIS touches many files, and each operation’s data files are chosen randomly.

The reporting philosophy of LADDIS is quite similar to that of TPC-B. The prcfcrred-
metric is a throughput (NFS operations per second) versus response time graph. As a more
compact form, users may report the maximum throughput possible subject to a response time
constraint of SO ms. Like TPC-B, LADDIS scales according to the reported throughput—for
every 100 NFS operations/second of reported throughput, capacity must increase by at least 1
GB—although it does not yet specify how to scale the rest of the workload parameters.

29

LADDIS is expected to be released by SPEC in 1993.

2.5. Critique of Current Benchmarks

In applying my list of benchmark goals from Section 2.2 to current I/O benchmarks, it can
be seen that there is much room for improvement. I show a qualitative evaluation of today's

I/O benchmarks in Figure 2.3 and make the following observations:

Current State of 'O Benchmarks
Aodew TPCB S&i(6) Bomic 105w LADDIS

Figure 2.3: Current state of /O benchmarks. This figure shows a qualitative evaluation of bench-
marks used today to evaluate I/O systems. It can be seen that several are not /O bound and that most do
not provide understanding of the system, lack a well-defined scaling strategy, and are not generally appli-
cable. The percent time spent in 1/O was measured on the DECstation 5000/200 of Table 2.1. LADDIS
was not available for execution as of this writing, but a pre-release beta version spends 63% of its execu-
tion time doing reads and write; the rest of the time is spent in other NFS operations, such as lookup
(17%) and getattr (6%).

e Many 1/10 be;zchmarks are not 1/0 limited. On the DECstation 5000/200, Andrew, Sdet2,
and 10Stone spend a quarter or less of their time doing 1/O. Furthermore, many of the
benchmarks touch very little data; JOStone touches only 1 MB of user data; Andrew touches
only 4.5 MB. The best of the group is Bonnie, but even it has some tests that were CPU-
bound.

® Today's 1/0 benchmarks do not help in understanding system performance. Andrew and
10Stone give only a single, bottom-line perfortnanoe result. TPC-B and Sdet fare somewhat
better because they help the user understand system response under various loads, while
Bonnie begins to help the user understand performance by running six workloads. These
workloads show the differences in performance between reads versus writes and block
versus character 1/0, but do not vary other aspects of the workload, such as the number of
I/O’s occurring in parallel.

e Many of 1oday’s 1/0 benchmarks have no scaling strategy. For example, several made no
provision for adjusting the workload to stress machines with larger file caches, for example.
Without a well-defined scaling strategy, I/O benchmarks quickly grow obsolete. Several
exceptions are noteworthy. TPC-B has an extremely well-defined scaling strategy, made
possible by TPC-B 's narrow focus on debit-credit style transaction processing and the
widespread agreement on how databases change with increasing throughput. Sdet also has a
superior scaling strategy, which varies the number of simultaneously active scripts until the
peak performance is achieved. Automatically scaling certain aspects of a workload
represents a major improvement over single workload benchmarks. However, Sdet does not
scale any other aspects of the benchmark, such as request size or read/write ratio. LADDIS,
when formally defined, will likely have a scaling strategy similar to Sdet: it will probably

2 This refers to Sdet running at a peak throughput concurrency level of 6.

31

scale a few workload parameters, such as disk space or number of clients, but will leave

other parameters inflexible.

® Today's 1/0 benchmarks make fair comparisons for workloads identical to the benchmark,

but do not help in drawing conclusions about the relative performance of machines for other

workloads. Ideally, the results from a benchmark could be applied to a wider range of work-

loads.

e Today's /0 benchmarks focus on a narrow range of application range. For example,

TPC-B is intended solely for benchmarking debit-credil, transaction processing systems.

The generally poor state of I/O benchmarks suggests an urgent need for new benchmarks.

2.6. References

[Anon8S])

Anon and er al., *‘A Measure of Transaction Processing Power*’, Datamation,
31,7 (April 1, 1985), 112-118.

[Bechtolsheim90)

A. V. Bechtolsheim and E. H. Frank, **Sun’s SPARCstation 1: A Workstation

_ for the 1990s"’, Procedures of the IEEE Computer Society International

[ChenS0)

[DECstation90]

[Gaede81]

[Gaede82)

Conference (COMPCON), Spring 1990, 184-188.

P. M. Chen and D. A. Patterson, ‘‘Maximizing Performance in a Striped Disk
Array"’,-Proceedings of the 1990 ACM SIGARCH Conference on Computer
Architecture, Seattle WA, May 1990, 322-331.

DECstation 5000 Model 200 Technical Overview, Digital Equipment
Corporation, 1990.

S. Gaede, “‘Tools for Research in Computer Workload Characterization®’,
Experimental Computer Performance and Evaluation, 1981. D. Ferrari, M.
Spadoni, eds..

S. Gaede, ‘A Scaling Technique for Comparing Interactive System
Capacities'’, 13th International Conference on Management and Performance
Evaluation of Computer Systems, 1982, 62-67. CMG 1982.

32

[HP730]

[Hill86]

[Homing91)

[Howard88]

[Hu86]
[Levitt92)]
[McDonell87]
[Miller91)
[Nelson92]

[Nielsen91]

HP Apollo Series 700 Model 730 PA-RISC Workstation, Hewlett-Packard,
1992.

M. D. Hill, S. J. Eggers, J. R. Larus, G. S. Taylor, G. Adams, B. K. Bose, G.
A. Gibson, P. M. Hansen, J. Keller, S. I. Kong, C. G. Lee, D. Lee, J. M.
Pendleton, S. A. Ritchie, D. A. Wood, B. G. Zom, P. N. Hilfinger, D. Hodges,
R. H. Katz, J. K. Ousterhout and D. A. Patterson, ‘‘Design Decisions in
SPUR'’,JEEE Computer 19, 11 (November 1986).

R. Homing, L. Johnson, L. Thayer, D. Li, V. Meier, C. Dowdell and D.
Roberts, *‘System Design for a Low Cost PA-RISC Desktop Workstation™,
Procedures of the IEEE Computer Society International Conference
(COMPCON), Spring 1991, 208-213.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan,
R. N. Sidebotham and M. J. West, ‘‘Scale and Performance in a Distributed
File System’’, ACM Transactions on Computer Systems 6, 1 (February 1988),
51-81.

1. Hu, “*Measuring File Access Patterns in UNIX"", Performance Evaluation
Review 14, 2 (1986), 15-20. ACM SIGMETRICS 1986.

J. Levitt, ‘Better Benchmarks are Brewing"’, Unix Today!, January 20, 1992.

K. J. McDonell, *‘Taking performance evaluation out of the stone age'’,
Proceedings of the Summer Usenix Technical Conference, Phoenix, Arizona,
June 1987, 407-417.

E. L. Miller and R. H. Katz, ‘‘Input/Output Behavior of Supercomputing
Applications'’, Proceedings of Supercomputing '91, 1991, 567-576.

B. Nelson, B. Lyon, M. Wittle and B. Keith, *“LADDIS--A Multi-Vendor &
Vendor-Neutral NFS Benchmark'*, UniForum Conference, January 1992.

M. J. K. Nielsen, *‘DECstation S000 Model 200°°, Procedures of the IEEE
Computer Society International Conference (COMPCON}), Spring 1991, 220-
225.

33

[Ousterhout8s)

[Ousterhout90)

[Park90]

[Patterson88)

[SPEC91]

{Sandberg85)

{Scott90]

[Seltzer92)

{Shein89]

[Smith78]

[Smith81)

J. K. Ousterhout, H. Da Costa and et al., ‘A Trace-Driven Analysis of the
UNIX 4.2 BSD File System'’, Operating Systems Review 19, 5 (December
1985), 15-24. Proceedings of the 10th Symp. on Operating System Principles.

J. K. Ousterhout, ““Why aren’t operating systems getting faster as fast as
hardware?"’, Proceedings USENIX Summer Conference, June 11-15, 1990,
247-256.

A. Park and J. C. Becker, *‘IOStone: A synthetic file system benchmark'’,
Computer Architecture News 18, 2 (June 1990), 45-52.

D. A. Patterson, G. Gibson and R. H. Katz, *‘A Case for Redundant Arrays of
Inexpensive Disks (RAID)", International Conference on Management of
Data (SIGMOD), June 1988, 109-116.

SPEC SDM Release 1.0 Manual, System Performance Evaluation
Cooperative, 1991.

R. Sandberg, D. Goldbert, S. Kleiman, D. Walsh and B. Lyon, *‘Design and
Implementation of the Sun Network Filesystem®', Summer 1985 Usenix
Conference, 1985.

V. Scott, *‘Is Standardization of Benchmarks Feasible?'’, Proceedings of the
BUSCON Conference, Long Beach, CA, Feb 14, 1990, 139-147.

M. Seltzer and M. Olson, ‘“‘LIBTP. Portable, Modular Transactions for
UNIX"", USENIX 199272, January 1992,

B. Shein, M. Callahan and P. Woodbuy, *‘NFSStone--A Network File Server
Performance Benchmark'’, Proceedings of the USENIX Summer Technical
Conference 1989, , 269-275. :

A. J. Smith, **Sequentiality and Prefetching in Database Systems’, ACM
Transactions on Database Systems 3, 3 (1978), 223-247.

A. J. Smith, **Analysis of Long Term File Reference Pattemns for Application
to File Migration Algorithms™’, JEEE Transactions on Software Engineering
SE-7,No. 4 (1981), 403-417.

34

[TPCAB9] TPC Benchmark A Standard Specification, Transaction Processing
Performance Council, November 10, 1989.

[TPCB90) TPC Benchmark B Standard Specification, Transaction Processing
Performance Council, August. 23, 1990.

35

Chapter 3

Workload Model

3.1. Overview

The core of any benchmark used in performance evaluation is the workload model. The
goals of a good workload model are flexibility, generality, and simplicity [Ferrari72, Fer-
rari84)]. Flexibility requires.the model to allow for the selective tuning of individual workload
features. Generality requires that a wide range of applications and programs be modeled accu-
rately. Accuracy here refers to how closely the workload model is able to duplicate the perfor-
mance of an application. And finally, simplicity requires that an application be defined easily in

terms of the workload model. This chapter reviews 1/O workload generators used in recent

research, describes several 1/0 tracing studies, discusses in detail Willy!, the workload generator

used in this thesis, and relates how current I/0 benchmarks can be accurately modeled by Willy.

3.2. VO Workloads Used in Research

170 workload generators outside the realm of benchmarking function primarily as aids in
doing research on 1/0 architectures. These workloads fall into two classes: open-system work-

loads and closed-system workloads [Denning78].

Open-system workloads issue 1/0s indcpcndehtly of 1/0 completions according to a fixed
interarrival probability distribution. After one 1/O is issued, the arrival generator waits a period
of time, determined by the interarrival probability distribution, then repeats the process.
Because new 1/Os are issued independently of 1/0O completions, arbitrarily many 1/Os could be
in progress. When I/Os arrive faster than they finish, the number of I/Os in progress increases

without limit, and the system is said to be in saturation.

The most common interarrival distribution is an exponential waiting time. An exponen-
tial waiting time between successive 1/Os leads to 1/Os arriving as what is called a Poisson pro-
cess. Wilhelm uses this to derive a performance model for a disk system [Wilhelm77], while
Geist and many others use this workload to analyze various disk-scheduling policies [Geist87,
Oney75, Gotlieb73, Teorey72, Hofri80, Coffman72). Arrival rate is usually the only work-
load parameter varied in these studies, though other parameters such as transfer size could also.
be varied.

In contrast to open-system workloads, closed-system ones issue 1/Os by using a fixed
number of I/O generators. Each generator issues an I/O, waits until the 1/0 is completed, pauses
for another period of time, then repeats. Unlike open systems, new 1/Os generated by a closed
systems depend on the completion of the last request from that generator. Stone argues that this

1The name Willy is derived from the word workload.

37

method more closely approximates the way real computer systems operate [Stone72], since real
systems usually have a fixed number of users who cannot issue their next I/O until their last 1/0
finishes. If the waiting time between an /O completion and the next 1/O is fixed at zero, then
there will always be the same number of I/Os in the system; this is referred to as the con-
currency or load on the system. A good example of a closed-system workload is Bodnarchuk
and Bunt's NFS workload generator [Bodnarchuk91). Their workload has many parameters,
including the distribution of reads and writes and other NFS operations, read and write sizes,
and which files to reference. The Solboume Filesystem Benchmarks also use a closed-system
workload model [Taylor90), the parameters for which include concurrency and request size.
Chen and Lee also use a closed system workload in their studies on the disk array striping unit

[Chen90, Lee91]; they add request size as another workload parameter.

33. VO Tracing Studies

Another flavor of I/O workload is a trace. Several researchers have gathered 1/0 traces of
various systems, and in this section, I review four important 1/O trace studies covering three dif-
ferent computing environments: mainframe database systems, Unix engineering systems, and
scientific supercomputing systems.

In 1976 to 1978, Smith and others analyzed traces gathered at a site running an Informa-
tion Management System/360 (IMS) hierarchical database. »Thc trace was gathered over a seven
day period on a 200 MB database [Smith78]. Smith examined sequentiality in the traces to
compute the benefits of prefetching. He found that less than 30% of all requests were sequen-
tial, much lower than studies done in engineering and scientific environments, though high
enough to significantly improve performance through prefetching. Rodriguez-Rosell found that
the IMS database generated accesses with little temporal locality [Rodriguez-Rosell76).

In 1985, Ousterhout er al. traced the 1/Os done on three VAX 11/780 minicomputers at the
University of California at Berkeley [Ousterhout85]). These computers were mainly used for
38

software development, administration, and computer-aided design. The researchers found that

over the 2-3 day tracing sample,

e /O requirements were quite low; each active user required only 300-600 bytes per second of
1/0, though bursts of 1/0 reached 100 KB per second.

o Most files were accessed sequentially in their entirety.

e Most files were short lived; half of all new files were deleted in 5 minutes.

e File caches would be effective in reducing disk accesses.

In 1991, Baker er al. performed a follow-up study to Ousterhout’s tracing study
[Baker91]. These researchers traced the experimental Sprite operating system cluster, which
consisted of forty, 10-MIPS workstations at the University of California at Berkeley. These
workstations were used in much the same way as the minicomputers in the original Berkeley
study: software development, administration, and computer-aided design. The Sprite system,
unlike the VAX 11/780, uses a shgred, distributed file system spread over a network. In spite of
100 times more CPU power and a distributed file system, many notable trace characteristics
were similar to the ones found in the original Berkeley study. For example, files were mostly
accessed sequentially in their entirety, and many files were still shornt-lived. However, Baker er
al. found that /O requirements had increased an order of magnitude to 8 KB per second per

active user and that large files had grown much larger to be multiple megabytes in size.

In 1991, Miller analyzed seven scientific applications running on a Cray Y-MP supercom-
puter at NASA Ames [Miller91). These applications solved mostly computational fluid
dynamic problems, such as climate modeling and aerodynamic turbulence. Miller reports a
much more I/O intensive environment than did the Berkeley studies. Among the things he
found were: data sizes were much larger, ranging between 10 to 200 MB; 1O sizes were larger,
ranging from 16 to 400 KB; each application performed large amounts of I/O, from 60 MB to
20 GB; and I/O demands reached 70 MB per second. Like the Berkeley studies, however, the

39

NASA Ames applications tended to generate bursts of I/O and reference files sequentially.

3.4. Willy

In Chapter 2 two types of benchmarks were discussed: synthetic and application. We saw
that application benchmarks often have difficulty stressing 1/0 systems. Application bench-
marks are also harder to control than synthetic ones—if a change to a specific part of a work-
load needs to be made without perturbing the rest of the workload, synthetic benchmarks are
much better suited than application workloads. For these reasons, I choose to use a parameter-
ized synthetic benchmark to generate 1/0s. This section describes in detail Willy, the workload
generator used in this thesis, and how other benchmarks can be described in tcrms of Willy's

parameters.

3.4.1. Workload Parameters

In this section, I describe three main categories of workload parameters: Jocality, request

characteristics, and load.

3.4.1.1. Locality

Locality refers to the data location of each I/O. Due to caches, I/O performance is highly
dependent on spatial and temporal locality [Denning70, Smith85]). As a result, the workload
model must be able to generate workloads with various spatial and temporal localities. In
describing locality, working set is used to refer to the data most commonly used by a program.-
The size of the working set is critical in determining how well caches work for an application.

My workload model uses two parameters to characterize locality: unigueBytes and segFrac.

UniqueBytes refers to the total number of unique data bytes read or written in a
workload—this is the total size of the data. Large values of uniqueBytes correspond to work-

loads with large working sets—any cache in the system will have to be larger to effectively

40

cache the working set.

Rather than designate a fixed part of the data set as commonly used, Willy models a float-
ing, commonly used data set. While creating a workload, Willy maintains a stack of the most
recently used data. To decide which data to access, Willy chooses a depth in the stack and
accesses the data at that depth. This method is based on the way most caches operate; most
caches choose which data to keep and which to remove based on which was most recently used
[Hill87]. This model is known as the LRU stack model [Rau79]. For this reason, workloads
generated by Willy should closely mimic the cache behavior of real applications with the same
values of uniqueBytes. For simpiicity. the workload model fixes the average access depth in the
LRU stack at half of uniqueBytes. Applications that significantly differ from this can compen-
sate by increasing or decreasing uniqueBytes to match the average access depth. The distribu-
tion of the depth of access in the stack is modeled as a binomial distribution with a mean equal

to half of uniqueBytes.

UniqueBytes only affects temporal locality; another parameter is needed to control spatial
locality. The major type of spatial locality in I/O workloads is the presence of sequential
accesses. Several of the tracing studies reviewed in Section 3.3 showed large fractions of
accesses to be sequential {Ousterhout85, Baker91, Miller91]. SegFrac controls the fraction of
sequential accesses (seqFrac of 1.0 means all requests m sequential). Addresses for non-
sequential accesses are chosen according to the discussion on hitDepth about the most recently
used data stack. Addresses are chosen randomly for data being accessed for the first time (and

hence do not appear in the data stack).

3.4.12. Request Characteristics

Two parameters define the characteristics of individual accesses. First, accesses can be
either a read or a write. ReadFrac determines the fraction of requests that are reads. Each
request is chosen to be a read or a write independently; runs of multiple reads or writes are not

41

deliberately created.

The size of each request is determined by the parameter sizeMean. Sizes are distributed
according to a binomial distribution with a mean of sizeMean. For the sake of simplicity, other

types of distributions are not modeled.

© 3.4.13. Load

To control the load on the system, I choose the clM-wm workload model mentioned
in Section 3.2. A closed-system workload mode! involves two parameters: processNum and
cpuThink. ProcessNum is the number of processes running simultaneously, also called con-
currency [Cheh90]. CpuThink is the time each process waits from the time an 1/O finishes until
it issues the next 1/0. Because larger values of cpuThink only lessen the fraction of 1/0 in the
workload, I fix cpuThink at zero; processes always issue new I/Os immediately after their last

1/0 completes.

3.4.2. Other Workload Issues

Besides these workload parameters, a workload model includes many other issues. In this

section, I discuss these issues and the approach Willy takes for each.

The first issue is the performance metric that will be reported by Willy, and in this thesis,
the main performance metric will be throughput. Average response time is easily calculated

from average throughput in a closed system by Little’s Law [Denning78):

sizeMean
cpuThink+responseTime

throughput = xprocessNum

The next issue is the number of files accessed in the workload. Due to per-file locking,
some file systems, such as Sprite [Rosenblum91] do not allow multiple processes to access a file
simultaneously. To allow full use of the file system, my workload generator uses multiple files;

the number of files is equal to the number of processes.

42

In order to keep the read or write property of an access independent of the address of the
access, all writes are overwrites; they are not append-ed at the end of the file. This simplifies the
workload mode] because the entire file is created before the workload starts, thus no new data

needs to be allocated.

The next workload issue is the starting layout on disk. Ideally, researchers should start
with a freshly made file system on an empty disk, perform a large, standard set of file creations,
reads, writes, and file deletions, then run the benchmark. 1 leave this step for future research.

Address alignment often affects I/O performance. Most 1/Os generated by real-worid
applications are aligned to the block size of the system. In keeping with that, addresses and
sizes generated by this workload model are aligned to the block size, usually 4 KB or 8 KB.

The last workload issue addressed here is when to flush the file system cache, if at all. In
this thesis, I first prime the file cache before measuring performance. To prime the file cache, 1
run the workload multiple times and discard the first run. This approach is commonly known as

warm start.

3.5. Modeling Real Applications

In this section, I characterize the I/O patterns of real applications and benchmarks in terms
of Willy’s parameters. I discuss the benchmarks of Chapter 2 plus an 1/O intensive sorting pro-
gram and some 1/O traces of scientific applications from [Miller91). Table 3.1 shows the
parameter values of these applications. Note the wide variation in the parameter values of ﬁxcsé
applications. Within the variation, however, there are several trends:

e The two file system benchmarks, Andrew and Sdet, touch small amounts data using small
requests. Within these benchmarks, reads and writes occur in equal portions and sequential-
ity is moderate. High degrees of concurrency can be present, depending on how many

simultaneous scripts are running.

43

Application uniqueBytes seqFrac | readFrac sizeMean processNum
Andrew 4.7 77 54 3 1
Sdet 8 48 56 24 4
TPC-B 47.9 .01 S1 44 1
ccm 11.6 91 S1 32 1
gcm 229 1.00 07 32 1
les 224 07 A8 325 1
venus 55.2 43 65 456 1
sort 234 99 56 4.0 1
" Minimum 1.8 .01 07 24 1
Maximum 234 1.00 65 456 4

Table 3.1: Workload characterization of benchmarks/applications. This table characterizes several
benchmarks and applications in terms of this thesis’ workload model. Cem, gem, les, and venus are three
scientific applications run at NASA Ames Research Center [Miller91). Ccm, gcm, and venus model at-
mospheric climates; les models aeronautical turbulence effects. The sort application sorted 4 files total-
ing 48 MB. Minimum and Maximum show the range of parameter values for these applications. Sdet
was run with a concurrency of §, which yields the maximum throughput on the DECstation 5000 of Table
2.1. More concurrently running scripts would increase the value of processNum, which is the maximum
number of simultaneously occurring 1/0s. TPC-B was run on the DECstation 5000/200, which delivered
13.2 transactions per second. '

e The transaction processing benchmark TPC-B touches a large amount of data using small

requests. Requests are mostly non-sequential.

e The scientific applications touch large amounts of data using large requests.

3.6. Representativeness.of Willy

The most important question in developing a synthetic workload model is the question of
representativeness [Ferrari84]. A synthetic workload should have enough parameters such that
the performance of the synthetic workload is close to the performance of an application with the
same set of parameter values. Of course, given the uncertain path of future computer develop-
ment, it is impossible to determine a priori all the possible parameters necessary to ensure
representativeness. Even for current systems, it is possible to imagine I/0 workloads that
interact with a system in such a way that no synthetic workload (short of a full trace) could .

duplicate that I/O workload's performance. To show that my workload mode] captures the

.. Read Write Average
Application | Throughput Response Time | Response Time | Re nsegrime
Sort .20 MB/s 19.7 ms 1.6 ms 11.7ms
Will 20 MB/s 20.0 ms 1.9 ms 11.0 ms
TPC-B 13 MB/s 25.6 ms 1.3ms 14.0ms
Willy .13 MB/s 22.1 ms 1.6 ms 12.3ms

Table 3.2: Représentativenes of Willy. This table shows how accurately Willy mimics the perfor-
mance of two [/O-bound applications, Sort and TPC-B. All runs were done on a DECstation 5000 run-
ning Sprite. For each application, the synthetic workload used the parameter values given in Table 3.1.

important features of an I/O workload, this section compares the performance of 1/0O-bound

applications to the performance of Willy with those applicaﬁons' parameter values.

Out of the four application benchmarks run in this section (Andrew, TPC-B, Sdet, and
Sort), only TPC-B and Sorn are interesting to compare. Andrew and Sdet spend only a few per-
cent of their running time performing 1/0, making them uninteresting to compare. Another way
to view this is the following: if an application spends 5% of its running time in 1/O, then a
workload mode! consisting of one parameter, cpu think time, would be able to model
throughput within 95% accuracy, even without doing any I/O! The only application bench-

marks which spend much of their time in 1/O are TPC-B and Sort.

Table 3.2 compares Willy's performance on a DECstation S000 with the performance of
the applications being modeled. We see that both Sort and TPC-B can be modeled quite accu-
rately using Willy with appropriate parameter values. Throughput and response time are both
accurate within a few percent. This accuracy increases our confidence that the parameters of the -

synthetic workload capture the first-order performance effects of an 1/O workload.

In the next chapter, I develop a benchmark that explores the space of possible workloads,

using Willy to measure the performance for each workload.

45

3.7. References

[Baker91] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shiriff and J. K.
Ousterhout, *‘Measurements of a Distributed File System®’, Proceedings of
the 13th ACM Symposium on Operating Systems Principles, October 1991.

(Bodnarchuk91] R. R. Bodnarchuk and R. B. Bunt, “‘A Synthetic Workload Model for a
Distributed System File Server*’, SIGMETRICS 1991, May 1991.

[Chend0) P. M. Chen and D. A. Parterson, *‘Maximizing Performance in a Striped Disk
Array*’, Proceedings of the 1990 ACM SIGARCH Conference on Computer
Architecture, Seattle WA, May 1990, 322-331.

[Coffman72] E.G. Coffman, L. A. Klimko and B. Ryan, **Analysis of Scanning Policies for
Reducing Disk Seek Times"’, SIAM J. Comput 1, 3 (September 1972), 269-
279.

[Denning70] P. J. Denning, *‘Virtual Memory'*, ACM Computing Surveys 2 (September
1970), 153-190.

[Denning78] P. J. Denning and J. P. Buzen, ‘‘The Operational Analysis of Queueing
Network Models™’, ACM Compuing Surveys 10, 3 (September 1978).

[Ferrari72) D. Ferrari, *‘Workload Characterization and Selection in Computer
Performance Measurement®', IEEE Computer 5, 4 (July/August 1972), 18-24.

[Ferrari84)] D. Fer}ari. “On the Foundations of Artificial Workload Design'’, ACM
SIGMETRICS 1984, 1984, 8-14.

[Geist87) R. Geist and S. Daniel, ‘A Continuum of Disk Scheduling Algorithms"’,
ACM Transactions on Computer Systems 5, 1 (February 1987), 77-92.

[Gouieb73] = C. C. Gotlieb and G. H. MacEwen, ‘‘Performance of Movable-Head Disk
Storage Devices'’, Journal of the Association for Computing Machinery (J.
ACM) 20, 4 (October 1973), 604-623.

[Hill87) M. D. Hill, *‘Aspects of Cache Memory and Instruction Buffer Performance’”,
UCB/Computer Science Dpt. 87/381, November 1987. Ph.D. dissentation.

[Hofri80]

[Jones81]

[Lee91)

[Miller91]

[Oney75]

[Ousterhout85]

[Rau79]

M. Hofri, **Disk Scheduling: FCFS vs. SSTF Revisited'’, Communications of
the ACM 23, 11 (November 1980), 645-653.

D. A. Jones, *‘Disk Workload Characterization from Event Trace Analyses'’,
Proceedings of the 8th International Symposium on Computer Performance
Modelling, Measurement and Evaluation, November 1981, 301-313.
Performance 81.

E. K. Lee and R. H. Katz, *‘An Analytic Performance Model of Disk Arrays
and its Applications’’, UCB/Computer Science Dpt. 91/660, University of
California at Berkeley, 1991.

E. L. Miller and R. H. Katz, “‘Input/Output Behavior of Supercomputing
Applications®’, Proceedings of Supercomputing 91, 1991, 567-576.

W. C. Oney, *‘Queueing Analysis of the Scan Policy for Moving-Head
Disks'’, Journal of the Association for Computing Machinery (J. ACM) 22, 3
(July 1975), 397412.

J. K. Ousterhout, H. Da Costa and er al., *‘A Trace-Driven Analysis of the
UNIX 4.2 BSD File System'', Operating Systems Review 19, 5 (December
1985), 15-24. Proceedings of the 10th Symp. on Operating System Principles.

B. R. Rau, *‘Program Behavior and the Performance of Interleaved
Memories'’, IEEE Transactions on Computers C-28, 3 (March 1979), 191-
199.

[Rodriguez-Rosell76)

[Rosenblum91]

{Smith78]

[Smith8S5)

J. Rodriguez-Rosell, ‘‘Empirical Data Reference Behavior in Data Base
Systems”’, IEEE Computer 9, 11 (November 1976), 9-13.

M. Rosenblum, Sprite File Locking, personal communication, October 29,
1991.

A. J. Smith, “‘Sequentiality and Prefetching in Database Systems'', ACM
Transactions on Database Systems 3, 3 (1978), 223-247.

A. J. Smith, *‘Disk Cache-Miss Ratio Analysis and Design Considerations’’,
ACM Transactions on Computer Systems 3, 3 (August 1985), 161-203.

47

[{Stone72) D. L. Swone and R. Tumer, *‘Disk Throughput Estimation'’, Proceedings of
the ACM Annual Conference, August 1972, 704-711.

[Taylor90] D. Taylor, ‘“‘Solboume Filesystem Benchmarks—-User Guide'’, Solboumne
technical report, October 29, 1990. .

[Teorey72) T. J. Teorey and T. B. Pinkerton, ‘‘A Comparative Analysis of Disk
Scheduling Policies’’, Communications of the ACM 15, 3 (March 1972), 177-
184.

[Wilhelm77] N. C. Wilhelm, *‘A General Model for the Performance of Disk Systems'’,
Journal of the Association for Computing Machinery (J. ACM) 24, 1 (January
1977), 14-31. .

Chapter 4

A Self-Scaling Benchmark

4.1. Overview

Willy is a fiexible, general /O workload generator. But, by itself, it is not the ideal /O
benchmark. This is because regardless of what set of values are assigned to Willy’s parameters,
it suffers from the classic I/O benchmarking problems: it does not provide understanding ixﬁo
system performance; it does not scale over current or future systems; it does not allow com-
parisons of systems, except for the measured workload; and each workload is relevant to only a
narrow range of applications. Over time, poor scaling renders benchmarks irrelevant—what

was an I/O-intensive program this year may not be I/O-intensive next year.

In this chapter, I describe a method that addresses these shortcomings. The result is an

evaluation tool that automatically explores the space of possible workloads, running Willy to
49

measure performance for each workload. In the process of exploring the workload space, the

benchmark accomplishes two major goals:

e It shows how performance depends on each parameter and reports which workloads perform
well. This increases one’s understanding of the system being measured.

o It automatically scales itself by choosing which workloads to report based on each system's
performance capabilities. This scaling helps ensure the benchmark’s long-term relevance.
Unfortunately, scaling also results in running different workloads for different systems, mak-
ing it difficult to compare two systems directly. Chapter S addresses the problem of compar-
ing two systems by using this chapter’s results to estimate performance for arbitrary work-

loads.

This chapter describes how the self-scaling benchmark accomplishes these goals, giving
examples and implications along the way. In addition to the workstations benchmarked in
Chapter 2, I also measure a Convex C240 mini-supercomputer, a Solbourne SE/905 file server,
a raw-1/0 interface on the SPARCstation 1+, two client-server configurations (Sun’s Network

File System and HP's Distributed Unix), and a beta release of an unannounced workstation.

This chapter is divided into two parts. In the first part, Sections 4.3-4.4, I describe my first
attempt to create a self-scfa]ing benchmark, using a “‘knee of tﬁc curve'’ concept to scale all the
parameters. This approach, which I call the Global-Knee Self-Scaling Benchmark, is quite use-
ful but has several problems. In the second part, Section 4.5, I revise the method and back off
from scaling all parameters using the knee of the curve. Instead, I scale a subset of the parame-

ters using the midpoints of each parameter’s range.

4.2. Single Parameter Graphs

Most current benchmarks described in Chapter 2 report the performance for a single work-
load only. The better benchmarks report performance for multiple workloads, usually in the

50

form of a graph. TPC-B and Sdet, for example, report how performance varies with load (Fig-
ure 2.1 on page 23 and Figure 2.2 on page 25). But even these better benchmarks do not show
in general how performance depends on parameters such as request size or the mix of reads and

The main output of Chapter 4’s self-scaling benchmark is a set of performance graphs,
one for each parameter (uniqueBytes, sizeMean, readFrac, processNum, and segFrac) as
displayed in Figure 4.1. While graphing one paramefcr. all other parameters remain fixed. I
call the value at which a parameter is fixed while graphing other parameters the focal point for
that parameter. The vector of all focal points is called the focal vector. In Figure 4.1, for exam-
ple, the focal vector is {uniqueBytes = 21 MB, sizeMean = 10 KB, readFrac = 0, processNum =
1, seqFrac = 0}. Hence, in Figure 4.1a, uniqueBytes is varied while the other parameters

remain fixed (sizeMean = 10 KB, readFrac = 0, processNum = 1, and seqFrac = 0).

Figure 4.2 illustrates the workloads reported by one set of graphs for a three parameter
workload space. Although these graphs show much more of the entire workload space than do
current benchmarks, they still show only single parameter performance variations; they do not
display dependencies between parameters. Unfortunately, a complete exploration of the entire
five dimensional workload space requires far too much time. For example, an orthogonal sam-
pling of six points per dimension requires 6, or almost 8000, points. On the Sprite DECstation,
each workload takes approximately 10 minutes to measure; thus, 8000 points would take almost
2 months to gather! In contrast, measuring six points for each graph of the five parameters
requires only 30 points and 5 hours. The usefulness of these single parameter graphs depends
entirely on how accurately they characterize the performance of the entire workload space.
Chapter § will show that the shapes of these performance curves are relatively independent of
the specific values of the other parameters. The rest of this chapter discusses how to scale the

benchmark by choosing the focal vector.

51

30 uniqueBytes (MB) 200 sizeMean (KB) i readFrac

2

N .-
\\\\E

.

84
8
8
8

Is
=
|
g

~~
3
g

,/////////

wONWE~ ~AYUDNEON P~

A7

: @) O]

Figure 4.1: Results from a self-scaling benchmark that scales all parameters. This figure shows the
results from a self-scaling benchmark of a SPARCstation 1 with 28 MB of memory and a single, SCSI
disk. The self-scaling benchmark reports performance for many 1/O workloads, where each workload is
measured by running Willy with various parameter valves. The benchmark reports the range of work-
loads, shown as the shaded region, that perform well on this system. For example, this SPARCstation
performs well if the total number of unique bytes touched is less than 20 MB. It also shows how perfor-
mance varies with each workload parameter. Each graph varies exactly one parameter, keeping all other
parameters fixed at their focal point. For these graphs, the focal point is the same as the global knee
point. The knee point for each parameter is defined to be the least restrictive workload value (see Section
4.3) that yields at least 75% of the maximum performance. The range of workloads that perform well
(shaded area), is defined as the range of values that yields at least 75% of the maximum performance.
The knee points chosen by the benchmark for each parameter are uniqueBytes = 21 MB, sizeMean = 10
KB, readFrac = 0, processNum = 3, seqFrac = 0.

82

processNum /

, sizeMean

Figure 4.2: Workloads reported by a set of single parameter graphs. This figure illustrates the range
of workloads reported by a set of single parameter graphs for a workload of three parameters.

4.3. The Knee Point

A common concept in engineering is that of the knee of the curve, or a knee point. This
phrase usually refers to an‘intuitive balance point between higher benefit and higher cost. In the
realm of /O performance, benefit refers to higher performance achieved by different values of

workload parameters, while cost refers to the difficulty in c}eaxing workloads with those values.

Most of Willy’s workload parameters have well-defined directions of higher performance
and higher cost. Take sizeMean as an example. Larger requests result in higher performance
by amortizing any per-request overheads over more bytes. On the other hand, large request
sizes are usually difficult to achieve due to practical constraints such as intemal fragmentation,
long latencies to the last byte, and small file sizes. This tradeoff between practical constraints
and higher performance typifies the eﬁginccring tradeoffs needed to find a knee point that will

provide good performance at reasonable cost. The following is a list of the directions of higher

53

performance and higher cost for Willy's workload parameters:

e uniqueBytes—1It is harder to achieve smaller uniqueBytes than larger one. But, smaller uni-
queBytes yield higher performance than do larger ones. As a result, programmers often
expend much effort to recode their programs in such a waj as to work within smaller locali-
ties to allow the working set to fit within available memory.

e sizeMean—Large sizes are. harder than small sizes and leads to higher performance, as
explained above. |

o readFrac—ReadFrac is the only parameter that has no clear direction of higher cost or higher
performance. Some scientific applicatio_ns try to minimize reads, since reads force the user
to wait for the data. In contrast, applications such as databases try to minimize writes, since
writes must be committed to disk. I assume that whichever direction yields higher perfor-
mance is also the direction of higher cost.

e processNum—Workloads with more processes are harder to achieve than less processes. It
is easy to allow only one process at a time to make 1/O requests, increasing workload’s I/O
concurrency is not easy. Increasing the number of processes often increases performance by
making use of available parallelism in the disk or memory system. More processes than
necessary to achieve maximum throughput is undesirable, however, because response times
would degrade without improving throughput.

e seqFrac—Higher seqFrac is harder but leads to higher performance. Many applications
naturally generate sequential accesses [Ousterhout85], but, in general, it is easier to gehcraté

arbitrary access patterns without regard to sequentiality.

For all parameters, except perhaps readFrac, the direction of higher difficulty is also the direc-

tion of higher performance. Murphy’s Law strikes again!

It is very difficult to derive a mathematically satisfying definition of the knee of a curve.

When I started this research, I expected to find a formula, related to the first derivative of the

54

maximum slope

Performance Performance
Parameter Parameter
@ . (b)
Performance Performance
Parameter Parameter
© @

Figure 4.3: Difficulty in defining the knee. Differently shaped performance curves make it difficult to
define a universal formula for the knees of curves. A

performance, that would define a unique point at which the marginal benefits decreased. Unfor-
tunately, no such formula exists for arbitrarily-shaped performance curves. For the shape of
some cﬁrves. the choice is fairly easy. Figure 4.3a shows a curve whose knee can be defined as
the point of maximum slope. The choice, however, is much less clear for Figure 4.3b, 4.3c, and

4.3d. One stumbling block to defining the knee in terms of the slope of the performance curve

§5

is the scale of the axes. This is because the scale of most parameter’s axes is defined indepen-
dently from the scale of the performance axis. Choosing a knee according to the value of the
slope would hence lead to different knees for different axes scales. In the absence of any
acsthetically pleasing mathematical definition, I chose an engineering solution: I define the knee
of the curve as the point that reaches 75% of the maximum performance. Most of the shortcom-
ings of this knee approach to scaling, listed in Section 4.4.2, will hold regardiess of the actual
fraction used. | “ |

The knee point of Willy’s workload parameters provides a hint of how a system might be
used. This positive correlation between a system’s knee and the use of a sysiem tﬁay occur
because people who care about performance will buy a computer system that performs well for
their workload or modify their current one to perform better for their workload. A few people
may even re-code their application to better utilize their system’s capabilities. The folloﬁng

are some examples.

e If a potential buyer of a disk system anticipates many concurrent I/Os, he is more likely to
buy and use a disk array, which supports higher concurrency (shown by a larger knee value
in the processNum performance graph), than a single-disk system.

e If an important program, or class of programs, is thrashing on the system due to a small file
cache, the user of that system will likely buy more memory to allow the program to fit in the
cache. The RAID-II project [Lee92], for example, bought more memory for the SPARCsta-
tion that routed the board to prevent thrashing. |

e Programmers for a small class of applications will be able to recode their programs to take
advantage of potential performance improvements in moving toward the knee point.
Designers of operating systems can increase the block size of the file system; databases can
perform pﬁrallel queries to increase concurrency [Hong91}; scientific application writers can

recode their matrix reference pattems to stay within the file system cache [Kim87).

56

For some parameters, users will probably always run workloads with a variety of values on any
given system. For instance, they will likely always run applications that both read and write
data in varying proportions.

The knee point concept can be extended to multiple parameters. 1 define global knee point
to be a point at which all pafamctcrs are simultaneously at their knee point. As shown below, at
least one global knee must exist, assuming the knee points for each parameter are continuous

over the workload space.

For a workload with two parameters, X and Y, I can find all possible knee points for X
with Y fixed at y. If I do this for all values of Y between ymin 8nd Y as. I graph a curve, such as
the solid line shown in Figure 4.4. Note that because knee -points are continuous, this curve is

continuous and exists for all points between ymi, and Y .. The same procedure can be carried

knee points of X

Y max

- global knee point

_— knee points of Y

Y min

Xmin X max

Figure 4.4: Global knee point with two parameters. This figure proves the existence of a global knee
point with two parameters, X and Y. Assuming knee points are continuous, the knee point curve for each
parameter must cross in at least one place.

§7

out to find all knee points for Y for X fixed at all values between x g, and xp,,.

For a workload with three parameters, X, Y, and Z, the same can be shown. I can find the
knee point of Z for each combination of (X,Y), which appears graphically as a smooth surface
over the entire X-Y plane. Because the surface covers the enﬁre X-Y plane, it must intersect
with a similar surface for Y's knee point. Intersecting ail three knee point surfaces results in at
least one global knee point. The next section describes how to find and use this global knee

point to create a self-scaling benchmark.

4.4. A Global Knee Self-Scaling Benchmark

A self-scaling benchmark is one that adjusts the workloads that it mns‘ and compiles a
report based 6n the capabilities of ihe system belng meas;n'ed Sdet and TPé-B both do this for
one aspect of a workload, that is, Joad (processNum) [SPEC91, TPCB90]. Sdet reports the
maximum throughput, which occurs at different loads for different systems. TPC-B reports
maximum throughput subject to a response time constraint; this also occurs at different loads
for different systems. In this section, I describe a benchmark that generalizes this scaling con-

cept to all workload parameters.

One way to create a self-scaling benchmark is to sét the focal vector to be the same as the
global knee point. I call this version of the self-scaling benchmark the global-knee, self-scaling

benchmark.

The global-knee, self-scaling benchmark uses a simple, iterative approach to finding the
global knee point. As it runs, it fixes all but one parameter and finds the lﬁnec for that one
parameter. It then fixes the value for that parameter at the newly found knee point and contin-

“ues on to another parameter. This iterative process continues until all parameters are simultane-
ously at their knee points.A Although this process could theoretically never converge, in reality

very few iterations are needed (only four were needed in the example below). This quick con-

58

vergence is due to the shape, and thus the knee, of one parameter’s curve being reasonably

independent of the other parameters. This independence is used and verified in Chapter 5.

After finding the global knee point, the global-knee, self-scaling benchmark reports two
items. First, it reports which ranges of workoads perform well on the system;' Second, it returns
a graph of performance versus each parameter with the other parameters fixed at their focal
points. This set of graphs helps the user to understand the performance of the system by show-

ing how performance varies with each parameter.

4.4.1. Example Run of Global-Knee, Self-Scaling Benchmark

This section presents results from a run of the global-knee, self-scaling benchiﬂaﬁc. The
system being measured is the one-disk SPARCstation of Table 2.1. In Figure 4.1 on page 52,
the shaded region on each graph is the range of workloads that perform well for this system,
that is, the workload values that yield at least 75% of ihe maximum performance. When a
parérneter is varied, the other parameters are fixed at their global knee points éhosgn by the
benchmark {uniqueBytes = 21 MB, sizeMean = 10 KB, readFrac = 0, processNum = 1, segFrac
= 0}. These are the least restrictive values in the range of workloads that perform well. Some

of the conclusions that the global-knee, self-scaling benchmark helps us reach about this system

are as follows:

e The effective size of the file cache is 21 MB. Applications that have a locality space larger
than 21 MB will go to disk frequently.

e /O workloads with larger average sizes yield higher throughput than smaller average sizes.
To get reasonable throughput, request sizes should be between 10 KB and 200 KB. This
information may help programmers of operating systems in choosing the best block size.

e Workloads consisting mostly of reads perform slightly better than workloads with more

writes.

59

e Increasing concunéncy does not improve performance. As expected, without parallelism in
the disk system, workload parallelism is of little value.

e Sequentiality does not affect performance at the giobal knee.

4.4.2. Problems

The global-knee, self-scaling benchmark yields iﬂteresting results and helps one under-
stand the system. There are, however, several problems with self-scaling all workload parame-
ters by setting the focal vector to be the same as the global knee. First, the iteratiile process of
finding the global knee may be slow because the number of iterations depends on how truly
independent the knee point of one parameter is from the values of the other parameters.
Because each iteration takes several hours, more than a few iterations may render the bench-

mark unusable.

Second, there are really two criteria to consider when choosing the focal vector point for a
parameter. Take readFrac as an example. The first criterion is what has been meﬁtioned
above——scaling readFrac’s value to the value for workloads most likely to run on this system.
But there is also a second criterion: thé performance curves while readFrac is at its focal point
should apply to worklodds where readFrac differs from its focal point. In other words, the
shape of the performance curves at the focal point of reac;Frac should be representative of the
shape of the performance curves at other values of readFrac. When they are, accurate perfor-
mance prediction can be done based on these curves. This criterion often precludes choosing an
extreme value. For example, if reads were 100 times faster than writes, the global-knee, self-
scaling benchmark might pick readFrac = 1.0 as the focal point. But readFrac’s focal point of
1.0 may yield performance graphs for the other parameters that do not apply to workloads with
some writes. For readFrac, the knee of the performance curve may not be a good predictor of
what workloads are run on a system; hence the criterion of predicting which workloads will be

run is not as important as picking a value representative of workloads in general. It would be

60

A i S A A R o S Y o i

sizeMean (KB) = 3.0+ readFrac

3.04
t t
b b
t T
© 2.04 o 2.04
. .
P | 4
[.
t t
M M
B 1.0 B 1.04
/ /
s s
))
0.0 - y 0.0: v »
1 10 100 . 1000 Lo .0 0.5 1.0
sizeMcan (KB) readFrac
(@ ®
304 processNum 304 seqFrac
t t
b b
T r
© 2.0¢ © 2.0¢4
u u
P P
U u
t t
M M
B 1.0¢ B 1.04
/ /
s s
))
0.0 v " 0.0 v]
0 5 10 0.0 05 1.0
processNum seqFrac
- © @

Figure 4.5: Instability in graphs on the border of performance regions. This figure demonstrates the
instability of choosing the focal point for uniqueBytes close to the border of two performance regions.
The focal point chosen for this family of curves is uniqueBytes = 23 MB, sizeMean = 14 KB, readFrac

= .5, processNum = 2, seqFrac = .5.

better to choose an intermediary value rather than the knee as the focal point. In fact, as will be
seen in Chapter 5, general applicability is a more important criterion than scaling to the knee

point, because if the shape of the performance curve is generally applicable, performance can be

61

-estimated for any workload.

The third problem is that the uniqueBytes parameter often has distinct performance
regions, which correspond to the v_axjous storage hierarchies in the system. In Figure 4.1a, uni-
queBytes smaller than 21 MB primarily use the file cache, while uniqueBytes larger 'than 21 |
MB primarily use the disk. When the value of uniqueBytes is on the border between the file
cache and disk region, performance is oﬁen unstable (see Figure 4.5, where uniqueBytes = 23
MB). The knee point.is ﬁsua]ly on thé border between the storage hierarchy regibns,) choos-
ing the focal point for uniqueBytes to be the knee point makes it likely that performance will be
less stable. Graphing in the middle of a hierarchy level’s performance region should be moré
stable than graphirig on the border between performance regions. Another problem that arises
from the storage hierarchy regions is that each level of the storage hierarchy may give different
performance shapes. Figures 4.8 and 4.9 show how, depending on the storage hierarchy region,
reads may be faster than writes (Figure 4.8g), slower than writes (Figure 4.9b), or the same

speed as writes (Figure 4.8b).

4.5. A Better Self-Scaling Benchmark

There are a variety of solutions to the problems listed above. For the distinct performance
regions discovered by uniqueBytes, I measure and report multiple families of graphs, one fam-
ily for each performance region (Figure 4.1 shows a single family of graphs). These regions are
distinguished using a heuristic based on the slope of the uniqueBytes curve. For the SPARCsta-
tion 1+, the slope of the uniqueBytes curve is shown in Figure 4.6. The heuristic delineates per-
formance regions based on what values of uniqueBytes are lower than the average slope of the
uniqueBytes curve. In Figure 4.6, the area near 20 MB is below the average slope, so the
heuristic defines two performance regions: one from 0-20 MB, one from 20-60 MB. The self-
scaling benchmark measures and reports one family of graphs for each of these performance

regions. For instance, the first family of graphs is shown in Figure 4.7a-d and has uniqueBytes

62

*01 ‘-/’\ r—/
-0.14 avenage slope
s
1
o
p-0.24
3
! 034
e
c
)
0.4+
’0-5 v hd
0 10

20 30
-uniqueBytes (KB)
Figure 4.6: Slope of uniqueBytes curve for SPARCstation 1+. This figure plots the slope of the uni-
queBytes curve (Figure 4.7). The one area of the graph with slope below the average slope (0.06 per
second) is near 20 MB. The self-scaling benchmark uses this information in a heuristic algorithm to del-
ineate performance regions.
= 12 MB. The second family of graphs, Figure 4.7f-i, has a separate focal point with unique-

Bytes = 42 MB.

To improve the general applicability of the graphs, I choose the focal point of each param-
eter to be in the ‘‘middle’” of the parameter range. With increasing distance from the focal
point. the performance shapes’ applicability will degrade. Using the middle of a parameter’s
range minimizes the average overall distance from the focal point and should hence maximize
the applicability of the focal point. For parameters such as readFrac and seqFrac, the range is °
easily defined (0 to 1) hence a midpoint of 0.5.! The remaining parameters are uniqueBytes,
sizeMean, and processNum; for each performance region, the focal point for uniqueBytes is set

at the middle of that region, and for sizeMean and processNum, the focal point is set at the

10One could also imagine allowing the focal point to stray from the exact middle of the parameter
range toward the knee point for that parameter. This might provide a balance between the two criteria for
choosing a focal point. Ileave this as possible future research.

63

value that yields a performance halfway between the minimum and maximum.

After these solutions and modifications are made to the global-knee, self-scaling bench-

mark, the revised program is called simply th¢ self-scaling benchmark.

4.5.1. Examples

This section contains results obtained from running the self-scaling benchmark on five
systems—the three systems of Table 2.1, plué a four-processor Convex C240 minisupercom-

puter and a Solbourne SE/905 file server, described in Table 4.1.

4.5.1.1. SPARCstation 1+

Figure 4.7 shows the results from the self-scaling benchmark on the SPARCstation 1+.
The uniqueBytes values that characterized the two perfonnancc regions are 12 MB and 42 MB.
Graphs a-d show the file cache performance region, measured with uniqueBytes = 12 MB.
Graphs f-i show the disk performance region, measured with uniqueBytes = 42 MB. In addition

to what was learned from the first self-scaling benchmark, the following can be seen:

e Larger request sizes yield higher performance. This effect is more pronounced in the disk

region.
|__System Name Convex C240 Solboume SE/905 |
Year Released 1988 1991
CPU C2 (4 processors) SPARC (S processors)
Speed 220 MIPS 22.8 SPECint
Disk System 4 DKD-502 RAID 5 2 Seagate IPI
I/0O Bus IPI1-2 IPI-2
Memory Bus 200 MB/s 128 MB/s
Memory Size 1024 MB 384 MB
Operating System || ConvexOS 10.1 (BSD derived) | SunOS 4.1A.2 (revised)

Table 4.1: Description of other machines used in self-scaling benchmark examples. The Convex
C240 is a four processor mini-supercomputer. The benchmarked disk system is a four disk RAID 5 with
a striping unit of 64 KB The Solbourne is a network file server for workstations using 2 IPI disks and a
stripe unit of 64 KB.

64

sizeMean (KB)

3
N
i
s
.,
i
1
t
10
20

4 - © " B A

°

00000000

- as |~ o~ . —a-0m g
°

ape

..m,

-

~

Q
-

e

-,

Q

-

\

//.

1

.

e

s
o

-

uﬁ@
N

fig

M ©
. oneaos

3 S

7777777

-a “R-0DMaa0~ YERSe~

© 2 0‘
Zum
5m
2
.]
2
I
e

n

Q- l.

4L
¥ 155
& Iy
g2
rm g
SEEl:.

g 3

wv
7]
3
E

5]

5 : :
7]
wl

H

3 g 8
wn
G e
QL
s
£,

g
55s
aﬂﬂu

gisd

.mm.m

.rm%m
8
..l..?.m
3.4

K
8
g
[-5)
5
3
Y
E
2 ik
2
o0
5
<
25

]
00
g
8
.&w
3

e

]
Z
a o
3%

(o]
nf.
£z
g O

)Ge.mmmwmm,

Fearg

e Reads are faster than writes, even when all the data fits in the file cache (Figure 4.1.b).
Although the data fits in the file cache, \#ritcs still cause i-node changes to be written to disk
periodically (for reliability) in case of a system crash. |

e Scquentiality offers no benefit in the ﬁle cache region (Figure 4.1.b) but offers a substantxal

benefit in the disk region.

4.5.1.2. DECstation 5000/200

Figures 4.8 and 4.9 show self-scaling benchmark results for the DECstation 5000/200.
The uniqueBytes graph (Figure 4.8¢) shows three performance plateaus, uniqueBytes = 0 to §
MB, uniqueBytes = 5 to 20 MB, and uniqueBytes > 20 MB. Thus, the self-scaling benchmark
gathers three sets of measurements, one set with um’queBytes equal to 2 MB (Figure 4.8a-d),
one set with uniqueBytes equal to 15 MB (Figure 4.8e-i, and one set with uniqueBytes equal to

36 MB (Figure 4.9). One interesting result is a phenomenon involving readFrac.

In the first performance level (uniqueBytes = 2 MB), reads and writes are the same speed
(Figure 4.8b). At the next performance level (uniqueBytes = 15 MB), reads are much faster
than writes (Figure 4.8g). This is due to the effective write cache of Sprite’s LFS being much
smaller than the reads cache, so reads are cached in this range of uniqueBytes while writes are
not. The effective file cache size for writes is only 5-8 MB, while for reads it is 20 MB [Rosen-
blum92].2 In contrast, when uniqueBytes is large enough to exercise the disk for both reads and
writes, writes are faster than reads (Figure 4.9b). This phenomenon is due to Sprite’s LFS,

which improves write performance by grouping multiple, small writes into fewer, large ones.

2L FS limits the number of dirty cache blocks to avoid deadlock during cleaning. The default limit
was tuned for a machine with 128 MB of memory; in production use, this limit would be changed to
match the 32 MB system being tested.

processNum

e

’ L]
1 ?

=y

]
7
s

—n
»

10

gy SizeMean (KB)
¢
5
R
i
® |
Y 9 seqFrc
§ % ! 2
'5 %) S
gz % ‘z é, ‘ e
@)) 6))

Figure 4.8: Self-scaling benchmark for DECstation 5000/200—Part 1. This figure shows results from
the revised, self-scaling benchmark of the DECstation 5000/200. Graph (e) shows three plateaus in uni-
queBytes, due to the different effective file cache sizes for reads and writes. Graphs for the third plateau
are shown in Figure 4.9. The focal point for uniqueBytes is 2 MB in graphs a-d and 15 MB in graphs f-i.
For all graphs, the focal points for the other parameters is sizeMean = 40 KB, readFrac = 0.5, process-
Num = 1, seqFrac = 0.5. Note how reads can be faster than writes (g), slower than writes (Figure 4.9.b)
or the same speed (b). .

67

readFrac

” /////

S

Lol T XY 2%
o
>

[SLIN)} 2N
[STIN 7N

(®)

seqFrac

7 02 ‘
// o1
18 20 00 [.X} 10
processNam s=qFrac
© @
Figure 4.9: Self-scaling benchmark for DECstation 5000/200—Part 2. This figure continues the
results from the revised, self-scaling benchmark of the DECstation 5000/200. The focal point for these

graphs is uniqueBytes = 36 MB, sizeMean = 40 KB, readFrac = .5, processNum = 1, seqFrac = .5.

o U ~ETVFNEO e~

R WA ~C0VONEBO -~

4.5.13. HP 730

Figure 4.10 shows the results of the self-scaling benchmark for the HP 730. Note how
small the effective file cache is. This is due to the HP/UX operating system’s choice not to
make all memory available to the file cache. In contrast, SunOS maps files into virtual memory,
which allows the file cache to fill the entire physical memory. HP/UX, on the other hand,
reserves a fixed amount of space, usually 10%, as the file cache. Since this system has 32 MB
of main memory, the file cache is approximately 3 MB. The self-scaling benchmark thus uses

68

11111
wa=0Dwan~ YEQSw~

: _F 70

®
ueBytes (MB

carYousas- FR~u~

P | Ry

., xy
- i y LR R N & Bd ms
wa-8oewcase ~em canoouane YEQSe~ b m <

two focal points, uniqueBytes = 2 MB and uniqueBytes = 6 MB. Also note the high throughput
of the HP 730 when accessing the file cache, peaking at almost 30 MB/s for large accesses (Fig-
ure 4.10a). This high performance is due to its fast, interleaved memory system (peak memory
bandwidth is 264 MB/s) and to the use of a VLSI memory controller that accelerates cache-

memory write backs [Homing91].

- 4.5.1.4. Convex

Results from the self-scaling benchmark of a Convex C240 are shown in Figure 4.11. The

curves are similar to those measured on the SPARCstation 1+, but with three main diffemnces:

e Absolute performance is very high. File cache performance reaches 25 MB/s (Figure 4.11b),
while disk performance reaches almost 10 MB/s (Figure 4.11f). This high performance is
due to Convex's 200 MB/s memory system and performance-focused (as opposed to cost-
performance) implementation. Because the Convex disk system is very fast, the perfor-
mance difference between the file céche and disk region is smaller than for the other sys-
tems.

e The effective file cache for the Convex is 800 MB. This is due to the 1 GB of main memory
resident on the computer and an operating system that gives the file cache use of the entire
main memory.

e Disk and file cache performance continues to improve with increasing sizevuntil requests are
2 MB (Figure 4.11f), while most other computers reach their peak performance with sizes of

a few hundred kilobytes.

4.5.1.5. Solbourne

Figure 4.12 shows the self-scaling, benchmark results for the Solboumne 5E/05. Two

differences from the other graphs are evident.

70

sizeMean (KB) readFrac sof processNum

@ | o ©

7

— B - /R

R = »
°

05 10 1.
seadPrac

@ @

Figure 4.11: Self-scaling benchmark for Convex C240. This figure shows the results from the revised,
self-scaling benchmark of the Convex C240. The focal point for uniqueBytes is 450 MB in graphs a-d
and 1376 MB in graphs f-i. For all graphs, the focal points for the other parameters are sizeMean = 120
KB, readFrac = 0.5, processNum = 1, seqFrac = 0.5. Note how large the file cache is (800 MB),
reflecting how much main memory the system has (1 GB). Also note how large sizeMean grows before
reaching its maximum performance (graphs a and f). Because the Convex disk system is very fast, the
performance difference between the file cache and disk region is smaller than for the other systems.

,.

71

&
~ w)
£ 2 Z, [
o nmw U/// /% mu. L a m
g - s g ° - / /
= EZLEX YTV S T T - (lloathSIl VER~ e~ ~ge-0
, : \\} /
@ // & = S
AN\ g = 4 D .2 g
m “ nm.. 3 o
-~ = N
-) s : .
< " & S " e " ~
80D HuAGDe XN ~u~ - “d=0DRdaB. VEQ~e~ wa=o00

-

Solbourne. Thxs gure s
graphs, the focal points for th

Figure 4.1 :Se -sca ing benchmark for
self-scaling benchmark of the Solbourne. The focal point for

540 MB in graphs f-i. For all

te how much slower

file cache is used (graph b). Apparently, the cache write-back policy on the Sol

readFrac = 0.5, processNum = 1, seqFrac = 0.5. No
perform at disk speeds even when all data fits in the file cache.

10 uniqueBytes (MB) 104 sizeMean (KB) 10 readFrac

08 08¢ 3]
t t
b b
° °
n -3
g g 0.6¢ 06
: 4
t 1
((0Ad 04
M M
7 7
s s
)) 624 02
0.0 0.0
1 0.0
©
1.0 processNum 10 seqFrac
0.8 08
t t
b b
o °
ﬁ X g 0.6 L
-1? g /// // ////
t (2
{{ ,s‘ 04 /
B B g
: ! .'
)) 02
7
02 % % %
0.0 05
seqFrac
() (e)

Figure 4.13: Self-Scaling Results using the Raw Disk Interface. This figure shows the results from a
self-scaling benchmark of a SPARCstation 1+ using the raw disk interface. The focal point chosen for
this interface by the self-scaling benchmark is uniqueBytes 3.5 MB, sizeMean = 15 KB, readFrac = 0.5,
processNum = 1, seqFrac = 0.5. The file cache is bypassed when performing I/O through the raw disk in-
terface, hence the uniqueBytes curve is flat in graph (a). Reads are still faster than writes due to the pre- -
fetching track buffer on the CDC disk which benefits reads more than writes.

e The file cache is quite large, about 300 MB (Figure 4.12e), which is consistent with a main
memory size of 384 MB.
e When accessing the file cache, writes are drastically slower than reads (Figure 4.12b). It

appears that the Solbourne file cache uses a writing policy, possibly write-through, that

73

causes writes to the file cache to perform at disk speeds. Because writes derive essentially
no benefit from the file cache, performance when varying uniqueBytes changes more gradu-

ally than it does with the other systems.

4.5.1.6. Raw Disk Interface

Some applications, such as databases, avoid going through the normal file system inter-
face. Instead, they access the disk directly through the raw disk interface [Leffler89). Figure
4.13 shows benchmark results for the SPARCstation 1+ using the raw disk interface (all other
runs have been done using the file system, or cooked interface). The main difference of the raw
disk interface is its bypassing of the file cache. Hence, the uniqueBytes curve is flat in graph
(a). Reads are still faster than writes due to the prefetching track buffer on the CDC disk which
benefits reads more than writes. Because the raw disk interface does not go through the file
cache, sequentiality improves performance, even at the small uniqueBytes focal point of 3.5

MB.

4.5.1.7. Client-Server

To this point, the self-scaling benchmark has measured the I/O performance of file
servers, that is, computers with disks directly attached to them. Many environments instead
have client systems connected to a file server via a network. This section gives preliminary
results from funning the self-scaling benchmark on two different client-server configurations
(Figure 4.14). The configuration used in Figure 4.14a is an HP 720 client workstation accessing
an HP 730 (same as Table 2.1) file server unning DUX (HP’s Distributed Unix protocol). The
configuration used in Figure 4.14b is a SPARCstation 1+ client workstation accessing a separate
SPARCstation 1+ file server nMg Sun’s NFS protocol. Both configurations use an ethemet
network to connect the client and server. The main reason the HP configuration gets much

higher performance is that the DUX protocol allows clients to cache both reads and writes,

74

5k B RO G L T e B o R R e SR MR S 4N e 4wt A R O B A

200 uniqueBytes (MB)

2
B! NED
4 b 4
[-) [.)
] .
£ £
h £104
t t -
((
; 4
‘ ‘ S4
))
0 10 20 2
wigueBytes (MB)
@) ®)

Figure 4.14: Self-Scaling Results for Two Client-Server Configurations. This figure shows the results
from a self-scaling benchmark of two client-server configurations. The configuration used in graph (a) is
an HP 720 client workstation accessing an HP 730 (same as Table 2.1) file server running DUX (HP's
Distributed Unix protocol). The configuration used in graph (b) is a SPARCstation 1+ client workstation
accessing a separate SPARCstation 1+ file server running Sun’s NFS protocol. Both configurations use
an ethernet network to connect the client and server. The main reason the HP configuration gets much
higher performance is that the DUX protocol allows clients to cache both reads and writes, allowing 1/O0s
to proceed at memory speeds rather than disk or network speeds.

allowing 1/Os to proceed at memory speeds rather than disk or network speeds. The disadvan-
tage of the DUX protocol is that reliability suffers because written data stays on the client for 30

seconds before stored on the server.

4.5.1.8. Unannounced Workstation
Figure 4.15 shows preliminary results from running the self-scaling benchmark on a beta

release test version of an unannounced workstation®. Figure 4.15 reveals several unexpected

pieces of information. First, Figure 4.15b shows that, in the file cache region, performance of

3This system was running a untuned, beta version of its operating system on pre-production
hardware, so performance will likely increase dramatically over the next few months.

75

g L\\\\\‘&\\\\\\\\\\\\\\\\\\\\\\\\

seqFrac oy UmqueBytes (MB)

00 /% o:
e L WP
© ®
3.09 3.04 processNum 301 seqgFra
E ?3) %/// E :: g 1;’
& - § $
2 1.07 / ? 1.04 2 1.04
054 % ’ 0s ’ :54

® @

Figure 4.15: Self-scaling benchmark for unannounced workstation (beta release). This figure shows
the results from the revised, self-scaling benchmark of a beta release of an unannounced workstation.
The focal point for uniqueBytes is 61 MB in graphs a-d and 261 MB in graphs f-i. For all graphs, the fo-
cal points for the other parameters are sizeMean = 40 KB, readFrac = 0.5, processNum = 1, seqFrac =
0.5. Note how much slower writes are than reads when the file cache is used (graph b). Apparently, the
cache write-back policy causes writes to perform at disk speeds even when all data fits in the file cache.
Note that the scale of the y-axis is a factor of 10 larger in graph (b).

76

reads is an order of magnitude faster than writes. Like the Solboumne, writes are apparently
being written-through the cache directly onto disk. Seconds, because of the write-through
behavior, workloads with any writes get very disappointing performance. Overall system per-
formance is no better than the last generation of workstations. Even with 100% reads, perfor-
mance is no better than the HP 730. Unlike HP/UX, however, this operating system allows the

file cache full use of the 192 MB of main memory.

4.5.2. Running Time

One disadvantage of the self-scaling benchmark is its running time. This is because each
performance graph requires approximately 10 points with which to trace a fairly smooth curve.
Moreover, with two distinct performance regions, the self-scaling benchmark reports 9 graphs,
totaling 90 points. Each point can take 5-10 minutes to measure, due to multiple measurements
for tight confidence intervals [MacDougall], which means that the whole process can take half a
day or more. On the plus side, the self-scaling benchmark requires no human input and helps
the evaluator gain much more insight into system behavior than do traditional, single point

benchmarks.

As the capacity of main memory continue to quadruple every 2-3 years [Moore75], file
caches will continue to grow larger; hence, larger values of uniqueBytes will be ncceséary to fill
the file cache and stress the underlying disk system. As uniqueBytes increases, the running
time of /O benchmarks that try to stress the disks system will increase proportionally. Ican see
no wa).' to avoid this linear increase in the running time of any I/O benchmark that goes through

the file cache, since each workload measured by Willy will experience this slowdown.

Real applications will, of course, benefit from the trend toward larger memories by need-
ing to go to disk less and less frequently. When 1/0 benchmarks that fill the cache take too long
1o run, real applications will take even longer to fill the cache and users will either not care
about I/O performance in the steady state or will be willing to use long-running /0

71

benchmarks.

4.6. Conclusions

I have shown how a self-scaling benchmark can help an evaluator understand I/O system
performance. For example, the evaluations in this chapter provide information on appropriate
blocksizes, effective file cache sizes for reads and writes, the usefulness of higher concurrerncy,
cache write policiés, and absolute throughput. The self-scaling evaluation also met many of the
other goals detailed in Section 2.2. It provides an effective, scaling strategy by scaling aspects
of the workload to the changing performancé characteristics of systems, projecting that users
will tend to purchase systems that perform well on their applications. The self-scaling bench-
mark can be especially useful to the systems programmer trying to understand the performance
implications of the I/O code that he or she is writing. For\ instance, the programmer can develop
the code, run the self-scaling benchmark overnight, then see the range of workloads on which

the code performs well.

As intended, performance of the benchmark is I/O limited—almost all workloads run here
spent more than 90% of their time performing I/O. The self-scaling benchmark is also applica-
ble to a wide range of audiences—by graphing performance curves for each parameter, more

applications have their workload included in the benchmark.

However, the self-scaling benchmark does not yet completely meet the goal of meeting
the performance evaluation needs for all audiences; there are still many workloads not included
in the results of the self-scaling benchmark. Also, self-scaling benchmarks make it difficult to
compare two machines directly, because the benchmark will select a different focal vector for
each machine. The next chapter addresses these shortcomings by predicting performance for

any workload.

78

4.7. References

[Convex89] C Series Data Sheet—Input/Qustput Subsystems, CONVEX Computer
Corporation, 1989.

[Convex90] The First Family of Open Supercomputing, CONVEX Computer Corporation,
1990.

[Convex91] C3200, CONVEX Computer Corporation, 1991.

[Hong91] W. Hong and M. Stonebraker, ‘‘Optimization of Parallel Query Execution
Plans in XPRS®, Proceedings of the First International Conference on
Parallel and Distributed Information Systems, Miami, FL, December 1991.
also to appear in Journal of Distributed and Parallel Databases.

[Homing91] R. Homing, L. Johnson, L. Thayer, D. Li, V. Meier, C. Dowdell and D.
Roberts, ““System Design for a Low Cost PA-RISC Desktop Workstation'’,
Procedures of the IEEE Computer Society International Conference
(COMPCON), Spring 1991, 208-213.

[IDC91] Integrated Disk Channel (IDC), CONVEX Computer Corporation, 1991.

[Kim87] M. Y. Kim, A. Nigam, G. Paul and R. J. Flynn, ‘‘Disk Interleaving and Very
Large Fast Fourier Transforms’’, International Journal of Supercomputer

Applications 1, 3 (Fall 1987), 75-96.

[Lee92] E. K. Lee, P. M. Chen, J. H. Hartman, A. L. C. Drapeau, E. L. Miller, R. H.
Katz, G. A. Gibson and D. A. Patterson, ‘‘RAID-II: A Scalable Storage
Architecture for High-Bandwidth Network File Service'’, UCB/Computer
Science Dpt. 92/672, University of California at Berkeley, February 1992.

[Leffler89] S. J. Leffler, M. K. McKusick, M. J. Karels and J. S. Quarterman, The Design
and Implementation of the 4 3BSD Unix Operating System, Addison-Wesley
Publishing Company, 1989.

[MacDougall] M. H. MacDougall, Simulating Computer Systems, Techniques and Tools, The
MIT Press. Computer Systems Series.

[Moore75] G. E. Moore, “‘Progress in Digital Integrated Electronics™, IEEE Digest
International Electron Devices Meeting, 1975, 11.

79

[Ousterhout85]

[Rosenblum92]

{SPEC91]

[TPCB90]

J. K. Ousterhout, H. Da Costa and et al., ‘‘A Trace-Driven Analysis of the
UNIX 4.2 BSD File System’’, Operating Systems Review 19, 5 (December
1985), 15-24. Proceedings of the 10th Symp. on Operating System Principles.

M. Rosenblum, Sprite LFS Write Cache Size, personal communication, July
6, 1992. ' '

SPEC SDM Release 1.0 Manual, System Performance Evaluation
Cooperative, 1991.

TPC Benchmark B Standard Specification, Transaction Processing
Performance Council, August. 23, 1990.

Chapter 5

Predicted‘ Performance

5.1. Introduction

The self-scaling benchmark of Chapter 4 automatically scales its workload according to
the capability of the system being measured. This auto'matic scaling keeps the benchmark
relevant over a wide range of machines. By graphing the workloads around a few focal points,
the benchmark also provides information on what workloads perform well for a system. Tﬁere
are, however, several shortcomings of the self-scaling benchmark. First, by self-scaling, the
benchmark complicates the task of comparing results from two systems. This complication
arises because the self-scaling benchmark will likely choose different workloads by which to
measure each éystem. Next, though the performance graphs apply to a wider range of applica-

tions than do today’s I/O benchmarks, they stop short of applying to all workloads. In this

81

chapter, I show how predicted performance solves these problems by using the results from the
self-scaling benchmark to accurately estimate the 1I/O performance for arbitrary workloads, that

is, within 10-15% of actually measuring the workload.

This approach is similar in concept to work done by Saavedra-Barrera who predicts CPU
performance by measuring the performance for a small set of primitive FORTRAN operations
[Saavedra-Barrera89]. The main difference between the performance of FORTRAN programs
and 1/0O workloads is the way performance depends on operations and arguments. A FOR-
TRAN operation, such as adding two floating-point numbers, takes the same amount of time
independent of the values of the arguments. To predict the performance for an arbitrary FOR-
TRAN workload (program), only the performance and frequency for each operation in the pro-
gram need be known. In Saavedra-Barrera’s research, the main difficulty was to choose a com-

plete set of primitive FORTRAN operations.

In conﬁ'ést to FORTRAN programs, 1/O has only two operations, read and write, and per-
formance depends heavily on the arguments (sizeMean, uniqueBytes, seqFrac, and process-
Num). No short list of performances for each operation is possible because such a list would be
for each uniciue combination of uniqueBytes, sizeMean, readFrac, processNum, and seqFrac.
Since it is clearly impractical to measure or list all combinations, I develop a method for using
the summary performance graphs of Chapter 4 to estimate performance for any combination of

workload parameters.

5.2. Prediction Models

A straightforward approach to estimating perféxmancc for all possible workloads takes a
fine-grained, orthogonal sampling of workloads. Performance of arbitrary workloads within
this orthogonal mesh could then be estimated by interpolating in multiple dimensions between
neighboring points. The main disadvantage is the time it takes to gather the orthogonal™
sample—the number of points in this sample inégreases exponentially with the number of

82

parameters in the workload. Ten sample points for each of the five workload parameters require
100,000 measurements, or two years on the SPARCstation 1+ of Table 2.1 (page 20)! In addi-
tion, Section 5.4 will show how, given an equal number of measured workloads, interpolation
using orthogonal sampling gives poorer performance prediction than this chapter's proposed
method. Instead of interpolation using orthogonal sampling, I take a different approach by
using the pérfoxmance behavior given in the self-scaling benchmark graphs to estimate perfor-

mance for unmeasured workloads.

Figure 5.1 shows the general approach to estimating performance for unmeasured work-

loads applied to a two-parameter workload. Intuitively, the simplification that I investigate in

TH(P,SN TH(PL.S) TH(PL.S)
TH(PS1)=? \
Throughpat
TH(P{.S1) s
s1 S sizeMean
@ ®)

Figure 5.1: Predicting performance of unmeasured workloads. This figure shows how to predict per-
formance with a workload of two parameters, processNum and sizeMean. Intuitively, I assume that the
shape of a performance curve for one parameter is independent of the other parameters’ values. More
specifically, I assume that the ratio of performance between two plots against a given parameter (such as
sizeMean) is constant. The solid lines represent workloads that have been measured; the dashed line
represents workloads that are being predicted. The solid line in Figure 5.1a shows throughput graphed
against processNum with sizeMean fixed at sizeMean; . Figure 5.1b shows throughput versus sizeMean

with processNum fixed at processNum,. 1 predict the throughput curve versus processNum in Figure -
s P / Thr%ughput (proce.ssNurrr;r .SizeMean;)

1a with si . . i
§.1a with sizeMean fixed at sizeMean, by assuming that Throughput (processNum ,sizeMean) is con

Throughput (processNumy , sizeMean,)

Throughput (processNumy , sizeMean) ©
Throughput (processNumy , sizeMean;) is 6 and Throughput (processNumy , sizeMean,) is 3, then I esti-
mate Throughput (processNum ,sizeMean,) (the dashed line in Figure 5.la) as

%XT hroughput (processNum , sizeMeany).

stant (independent of processNum) and fixed at For example, if

this chapter is the independence of the shape of one parameter’s performance curve from the
values of the other parameters. In the next section, I demonstrate that this simplification intro-
duces only a small error. In the self-scaling evaluation, I measure workloads with all but one
parameter fixed at a focal point. In Figure 5.1, these are shown as the solid-line throughput
curves Throughput (processNum , sizeMean,) and Throughput (processNumy , sizeMean), where
processNum; is processNum'’s focal point and sizeMean, is sizeMean’s focal point. Using
these measured workloads, I estimate performance for unmeasured workloads
Throughput (processNum, sizeMean), where sizeMean \#sizeMean, , shown as the dashed line
in Figure 5.1a. I assume a constant ratio between Throughput (processNum , sizeMean;) and

Throughput (processNum , sizeMean). This ratio is known at processNum=processNum, to be

Throughput (processNum, , sizeMean,)

. My assumption that the performance sh
Throughput (processNumy ,sizeMean) Y ption pe ¢ shapes are

independent of other parameter values leads to an overall performance equation of
ThroughputX,Y Z...)=fxX) X fy(Y) X fz(Z) - -~

where X, Y, Z, ... are the parameters and fx (X).fy(Y),andfz(Z) are the graphs for each param-
eter (Appendix C proves that if the performance shape for each parameter is independent of the

other parameter values, the overall performance equation must take this form).

The above section describes how to estimate performance from a family of performance
graphs (Appendix B gives a pseudo-code version). Each performance region has its own set of
graphs, as in Figures 4.8 and 4.9 on pages 67 and 68. In estimating performance for a work-

load, I use the graphs from whichever performance region that workload falls in.

§.3. Verification of Prediction Model

In this section, I examine how accurately the equation described above approximates
actual performance for the systems measured by the self-scaling benchmark. Ideally, I would

like to measure large, I/O-intensive applications and compare their performance to those

84

Prediction Accuracy

10+
+

P

T

e

d

i

c

t

€ g4

d 5
N

B

!

&
) S *
+
0 - \
0 5 10
measured (MB/s)

Figure 5.2: Predicting performance of four traditional benchmarks. This figure graphs the predicted
performance against the actual (measured) performance for four traditional benchmarks (Andrew, Bon-
nie, IOStone, and Sdet) for four systems (SPARCstation 1+, DECstation 5000/200, HP 730, and Convex
C240).

predicted using the data collected in the self-scaling benchmarks. Unfortunately, no such public
domain applications are available because, as Chapter 2 showed, even well known systems

benchmarks are CPU-bound. To assess accuracy given the lack of benchmarks I take two tacks:

(1) First, I measure the I/O portion of four I/O benchmarks and compare them to the

predicted performance using the self-scaling data for the values of the parameters from

the measurement of that I/O benchmark. Figure 5.2 shows a scatter plot of predicted

versus measured performance for Andrew, Bonnie, I0Stone, and Sdet on four systems:
a SPARCstation 1+, a DECstation 5000200, an HP 730, and a Convex C240. With
perfect prediction, predicted performance would exactly equal measured performance,
and all points would lie on the 45 degree line. Figure 5.2 shows that this is approxi-

mately the case— out of 16 points, all but one are predicted accurately; only Sdet run-

85

@

ning on the Convex C240 is substantially in error. These results are typical of the pred-
iction model’s accuracy: performance of most workloads is predicted accurately; a few
workloads, particularly those far away from the focal point, have significant error. In
this experiment, I measured prediction for four workloads designed by independent
groups to make sure that prediction is accurate for valued workloads. But there is a
danger that these benchmarks do not reflect a wide enough range of current or future

workloads.

So, to increase my confidence that the model can predict performance over a wider
range of workloads, I measured the performance of 100 random 1/O workloads and
compare these measurements to their predicted performance. The 100 workloads are
randomly selected over the entire space of workloads derived for each system in the
self-scaling benchmark. Each workload’s predicted performance versus actual, meas-
ured performance is then plotted on a scatter plot, as in Figure 5.3. By verifying predic-
tion accuracy over 100 workloads, I became more certain that the average prediction
error over these workloads is indicative of the prediction error over the entire workload
space. Figure 5.3c shows how the confidence interval from measuring average predic-
tion error tightens with larger numbers of random workloads. By the time I measure

100 workloads, the 90% confidence interval is only a few percent.

5.3.1. SPARCstation 1+

Figure 5.3a shows how accurately the product of single parameter functions approach

predicts performance for Andrew, Bonnie, IOStone, and Sdet. For each of these benchmarks,

the model is able to accurately predict performance. In addition, over the wide range of perfor-

mances (0.2 MB/s to 3.0 MB/s) resulting from 100 random workloads, the predicted perfor-

mance values match extremely well to the measured results. Half of all workloads, for exam-

ple, have a prediction error of 10% or less; three-quarters of all workloads had a prediction error

86

A e B

Prediction Accuracy

3.04
2.7+ X))
244 °
? pZ
e 2.14 .*
q (]
o 181 .
t L]
§ 151 AL
S
}f« 124 oo
B L]
/ 0.9‘ .
3 o
) e
0.64 é
0.34 .
0.0 Fomyyep ey
0.0 03 06 09 1.2 1.5 1.8 2.1 24 27 30
measured (MB/s)
(a)
1004 Cumulative gm‘ —— Mﬂm Error with Confidence Interval
o V-
V4
804 404
£’°‘ { ™
ol f o
Pl :
1l E
e * L
o] =
1]
7 ! I]Hziiimmmn
4 _
0 20 L [] 0 100 [20 « 60 80 100
% efror Nexrber of Random Workloads
(b) : ©

Figure 5.3: Evaluation of prediction accuracy for SPARCstation 1+ with one disk. This figure
graphs the predicted performance against the actual (measured) performance for the SPARCstation in
Figure 4.7. Points representing traditional benchmarks are shown as the letters ““A*’, “‘B”’, “‘I'’, and
“S”, representing Andrew, Bonnie, IOStone, and Sdet, respectively. Graph (a) shows how the predic-
tion model accurately predicts performance for these four traditional benchmarks. In addition to predict-
ing performance for a few benchmarks, the model is able to do so for 100 random workloads. Each point
represents a single workload, with each parameter value randomly chosen from its entire range shown in
Figure 4.7. The closer the points lie to the solid line, the better the prediction accuracy. Median error for
graph (a) is 10%; the complete cumulative error distribution is given in graph (b). Performance for each
workload ranges from 0.2 MB/s to 3.0 MB/s. Clearly single-point benchmarks cannot adequately capture
the large range of performances generated by diverse workloads. Graph (c) gives the 90% confidence in-
terval of the median error, that is, it displays how certain I am that the median error is really 10%. Using
100 workloads, I am 90% sure that the true median error is between 7.5% and 10.7%.

87

of 15% or less. Figure 5.3b shows the cumulative error distribution of the prediction. In con-
trast, any single-point I/O benchmark would lead one to believe that all workloads yielded the
same performance. For example, both Andrew’s and I0Stone’s workloads yield performances
of 1.25 MB/s, leading to a median prediction error of 50%. Bonnie’s sequential block write
yields a performance of .32 MB/s, for a median prediction error of 65%. Table A.1 in Appen-

dix A gives the raw data used in Figure 5.3.

It is interesting to note where the points of higher error occur, which gives rise to the
question: is there a correlation between certain parameters and regions of high error? Figure 5.4
shows how median error varies with each parameter. Note that error is most closely correlated
to the value of uniqueBytes. Prediction is particularly poor near the border between perfor-
mance regions, that is, between the file cache and disk region. As expected, sharp drops in per-
formance lead to unstable throughput and poor px'e:diction.l Other than uniqueBytes, prediction

accuracy is fairly independent of parameter values.

5§.3.2. DECstation 5000/200, HP 730, Convex C240

Figures 5.5-5.10 show the prediction accuracy for the Sprite DECstation 5000/200, the HP
730, and the Convex C240 (raw data is given in Appendix A in Tables A.2, A.3, and A.4). For
all systems, this chapter’s method of predicting performance estimates a wide range of work-
loads accurately, with median errors ranging from 10-15% (Table 5.1). Table 5.1 also lists the
inherent measurement error, which I measured by running the same set of random workloads

twice and using one run to ‘‘predict’’ performance of the other run.

Figure 5.6 and 5.8 show how, similar to the SPARCstation 1+, error is usually most

closely correlated to uniqueBytes. For the DECstation 5000/200, performance is unstable and

1If a user’s workload fell near the border between performance regions, then instead of trying to ac-
curately predict his workload’s performance, his effort would be better spent in buying more memory for
his system to expand the file cache region and hence to vastly improve his performance.

uniqueBytes (MB) sizeMean (KB) readFrac

k-]

&
’/1-0-"‘
%
%

-]
NOno
8

-
w

s . s -

ol /\,- o \ D N N e
] f AN AN~

I _
W V%0 % i %///M///////// W/// R i
1 100 0.0 05

w

°w ﬁqxasy?em;? 0% sizeMean (KB)
(@) (b) ©
© processNum seqFrac
354 35
30
1 <
et H
ns ns
104 v,4./ . TN
54 s \/\
00 0s 10 15 20 00 05 10
procesaNum seqFrac
@ (e)

Figure 5.4: What parameters cause errors for SPARCstation 1+. This figure shows the correlation
between parameter values and prediction error for the SPARCstation 1+. The vertical line in graph @
indicatés the effective size of the file cache. The shaded region indicates the inherent measurement error
due to the variability in I/O performance observed between experiments. Error is most closely correlated
to the value of uniqueBytes, and prediction is particularly poor near the border between performance re-
gions. As expected, sharp drops in performance lead to unstable throughput and poor prediction.

89

Prediction Accuracy

8.01

7.04
P 6.0+
T
g .
i 5.0-
c 2]
t [)
e o .. . ®
d 400 -
(L4 ° .
}ﬁ& 3.04 R
/ /A
} 2.0 $

104 ¥

O-O R J k] L L] L] R L] L

00 1.0 20 30 40 S0 60 70 80
measured (MB/s)
€))
. Cum:\laltive!im{ .-
V4

O m® OCamwmolsn

{
of.

0 1020 30 40 0 60 70 30 90100110120
% error

(®) ~
Figure 5.5: Evaluation of prediction accuracy for Sprite DECstation 5000/200. This figure graphs
the predicted performance against the actual (measured) performance for the DECstation 5000/200 in
Figure 4.8. Points representing traditional benchmarks are shown as the letters ““‘A’’, *B”’, *‘I’’, and
*‘S”’, representing Andrew, Bonnie, IOStone, and Sdet, respectively. Median error is 12%. Performance
for each workload ranges from 0.3 MB/s to 6 MB/s.

uniqueBytes (MB) "% sizeMean (KB readFrac

2
-]

~

~
(=]
3

60 604
L 2 [2 L 3
3 GSO 3
T r T
T 7 T4n,
o o [ad
T T r

ap
gy
4

- 2R -]
N

W/ N, 7 //_/m o W/ % 72 2
1 10 100 1000 00 [X 1.0
sizeMean (KB) readFrac
(b) ©)
% processNum seqFrac
804
70 b/
60 ¢
% %
50¢
e €
r r
T 4
6401 &
r r
304
20
104 ¢
o W/ ////z/A/,/////W// //W 7 o //m////‘//‘///é/////é////{//‘//W/ 7
0.0 0.5 10 15 20 00 ' 0S5 10
processNum scgfrac
@ (e)

Figure 5.6: What parameters cause errors for DECstation §000/200. This figure shows the correla-
tion between parameter values and prediction error for the Sprite DECstation 5000/200. The vertical
lines in graph (a) indicate the effective size of the file cache, one line for reads, the other for writes. The
shaded region indicates the inherent measurement error due to the variability in 1/0 performance ob-
served between experiments. Again, error is most closely correlated to the value of uniqueBytes; predic-
tion is particularly poor near the border between performance regions. As expected, sharp drops in per-
formance lead to unstable throughput and poor prediction.

91

Prediction Accuracy

6.09

~o SR~ Q0 ~0=00-0

0.0 50 100 150 200 25.0 300
measured (MB/s) _
(@)
Cumulative Error

EXETL IR T T-3- 113
b

: ®)
Figure 5.7: Evaluation of prediction accuracy for HP 730. This figure graphs the predicted perfor-
mance against the actual (measured) performance for the HP 730 in Figure 4.10 (a closeup of the 0 to 6
MB/s range is shown to the right). Points representing traditional benchmarks are shown as the letters
“A’, “B”, “I”’, and *‘S”’, representing Andrew, Bonnie, IOStone, and Sdet, respectively. Median error
is 13%. Performance for each workload ranges from 0.5 MB/s to 31 MB/s.

92

125 uniqueBytes (MB) 125 sizeMean (KB 125 readFrac

100 100 1

~
"

wonme R
womne A
wommo A
-~
w

2 25 e
. ok s g o /—/\“W“W oy
o 10 15 20 1 10 100 1000 0.0 0s 1.0
wiqueBytes (MB) siscMean (KB) readFrac
(@) (b) ©
125 ocessNum 128 - segFrac
100 _ 100
% 75 % 75
L ¢
4 T
T 4
7 504 ? %0
25
— 4
—
I O O D i il
0.0 05 10 15 20 0.0 05 10
processNum seqFrac
(@ e)

Figure 5.8: What parameters cause errors for HP 730. This figure shows the correlation between
parameter values and prediction error for the HP 730. The vertical line in graph (a) indicates the effec-
tive size of the file cache. The shaded region indicates the inherent measurement error due to the varia-
bility in I/O performance observed between experiments. Again, error is most closely correlated to the
value of uniqueBytes; prediction is particularly poor near the border between performance regions. As
expected, sharp drops in performance lead to unstable throughput and poor prediction.

93

Prediction Accuracy

30.0+)
25.04 .
P
r L]
§20.0- .
i e 0 * L4
c ¥
t .
e i .
d1500 ‘..
(. p
Yool 2
/10.0- o
§o
5.0' ' A ;o v
N
0-0 L] L] L] Rl J L]
0.0 50 100 150 200 250 300
measured (MB/s)
(a)

Cumulative Error

£
f

'0-—\

=0=m=® Ac-~w~afon

i

T

0 10 20 30 40 SO 60 70 80 90 100
% error

()
Figure 5.9: Evaluation of prediction accuracy for Convex C240. This figure graphs the predicted per-
formance against the actual (measured) performance for the Convex C240 in Figure 4.11. Points
representing traditional benchmarks are shown as the letters “*A’’, *“B™’, *‘I’", and *‘S”’, representing An-
drew, Bonnie, IOStone, and Sdet, respectively. Median error is 15%.

94

uniqueBytes (MB) sizeMean (KB readFrac

1ANIP I Van

=
2
7

1 by 10 VM :, 10
e e
@) ©

% % \
7204 r

1 4 b 4

: [B \/"_

@ ©

Figure 5.10: What parameters cause errors for Convex C240. This figure shows the correlation
between parameter values and prediction error for the Convex C240. The vertical line in graph (a) indi-
cates the effective size of the file cache. The shaded region indicates the inherent measurement error due
to the variability in 1/O performance observed between experiments. Error is most closely related to size-
Mean. Because the Convex supports much larger sizes without degrading performance, it is a more chal-
lenging machine for which to predict performance. However, prediction when size is less than 300 KB is .
quite good (median error of 8%).

95

System Median Error_| Repeatability Error
SPARCstation 1+ 10% 2%
DECstation 5000/200 12% 3%
HP 730 13% 3%
Convex C240 15% 5%

Table 5.1: Summary of median prediction errors. This table summarizes the prediction errors on all
systems. The third column in the table lists the inherent measurement error, which was measured by run-
ning the same set of random workloads twice and using one run to “‘predict’’ performance of the other
run.

prediction is poor when uniqueBytes is on the border between performance regions (6-10 MB).
For the HP 730, this region of high error occurs between 3 and 4 MB. The HP 730’s exception-
ally large drop in performance between the file cache and disk region highlights this high error
region. Note in Figure 5.7 how most points of high enﬁr have performances betwéen 5-20
MB/s. This level of performance can only occur when the system’s file cache is starting to
thrash, which is when uniqueBytes is between 3 and 4 MB. Figure 5.11c shows the enhanced
prediction when workloads with uniqueBytes in this range are not plotted. Median error drops
from 13% to 8%, and all the points of high error in the 5-20 MB/s region of the scatter plot are
no longer present. Figure 5.11a 5.11b show revised scatter plots for the SPARCstation 1+ and

the DECstation 5000/200 without their workloads with uniqueBytes in the ranges 20-27 MB

and 5-10 MB, respectively.

For the Convex C240, the amount of error shows more correlation to sizeMean than to
uniqueBytes (Figure 5.10). Because the Convex supports iarger sizes before degrading in per-
formance, the self-scaling benchmark chooses a wider range over whibh to graph sizeMean.
When sizes are restricted to a range similar to that of the other systems, prediction accu_mcyi
improves to a corresponding level. Figure 5.11d shows a scatter plot without workloads with
sizes larger than 300 KB; median error here is only 8%. This indicates that the range of accu-
rate prediction from each focal point may be limited, though not severely. I anticipate that as
systems continue to evolve, the range of I/O workloads they support well will widen, forcing

any performance prediction to gather and use more points to accurately characterize this

96

Prediction Accuracy Prediction Accuracy

3.04 6.0
2.7 *eus 5.4 .
244 .:. ' 4.8+ ot
? 7 ; AR
e 2.14 [e 4.2¢ . . .
d o d .
1
¢ 1.8 . e 369 . /.
t t .
[E . «
§ 15 . § 30 oL
ﬁ 1.2- & 2.4‘ . o
B B]
!/ 0.94 / 1.84 s
s 0y s -
))
0.64 , 124 o
) % L)
[4
0.34 . 0.6 o
0.0 Kommpepeyeep e e pep— 0.0 gy e pmap—
00 03 06 09 1.2 1.5 1.8 2.1 24 27 30 0.0 06 1.2 1.8 2.4 3.0 36 42 48 54 60
measured (MB/s) measured (MB/s)
(a) SPARCstation 1+ (b) DECstation 5000200
300+ FPrediction Accuracy 20, Prediction Accuracy
19.84
25.0‘ .
- 17.64 ¢
7 * 4
. 15.4¢
e [
42001 A d .
1 i O
! 11324
t t
- e L
§15.0 $11.0 /-
}é }é 8.8+ o/
B10.0 B 6l .
s 3
))
4.44 4
5.04
22¢
0.0 e . S— 0.0 oy pnp—
00 50 100 150 200 250 300 0.0 2.2 44 6.6 88 11.013.215.417.619.822.0
measured (MB/s) measured MB/s)
(c)HP 730 (d) Convex C240

Figure 5.11: Enhanced prediction accuracy. This figure shows the enhanced prediction accuracy when
the points of high error are taken out of Figures 5.3, 5.5, 5.7, and 5.9. For the SPARCstation 1+, work-
loads with uniqueBytes between 20 and 27 MB are taken out and median error drops from 10% w0 7%.
For the DECstation 50007200, workloads with uniqueBytes between 5 and 10 MB are taken out and
median error drops from 12% to 10%. For the HP 730, workloads with uniqueBytes between 3 and 4 MB
are taken out and median error drops from 13% to 8%. For the Convex C240, workloads with very large
mean sizes (greater than 300 KB) are taken out and median error drops from 14% to 8%.

97

increased range. Perhaps the self-scaling benchmark will need to measure and graph more focal
points to cover this wider range; perhaps the self-scaling benchmark will need to get feedback

from performance prediction as it chooses focal points.

5.4. Comparison Against Orthogonal Sampling

The section above showed how a simple product of single parameter functions model can
predict performance much more accurately than can single-point benchmarks. However, the
product of single parameter functions method of prediction uses many more workloads than do
single-workload benchmarks such as Andrew. Perhaps the increased .accuracy shown in the pre-
vious section is due entirely to using more points and not to the validity of the independent
functions model. In this section, I explore the accuracy of predicting performance using more
workload points but not using the product of single parameter functions approach. This predic-
tion is done by using multi-dimensional interpolation on an orthogonal sampling of workloads.
Orthogonal sampling means selecting a fixed number of evenly spaced values from each
parameter’s range and measuring all combinations of workloads with those parameter values.
For example, assume that a workload consists of two parameters, readFrac, ranging from 0-1,
and uniqueBytes, ranging from 1 MB to 9 MB. Taking three values from each parameter would
lead to an orthogonal sampling of nine total workloads of (readFrac, uniqueBytes) pairs: (0,
IMB), (0, 5 MB), (0, 9 MB), (0.5, IMB), (0.5, 5 MB), (0.5, 9 MB), (1, IMB), (1, 5 MB), and
(1,9 MB).

For the SPARCstation 1+, my original approach of using a product of single parameter
Sfunctions requires the 84 points, each taking approximately 10 minutes to measure, that are

returned by the self-scaling benchmark?. As can readily be seen, orthogonal sampling

2Six of the nine graphs have 10 points each; one (uniqueBytes) uses 20 points; two (processNum)
use only two points each, due to the limited range of processNum.

98

inherently requires many more points. Sampling three values per dimension requires 162
points3. Figure 5.12 shows that even with twice as many points, interpolation using an orthogo-
nal sampling gives much worse prediction accuracy than does the product of single parameter
functions: the median error using orthogonal sampling is 22% versus 10% using the product of

single parameter functions, and it takes twice as long to collect the necessary information.

20, Frediction Accuracy
2.74
244
2.11

1.8 . e e

1.54 e e

1.24 ' .

09+

wu~wd~ QA0 ~0~aAo =T
.
®
[]

0.6. R/ .0.

034 °

0.0 T

0.0 03 06 09 12 15 18 2.1 24 27 3.0
measured (MB/s)

Figure 5.12: Prediction accuracy using interpolation on an orthogonal sample. This figure shows
that interpolation using an orthogonal sample gives poorer prediction than does a prediction model based
on products of single parameter functions. Even when using twice as many workloads to do prediction,
median error is twice as high (22%). '

3Normally this would be 33, or 243 points. However, due to the limited range of processNum, only
two points are required for this dimension, which brings the total required to 162.

5.5. Application of Predicted Performance—Performance Ratios

Performance evaluators sometimes want to measure more than absolute performance.
Their end goal is often to compare two systems head-to-head, generally as the ratio of perfor-
mances. In this section, I apply the model of performance prediction developed in Section 5.2

to predict thc performance ratio between several systems.

To measure and predict performance ratios, I define several workloads to be run on all
systems. Table 5.2 describes these workloads and gives example applications for each. Figure
5.13 shows the measured and predicted ratios for these workloads. For the sake of comparison,

these figures also show the performance ratio given by Andrew.

Though single-point benchmarks do not predict absolute performance well for a wide
range of workloads, they could in theory still accurately estimate the ratio of two machines’ per-
formance. For this to be true, the ratio of two systems’ performance would need to be constant
and independent of the workload. This is not the case, however. Figure 5.13 shows that the
performance ratio of two systems can vary greatly. Fo_r example, Figure 5.13a shows that for
the large utility workload, a DECstation 5000 is five times faster than an HP 730; however, for
the workstation and scientific read workloads, an HP 730 is three times faster than a DECstation
5000. Predicting performance using the outpﬁt of the self-scaling benchmark captures this vari-
ability in the ratio of two systems’ performance in a way that no single-point benchmark can.
In addition, once the results from the self-scaling benchmark are in hand, prediction for any
number of workload takes essentially no time. In contrast, measuring just the small set of work;

loads in Figure 5.13 took 2-3 hours for each system.

5.6. Conclusions

I have shown in this chapter that a simple product of single parameter functions approach

to performance prediction is highly accurate, an outcome that has two important ramifications.

100

Title Example unique seq | read | sizeMean | process
KB

Bgs (MB) Frac | Frac (KB) Num
workstation C‘Eé’;‘e 1 08 | 08 4 1
large_utility sort 10 09 | 06 8 1
scientific_write | SACNIe 250 05 | 02 100 | 1
scientific_read piggggs 250 05 | 08 100
database TPC 500 0.1 | 02 4 2

Table 5.2: Workloads to be run on all systems. This table describes the workloads I use when compar-
ing two systems.

First, it makes the graphs from the self-scaling benchmark much more useful, since they can be
used to estimate performance for other workloads. Second, it supports the assumption of shape
independence, that is, the shape of each graph from the self-scaling benchmarks is approxi-

mately independent of the values of the other parameters.

Section 5.5 applies predicted performance to the traditional use of benchmarking, which
compares the performance of two systems. Performance prediction can be used to accurately
predict the ratio of performance between two systems on identical workloads, even when that
workload has not been run on either system. Single-workload benchmarks, in contrast, give

poor estimates of performance ratios except for their own workloads.

The enhanced performance prediction over single-point benchmarks comes partly from
using more measurements; however, the product of single parameter functions approach is
equally, if not more, important. This was shown when interpolation could not predict perfor-

mance accurately, even when using twice as many measured workloads.

The payoff for running the time consuming, self-scaling benchmark comes from predicted
performance. The self-scaling benchmark need only be run once per configuration. This means
either a manufacturer or an industry-wide perfoxﬁance group, such as SPEC, need only run the

data once and then publish it for everyone else to use. Each possible workload can then be

101

Ratio of HP 730 to DECstation 5000 Ratio of Convex to DECstation 5000

4 30
P - P
Y I s ¢
1 ¢ Fd
; .
m
P :
e B B : 20
R : 13
: : tHPl-n : : a o
i 1 . & < : :
° | PS—— 7. o 10
. — | Lpn. ~
° - Z13) - : 713 o Lomxmm R -FAFY 2
woksstian large_wilky scismific_wriesciemific_sead datsbese weskaston large_utilicy scientific_writcecientific_med dstsbese
@ ®
Ratio of Convex to SPARCstation 1+ Ratio of Convex to HP 730
s R BT
b4 2 : P on :
T 4
: :
s 2 "] m
H - a
< ; <
€ i : € 3 \
: ;
. 7 Antrey % H 3
: : Z
\ : 4.kl .
P .12 %FJ .1 5 71T olmno : : i
wokmmion large_milky scientifc_wrie sciengific_sead datsbese workstation large_utility scientific_write sciatific_sead database
V77 Memurs Predicted V77 acasoren Pregicied
©) @
Ratio of HP 730 to SPARCstation 14 Ratio of DECstation 5000 to SPARCstation 1+
s
P P
. ~ H
H 7 1
° B r)
T bt r
m : -
3 : a
a 4 B a
< E €
e . e
3 3 | 3
s : - L
T I{ 0 pf |
gk / '% g .
R ? T : R Yl

wokssion kg _wilky sirmifc_wricscionific_sead datsbese

V77 Mcammd T Pradined D7 vicaawet [T Pradicsd

© ®
Figure 5.13: Measured versus predicted ratio. This figures shows how accurately systems can be
compared using performance prediction. For comparison, the performance ratio given by Andrew is
shown as a dashed line. Predicting performance using the output of the self-scaling benchmark captures
this variability in the ratio of two systems’ performance in a way that no single-point benchmark can.

102

predicted in milliseconds.

5.7. References

[Saavedra-Barrera89]
R. H. Saavedra-Barrera, A. J. Smith and E. Miya, ‘‘Machine Characterization
Based on an Abstract High-Level Language Machine’’, IEEE Transactions on
Computers 38, 12 (December 1989), 1659-1679.

103

Chapter 6

Conclusions and Future Work

6.1. Conclusions

In this thesis, I proposed a new approach to I/O performance evaluation—self-scaling
benchmarks and predicted performance. This thesis’ self-scaling benchmark yields information
not only about pérformance but also about whét workloads are appropriate for the system. ’ The»
self-scaling benchmark scales automatically to current and future machines by adapting the
workload to the system being tested. Further, it gives insight into the system's performance
characteristics by revealing the performance dependencies for each of five workload parémeters.
I used the self-scaling benchmark on nine systems, ranging from a single-disk workstation to a
striped-disk mini-supercomputer, and gained insight about appropriate blocksizes, file cache

sizes, read/write behavior of the caches, and the benefits of sequentiality.

104

My first attempt to make a self-scaling benchmark showed that scaling all workload
parameters was too extreme. However, scaling some parameters created a highly useful evalua-

tion tool, as the modified self-scaling benchmark showed.

In the process of using the self-scaling benchmark, I found that many systems are not
tailored to handle I/O-intensive workloads. Two systems that were designed specifically to be
file servers (a Solbourne and an Auspex file seivcr) crashed or deadlocked while running the
self-scaling benchmark. Clearly, much more needs to be done to make systems more robust

since more I/O-intensive workloads are forthcoming.

Predicted performance restores the ability to compare two machines on the same workload
lost in the self-scaling benchmark. Further, it extends this ability to workloads that have not
been measured by estimating performance based on the graphs from the self-scaling benchmark.
I have shown that this prediction is far more accurate over a wide range of workloads than any
single-point benchmark, both in absolute performance and relative performance of two systems.
In addition, prediction using the product of single parameter functions model gives much more
accurate performance estimates than does interpolation using even twice as many measured

workload points.

The accuracy of my method of predicting performance shows that it is possible to charac-
terize the performance of a wide range of workloads accufately with a few tens of workloads
points. I hope that the added utility of being able to apply the performance graphs of the self--
scaling benchmark to such a wide range of workloads will overcome the industry’s tendency to

focus on the performance of a single workload.

Self-scaling benchmarks and predicted performance could fundamentally affect how
manufacturers and users view I/O evaluation in four critical ways. First, it condenses perfor-
mance over a wide range of workloads into a few graphs. If manufacturers or standard perfor-

mance groups (such as SPEC or computer magazines) were to publish such graphs, users could

108

use predicted performance to estimate, without further measurements, the 1/O performance of
their specific workloads. Ideally, manufacturers would go further and publish results from the
self-scaling benchmark for many different system configurations, such as for different numbers
of disks and main memory sizes, along with the cost of each configuration. With this informa-
tion, users could calculate the price/performance ratios for each configuration on their specific

workloads and make much more informed purchasing decisions.

Second, by taking advantage of self-scaling benchmark’s ease of use, manufacturers could
easily evaluate many 1/O configurations. Instead of merely reporting performance for each I/O
configuration on a few workloads, the self-scaling benchmark would report both the perfor-
mance for many workloads and the I/O workloads that perform well under this configuration.
Hence, manufacturers could better identify each product’s target application aréa. Because the
price of each configuration can easily be calculated, the price/performance of systems that
match the users needs can also easily be calculated. This can help buyers make choices such as
whether to purchase many small disks or a few large large disks, more memory and a larger file

cache or faster disks, and so on.

Third, system developers could benefit by using the self-scaling benchmark to understand
the effects of any hardware and software changes. Unlike traditional, single-point benchmarks,

these effects would be shown over a wide range of workloads.

Lastly, the self-scaling benchmark introduces a new approach to scaling—scaling aspects
of the workload to the changing performance characteristics of systems. This approach has the

potential to successfully scale with tomorrow’s faster and larger I/O systems.
6.2. Future Work

More work needs to be done in the general area of self-scaling benchmarks. In the future,
I/O systems will support a wider range of workloads and stretch the limits of predicting perfor-

mance. Perhaps more focal points will be needed to characterize performance over this

106

increased range of workloads. It would also be interesting to use the self-scaling benchmark on
a wider variety of systems. I see four dimensions that would be fruitful to explore with self-
scaling benchmarks. First, more classes of systems need to be measured. PCs, mainframes, and
multiprocessors could each add insights to the usefulness of self-scaling benchmarks as well as
validity to the predicﬁon model described in Chapter 5. Second, more network-based client-
server systems should be measured, because these types of file servers are becoming more pre-
valent. Third, the self-scaling benchniark could be used on a wider range of I/O systems,
including solid-state and optical disks, magnetic tapes, and systems with file migration. Fourth,
non-Unix operating systems would be interesting to measure. Each of these dimensions of dif-
ferent types of systems would demonstrate the utility of self-scaling benchmarks or would serve
to further refine the self-scaling ideas. Self-scaling benchmarks could also be applied to non-
/O areas such as processor performance. I suspect this Willipmve much harder since synthetic

workloads for processors are notoriously bad at accurately representing real applications.

In the area of predicted performance, researching ways to enhance prediction accuracy or
to better characterize the workload areas that yield high error would be beneficial. One can also
imagine a completely different approach to performance prediction. Instead of the current
scheme, which separates the self-scaling benchmark’s measurement phase from the perfor-
mance prediction phase, I could introduce feedback between the two phases. For example, the
self-scaling benchmark could choose random workloads in the workload space and make sure
the current set of focal points accurately predicts performance. When a workload is found for»
which the current set of focal points does not accurately predict performance, a new focal point
could be added to predict that workload. Although this would lead to longer running times for

the benchmark, it may enhance prediction.

This thesis has brought up the need for more realistic, flexible benchmarks, that is, bench-

marks that can be modified to create many different workloads (such as Willy) but still retain a

107

link to real-world applications. One possible candidate is a flexible trace, where a trace of a real
application is modified to have different characteristics (such as changing the number of

processes or the average request size).

In conclusion, computer performance evaluation must continue to develop novel ways to
stress our rapidly evolving new systems. Self-scaling benchmarks and predicted performance
can play a key role in this process because they havg the potential to break the weary habit of
using obsolete benchmarks by automatically keeping benchmarks up-to-date with new genera-

tions of systems.

108

Appendix A

Data Used in Prediction

This appendix gives the raw data used in the scatter plots of Chapter 5. To allow the table

to fit on the page, I use the following abbreviations:

un = uniqueBytes in MB

seq = seq¥Frac

read = readFrac

sz = sizeMean in KB

proc = processNum

Measured = Measured Performance in MB/s
Predicted = Predicted Performance in MB/s
9% Err = % Error

109

Data for SPARCstation 1+ (Figure 5.3) — Part 1

Workload un seq | read | sz | proc | Measured Predicted | % Err
Andrew 4.7 i 54 3 1 1.5 MB/s 1.5 MB/s 5%
Bonnie 100 1.0 00 8 1 .38 MB/s 27MB/s | 29%
I0Stone 1.0 02 67 2 1 1.6 MB/s 1.6 MB/s 0%

Sdet 8.0 48 56 2 4 1.2 MB/s 1.3 MB/s 11%

Random 0 53 073 | 0.21 | 25 1 04 MB/s | 0.4 MB/s 4%

Random 1 33 039 | 0.71 | 26 1 0.6 MB/s 0.5 MB/s 14 %

Random 2 9 0.58 | 046 | 51 2 2.3MB/s 2.5 MB/s 5%

‘'Random 3 46 037 | 025 | 82 2 0.4 MB/s 0.3 MB/s 28%

Random 4 10 0.28 | 0.01 | 46 1 2.4 MB/s 2.5 MB/s 5%

Random § 40 080 { 082 | 29 2 0.5 MB/s 0.5 MB/s 4%

Random 6 14 022 | 0.16 | 67 1 2.4 MB/s 2.4 MB/s 1%

Random 7 21 0.82 | 044 | 68 2 1.8 MB/s 1.4 MB/s 21%

Random 8 54 0.72 | 0.06 | 83 1 0.5 MB/s 0.4 MB/s 10%

Random 9 41 0.13 | 0.12 | 43 1 0.4 MB/s 0.3 MB/s 13%

Random 10 19 029 | 0.04 | 74 2 2.1 MB/s 2.0 MB/s 7%
Random 11 24 0.04 | 026 | 76 1 0.7 MB/s 0.7 MB/s 5%
Random 12 34 0.04 | 053 | 39 1 0.5 MB/s 0.4 MB/s 10%
Random 13 10 0.85 | 0.67 | 65 2 2.2 MB/s 2.4 MB/s 11%
Random 14 5 0.51 | 0.76 | 37 2 2.6 MB/s 2.7MB/s 4%
Random 15 53 065 | 0.16 | 75 1 0.5 MB/s 0.4 MB/s 9%
Random 16 35 0.19 | 099 | 35 1 0.6 MB/s 0.6 MB/s 9 %
Random 17 23 0.67 | 0.76 | 70 2 1.2 MB/s 1.1 MB/s 11%
Random 18 41 0.73 { 001 | 79 1 0.5 MB/s 0.5 MB/s 6%
Random 19 57 0.16 | 0.94 6 1 0.3 MB/s 0.3 MB/s 11%
Random 20 35 0.81 | 0.76 | 50 1 0.8 MB/s 0.7 MB/s 6%
Random 21 12 0.23 | 0.28 | 22 1 2.3 MB/s 2.3 MB/s 3%
Random 22 25 027 | 0.74 | 56 1 1.0 MB/s 0.8 MB/s 23 %
Random 23 36 040 | 059 | 26 2 0.4 MB/s 0.3 MB/s 17%
Random 24 26 055 | 0.16 | 70 2 0.7 MB/s 0.5 MB/s 18%
Random 25 55 024 | 057 | 18 2 0.3 MB/s 0.2 MB/s 10 %
Random 26 7 0.16 | 0.69 | 33 1 24 MB/s 2.8 MB/s 18%
Random 27 26 048 | 0.10 | 47 1 0.6 MB/s 0.6 MB/s 7%
Random 28 11 0.79 | 0.04 | 16 1 2.1 MB/s 2.3MB/s 8%
Random 29 46 0.79 | 0.20 | 18 1 0.4 MB/s 0.4 MB/s 7%
Random 30 21 0.71 | 059 | 62 2 | 1.7MB/s 1.2 MB/s 29%
Random 31 56 0.15 | 0.53 7 2 0.2 MB/s 0.2 MB/s 7%
Random 32 22 0.84 | 085 | 36 1 2.0 MB/s 1.7 MB/s 16 %
Random 33 34 042 | 0.53 | 61 2 0.5 MB/s 0.4 MB/s 19%
Random 34 17 034 | 045 | 34 2 2.2MB/s 2.2MB/s 2%
Random 35 11 049 | 0.51 | 81 2 2.2 MB/s 2.2 MB/s 1%
Random 36 52 022 { 037 | 22 2 0.3 MB/s 0.2 MB/s 20 %
Random 37 39 0.75 | 0.55 | 21 2 0.4 MB/s 0.4 MB/s 5%
Random 38 42 042 | 043 | 46 2 0.4 MB/s 0.3 MB/s 13%
Random 39 48 040 | 0.86 | 81 2 0.4 MB/s 0.4 MB/s 0%
Random 40 39 0.17 | 085 | 33 1 0.5 MB/s 0.5 MB/s 11%
Random 41 28 0.65 | 042 | 32 1 0.6 MB/s 0.6 MB/s 0%
Random 42 48 0.12 | 0.16 | 29 1 0.3 MB/s 0.3 MB/s 15%
Random 43 53 0.06 | 0.12 | 49 2 0.4 MB/s 0.3 MB/s 31%
Random 44 9 060 | 0.26 | 26 2 2.3 MB/s 2.4 MB/s 5%

110

w07

SRR SN

s At e AR R 4 e b P 9 Y

Data for SPARCstation 1+ (Figure 5.3) — Part 2

111

Workload un | seq | read | sz | proc | Measured | Predicted | % Emr
| Random 45 | 11 | 0.65 | 0.56 | 57 1 24MB/s | 24 MB/s 2%
Random46 | 38 | 0.71 | 0.88 | 20 2 0.5MB/s | 0.5MB/s 1%
Random 47 | 39 | 0.81 | 0.87 | 57 1 08MB/s | 0.8 MB/s 5%
Random48 | 19 | 042 | 046 | 82 2 21MB/s | 20MB/s 3%
Random49 | 38 | 0.33 | 032 | 71 2 04MB/s | 0.3MB/s | 23%
Random 50 | 41 | 0.53 | 0.52 | 19 2 0.3MB/s | 0.3MB/s 0%
Random 51 |{ §3 | 0.26 | 0.30 | 15 1 03MB/s | 03MB/s | 15%
Random 52 | 18 | 0.06 | 0.65 | 28 2 22MB/s | 22MB/s 2%
Random 53 | 45 | 0.09 | 0.19 | 58 2 04MB/s | 0O3MB/s | 29%
Random 54 | 13 | 041 | 020 | 55 2 23MB/s | 23MB/s 3%
Random S5 | 16 | 0.53 | 0.72 | 30 2 22MB/s | 23MB/s 3%
Random 56 | 16 | 0.47 | 047 4 2 1.O0MB/s | 14MB/s | 37%
Random 57 | 48 | 0.08 | 0.54 | 79 2 04MB/s | 0.3MB/s | 20%
Random 58 | 13 | 0.82 | 0.77 | 78 2 | 21MB/s | 23MB/s | 10%
Random 59 | 15 | 0.14 | 0.31 4 1 13MB/s | 1.5MB/s | 15%
Random 60 | 48 | 0.69 | 022 | 49 1 | O5MB/s | 04MB/s | 11%
Random 61 | 53 | .0.10 | 092 | 43 2 04 MB/s | 0.4 MB/s 1%
Random 62 |-12 | 0.12 | 0.63 | 61 1 23MB/s | 24 MB/s 4%
Random 63 91072 | 033 5 1 15MB/s | LTMB/s | 14%
Random64 | 17 { 0.19 | 0.11 | 79 2 21MB/s | 23MB/s | 10%
Random 65 | 22 | 0.23 | 0.86 | 80 1 25MB/s | 14MB/s | 43%
Random 66 8| 0.67 | 089 | 63 2 28MB/s | 2.8 MB/s 2%
Random 67 | 21 | 0.08 | 041 | 30 1 22MB/s | 1.S5MB/s | 32%
Random 68 | 42 | 0.69 | 0.57 | 65 2 04MB/s | 0.4 MB/s 4%
Random 69 | 30 | 0.38 | 0.98 | 61 1 09MB/s | 0O.8MB/s | 11%
Random 70 { 39 | 047 | 0.13 | 27 1 04MB/s | 0.4 MB/s 3%
Random 71 | 52 | 0.05 | 0.12 | 73 2 04MB/s | 0O3MB/s | 36%
Random72 | 10 | 0.76 | 024 | 19 2 22MB/s | 2.3MB/s 6%
-1 Random 73 71026 | 067 | 52 2 25MB/s | 2.7MB/s 7%
Random74 | 18 | 0.77 | 0.14 | 26 2 1.8MB/s | 21MB/s | 16%
Random75 | 28 | 0.27 | 0.69 | 25 2 0.6MB/s | 04AMB/s | 23 %
Random 76 | 30 | 0.19 | 0.19 | 35 1 05MB/s | 04MB/s | 12%
Random 77 | 31 | 0.25 | 0.02 | 78 2 05MB/s | 0.3MB/s | 37%
Random78 | 49 | 0.25 | 0.39 | 13 2 03MB/s | 0.2MB/s | 15%
Random 79 9105|010 70 2 23MB/s | 24 MB/s 7%
Random 80 | 29 | 045 | 0.68 | 75 2 0.6MB/s | 0.5 MB/s 6%
Random 81 | 22 | 0.33 | 0.70 | 85 1 21MB/s | 1.2MB/s | 44%
Random 82 | 36 |{ 042 | 031 | 63 1 0.5MB/s | 04 MB/s 9%
Random 83 81053097 11 2 24MB/s | 27TMB/s | 12%
Random 84 6108 | 051 | 84 2 25MB/s | 26 MB/s 3%
Random85 | 55 | 0.54 | 0.02 | 34 2 04MB/s | 0.3MB/s | 24 %
Random 86 | 24 | 0.78 | 0.85 | 45 2 13MB/s | O9MB/s | 34 %
Random 87 | 13 | 0.82 | 0.51 | 74 1 23MB/s | 23MB/s 0%
Random88 | 12 | 0.57 | 093 | 40 2 26MB/s | 28 MB/s 8%
Random 89 | 37 | 0.81 | 0.19 | 80 2 05SMB/s { 0.4MB/s | 12%
Random 90 | 58 | 0.02 | 095 | 18 1 04MB/s | 04MB/s | 16%
Random91 | 16 | 0.02 | 029 | 63 2 22MB/s | 23MB/s 6%
Random92 | 17 | 048 | 0.31 | 24 2 19MB/s | 2IMB/s | 11%
Random 93 | 40 | 0.64 | 0.12 | 47 1 0.5MB/s | 04 MB/s 6 %

Data for SPARCstation 1+ (Figure 5.3) — Part 3

Workload un | seq | read | sz | proc | Measured | Predicted | % Emr
Random94 | 15 | 0.54 | 0.16 | 82 1 24 MB/s | 2.3 MB/s 1%
Random95 | 19 | 0.11 | 0.14 | 30 1 23MB/s | 22MB/s 5%
Random96 | 20 | 0.77 { 005 | 75 2 1.8MB/s | 1.7MB/s 9%
Random97 |{ 19 | 0.65 | 099 | 81 1 29MB/s | 25MB/s | 13 %
Random98 | 44 | 0.06 | 0.74 | 25 2 0.3MB/s | 0.3 MB/s 6%
Random 99 | 53 | 0.31 | 0.16 | 46 2 04MB/s | 03MB/s | 29%

Table A.1: Raw data for SPARCstation 1+ scatter plot. This table gives the data used to plot
the current benchmark prediction points in Figures 5.3. Most points of high error have unique-
Bytes between 20 and 27 MB.

Data for DECstation 5000/200 (Figure 5.5) — Part 1

Workload un seq | read 4 proc_| Measured | Predicted | % Emr
Andrew 4.7 a7 54 3 1 29MB/s | 25MB/s | 14%
Bonnie 100 1.0 0.0 8 1 05MB/s | 0O3MB/s | 53%
JOStone 1.0 .02 67 2 1 30MB/s | 26 MB/s | 12%

Sdet 8.0 48 .56 2 4 16 MB/s | 19MB/s | 24 %

Random 0 31 080 | 041 55 2 0.7MB/s | 0.7 MB/s 7%

Random 1 21 0.85 | 0.57 56 1 1.7MB/s | 1.5 MB/s 6 %

Random 2 32 0.85 | 0.37 371 2 0.6 MB/s | 0.6 MB/s 3%

Random 3 36 0.08 | 0.30 | 157 2 0.6 MB/s | 0.6 MB/s 3%

Random 4 6 0.22 | 0.97 60 2 59MB/s | 42MB/s | 30%

Random 5 45 0.11 | 046 91 1 05S5MB/s | OSMB/s | 11 %

Random 6 7 022 | 0.26 { 103 2 1.6 MB/s | 29MB/s | 82 %

Random 7 4 0.61 | 0.01 84 1 29MB/s | 42MB/s | 45%

Random 8 25 0.53 | 091 | 136 2 1.1MB/s | 0.7MB/s | 42%

Random 9 21 0.38 | 0.65 40 1 18MB/s | 20MB/s | 12%

Random 10 27 057 | 0.77 | 115 1 09MB/s | 0.7MB/s. | 26 %
Random 11 19 0.25 | 0.69 16 2 21MB/s | 26 MB/s | 23 %
Random 12 9 061 | 034 | 143 1 14MB/s | 1.TMB/s | 29%
Random 13 15 0.53 | 0.17 73 2 08MB/s | 1.1IMB/s | 29%
Random 14 28 0.70 | 0.06 76 2 06MB/s | 0O8MB/s | 26%
Random 15 31 0.03 | 0.55 43 1 05MB/s | 0.5MB/s 1%
Random 16 6 0.39 | 0.15 41 2 22MB/s | 34MB/s | 58%
Random 17 14 041 | 0.59 | 158 1 18MB/s | 20MB/s | 13 %
Random 18 20 034 | 0.63 73 1 1.7MB/s | 21MB/s | 26 %
Random 19 24 041 | 0.29 75 2 08MB/s | 0.8 MB/s 2%
Random 20 42 0.87 | 0.39 22 2 06MB/s | 04MB/s | 4%
Random 21 5 0.59 | 0.34 66 2 31MB/s | 41MB/s | 35%
Random 22 11 028 | 044 | 112 2 15MB/s | 1.7MB/s | 15%
Random 23 14 0.81 | 0.76 24 2 3.0MB/s | 3.0MB/s 1%
Random 24 45 031 | 0.67 35 1 04 MB/s | 04 MB/s 2%
Random 25 19 024 { 093 | 132 2 47MB/s | 42MB/s | 10%
Random 26 40 0.03 | 0.69 87 2 0.6 MB/s | 0.5 MB/s 8%
Random 27 16 043 | 0.32 16 1 1.3MB/s | 1.2MB/s 8%
Random 28 28 0.53 | 0.15 99 2 06MB/s | 0.7TMB/s | 16%

112

Data for DECstation 5000/200 (Figure 5.5) — Part 2

Workload un | seq | read sz proc | Measured | Predicted | % Emr
Random?29 | 39 | 0.14 | 0.82 5 1 03MB/s | 0.2MB/s 10%
Random 30 91079 { 067 | 113 1 29MB/s | 3.4 MB/s 16 %
Random 31 | 34 | 0.06 | 0.62 66 2 0.6 MB/s | 0.5MB/s 13%
Random 32 | 36 | 0.54 | 0.66 45 2 0.5MB/s | 0.5 MB/s 8%
Random 33 310821 027 82 1 39MB/s | 4.7 MB/s 19%
Random34 | 20 { 0.59 | 0.87 83 2 40MB/s | 3.4MB/s 14%
Random 35 9 0.00 | 038 38 1 19MB/s | 2.0MB/s 3%
Random 36 { 10 | 0.17 | 0.17 | 100 2 1.0MB/s | 1.4 MB/s 41 %
Random 37 | 42 | 0.78 | 022 | 154 1 0.6 MB/s | 0.6 MB/s 1%
Random 38 310121 034 | 137 1 3.7MB/s | 4.7 MB/s 27%
Random 39 | 24 | 0.69 | 0.82 | 158 2 1.2MB/s | 0.8 MB/s 34 %
Random40 | 39 | 043 | 098 | 139 2 0.7MB/s | 0.5MB/s 2%
Random 41 9 { 0.06 | 053 5 1 1.8 MB/s | 2.4 MB/s 4%
Random 42 31039 | 030 | 129 1 39MB/s | 4.8 MB/s 23 %
Random 43 | 42 | 0.84 | 0.65 | 158 2 0.6 MB/s | 0.6 MB/s 7%
Random44 | 17 | 0.74 | 0.05 | 131 1 0.7MB/s | 0.8 MB/s 12%
Random 45 | 27 | 0.80 | 0.81 34 1 0.7MB/s | 0.6 MB/s 17%
Random 46 8 {0.16 | 033 | 158 2 1.6 MB/s | 2.1 MB/s 29 %
Random47 | 35 | 0.67 | 0.83 | 158 2 0.7MB/s | 0.6 MB/s 19%
Random48 | 22 | 0.63 | 0.66 | 112 1 1.1MB/s | 1.1 MB/s 5%
Random 49 | 38 | 0.70 | 0.63 62 2 0.6 MB/s | 0.5MB/s 3%
Random 50 | 24 | 0.24 | 043 75 1 0.8MB/s | 0.8 MB/s 4%
Random 51 | 12 | 0.86 | 0.19 29 2 1.0MB/s | 1.2MB/s 23%
Random 52 | 33 | 0.33 | 0.08 | 116 1 0.6 MB/s | 0.7 MB/s 8%
Random 53 | 33 | 0.25 | 0.81 6 2 0.3MB/s | 0.3MB/s 11%
Random 54 7 {021 | 070 22 2 3 7MB/s | 74MB/s | 102 %
Random 55 | 36 | 0.32 | 0.52 | 119 2 0.8MB/s | 0.5MB/s 36 %
Random 56 S| 041 | 027 30 1 3.8MB/s | 3.8 MB/s 0%
Random 57 | 21 | 0.67 | 031 | 146 1 1.0MB/s | 1.1 MB/s 9%
Random 58 | 36 | 0.23 | 0.00 | 134 1 0.6 MB/s | 0.6 MB/s 9%
Random 59 | 11 | 0.51 | 0.32 | 134 2 1.2MB/s | 1.3MB/s 7%
Random 60 | 26 | 0.01 | 0.38 | 129 2 0.7MB/s | 0.7MB/s 1%
Random 61 | 39 | 0.15 | 0.54 97 1 0.6 MB/s | 0.5 MB/s 15%
Random 62 | 44 | 0.75 | 0.38 46 1 0.5MB/s | 0.5MB/s 3%
Random 63 | 32 | 0.65 | 098 39 2 0.8MB/s | 0.5MB/s 36 %
Random 64 | 26 | 0.02 | 0.73 45 1 0.7MB/s | 0.6 MB/s 9%
Random 65 | 43 | 0.34 | 0.84 | 117 2 0.5MB/s | 0.4 MB/s 21%
Random 66 | 37 | 0.04 | 0.03 | 127 2 0.6MB/s | 0.6 MB/s 3%
Random 67 | 41 | 0.26 | 0.38 60 1 0.5MB/s | 0.5MB/s 4%
Random 68 | 31 | 0.84 | 0.24 20 1 0.6MB/s | 0.6 MB/s 6%
Random 69 | 46 | 0.08 | 0.60 | 137 1 0.5MB/s | 0.5MB/s 12%
Random 70 | 37 | 0.84 | 0.37 | 102 2 0.6 MB/s | 0.6 MB/s 9%
Random 71 | 29 | 0.69 | 0.85 92 1 09MB/s | 0.7MB/s 24 %
Random 72 | 13 | 0.22 | 0.58 41 2 2.1MB/s | 22MB/s 1%
Random 73 | 18 | 049 | 0.72 93 2 24MB/s | 24 MB/s 0%
Random 74 | 40 | 0.56 | 095 47 1 0.7MB/s | 0.4 MB/s 37%
Random 75 { 24 | 0.59 | 0.20 32 1 08MB/s | 0.7MB/s 14 %
Random 76 | 41 | 043 | 0.69 88 1 0.6 MB/s | 0.5MB/s 11%
Random 77 4 | 0261 029 | 146 2 39MB/s | 4.7 MB/s 20 %

113

Data for DECstation 5000/200 (Figure 5.5) — Part 3

Workload | un | seq | read | sz | proc | Measured | Predicted | % Err
Random 78 | 12 | 0.79 | 0.83 61 2 42MB/s | 38MB/s | 10%
Random 79 | 17 | 030 | 0.32 4 2 1.1MB/s | 10MB/s | 10%
Random 80 | 37 | 0.26 | 0.62 72 2 0.5MB/s | 0.5 MB/s 7%
Random 81 | 10 | 0.39 | 0.62 74 1 25MB/s | 2.7MB/s 8 %
Random 82 | 32 | 040 | 0.68 88 2 0.7MB/s | 0.6MB/s | 11 %
Random 83 | 46 | 0.01 | 0.67 72 2 04 MB/s | 0.5MB/s 2%
Random 84 | 35 | 0.51 | 1.00 | 132 2 07MB/s | O.5MB/s | 31%
Random 85 | 37 | 046 | 0.17 | 123 2 05MB/s | 0.6 MB/s | 10%
Random 86 | 28 | 0.14 | 0.71 31 2 06MB/s | O.5MB/s | 20%
Random 87 9102309 49 2 46MB/s | 63MB/s | 36%
Random 88 | 15 | 0.79 | 0.48 48 2 1SMB/s | 1.7TMB/s | 13%
Random 89 | 45 | 0.34 | 0.38 12 1 04MB/s | O3MB/s | 19%
Random 90 | 39 { 026 | 0.05 9 1 0.6 MB/s | 0.6 MB/s 2%
Random 91 | 45 | 0.62 | 0.77 | 150 2 0.5MB/s | 0.5MB/s 8 %
Random 92 51050 {068 | 132 2 54MB/s | 44MB/s | 18%
Random 93 { 16 | 0.81 | 0.36 16] 1 14 MB/s | 1.3 MB/s 2%
Random 94 | 13 | 021 | 096 | 130 2 57MB/s | 53MB/s 7%
Random 95 | 20 | 0.21 | 0.48 36 1 14MB/s | 1.5MB/s | 12%
Random 96 | 36 | 0.65 | 0.83 10 1 04 MB/s | 0.3 MB/s 7 %
Random 97 | 21 | 0.18 | 0.07 | 116 2 0.7MB/s | 0.7 MB/s 1%
Random 98 | 27 | 0.74 | 0.25 9 2 06MB/s | O.5MB/s | 26%
Random99 | 46 | 0.73 | 0.26 | 116 2 0.5MB/s | 0.6 MB/s 4 %

Table A.2: Raw data for DECstaﬁon 5000/200 scatter plot. This table gives the data used to
plot the current benchmark prediction points in Figures 5.5. Most points of high error have unique-
Bytes between 5 and 10 MB.

Data for HP 730 (Figure 5.7) — Part 1

Workload un seq | read SZ_ | proc Measured | Predicted | % Em
Andrew 47 a7 54 3 1 047 MB/s 0.36 MB/s 25%
Bonnie 100 1.0 0.0 8 1 0.32 MB/s 0.22 MB/s 34 %
10Stone 10 .02 67 2 1 8.6 MB/s 8.0 MB/s 6 %

Sdet 8.0 48 56 2 4 0.17 MB/s 0.18 MB/s 9%

Random 0 9 0.04 | 0.53 | 339 1 1.6 MB/s 14 MB/s 14 %

Random 1 12 0.50 | 0.13 | 128 2 12 MB/s 1.2 MB/s 0%

Random 2 10 0.46 | 099 | 182 2 1.5 MB/s 24 MB/s 58 %

Random 3 1 0.30 | 0.30 | 225 1 23.2 MB/s 24.5 MB/s 6%

Random 4 10 073 | 0.73 | 129 2 14 MB/s 1.6 MB/s 17%

Random § 8 0.77 | 037 54 1 1.1 MB/s 1.2 MB/s 5%

Random 6 3 0.72 | 034 | 277 1 32 MB/s 13.3 MB/s 322%

Random 7 8 0.73 | 0.18 | 262 2 1.3 MB/s 1.8 MB/s 43 %

Random 8 3 0.02 | 0.37 26 2 119 MB/s 8.9 MB/s 26 %

Random 9 1 0.10 | 0.25 | 147 2 22.6 MB/s 242 MB/s 7%

Random 10 10 0.32 | 047 62 1 1.0 MB/s 1.0 MB/s 4%
Random 11 12 0.14 | 0.74 98 1 1.1 MB/s 1.1 MB/s 1%
Random 12 3 0.44 | 0.53 84 2 8.5 MB/s 13.0 MB/s 53 %

114

Data for HP 730 (Figure 5.7) — Part 2

Workload un | seq | read Sz proc Mem_llm Predicted
Random 13 5§ 1036 | 054 71 1 1.3 MB/s 1.5MB/s
Random 14 5081 | 048 | 331 1 1.6 MB/s 2.4 MB/s
Random 15 21038 |05 {233 1 209 MB/s | 249 MB/s
Random16 | 4 | 032 | 0.56 | 193 1 2.1 MB/s 2.4 MB/s
Random 17 6] 020 | 089 | 146 2 1.8 MB/s 2.1 MB/s
Random 18 4 | 056 | 0.80 41 1 1.8 MB/s 1.7 MB/s
Random 19 7 | 049 0.68 | 147 1 1.7 MB/s 1.8 MB/s
Random 20 4 1061 044 | 118 2 22 MB/s 2.3 MB/s
Random 21 9 | 036 | 081 | 356 2 1.7 MB/s 1.7 MB/s
Random 22 6] 029 | 050 | 198 2 1.6 MB/s 1.7 MB/s
Random 23 1020 | 0.50 48 1 30.1 MB/s | 29.9 MB/s
Random?24 | 11 | 0.65 | 0.03 | 253 2 1.2 MB/s 1.5 MB/s
Random 25 | 10 | 0.36 | 0.99 | 290 2 16 MB/s | 24 MB/s
Random 26 6] 0251 045 | 344 1 1.7 MB/s 1.7MB/s
Random 27 4 {050] 015 | 337 1 29MB/s | 10.8 MB/s
Random 28 31074 {074 | 276 2 104 MB/s | 19.6 MB/s
Random 29 91032 051 40 1 0.9 MB/s 0.8 MB/s
Random 30 21079 0.19 | 132 2 228 MB/s | 24.3 MB/s
Random 31 71050] 004 | 354 2 1.3 MB/s 1.7 MB/s
Random 32 91066 | 097 | 139 1 1.9 MB/s 2.5 MB/s
Random 33 91049 | 017 | 264 1 1.5 MB/s 1.6 MB/s
Random 34 | 10 | 0.07 | 0.80 97 1 1.2 MB/s 1.2 MB/s
Random 35 9 | 060 | 001 16 2 0.6 MB/s 0.6 MB/s
Random 36 6 | 064 | 040 | 226 1 1.8 MB/s 2.1 MB/s
Random 37 9 | 087 | 094 | 184 2 1.6 MB/s 2.7 MB/s
Random 38 51054 | 039 | 259 2 2.0MB/s 2.1 MB/s
Random 39 210021 078 | 295 2 204 MB/s | 22.7 MB/s
Random 40 31037 | 008 | 219 2 20.0 MB/s | 19.0 MB/s
Random 41 51063073 15 1 0.9 MB/s 0.8 MB/s
Random 42 3103109 | 177 2 6.5MB/s | 14.5MB/s
Random 43 4 | 044 | 039 | 231 1 23 MB/s 2.7 MB/s
Random 44 2| 047 { 090 | 322 1 20.1 MB/s | 23.0 MB/s
Random 45 1030 1| 060 19 1 256MB/s | 26.0 MB/s
Random 46 31066 0551 346 1 18.0 MB/s | 21.0 MB/s
Random 47 91019 | 010 | 347 2 1.4 MB/s 1.4 MB/s
Random 48 4 | 062 | 024 | 324 1 2.1 MB/s 2.5 MB/s
Random 49 510751 011 | 143 2 2.0 MB/s 2.3 MB/s
Random 50 | 11 | 0.06 | 043 | 356 1 1.5MB/s | 13MB/s
Random 51 6 | 029 | 053 52 1 12 MB/s 1.1 MB/s
Random 52 31041 | 047 | 144 2 21.8 MB/s | 249 MB/s
Random 53 | 11 | 0.02 | 0.00 { 172 1 1.3 MB/s 1.3 MB/s
Random 54 9 | 067 | 097 | 104 1 2.1 MB/s 2.4 MB/s
Random 55 91076 | 088 | 208 2 1.7 MB/s 22 MB/s
Random 56 31012 081 | 110 1 279MB/s | 150MB/s
Random 57 51001 054 | 333 2 22 MB/s 1.7 MB/s
Random 58 4 | 071 | 090 | 147 1 3.4 MB/s 3.5MB/s
Random 59 6 | 0.15 | 0.54 91 2 1.3 MB/s 1.3 MB/s
Random 60 9]| 040 | 095 62 2 1.1 MB/s 1.5 MB/s
Random 61 | 10 | 0.77 | 0.62 | 220 1 14 MB/s 1.9 MB/s

115

Data for HP 730 (Figure 5.7) — Part 3

Workload un | seq | read Y4 proc_| Measured Predicted % Err
Random 62 4 1027 | 020 | 200 1 2.4 MB/s 2.7 MB/s 10 %
Random 63 | 10 | 0.04 | 092 83 1 1.3 MB/s 14 MB/s 10%
Random 64 9 1034] 017 | 149 2 1.3 MB/s 1.3 MB/s 5%
Random 65 91085095] 270 1 19MB/s | 3.0MB/s 58 %
Random66 | 11 | 0.73 | 0.21 | 176 1 0.9 MB/s 1.6 MB/s 70 %
Random 67 71039 | 072 | 189 1 1.7 MB/s 1.9 MB/s 10 %
Random 68 21028} 002] 363 1 22.1 MB/s | 212 MB/s 4%
Random 69 8| 080 | 0.82 | 216 2 12 MB/s 22 MB/s 80 %
Random 70 81013 | 012 | 336 1 1.2 MB/s 1.5 MB/s 22%
Random 71 71005 053] 302 1 1.8 MB/s 1.6 MB/s 15%
Random 72 170511 076 | 261 2 192MB/s | 242 MB/s 25%
Random 73 71019 | 099 | 262 1 2.3 MB/s 28 MB/s 18%
Random 74 | 11 | 0.16 | 0.94 23 1 0.7 MB/s 0.8 MB/s 12%
Random 75 21023 | 028 | 159 1 | 23.8MB/s | 24.5MB/s 3%
Random 76 71040 | 0.59 | 186 2 1.5 MB/s 1.6 MB/s 8%
Random 77 | 11 | 0.24 | 0.57 | 119 2 12MB/s | 1.1 MB/s 7%
Random 78 1016 | 069 | 250 1 223 MB/s | 248 MB/s 11%
Random 79 2] 078 { 005 { 105 1 26.7MB/s | 26.8 MB/s 0%
Random 80 91079 | 020 | 124 1 1.5 MB/s 1.6 MB/s 10%
Random 81 | 11 | 0.15 | 0.53 30 2 0.4 MB/s 0.6 MB/s 49 %
Random 82 4 { 0.84 | 0.85 | 273 1 2.1 MB/s 3.6 MB/s 70 %
Random 83 31035 045 | 262 2 48MB/s | 13.5MB/s | 180 %
Random84 | 11 | 022 | 037 | 154 2 1.0 MB/s 12 MB/s 18%
Random 85 8 1075] 055 | 145 2 1.5 MB/s 1.7MB/s 14 %
Random 86 8 | 042 | 043 | 361 2 1.4 MB/s 1.5 MB/s 8 %
Random 87 8 | 0.17 | 0.85 | 246 1 1.7 MB/s 1.9 MB/s 12%
Random 88 6] 066 | 042 | 237 1 1.8 MB/s 2.1 MB/s 18%
Random 89 | 10 | 0.12 | 0.16 | 212 1 1.3 MB/s 1.4 MB/s 14 %
Random 90 2 {060 | 026 { 195 2 18.7 MB/s | 24.3 MB/s 30 %
Random91 | . 8| 0.71 | 0.88 | 137 2 1.5MB/s 2.0MB/s 35%
Random 92 8 | 053 | 052 | 128 2 1.3 MB/s 1.4 MB/s 11%
Random93 | 11 |{ 0.26 | 0.30 93 1 1.0MB/s 1.1 MB/s 11%
Random 94 4 |1 006 | 065 | 209 2 5.5 MB/s 9.3 MB/s 68 %
Random 95 310531 071 | 227 2 176 MB/s | 13.2 MB/s 25%
Random 96 3 {047 | 047 7 2 7.1 MB/s 5.1 MB/s 28 %
Random 97 31014 | 031 7 1 15.4 MB/s 8.5 MB/s 45 %
Random98 | 11 | 0.10 | 092 | 335 2 14 MB/s 1.7 MB/s 28%
Random 99 2 {072 033 14 1 229 MB/s | 224 MB/s 2%

116

Table A.3: Raw data for HP 730 scatter plot. This table gives the data used to plot the current
benchmark prediction points in Figures 5.7. Most points of high error have uniqueBytes between 3
and 4 MB.

Data for Convex C240 (Figure 5.9) — Part 1

Workload un seq | read sz proc | Measured Predicted % Err
Andrew 4.7 77 54 3 1 2.9 MB/s 29 MB/s 2%
Bonnie 100 1.0 0.0 8 1 2.0 MB/s 1.4 MB/s 31%
IOStone 1.0 02 67 2 1 24 MB/s 2.1 MB/s 14 %

Sdet 8.0 48 56 2 4 5.7 MB/s 2.3 MB/s 60 %

Random0 | 1077 0.80 | 041 339 2 10.7MB/s | 123 MB/s 16%

Random 1 768 0.85 | 0.57 341 1 14.1 MB/s | 17.3 MB/s 23%

Random 2 1121 0.85 | 037 221 2 98 MB/s | 10.1 MB/s 4%

Random 3 1282 0.08 | 0.30 | 1001 2 8.9 MB/s 5.7 MB/s 36%

Random 4 266 0.22 | 0.97 370 2 223MB/s | 239MB/s 7%

Random § 1591 0.11 | 046 571 1 6.8 MB/s 53 MB/s 21%

Random 6 313 0.21 | 0.26 654 2 7.0 MB/s 7.0 MB/s 1%

Random 7 209 0.61 | 0.01 530 1 54 MB/s 7.7 MB/s 43 %

Random 8 901 0.52 | 091 870 2 158 MB/s | 18.4 MB/s 16 %

Random 9 756 0.39 | 0.65 236 1 13.6MB/s | 13.3 MB/s 2%

Random 10 972 0.57 | 0.77 729 1 10.8 MB/s | 13.3 MB/s 23 %
Random 11 709 0.25 | 0.69 83 2 10.4 MB/s 9.4 MB/s 9%
Random 12 374 0.61 | 034 915 1 6.9 MB/s 7.0 MB/s 2%
Random 13 571 0.53 | 0.17 456 2 8.7 MB/s 9.2 MB/s 6%
Random 14 983 0.70 | 0.06 473 2 10.8 MB/s 7.5 MB/s 30 %
Random 15 | 1118 0.03 | 0.55 259 1 6.6 MB/s 6.4 MB/s 2%
Random 16 269 0.39 | 0.15 247 2 7.2MB/s 7.5 MB/s 4%
Random 17 539 041 | 0.59 | 1010 1 9.0 MB/s 7.6 MB/s 16 %
Random 18 728 034 | 0.63 452 1 119MB/s | 13.6 MB/s 14 %
Random 19 853 041 | 0.29 466 2 10.8 MB/s 9.3 MB/s 14 %
Random 20 | 1438 0.87 | 039 121 2 6.1 MB/s 6.1 MB/s 0%
Random 21 232 0.59 | 0.33 409 2 8.3 MB/s 9.6 MB/s 16 %
Random 22 760 0.79 | 0.38 753 1 10.8 MB/s | 10.7 MB/s 1%
Random 23 445 028 | 044 713 2 9.3 MB/s 7.5 MB/s 19%
Random 24 540 0.81 | 0.76 132 2 145 MB/s | 18.1 MB/s 25%
Random 25 | 1593 0.31 | 0.67 206 1 5.1 MB/s 5.3 MB/s 3%
Random 26 706 024 | 093 839 2 13.6 MB/s | 19.0 MB/s 39%
Random 27 | 1405 0.03 | 0.69 544 2 8.0 MB/s 6.9 MB/s 14 %
Random 28 598 043 | 032 85 1 5.6 MB/s 58 MB/s 3%
Random 29 | 1004 0.53 | 0.15 622 2 104 MB/s 6.3 MB/s 40 %
Random 30 | 1378 0.14 | 0.82 10 1 | 1LOMB/s 12 MB/s 15%
Random 31 352 0.79 | 0.67 717 1 76 MB/s | 164MB/s | 116%
Random 32 | 1197 0.06 | 0.62 409 2 8.4 MB/s 7.1 MB/s 16 %
Random 33 | 1257 054 | 066 | 270 2 8.0 MB/s 8.7 MB/s 9%
Random 34 151 0.82 | 0.27 508 1 69MB/s | 12.0 MB/s 74 %
Random 35 732 0.59 | 0.87 523 2 193 MB/s | 25.7MB/s 33%
Random 36 371 0.00 | 0.38 226 1 7.1 MB/s 7.4 MB/s 3%
Random 37 386 0.17 | 0.17 631 2 7.6 MB/s 6.9 MB/s 9%
Random 38 | 1468 0.78 | 0.22 986 1 8.5 MB/s 9.0 MB/s 6%
Random 39 .| 177 0.12 | 0.34 869 1 4.0 MB/s 5.7 MB/s 40 %
Random 40 850 0.69 | 0.82 | 1012 2 123 MB/s | 15.6 MB/s 27%
Random 41 | 1379 043 | 098 882 2 10.3 MB/s | 15.5 MB/s 50 %
Random 42 362 0.06 | 053 13 1 2.0 MB/s 2.1 MB/s 8%
Random 43 154 0.39 | 0.30 823 1 4.7 MB/s 6.5 MB/s 40 %
Random 44 | 1427 0.84 | 0.65 | 1008 2 120 MB/s | 13.0 MB/s 9%

117

Data for Convex C240 (Figure 5.9) — Part 2

Workload un seq | read sz proc | Measured | Predicted | % Ermr
Random 45 645 | 0.74 | 0.05 833 1 9.0 MB/s 7.7 MB/s 15 %
Random46 | 976 | 0.80 | 0.81 198 1 144MB/s | 178 MB/s | 23%
Random 47 343 | 0.16 | 0.33 | 1010 2 7.5MB/s | 53 MB/s 30%
Random 48 | 1219 | 0.67 | 0.83 | 1010 2 11.6 MB/s | 14.9 MB/s 29%
Random 49 811 | 0.63 | 0.66 | 707 1 123 MB/s | 142 MB/s 15%
Random 50 | 1319 | 0.70 | 0.63 | 385 2 9.6 MB/s | 10.0 MB/s 4%
Random 51 80 | 0.24 | 043 | 471 1 109 MB/s | 9.1 MB/s 17%
Random 52 | 441 | 0.86 | 0.19 169 2 9.0MB/s | 9.7MB/s 7%
Random 53 | 1172 | 0.33 | 0.08 | 735 1 7.6 MB/s | 6.7 MB/s 12%
Random 54 | 1179 | 0.25 | 0.81 171 2 1.8 MB/s 1.9 MB/s 10%
Random 55 314 | 0.21 | 0.70 120 2 11.7MB/s | 10.8 MB/s 8%
Random 56 | 1283 | 0.32 | 0.52 | 758 2 9.0MB/s | 7.5MB/s 16 %
Random 57 | 241 | 041 | 027 173 1 72MB/s | 6.8 MB/s 5%
Random 58 754 | 0.67 | 0.31 937 1 99MB/s | 7T4MB/s | 26%
Random 59 | 1281 | 0.23 |{ 0.00 | 855 1 73MB/s | S4MB/s | 26%
Random60 | 433 | 051 | 032 | 855 2 90MB/s | 67TMB/s | 25%
Random 61 952 | 0.01 | 038 | 824 2 10.8 MB/s S5MB/s | 49%
Random 62 | 1387 | 0.15 | 0.54 | 611 1 70MB/s | 6.8 MB/s 3%
Random 63 | 1533 | 0.75 | 038 | 280 1 72MB/s | 7.5MB/s 5%
Random64 | 1133 | 0.65 | 098 | 235 2 144 MB/s | 17.8 MB/s 24 %
Random 65 945 | 0.02 | 0.73 | 269 1 119MB/s | 12.1 MB/s 1%
Random 66 | 1502 | 0.34 | 0.84 | 741 2 10.1 MB/s | 9.7 MB/s 4%
Random 67 | 1297 | 0.04 | 0.03 807 2 75MB/s | 4.7 MB/s 38%
Random 68 | 1436 | 0.26 | 0.38 | 371 1 5.5 MB/s 5.6 MB/s 2%
Random 69 | 1105 | 0.84 | 0.24 105 1 S53MB/s | 66MB/s | 26%
Random 70 | 1603 | 0.08 | 0.60 | 872 1 7.1MB/s | 6.0 MB/s 16 %
Random 71 | 1291 | 0.84 | 037 | 646 2 10.0 MB/s | 11.0 MB/s 10 %
Random 72 | 1048 | 0.69 | 0.85 | 577 1 9.7MB/s. | 193 MB/s | 100 %
Random 73 515 | 0.22 | 0.58 | 247 2 10.8 MB/s | 10.2 MB/s 6 %
Random 74 665 | 049 | 0.72 | 588 2 142MB/s | 17.5 MB/s 23 %
Random 75 | 1410 | 0.56 | 0.95 288 1 11.3MB/s | 13.7 MB/s 21%
Random 76 885 | 0.59 | 0.20 188 1 9.0 MB/s 8.1 MB/s 10%
Random 77 | 1446 | 043 | 0.69 | 552 1 8.3 MB/s 8.8 MB/s 6 %
Random 78 189 | 026 | 029 | 938 2 4.9 MB/s 52 MB/s 6 %
Random 79 457 | 0.79 | 0.83 375 2 184 MB/s | 24.7 MB/s 4%
Random 80 653 { 0.30 | 0.32 4 2 0.9 MB/s 1L.IMB/s | 21%
Random 81 | 1292 | 0.26 | 0.62 | 452 2 84MB/s | 7.6MB/s 9%
Random 82 | 414 | 0.39 | 062 | 463 1 108 MB/s | 12.2 MB/s 13%
Random 83 | 1120 | 040 | 0.68 | 551 2 102 MB/s | 11.0 MB/s 8%
Random 84 | 1604 | 0.01 | 0.67 | 446 2 71MB/s | S6MB/s | 21%
Random 85 | 1245 | 0.51 | 1.00 | 838 2 120 MB/s | 18.3 MB/s 52%
Random 86 | 1303 | 046 | 0.17 | 784 2 94MB/s | 67TMB/s | 29%
Random 87 990 | 0.14 | 0.71 179 2 98MB/s | 9.8 MB/s 0%
Random 88 386 | 0.23 | 092 | 298 2 194 MB/s | 21.1 MB/s 9%
Random 89 554 | 0.79 | 048 | 291 2 126 MB/s | 14.1 MB/s 12%
Random 90 | 1570 | 0.34 | 0.38 58 1 2.0 MB/s 2.3 MB/s 12%
Random 91 | 1366 | 0.26 | 0.05 | 627 1 6.4 MB/s 5.4 MB/s 15%
Random 92 | 1555 | 0.62 | 0.77 | 955 2 10.8 MB/s | 10.8 MB/s 0%
Random93 | 214 | 050 | 068 | 844 | 2 S4MB/s | 113MB/s | 19%

118

Data for Convex C240 (Figure 5.9) — Part 3

Workload un seq | read sz | proc | Measured Predicted % Err
Random 94 594 | 0.81 | 0.36 81 1 8.3 MB/s 7.9 MB/s 5%
Random 95 482 | 0.21 | 096 | 827 2 11.0MB/s | 182MB/s | 65%
Random 96 748 | 0.21 | 048 | 216 1 9.7 MB/s 8.8 MB/s 9%
Random 97 | 1272 | 0.65 | 0.83 43 1 5.1 MB/s 42MB/s | 16%
Random 98 778 | 0.17 | 0.07 | 739 2 9.4 MB/s 6.1MB/s | 36%
Random 99 977 | 0.74 | 0.25 36 2 3.7 MB/s 3.3 MB/s 9 %

Table A.4: Raw data for Convex C240 scatter plot. This table gives the data used to plot the
current benchmark prediction points in Figures 5.9. Most points of high error have sizeMean over
300 KB.

System Workload Measured Predicted % Error
workstation 1.8 MB/s 1.7 MB/s 6 %
large_utility 2.1 MB/s 2.0 MB/s 2%
SPARCstation 1+ | scientific_write 0.46 MB/z 0.36 MB/s 20 %
scientific_read 0.59 MB/s 0.54 MB/s 9%
database 0.10 MB/s 0.15 MB/s 44 %
workstation 3.8 MB/s 3.2MB/s 15%
large_utility 2.5 MB/s 2.0 MB/s 17%
DECstation 5000/200 | scientific_write 041 MB/s 0.46 MB/s 10 %
scientific_read 0.40 MB/s 0.38 MB/s 5%
database 0.30 MB/s 0.33 MB/s 7%
workstation 11.5 MB/s 9.8 MB/s 15%
large_utility 0.54 MB/s 0.47 MB/s 13%
HP 730 scientific_write 0.53 MB/s 0.77 MB/s 45 %
scientific_read 1.2 MB/s 1.2 MB/s 6 %
database 0.13 MB/s 0.14 MB/s 5%
workstation 4.2 MB/s 3.7 MB/s 12%
large_utility 6.5 MB/s 42 MB/s 36 %
Convex C240 scientific_write 6.1 MB/s 6.4 MB/s 4%
scientific_read | 15.5 MB/s 17.2 MB/s 11%
database 0.75 MB/s 0.73 MB/s 2%

Table A.5: Raw data for ratio prediction. This table gives the raw data used in calculating the
ratios of Figure 5.13.

119

Appendix B

Prediction Algorithm

This chapter describes an algorithm for predicting performance based on the families of

graphs reported by the self-scaling benchmark.
This algorithm takes as input two items (all variables are in bold).

e The graphs from the self-scaling benchmark, that is, measured workloads for a number of
focal points { focal point #0 to focal point #(focalNum-1) } each with a different focal point
for uniqueBytes focalPoint.uniqueBytes[i]l, but otherwise the same focal point
focal.sizeMean, focal.readFrac, focal.seqFrac, focal.processNum. |

e Anl/O workload (target.uniqueBytes, target.sizeMean, target.readFrac, target.seqFrac,

target.processNumj} for which to predict performance.

120

This algorithm retums an estimate of the performance for the input workload.

1)

Choose the focal point upon which to predict performance for the target workload. Pick
the focal point whose value of uniqueBytes has performance closest to the performance

of target.uniqueBytes.

/* find the two focal points whose values of uniqgueBytes
form the tightest range which includes target.uniqueBytes */

focalLess = focal point with largest value of uniqueBytes
less than target.uuniqueBytes

focalMore = focal point with smallest value of uniqueBytes
greater than target.uniqueBytes

/* pick the focal point whose value of uniqueBytes has
performance closest to the performance of target.uniqueBytes
*/

/* performanceLess is the performance at focal point focalLess */
performanceless = performance of workload
(focal.uniqueBytes[focalLess], focal.sizeMean,
focal.readFrac, focal.seqFrac, focal.processNum)

/* performanceMore is the performance at focal point focalMore
*/

performanceMore = performance of workload
(focal.uniqueBytes{focalMore], focal.sizeMean,
focal.readFrac, focal.seqFrac, focal.processNum)

/* performance is the performance of the workload which is
the same as the focal point except for unigueBytes,
which is equal to target.uniqueBytes. */

performance = performance of workload (target.uniqueBytes,
focal.sizeMean, focal.readFrac, focal.seqFrac, focal.processNum)

if (performance is closer to performanceLess) {
focalUse = focalLess

} else {
focalUse = focalMore

}

performance = performance at focal point focalUse

121

(2) Use focal point focalUse to adjust performance for differences between the focal point

and the target workload, one parameter at a time.

for each parameter (uniqueBytes, sizeMean, readFrac, segFrac,
processNum)
/* adjust for parameter */

/* performancel is the performance at focal point focalUse
*/
performancel = performance of workload

(focal.uniqueBytes[focalUse], focal.sizeMean, foca].readFrac .
focal.seqFrac, focal.processNum)

/* performance2 is the performance of the workload which -
is the same as the focal point except for parameter,
which has the value of the workload whose perfor-
mance 1is being predicted. Here I've shown the
workload assuming parameter is sizeMean */

performance2 = performance of workload
(focal.uniqueBytes[focalUse], target.sizeMean, focal.readFrac,
focal.seqFrac, focal.processNum)

performance *= performance2 / performancel
end for

return (performance)

122

L d

Appendix C

Proof of Performance Equation

This appendix gives a proof that the overall performance equation must take the form of a
product of independent functions, where each function is a function of exactly one workload

parameter (see Figure 5.1 on page 83).
I first show this is true with two workload parameters A and B.

Given: Performance equation f (A ,B)

f(A.B))

and X By

= constant

Show: f(A.B)=g(A)xh(B)

123

Proof:

% = constant (for all A with B fixed)
1

f@4.B) _ SArB)
f(AB)) f(AnB))

f(A1B)

A =
FABY=Z T 4B

f(AB)=g(B)xh(A)

f(A1B)
f(ALBY)

and h(A)=f (A .B))

where g(B) =

Q.ED.
Next, I generalize this to multiple work!oad parameters A, B, C, D...

fABLD, --) _ f(AL.BCD,)
fAB.CD,--+) f(A;,By,C.D, -+)

_ f(Al’B,CoD,”‘)

A 'C)=
f(LD) f(A]’BvaD’...)

xf(AB,C.D, ")

This equation has the form of a product of functions, with each each term having at least one
less independently-varying parameter. By recursing down to two workload parameters énd
using the commutative property of multiplication/division, the overall performance equation
will reduce to a product of functions, with each function being a function of one workload

parameter.

Q.ED.

124

~e

