
1

Computing the Generalized Singular Value Decomposition�

Zhaojun Baiy and James W. Demmelz

Abstract

We present a variation of Paige's algorithm for computing the generalized singular value
decomposition (GSVD) of two matrices A and B. There are two innovations. The �rst is a
new preprocessing step which reduces A and B to upper triangular forms satisfying certain rank
conditions. The second is a new 2 by 2 triangular GSVD algorithm, which constitutes the inner
loop of Paige's algorithm. We present proofs of stability and high accuracy of the 2 by 2 GSVD
algorithm, and demonstrate it using examples on which all previous algorithms fail.

Key words: generalized singular value decomposition, CS decomposition, matrix decomposi-
tion, Jacobi algorithm, Kogbetliantz algorithm.

Subject classi�cations: AMS(MOS): 65F30; CR:G1.3

Appears as Computer Science Division Report UCB//CSD-92-720, University of California at
Berkeley, December 1992

1 Introduction

The purpose of this paper is to describe a variation of Paige's algorithm [28] for computing the
following generalized singular value decomposition (GSVD) introduced by Van Loan [33], and Paige
and Saunders [25]. This is also called the quotient singular value decomposition (QSVD) in [8].

Theorem 1 Let A 2 IRm�n and B 2 IRp�n have rank(AT ; BT) = n. 1 Then there are orthogonal
matrices U , V and Q such that

UTAQ = �1R; V TBQ = �2R; (1.1)

where R is a n� n upper triangular and nonsingular, and

�1 =

0
B@
l k n� l� k

l I1
k D1

m� l � k O1

1
CA; �2 =

0
B@

l k n � l � k
p� n+ l O2

k D2

n � l � k I2

1
CA; (1.2)

�This work was supported in part by NSF Grants ASC-9005933. The �rst author was also supported in part
by NSF grant ASC-9102963. The second author was also supported in part by DARPA via a subcontract to the
University of Tennessee under grant DAAL03-91-C-0047.

yDepartment of Mathematics, University of Kentucky, Lexington, KY 40506.
zComputer Science Division and Mathematics Department, University of California, Berkeley, CA 94720.
1The assumption that rank(AT ;BT) = n is not essential but simpli�es exposition.

The GSVD Algorithm 2

I1 2 IRl�l and I2 2 IR(n�l�k)�(n�l�k) are identity matrices, O1 2 IR(m�l�k)�(n�l�k) and O2 2
IR(p�n+l)�l are zero matrices,

D1 = diag(�l+1; : : : ; �l+k); D2 = diag(�l+1; : : : ; �l+k); (1.3)

1 > �l+1 � � � � � �l+k > 0; 0 < �l+1 � � � � � �l+k < 1; �2i + �2i = 1: (1.4)

The GSVD is a generalization of the singular value decomposition (SVD) in the sense that if B is
the identity matrix, then the GSVD of A and B is the SVD of A. Moreover, if B is nonsingular,
then the GSVD of A and B reduces to the SVD of AB�1. If (AT ; BT)T has orthonormal columns,
then the GSVD of A and B is the CS decomposition [31]. The pairs (�i; �i) de�ned by the diagonal
elements of �1 and �2 are called the generalized singular value pairs (GSV pairs). The quotient
�i = �i=�i is called a generalized singular value (GSV). Note that the �i are the square roots of
the eigenvalues of the symmetric pencil ATA� �BTB.

The GSVD of two matrices A and B is a tool used in many applications, such as the Kronecker
canonical form of a general matrix pencil [22], the linearly constrained least-squares problem [35, 5],
the general Gauss-Markov linear model [27, 3], the generalized total least squares problem [21], and
real time signal processing [30]. As a further generalization of the SVD, Ewerbring and Luk [13],
Zha [36] proposed a generalized SVD for matrix triplets, and De Moor, Golub and Zha [8, 9] have
generalized the SVD into a factorization of any number of matrices. For all these applications and
multi-matrix generalization of the SVD, the development of a stable and e�cient algorithm for
computing the GSVD of two matrices is a basic problem.

Stewart [31] and Van Loan [34] proposed two algorithms for computing the GSVD. Their al-
gorithms have two phases: The �rst phase is to compute the QR decomposition (or the SVD if
necessary) of (AT ; BT)T . The second phase is to compute the CS decomposition. Paige's algo-
rithm is a Jacobi-Kogbetliantz approach [28], which applies orthogonal transformations to A and
B separately without the CS decomposition. It also has two phases:

(1) Reduce matrices A and B to the following forms

UTAP =

0
B@

r q n � t
r A11 A12 A13

q 0 0 0
m� t 0 0 0

1
CA; V TBP =

0
B@

r q n� t
r B11 B12 B13

q 0 B22 B23

p� t 0 0 0

1
CA; (1.5)

where m � m matrix U and p � p matrix V are orthogonal, P is a n � n permutation matrix,
A11 2 IRr�r is nonsingular upper triangular, B11 2 IRr�r is upper triangular, t = r + q, and if
q > 0, B22 2 IRq�q is nonsingular upper triangular.

(2) Compute the GSVD of two n� n upper triangular matrices of forms (1.5) by a generalized
Kogbetliantz algorithm2.

Phase 1 can be done �rst by the QR factorization with column pivoting [17] of matrix A and
determine the rank r of A, meanwhile permuting the columns of matrix B in the same way, and
then applying the QR factorization with column pivoting to the block of the last p � r rows and
n � r columns of B and obtain the rank q of the block; this yields the forms (1.5) [4]. Phase 2 is
iterative.

In this paper, we will present a variation of Paige's algorithm for computing the GSVD. There
are two innovations. The �rst is as follows: in [28], it is assumed (without providing detail) that in
(1.5) the nonzero part of V TBP has full row rank. It is known that it is complicated to choose V
to guarantee this condition and P may not be a permutation matrix. However in the preprocessing

2We may need to add zero rows or columns to get square matrices. This is not essential but it simpli�es the
description.

The GSVD Algorithm 3

step (1.5), we do not require this condition, and so we can simply use conventional QR factorization
with column pivoting. Moreover, note that the GSVD is independent of column scaling of A and
B. The forms (1.5) preserve this property.

The second innovation is a new 2 by 2 triangular GSVD algorithm, which constitutes the inner
loop of Paige's algorithm. We will present proofs of stability and high accuracy of our method, and
demonstrate it using examples on which all previous algorithms fail. Hereafter, we assume that A
and B have been preprocessed to the upper trapezoidal forms (1.5).

The numerical technique developed in this paper can be extended to deal with the numerical
computation of other closely related decompositions such as the CS decomposition and the product
SVD of two matrices [20, 15]. We will not go into the details.

The rest of the paper is organized as the follows: x2 reviews the Kogbetliantz algorithm for
computing the SVD of a triangular matrix, and Paige's generalization of the Kogbetliantz algorithm
for computing the GSVD. x3 explores the inner loop of Paige's algorithm, which includes the GSVD
of a 2 � 2 matrix in terms of exact and
oating point arithmetic. In x4, we describe the overall
algorithm. The last section reports the results of numerical experiments. In the appendix, we
include Demmel and Kahan's 2 � 2 triangular SVD code, which has not been published in its
entirety before, and plays an important role in our algorithm.

2 Paige's GSVD Algorithm

To describe Paige's algorithm, we �rst review the Kogbetliantz algorithm [23] for computing the
SVD of an upper triangular matrix A. Then we describe Paige's algorithm for computing the
GSVD of A and B with B nonsingular. Finally, we discuss how to generalize the idea to the case
where B is ill-conditioned or singular.

2.1 Kogbetliantz algorithm for the SVD of a triangular matrix

The Kogbetliantz algorithm [23] is a kind of Jacobi scheme. Assume that the kth transformation
of the algorithm operates on the rows and columns i and j of A, let Aij be the 2 � 2 submatrix
subtended by rows and columns i and j of A. Let the rotation matrices Uk = rot(cu; su) and
Vk = rot(cv; sv) be chosen

3 so that

UT
k AijVk = diag(
ii;
jj)

is the SVD of Aij , where cu = cos�k; su = sin �k and cv = cos k; sv = sin k. Let Ûk and V̂k be
identity matrices with (i; i), (i; j), (j; i) and (j; j) elements replaced by the (1,1), (1,2), (2,1) and
(2,2) elements of Uk and Vk respectively. Then let

Ak+1 = ÛT
k AkV̂k;

where A0 = A. After the �rst sweep through all the (i; j) in row cyclic order, an upper triangular
matrix A will become lower triangular. The second sweep will restore upper triangular form,
and so on [20, 19]. There is a literature on the di�erent sweep orders for sequential and parallel
computations besides the conventional row and column order, for example [24].

Forsythe and Henrici [16] considered the convergence of the row cyclic Kogbetliantz algorithm.
Fernando [14] proved a global convergence theorem under the assumption that one of the rotation
angles f�k; kg at each (i; j) transformation lies in a closed interval J � (��=2; �=2), i.e.,

�k 2 J or k 2 J; k = 1; 2; : : : ; : (2.1)

3Throughout this paper, we use rot(c; s) to denote the rotation matrix

�
c s

�s c

�
.

The GSVD Algorithm 4

This is the condition that our algorithm will satisfy. Furthermore, it has been proved that the
cyclic Kogbetliantz algorithm ultimately converges quadratically [29, 2, 7].

2.2 The Generalization of the Kogbetliantz Algorithm for the GSVD

We begin by computing the GSVD of two upper triangular matrices A and B with B nonsingular.
It is known that this is equivalent to computing the SVD of the triangular matrix C = AB�1.
Of course, it is unwise to form C explicitly. We note that a sweep of the Kogbetliantz algorithm
applied to C will make it lower triangular. This means that there are orthogonal matrices U1 and
V1 such that

UT
1 C V1 = C1; (2.2)

where C1 is lower triangular. Recasting (2.2) as UT
1 A = C1V

T
1 B, we see that if we can determine

an orthogonal matrix Q1 satisfying

UT
1 AQ1 = A1; V T

1 BQ1 = B1;

where A1 and B1 are lower triangular, then C1 = A1B
�1
1 . This means that using a sweep of the

Kogbetliantz algorithm on the upper triangular C to get the lower triangular C1 is equivalent to
the problem of �nding orthogonal matrices U1; V1 and Q1 so that UT

1 AQ1 and V T
1 BQ1 are lower

triangular. Heath et al [20], Paige [28] and Hari and Veseli�c [19] have shown that we may take
advantage of the triangular structures of A and B and the ordering of sweeps to get the desired
orthogonal transformations U1; V1 and Q1 without forming AB�1 explicitly. Speci�cally, at the
(i; j) transformation, the needed 2� 2 submatrix Cij of C is given by

Cij = AijB
�1
ij =

aii aij
0 ajj

!
bii bij
0 bjj

!�1
; (2.3)

where aij and bij are the elements subtended by the rows and columns i and j of the updated A
and B, respectively. By using the SVD of Cij : UT

ijCijVij = diag(~cii; ~cjj), we have

UT
ijAij = diag(~cii; ~cjj)V

T
ijBij :

This shows that the corresponding rows of UT
ijAij and V T

ij Bij are parallel. Hence if we choose

rotation Qij so that V T
ij BijQij is lower triangular, then UT

ijAijQij must also be lower triangular,
which is just the GSVD of the 2 � 2 triangular matrices Aij and Bij . With this observation,
we see that after completing a sweep in row order, the desired U1, V1 and Q1 are the products
U12U13 � � �Un�1;n, V12V13 � � �Vn�1;n and Q12Q13 � � �Qn�1;n, respectively. By the end of the row
cyclic sweep, we obtain lower triangular matrices A1 and B1.

4 Then the next sweep consists of
zeroing lower o�-diagonal elements of C1 = A1B

�1
1 in column order to return it to upper triangular

form, and so on. Overall, we are actually carrying out the Kogbetliantz algorithm to diagonalize
the implicitly de�ned matrix C. Upon convergence, this gives UT (AB�1)V = �, a diagonal matrix.
That is

UTAQ = � � V TB Q;

i.e., the ith rows of UTAQ and V TBQ are parallel, which is the desired GSVD of A and B.
In general, if B is ill-conditioned with respect to inversion or B is singular after phase 1, then

using B�1
ij is not recommended. Paige [28] suggests using

Cij = Aij � adj(Bij) =

aii aij
0 ajj

!
bjj �bij
0 bii

!
(2.4)

4By incorporating Gentleman's suggested row and column permutations [28] after each transformation, we need
only use an upper triangular array to carry out the computation. But for clearer exposition, we will use the entire
square array in this paper.

The GSVD Algorithm 5

instead of Cij in (2.3), where adj(Bij) stands for the adjugate ofBij . Since Bij �adj(Bij) = det(Bij)I ,
it seems to be direct and natural to use adj(Bij) instead of B�1

ij . The incorporation of (2.4) into
the above procedure circumvents the numerical di�culties when Bij is ill-conditioned with respect
to inversion or Bij is singular. But it also introduces two questions. First, are there still rotation
matrices Uij ; Vij and Qij such that UT

ijAijQij and V T
ij BijQij are the GSVD of 2 by 2 matrices

Aij and Bij? Second, does the scheme converge to our required GSVD forms of A and B? The
following section will address these questions.

3 The GSVD of 2 by 2 Triangular Matrices

As we see in x2, the kernel of computing the GSVD using a generalized Kogbetliantz algorithm is
the computation of the GSVD of 2 by 2 matrices. In this section, we �rst discuss the computation
of the 2� 2 GSVD for di�erent possible 2� 2 matrices Aij and Bij in exact arithmetic, and then
we will discuss the computation in the presence of
oating point arithmetic.

3.1 The 2� 2 GSVD in exact arithmetic

When A and B are processed to have upper trapezoidal forms (1.5), we see that at the (i; j)
transformation, the 2� 2 matrices A and B are of the forms5

A =

a11 a12
0 a22

!
and B =

b11 b12
0 b22

!
; (3.1)

where a11 6= 0, if A is nonzero. We have the following lemma:

Lemma 1 There exist 2� 2 rotation matrices U; V and Q, such that

~A = UTAQ =

~a11 0
~a21 ~a22

!
; ~B = V TBQ =

~b11 0
~b21 ~b22

!

is the GSVD of A and B. Moreover,
(a) ~a11 6= 0 if A is nonzero,
(b) ~b22 6= 0 if both A and B are nonzero, except that
(c) if the �rst rows of A and B are parallel and the second rows are zero, then U = V = I, and

Q can be chosen to zero the (1,2) entries of A and B simultaneously.

Proof. The proof proceeds by considering all possible cases. If B is nonsingular, the lemma
follows immediately by x2.2. If A or B is zero, the results are trivial. The remaining cases are for
B singular but not zero. This includes the following three cases, where C = A � adj(B):

(1) B =

b11 b12
0 0

!
with b11 6= 0. In this case, C =

0 a12b11 � a11b12
0 a22b11

!
�

0 c12
0 c22

!
.

If c12 = 0, i.e., the �rst row vectors of A and B are parallel, then if c22 is also equal to zero,
U = V = I . Qij is chosen to zero (1,2) entry of A and must also zero the (1,2) entry of B, yielding
the result (c). If c22 6= 0, then both U and V are chosen as permutation matrices. Q is chosen to
zero the (1,2) entry of UTA.

If c12 6= 0, then U is chosen to zero (2,2) entry of C and V = rot(0; 1). V TB has second row
nonzero. The lemma follows by choosing Q to zero (1,2) entry of UTA.

5For simplicity of exposition, we drop the subscript ij from the 2 by 2 triangular matrices Aij and Bij .

The GSVD Algorithm 6

(2) B =

0 b12
0 b22

!
with b22 6= 0. Hence C = a11

b22 �b12
0 0

!
: Then U = I , and V is chosen

to zero (1,2) entry of C, i.e. to zero the (1,2) entry of B. The lemma follows by choosing Q to zero
(1,2) entry of A.

(3) B =

0 b12
0 0

!
with b12 6= 0. We see that C =

0 �a11b12
0 0

!
. Then we can choose

U = I , V = rot(0; 1). Therefore the second row of V TB is nonzero. The lemma follows by choosing
Q to zero (1,2) entry of UTA.

It has been shown by induction (see [28, 4]) that with the properties of Lemma 1, a sweep in
row order with possible reordering takes the initial upper trapezoidal forms (1.5) of A and B into
the forms

A1 = UT
1 AQ1 =

 r n� r
r A11 0
n � r 0 0

!
; B1 = V T

1 BQ1 =

 r n � r
r B11 0
n � r B21 B22

!
; (3.2)

where A11, B11 and B22 are lower triangular, and A11, B22 are nonsingular. B11 may be singular,
but there must exist nonzero diagonal elements in the nonzero rows of B11.

>From (3.2), we see that at (i; j) transformation in column ordering, the 2� 2 matrices A and
B are lower triangular matrices, where if A is singular, then A is either the zero matrix or its
second row is zero, and moreover, if b22 = 0, then b21 = 0. By a similar argument as in Lemma
1, we can show that there are 2 � 2 orthogonal matrices U , V and Q such that ~A = UTAQ and
~B = V TBQ both are upper triangular, and the GSVD of A and B. The proof of Lemma 1 suggests
the following algorithm, where for brevity, we omit the part for lower triangular matrices.

Algorithm 1 (The 2� 2 GSVD algorithm).
form C = A � adj(B);
compute the SVD of C: UTCV = diag(�1; �2);
form the products G = UTA, H = V TB;
if A is nonzero, then

determine Q to zero out (1,2) entry of G;
else

determine Q to zero out (1,2) entry of H;
end if
~A = GQ; ~B = HQ; ~a12 = 0; ~b12 = 0;

Again, from [28, 4], at the end of the second sweep, we have A2 = UT
2 A1Q2 and B2 = V T

2 B1Q2,
such that

A2 =

0
B@
r1 r2 n � r

r1 A11 A12 A13

r2 0 A22 A23

n� r 0 0 0

1
CA; B2 =

0
B@
r1 r2 n � r

r1 0 0 0
r2 0 B22 B23

n � r 0 0 B33

1
CA; (3.3)

where A11; A22; B22 and B33 are upper triangular matrices and nonsingular, r1 + r2 = r. Hence
there is a unique (n� r1)� (n� r1) upper triangular matrix T such that

A22 A23

0 0

!
= T

B22 B23

0 B33

!
:

This implies that the rest of computation is essentially equivalent to computing the SVD of the
implicitly de�ned matrix T . By the global convergence theory of the cyclic Kogbetliantz algorithm

The GSVD Algorithm 7

(see x2.1), we have
T ! �; (3.4)

where � is a diagonal matrix, and the convergence is ultimately quadratic, provided the rotation
angles of U and V obey (2.1). (3.4) implies that there exists diagonal matrices �1 and �2 with
�2
1 +�2

2 = I , and an upper triangular matrix R, such that

A2 ! �1R; and B2 ! �2R;

which gives the desired GSVD of A and B.

3.2 The 2� 2 GSVD in Floating Point Arithmetic

In this section, we will use the usual model of
oating point arithmetic: barring over/under
ow,

(x � y) = (1 + �)(x � y) where � is one of the basic operations f+;�;�;�g and j�j � � where � is
the machine roundo�. This model eliminates machines like Crays without guard digits, but with
some e�ort all the results can be extended to these machines as well.

When using
oating point arithmetic, roundo� can cause the row vectors of ~A and ~B computed
by Algorithm 1 not to be parallel. This means ~A and ~B are not the GSVD of the 2 � 2 matrices
A and B, or in short, the algorithm is not convergent. Another possibility is that the computation
may not be backward stable, because the entries ~a12 or ~b12 (~a21 or ~b21) which are explicitly set
to zero by Algorithm 1 may be much larger than O(�)kAk and O(�)kBk, respectively.6 Thus, the
algorithms in [28, 20, 4], which use the SVD of 2 by 2 triangular matrix to guarantee convergence,
are potentially numerical unstable. On the other hand, to guarantee numerical stability, it is
suggested in [18, 6] that after computing the SVD of the 2 � 2 triangular matrix C, one uses U
(say) to form G = UTA, then determines Q such that GQ is lower triangular, and �nally determines
~V such that ~V TBQ is also lower triangular. However, in practice, UTC ~V might not be diagonal,
which results in divergence. In x5, we will present numerical examples illustrating the failures of
these schemes. In this section, we propose a new algorithm to overcome these shortcomings. We
�rst discuss the two fundamental algorithmic building blocks: SLASV2 and SLARTG.

SLASV2 computes the SVD of a 2� 2 upper triangular matrix
cu su
�su cu

!
f g
0 h

!
cv �sv
sv cv

!
=

�1 0
0 �2

!
:

Barring over/under
ow, SLASV2 computes all of cu, su, cv, sv, �1 and �2 to nearly full machine
precision. This algorithm was described brie
y in [10], but not published in its entirety. For
completeness, we include a listing of Fortran code in the appendix, and a statement and proof
sketch of its error analysis. As discussed in [10], the high accuracy of SLASV2 is based on the
fact that the algorithm uses formulas that only contain products, quotients, square roots, sums of
terms of like sign, di�erences of computed quantities only when cancellation is impossible, and the
di�erence jf j � jhj of the input data, which, if cancellation occurs, is exact7.

SLARTG(f; g; c; s; r) generates a rotation matrix rot(c; s) from f and g to zero g, i.e., c = f=r
and s = g=r, r =

p
f2 + g2, but this is subject to spurious over/under
ow if we directly compute

them from these formulas. A more robust way to compute c, s and r can be found in [17]:

6Throughout, k � k will denote the matrix 2-norm.
7This exact cancellation property, which is essential for the accuracy claim of SLASV2, requires a guard digit and

so fails on machines like the Cray. On a Cray we retain backward stability of SLASV2, but lose forward stability.
Since the proof uses forward stability of SLASV2 in an important way, it does not apply to Cray. However, there is
a more complicated proof which does work on the Cray. The reader is invited to try to �nd it.

The GSVD Algorithm 8

(handle f = 0 and g = 0 as special cases)
if jf j > jgj then

t = g=f ; tt =
p
1 + t2; c = 1=tt; s = t � c; r = f � tt

else

t = f=g; tt =
p
1 + t2; s = 1=tt; c = t � s; r = g � tt;

endif

The same techniques used to analyze SLASV2 in the appendix can be straightforwardly used to
show that the relative error in the computed c and s is bounded by 6�.

Using SLARTG and SLASV2, we present a high-level description of an algorithm for computing
the 2 by 2 GSVD. Later we will show that the proposed algorithm guarantees numerical stability
and convergence. We will use the notation jX j = (jxij j).

Algorithm GSVD22: Let A and B be 2�2 upper triangular matrices. The following algorithm
computes the orthogonal matrices U = rot(cu; su), V = rot(cv; sv) and Q = rot(cq; sq), such that

~A = UTAQ =

~a11 0
~a21 ~a22

!
; ~B = V TBQ =

~b11 0
~b21 ~b22

!

are the GSVD of A and B. For brevity, we omit the part for lower triangular matrices, which can
be described similarly.

compute C = A adj(B);
use SLASV2 to compute the SVD of C: UTCV = �;
compute G = UTA; H = V TB;
compute Ĝ = jU jT jAj; Ĥ = jV jT jBj;
/* The angles of U and V are chosen to satisfy the convergence condition (3.4). */
if jcuj � jsuj or jcvj � jsvj then

/* Choose Q to zero out (1,2) entries of UTA and V TB */
if ĝ12=(jg11j+ jg12j) � ĥ12=(jh11j+ jh12j) then

call SLARTG(�g11; g12; cq; sq; r) /* Compute Q from UTA */
else

call SLARTG(�h11; h12; cq; sq; r) /* Compute Q from V TB */
end if
~A = GQ; ~B = HQ; ~a12 = 0; ~b12 = 0.

else
/* Choose Q to zero out (2,2) entries of UTA and V TB and then swap rows. */
if ĝ22=(jg21j+ jg22j) � ĥ22=(jh21j+ jh22j) then

call SLARTG(�g21; g22; cq; sq; r) /* Compute Q from UTA */
else

call SLARTG(�h21; h22; cq; sq; r) /* Compute Q from V TB */
end if
~A = GQ; ~B = HQ; ~a22 = 0; ~b22 = 0.
/* Swap, where P = rot(0; 1) */
~A P ~A; ~B P ~B;
U UP ; V V P ;

end if

We now present a theorem about the stability and convergence of the above algorithm. Quan-
tities with bars (like �C) denote actual computed quantities.

The GSVD Algorithm 9

Theorem 2 The ~A and ~B computed by Algorithm GSVD22 have the following properties.
(a) Both are triangular;
(b) �UT �C �V is within 132�k �Ck of being diagonal.
(c) The rows of �~A and �~B are within 87�kAk and 87�kBk, respectively, of being parallel.
(d) They are computed stably, i.e., there exist �A and �B, where k�Ak � 377�kAk and k�Bk =

377�kBk, and orthogonal U; V and Q such that

�~A = UT (A+ �A)Q; �~B = V T (B + �B)Q;

Proof. We only prove a branch of the algorithm where Q is computed from UTA and used to
zero out the (1,2) entries of UTA and V TB; the proof for the other cases is similar. We will also
leave some of the more tedious details of error analysis to the ambitious reader.

We �rst note the following facts about the algorithm:

Fact 1. �C = (A + �A1) � adj(B + �B1) where �A1 and �B1 are small componentwise relative
perturbations of A and B:

�C =

"
a11b22(1 + �1) �a11b12(1 + 2�2) + a12b11(1 + 2�3)

0 a22b11(1 + �4)

#
=

"
a011b22 �a011b012 + a012b

0
11

0 a22b
0
11

#

where a011 = a11(1 + �1), b011 = b11(1 + �4), a012 = a12(1 + 2�3)=(1 + �4) and
b012 = b12(1 + 2�2)=(1 + �1). (The �i are independent quantities bounded in magnitude by
the machine precision �.) So there is at most a 3 ulp perturbation in any entry, and also
k�A1k � 4�kAk and k�B1k � 4�kBk.

Fact 2. The computed �U and �V from SLASV2 satisfy �U = U + �U , �V = V + �V , where UT �CV is
the exact SVD of �C and �U (�V) is a small componentwise relative perturbation of U (V),
bounded by 46:5" in each component (see the proposition in the appendix). This also implies
k�Uk � p2 � 46:5� < 66� and k�V k < 66�.

Fact 3. The error in the �gij (�hij) is bounded by 48:5��̂gij (48:5�
�̂
hij). In the factor 48:5, 2 comes

from the roundo� in computing
(UTA) or
(V TB), and 46:5 comes from the errors in U

and V .

Fact 4. Using simple geometry, one can show that changing f to f + �f and g to g + �g can
change c = f=

p
f2 + g2 and s = g=

p
f2 + g2 to c + �c and s + �s, respectively, wherep

�c2 + �s2 � 2((�f2 + �g2)=(f2 + g2))1=2.

Fact 5. Subroutine SLARTG computes c = f=
p
f2 + g2 and s = g=

p
s2 + g2 with relative errors

bounded by 6�. This means the 2 by 2 matrix rot(c; s) has an error bounded in norm byp
2 � 6� < 9�.

Fact 6. If X and Y are 2-by-2 matrices, then k
(X � Y)�X � Y k � 4 � � � kXk � kY k.

We note that triangularity (a) holds by construction. We prove (b) as follows. Near diagonality
of �UT �C �V holds by the high accuracy of �U and �V :

�UT �C �V = (U + �U)T �C(V + �V) = UT �CV + F1

where Fact 2 tells us that to �rst order in �

kF1k � k�UT �CV k+ kUT �C�V T k � 66�k �Ck+ 66�k �Ck = 132�k �Ck:

The GSVD Algorithm 10

Next we prove assertion (c). The top rows of �~A and �~B are trivially parallel by construction
(their second components are zero), so we only consider the bottom rows. We know by construction
that the bottom rows of UT (A+ �A1) and V

T (B + �B1) are parallel. Thus the bottom rows of

�G =
(�UTA) = �UTA+ F2 = (UT + �UT)(A+ �A1 � �A1) + F2 = UT (A+ �A1) + F3

and �H = V T (B + �B1) + F4 are within kF3k � 74�kAk and kF4k � 74�kBk, respectively, of being
parallel. Here we have used Facts 1, 2 and 6.

So for any �Q = Q+ �Q that is within 9� in norm of an orthogonal matrix Q, the bottom rows

of �~A and �~B are the same as the bottom rows of

(�G �Q) = �G �Q + F5 = (UT (A+ �A1) + F3)(Q+ �Q) + F5 = UT (A+ �A1)Q+ F6

and
(�H �Q) = V T (B + �B1)Q+ F7, which are within kF6k � 87�kAk and kF7k � 87�kBk of being
parallel; we have used our bounds on kF3k and kF4k, and Facts 5 and 6. This proves assertion (c).

Let �a = �̂g12�=(j�g11j + j�g12j), and �b =
�̂
h12�=(j�h11j + j�h12j). Then �a (�b) is an approximate

bound on relative error of Q if it is computed from UTA (V TB). In the branch of the algorithm
we consider, �a � �b, and the algorithm chooses to compute Q from UTA. The remarkable fact is
that even if �� �a, so that the forward error in Q is large, the backward error in B is small.

To �nally prove this assertion (d), we need to show the (1,2) entry of
(�H �Q), which is zeroed
out to get ~B, is at most 286�kBk. (Q is chosen to accurately zero out the (1,2) entry of
(�G �Q).)
Earlier we showed that �h11 = h11 + 74�8kBk and �h12 = h12 + 74�9kBk, where h11 and h12 are the
exact entries of V T (B + �B1). Now write �cq = cq + �cq and �sq = sq + �sq, where cq and sq are the
exact cosine and sine computed from UT (A+ �A1). Then

j
((�H �Q)12)j = j(h11 + 76�10kBk)(sq + �sq) + (h12 + 76�11kBk)(cq + �cq)j
= j(h11sq + h12cq) + (h11�sq + h12�cq) +

p
2 � 76�12kBk)j

� jh11j j�sqj+ jh12j j�cqj+ 108�kBk (3.5)

There are two cases, �a < � and �a � �. In the �rst case, we will show �sq and �cq are both
bounded by 175�, and so j
((�H �Q)12)j � 286�. To see this, use Fact 3 to write

(48:5��̂g11)
2 + (48:5��̂g12)

2 = (48:5��g11)
2 + (48:5��̂g12)

2 � (48:5�)2(�g211 + (j�g11j+ j�g12j)2)

so by Facts 4 and 5,
q
j�sqj2 + j�cqj2 can be at most

9�+ 2 � 48:5�

�g211 + (j�g11j+ j�̂g12j2)

�g211 + �g212

!1=2
� 178� :

Now we use this bound in inequality (3.5) to get j
((�H �Q)12)j � 286� as desired.

In the second case, we bound
q
j�sqj2 + j�cqj2 by

9� + 2

48:52((��g11)

2 + (�a(j�g11j+ j�g12j))2)
�g211 + �g212

!1=2

� 178�a :

Plugging in to inequality (3.5) and using

j�h11j+ j�h12j = �

�b

�̂
h12 � �kBk

�b

The GSVD Algorithm 11

yields the upper bound

j
((�H �Q)12)j � (jh11j+ jh12j) � 178�a + 108�kBk � �kBk
�b
� 178�a + 108�kBk = 286�kBk

as before, since �b � �a.
This means that we can write the �nal output

�~B = V T (B + �B1)Q+ F7 + F8 = V T (B + �B1 + V F7Q
T + V F8Q

T)Q � V T (B + �B)Q

where F8 zeroes out the (1,2) entry of
�~B and leaves the others unchanged. We just showed kF8k �

286�kBk and combing this with our earlier bounds of kF7k � 87�kBk and k�B1k � 4�kBk yields the
�nal result k�Bk � 377�kBk. We can similarly show that �~A = UT (A+�A)Q with k�Ak � 107�kAk,
using the fact that Q is computed to directly zero out the (1,2) entry of

�~A. This complete the proof
of assertion (d).

The constants in these error bounds could doubtless be decreased by a more detailed analysis.

4 Summary of the Complete Algorithm

In this section, we present a high-level description of our version of Paige's algorithm for computing
the GSVD of two upper triangular matrices A and B of the forms (1.5). Let � be a user chosen
parameter specifying the maximum number of cycles the algorithm may perform (say, � = 20). Let
Pij be the identity matrix with rows i and j interchanged.

Algorithm GSVD

/* Initialization */
cycle := 0;
� := r + q + 1; /* r and q are de�ned in (1.5) */
U := I ; V := I ; Q := I if desired;
/* Main loop */
if nonconvergence and cycle � � do

cycle := cycle+ 1;
do (i; j)-loop

/* 2� 2 GSVD */
Use GSVD22 to �nd Uij ; Vij; Qij from aii, aij, ajj and bii, bij, bjj;
/* Updating */
A := UT

ijAQij;

B := V T
ij BQij ;

U := UUij ; V := V Vij; Q := QQij if desired;
/* reordering */
if the (j; j) entry of B is nonzero, where j > l, then

A := AP�j;
B := P�jBP�j ;
V := V V�j ; Q := QP�j if desired;
� := � + 1;

end if
end of (i; j)-loop
convergence test if cycle is even.

end if
compute �i and �i.

The GSVD Algorithm 12

The (i; j)-loop can be simply chosen as the standard cyclic pivot sequence. It is natural to use
the parallelism (linear dependency) of the corresponding row vectors of A and B at the end of an
even cycle as the stopping criterion of the iteration. To measure the parallelism of two k-vectors a
and b to high accuracy and despite possible over/under
ow, we propose the following scheme: �rst

compute the QR factorization of the k � 2 matrix
�

a
kak ;

b
kbk

�
:

QT
�
a

kak ;
b

kbk
�
=

0
B@ �11 �12

0 �22
0 0

1
CA ;

and then compute the singular values
1 �
2 � 0 of the 2 � 2 upper triangular (�ij). It is clear
that

par(
a

kak ;
b

kbk) �
2
measures the parallelism of these two vectors. Vectors a and b are exactly parallel i�
2 = 0.

Using the above described scheme as the stopping criterion in Algorithm GSVD, let ai and bi
be the i-th row vectors of A and B, respectively, at the end of an even cycle. For a given tolerance
value � , we take

error =
nX
i=1

par(
ai
kaik ;

bi
kbik) � n�:

This means that there are perturbations of size at most n�kaik in row ai and n�kbik in row bi that
makes them exactly parallel. This means that after making these perturbations, there would exist
scalars �i and �i such that

�iai = �ibi; i = 1; : : : ; n; (4.1)

where �i and �i can be chosen so that �2i + �2i = 1. From (4.1), it is seen that there is an upper
triangular matrix R, such that

UTAQ = diag(�i)R; V TBQ = diag(�i)R;

which is the desired GSVD of matrices A and B, where �i and �i are the GSV pairs.

5 Numerical Experiments

The numerical experiments we discuss here �rst compare Algorithm GSVD22 with previous algo-
rithms developed by Paige [28], Heath et at [20], Bai [4], Hammarling [18] and Bojanczyk et al [6].
Then we will evaluate Algorithm GSVD for di�erent cases of random matrices A and B, measuring
the backward stability, accuracy, average total number of sweeps, rate of convergence, elapsed time
when computing GSV pairs only, or both GSV pairs and transformation matrices.

All tests were performed using FORTRAN 77 on a SUN sparc station 1+. The arithmetic
was IEEE standard double precision [1], with a machine precision of � = 2�53 � 10�16 and
over/under
ow threshold 10�307. We use � = 10�14 as the stopping criterion.

5.1 Backward Stability and Accuracy

Before we proceed, it is appropriate to state what we mean by the backward stability and the
accuracy of Algorithm GSVD. The backward stability is de�ned as follows: Let the computed
orthogonal matrices be �U , �V and �Q, the diagonal matrices be ��1 and ��2, and the upper triangular
matrix be �R. Then the following conditions should be satis�ed:

k �UT �U � IkF � �; k �V T �V � IkF � �; k �QT �Q� IkF � �; (5.1)

The GSVD Algorithm 13

k �UTA �Q� ��1
�RkF � n�kAkF; k �V TB �Q � ��2

�RkF � n�kBkF; (5.2)

where k � kF is Frobenius norm. These assertions say that to within roundo� error, the computed
matrices �U , �V and �Q are orthogonal, and the rows of �UTA �Q and �V TB �Q are parallel.

The accuracy test of computed GSV pairs by Algorithm GSVD is based on Sun and Paige's
perturbation bound of the GSV pairs [32, 26], which says that: if rank(G) = rank(~G) = n, where
G = (AT ; BT)T , and ~G = (~AT ; ~BT)T = ((A + E)T ; (B + F)T)T , and the GSV pairs (�i; �i) of A
and B, and (~�i; ~�i) of ~A and ~B are ordered as in (1.4), respectively, then we havevuut nX

i=1

[(�i � ~�i)2 + (�i � ~�i)2] �
p
2minfkGyk2; k ~Gyk2g

E

F

!

F

: (5.3)

If we generate the matrices A and B with known GSV pairs, then the above perturbation bound
can be used to measure the accuracy of the computed GSV pairs.

5.2 The numerical comparison of di�erent 2� 2 GSVD algorithms

Several versions have been proposed for computing the 2 by 2 GSVD. There are essentially two
kinds of schemes:

Scheme I: First compute the SVD of C = A � adj(B): UTCV = �, then form the product of
G = UTA and H = V TB, and �nally compute Q from G such that the (1,2) or (2,1) entry of GQ
is zero. Mathematically, it is known that the (1,2) or (2,1) entry of HQ is automatically zero. The
algorithms proposed by Paige [28], Heath et al [20], and Bai [4] fall in this category.

Scheme II: First compute the SVD of C = A � adj(B): UTCV = �, form the product of
G = UTA, compute Q so such the (1,2) or (2,1) entry of GQ is zero, and �nally compute V to zero
out the (1,2) or (2,1) entry of BQ. The algorithms proposed by Hammarling [18] and Bojanczyk
et al [6] fall in this category.

To demonstrate the failure of the �rst kind of scheme, the following example shows that in �nite
precision, the (1,2) or (2,1) entry of the �nal B may be much larger than O(�)kBk:

A =

2 0
1 10�8

!
; B =

1 0
3 1

!
:

With the scheme described by Paige [28], Heath et al [20] and Bai [4], for the computed �U , �V and
�Q, we have

�UTA �Q =

�a1
�a2

!
=

0:70710677509009934E+ 00 0:21213203455917919E+ 01
0:00000000000000000E+ 00 0:28284271491319831E� 07

!
;

�V TB �Q =

�b1
�b2

!
=

0:31622776518779000E+ 00 0:94868330465141837E+ 00
�0:33959487444334968E� 08 0:31622776582710133E+ 01

!
:

If we now set the (2,1) entry of �B = �V TB �Q to zero, the backward stability condition (5.2) is
violated for matrix B, even though

�UTC �V =

0:22360679640833827E+ 01 0:00000000000000000E+ 00
0:17888543605335784E� 16 0:89442719636647925E� 08

!
:

To show how Scheme II can fail for the same example, using Hammarling's method [18], we have

�UTA �Q =

�a1
�a2

!
=

0:70710677509009934E+ 00 0:21213203455917919E+ 01
0:00000000000000000E+ 00 0:28284271491319831E� 07

!
;

�V TB �Q =

�b1
�b2

!
=

�0:31622776518778994E+ 00 �0:94868327069193081E+ 00
0:11102230246251565E� 15 �0:31622776684588585E+ 01

!
:

The GSVD Algorithm 14

Thus the stability is achieved, but for the computed �U and �V , we have

�UTC �V =

�0:22360679640833823E+ 01 �0:24012983681642603E� 07
0:78163392273857838E� 16 �0:89442719636647908E� 08

!

which is not within O(�)kCk of diagonal form. This means that the computed �A = �UTA �Q and
�B = �V TB �Q are not the GSVD of A and B. In fact, par(�a1

k �Ak
;

�b1
k �Bk

) � par(�a1
k�a1k

;
�b1
k�b1k

) � 7:59� 10�9 .
But using Algorithm GSVD22 in x3.2, we have

�UTA �Q =

�a1
�a2

!
=

0:70710677736817096E+ 00 0:21213203448324349E+ 01
0:30374288814267665E� 16 0:28284271491319831E� 07

!
;

�V TB �Q =

�b1
�b2

!
=

0:31622776620657461E+ 00 0:94868330431182346E+ 00
0:00000000000000000E+ 00 0:31622776582710133E+ 01

!
;

and

�UTC �V =

0:22360679640833827E+ 01 0:00000000000000000E+ 00
0:17888543605335784E� 16 0:89442719636647925E� 08

!
:

Thus both stability and convergence conditions are satis�ed, where par(�a1
k �Ak

;
�b1
k �Bk

) � par(�a1
k�a1k

;
�b1
k�b1k

) �
7:02� 10�17.

Recently, Bojanczyk et al [6] proposed a variation of Scheme II, which we refer to as the BELV
scheme. The BELV scheme was originally designed for treating a matrix-triple (A1; A2; A3). It is
easy to see that the 2� 2 GSVD of two matrices is a special case when one of the matrices (say, A3

is the identity). The BELV scheme does signi�cantly improve Hammarling's method, but it still
su�ers from possible nonconvergence. For example, using the BELV scheme, we see that for the
following 2� 2 matrices

A =

100000 10000

0 0:0001

!
; B =

100000 10000:0000000001

0 0:003

!
;

the computed orthogonal matrices �U , �V and �Q by BELV scheme satisfy the stability conditions
(5.1) and (5.2):

�UTA �Q =

�a1
�a2

!
=

0:99503719020998935E� 04 �0:12189168086858831E� 03
0:00000000000000000E+ 00 0:10049875621120891E+ 06

!

�V TB �Q =

�b1
�b2

!
=

0:29851115706299699E� 02 �0:36499576550546638E� 02
0:00000000000000000E+ 00 0:10049875621120886E+ 06

!

However, the computed �U and �V do not diagonalize the matrix C:

�UTC �V =

0:99999999999999964E+ 01 �0:67590597725531451E� 09
0:20277179317658482E� 07 0:30000000000000023E+ 03

!
;

since the o�-diagonal elements are much larger8 than O(�)kCk � 10�14, par(�a1
k�a1k

;
�b1
k�b1k

) = 6:44 �
10�4, and even par(�a1

k �Ak
;

�b1
k �Bk

) = 1:43� 10�12, so that the �rst rows of �A and �B are not parallel.

8In [6] it is proven that the o� diagonal elements should be O(�)kAk kBk � 10�6, which is attained. Since
kCk = kA adj(B)k � kAk kBk, our bound is much tighter.

The GSVD Algorithm 15

But Algorithm GSVD22 yields

�UTA �Q =

�a1
�a2

!
=

�0:10049875621120894E+ 06 0:00000000000000000E+ 00
�0:12189168086858835E� 03 �0:99503719020998963E� 04

!

�V TB �Q =

�b1
�b2

!
=

�0:10049875621120886E+ 06 �0:18189894035458565E� 11
�0:36567504260576521E� 02 �0:29851115706299699E� 02

!

and

�UTC �V =

0:30000000000000028E+ 03 0:16940658945086007E� 20
0:00000000000000000E+ 00 0:99999999999999982E+ 01

!

with par(�a1
k �Ak

;
�b1
k �Bk

) = par(�a1
k�a1k

;
�b1
k�b1k

) = 0, and par(�a2
k �Ak

;
�b2
k �Bk

) < par(�a2
k�a2k

;
�b2
k�b2k

) = 1:72� 10�16.

The above examples show that Algorithm GSVD22 is superior to all previous schemes.

5.3 Test matrix generation for testing backward stability

To test the backward stability of Algorithm GSVD, we used the LAPACK test matrix generation
suite [11] to generate di�erent types of upper triangular matrices A and B. The conditioning of a
generated upper triangular matrix can be controlled by the following parameters:

dist speci�es the type of probability distribution to be used to generate the random matrices:

= U: uniform distribution on (0, 1);

= S: uniform distribution on (-1, 1);

= N: normal distribution on (0, 1).

cond speci�es the reciprocal of the condition number of generated matrix, cond � 1.

mode describes how the singular values di of generated matrix are to be distributed:

= 1: sets d1 = 1 and di = 1=cond, i = 2; : : : ; n;

= 2: sets di = 1, i = 1; : : : ; n� 1 and dn = 1=cond;

= 3: sets di = cond�(i�1)=(n�1), i = 1; : : : ; n;

= 4: sets di = 1� i�1
n�1

�
1� 1

cond

�
, i = 1; : : : ; n;

= 5: sets di to random in (1/cond , 1), their logarithms are uniformly distributed;

= 6: sets di to random numbers from same distribution as the rest of the matrix.

We generated 12 separate classes of upper triangular matrices A and B according to di�erent
choices of parameters dist, cond and mode, since this allows us to form di�erent types of matrices
to fairly test the behavior of the algorithm. The 12 classes are listed in Table 5.1. Thus classes
1 to 6 consist of well-conditioned matrices B, and the conditioning of matrix A is changed from
well to ill-conditioned. Classes 7 to 10 consist of well-conditioned matrices A and the conditioning
of matrix B is changed from moderate to ill-conditioned. Classes 11 and 12 consist of moderately
conditioned matrices A and B.

5.4 Test Results

We tested the above 12 classes of matrix pairs of dimension of n = 5; 10; 20; 50. In each class of
dimension 5 we generated 401 matrix pairs, in each class of dimension 10 we generated 301 matrix
pairs, in each class of dimension 20 we generated 201 matrix pairs, and in each class of dimension
50 we generated 101 matrix pairs. This makes a total of 12,048 test matrix pairs.

The GSVD Algorithm 16

A B

class dist cond mode dist cond mode

1 U 10 6 U 10 6
2 U 102 2 S 10 6
3 U 105 1 N 10 5
4 S 108 3 S 10 6
5 S 1012 4 U 10 5
6 S 1014 4 N 10 6
7 N 10 6 N 105 1
8 N 10 6 U 108 2
9 N 10 6 S 1012 2
10 S 10 6 N 1014 4
11 S 105 4 N 105 4
12 S 103 3 N 104 4

Table 5.1: Test matrices

Class 1 2 3 4 5 6 7 8 9 10 11 12

n 5 2.29 2.40 2.02 2.00 2.19 2.18 2.07 2.05 2.00 2.12 2.01 1.93
10 3.00 3.01 2.99 2.01 3.01 3.00 2.97 3.01 2.00 2.99 3.00 2.00
20 3.26 3.50 3.07 2.19 3.53 3.30 3.05 3.21 2.98 3.23 3.21 2.20
50 4.00 4.01 3.99 3.00 4.00 4.00 3.89 4.01 3.00 4.00 4.00 3.00

Table 5.2: Average Number of double sweeps

Table 5.2 illustrates the average number of double sweeps required to converge with the tolerance
value � = 10�14, where a double sweep consists of a sweep of row ordering and a sweep of column
ordering. None of 12,048 test matrix pairs failed to converge. The observed largest number of
double sweeps required to converge was 5. The backward stability conditions (5.1) and (5.2) held
throughout the test. The following quadratic convergence rate of the algorithm is typical of what
we observed:

cycle 2 4 6 8

error =
Pn

i=1 par(ai; bi) 1.5094 1:0252 � 10�2 9:4356 � 10�9 6:4874 � 10�16

where A and B are 50� 50 matrices, the condition numbers for both matrices are about 104.

5.5 Test matrix generation for testing accuracy.

To test accuracy of Algorithm GSVD, we generated random matrices A and B with known GSV
pairs. Speci�cally, let �1 = diag(�i) and �2 = diag(�i) be the given GSV pairs. Then we generated
random orthogonal matrices U; V and Q uniformly distributed with respect to Haar measure, and
a random upper triangular matrix R with speci�ed smallest singular value, and �nally formed

A = U�1RQ
T and B = V �2RQ

T : (5.4)

Hence the GSV pairs of A and B are known to be (�i, �i).

The GSVD Algorithm 17

Type �i, �i �min(R)
double sweeps for di�erent n

�1

5 10 20 40

1 U(0,1), U(0,1) 10 2.28 3.02 3.53 4.02 1:51 � 10�14
10�6 2.02 3.00 3.23 4.00 1:21 � 10�15
10�12 2.07 3.04 3.45 4.21 8:64 � 10�15

2 1=i2; 1 10 2.01 2.62 3.00 3.00 2:56 � 10�15
10�6 2.00 2.61 3.00 3.00 2:65 � 10�15
10�12 2.00 2.61 3.00 3.10 9:99 � 10�15

3 i; 1 10 2.48 3.06 3.99 4.06 2:52 � 10�14
10�6 2.07 3.01 3.99 4.02 9:71 � 10�15
10�12 2.75 3.38 4.01 4.53 3:89 � 10�16

4 1 +mod(i; n=4 + 1); 1 10 1.03 2.03 3.00 4.00 7:33 � 10�14
10�6 1.00 2.26 3.04 4.02 5:11 � 10�15
10�12 1.08 3.51 3.50 4.59 1:95 � 10�15

5 1� i�1
n�1(1� 1

cond
); 1 10 2.06 3.00 3.55 4.14 3:29 � 10�14

10�6 2.01 3.01 3.62 4.18 4:23 � 10�15
10�12 2.01 3.01 3.62 4.20 6:05 � 10�15

6 1; cond�(i�1)=(n�1) 10 2.28 3.00 3.28 4.00 1:51 � 10�14
10�6 2.00 2.77 3.00 3.17 2:98 � 10�16
10�12 2.00 2.00 3.00 3.20 1:14 � 10�15

Table 5.3: Average double sweeps and accuracy of computed GSV pairs

In this way we can generate random test matrices having any distribution of the GSV pairs,
and

kGyk�12 = �min(G) = �min(R):

Hence �min(R) (the smallest singular value) gives the conditioning of the designed test matrix pair.
If ��i and ��i are computed the GSV pairs by Algorithm GSVD, then the quantity

�1 �
(

nX
i=1

[(�i � ��i)
2 + (�i � ��i)

2]

)1=2

�min(R) (5.5)

should be O(�), where � = 10�14 is our stopping criterion.
We designed six di�erent distributions of the GSV pairs as illustrated in the second column

of Table 5.3, where �i and �i are normalized so that �2i + �2i = 1 for i = 1; : : : ; n if necessary,
(U(0,1),U(0,1)) means that GSV pairs (�i; �i) comes from the normalization of a pair of random
numbers from a uniform distribution on the interval (0,1). cond is the reciprocal of the smallest
singular value of the matrix R in (5.4). Note that some of the distributions of GSV are well
separated, some of them are highly clustered or multiple.

5.6 Test Results

We generated several categories of matrix pairs according to three parameters: the dimension n,
the smallest singular value of R (�min(R)), and the type of distribution of GSV. We �rst separated
test matrices with three possible values of �min(R) = 1; 10�6; 10�12, i.e., corresponding to well,

The GSVD Algorithm 18

moderately, and ill-conditioned GSVD problems. For each �min(R), we tested matrices of dimension
n = 5; 10; 20; 40 with six di�erent distributions of GSV pairs as showed in table 1. This makes a
total of 3� 4� 6 = 72 di�erent classes of matrices. In each class of dimension 5 we generated 301
matrices, in each class of dimension 10 we generated 201 matrices, in each class of dimension 20 we
generated 101 matrices, and in each class of dimension 40 we generated 51 matrices, for a total of
10,772 test matrix pairs.

Table 5.3 illustrates the average number of double sweeps and accuracy of the algorithm for
di�erent size of matrices. The preprocessing orthogonal transformations of A and B to upper
trapezoidal forms (1.5) are performed using LINPACK QR decomposition subroutine DQRDC
[12]. In all tests, the backward stability conditions (5.1) and (5.2) are satis�ed, so we do not report
the details here. Given the backward stability, we can assume that the backward errors E of A
and F of B satisfy O(kEk; kFk) = O(10�14). For each type of GSV distribution, we let the
conditioning (i.e., �min(R)) of the GSVD problems vary from well to moderate to ill-conditioned,
as indicated in column 3 of Table 5.3. The numbers in column 4 to 7 are the average numbers
of double sweeps needed for convergence. The last column of the table is the largest value of �1

computed from the formula (5.5). We see that all computed results are as accurate as predicted.
Finally, we brie
y report timing results. The codes have not been polished intensively in order

to reduce the execution time. The following table illustrates the required time for a 50 by 50 matrix
pair A and B with 5 double sweeps to satisfy the stopping criterion.

Timing in seconds with � = 10�14

without U , V , Q with U , V , Q

preprocessing 0.28 1.11
iteration 13.11 20.99

Appendix: The SVD of 2� 2 Triangular Matrix

In this appendix, for the convenience of the reader, we include Demmel and Kahan's 2 by 2
triangular SVD algorithm. The algorithm was used in their high relative accuracy bidiagonal
SVD algorithm [10], but the algorithm details were not presented there.

It is known that the singular values of the 2 by 2 upper triangular matrix

f g

0 h

!
are the

values of the unobvious expression 1
2 j
p
(f + h)2 + g2�p(f � h)2 + g2j, of which the bigger is
1 and

the smaller is
2 = jfhj=
1. The right singular vector row (�sv ; cv) turns out to be parallel to (f2�

21 ; fg). After computing a right singular vector, the corresponding left singular vector is determined
by (cu; su) = (fcv + gsv; hsv)=
1. But computing the singular values/vectors directly from these
expressions is unwise because roundo� can destroy all relative accuracy, and they can su�er from
over/under
ow in the squared subexpressions even when the singular values/vectors are far from
over/under
ow thresholds. Demmel and Kahan have carefully reorganized the computation as
described in the following so that barring over/under
ow and assuming a guard digit in subtraction,
all output quantities are correct to within a few units in the last place (ulps). In IEEE arithmetic
[1], the code works correctly even if one matrix entry is in�nite. Over
ow is impossible unless the
largest singular value itself over
ows, or is within a few ulps of over
ow. (On machines with partial
over
ow, like the Cray, over
ow may occur if the largest singular value is within a factor of 2 of
over
ow.) Under
ow is harmless if under
ow is gradual. Otherwise, results may correspond to a
matrix modi�ed by perturbations of size near the under
ow threshold.

The error analysis of the main path of the code depends on the fact that all the operations
except two are

The GSVD Algorithm 19

multiplication and division, where the relative error of the result is at most 1 ulp larger
than the sum of the relative errors of the inputs,

addition of positive quantities, where the relative error of the result is at most 1 ulp
larger than the maximum of the relative errors of the inputs, and

square root, where the relative error of the result is at most 1 ulp more than half the
relative error of the input.

There are also two subtractions in the main code path. The �rst subtracts original data D = FA-HA,
and so has a 1 ulp error. In the second, T=2-L with 0 � L � 1, the relative error in T can only
be 1 ulp larger than the relative error in L. These rules are su�cient to straightforwardly bound
the error in the main code path, provided we ignore second order terms. There is another path
corresponding to the case where the o�diagonal g is much larger than the other two matrix entries,
which is analyzed much more easily. Summarizing all these considerations we can easily prove the

Proposition. Barring over/under
ow, and assuming there is a guard digit in subtraction, the
relative errors in the computed singular values are at most 7 ulps, and the relative errors in the
computed singular vectors are at most 46.5 ulps in each component.

The comments in the following code indicate the error bound in ulp of each computed quantity.

SUBROUTINE SLASV2(F, G, H, SSMIN, SSMAX, SNR, CSR, SNL, CSL)
REAL CSL, CSR, F, G, H, SNL, SNR, SSMAX, SSMIN

C
C Computes singular value decomposition of 2 by 2 triangular matrix:
C [CSL SNL] . [F G] . [CSR -SNR] = [SSMAX 0]
C [-SNL CSL] [0 H] [SNR CSR] [0 SSMIN]
C Absolute value of SSMAX is larger singular value, Absolute value of SSMIN
C is smaller singular value. Both CSR**2+SNR**2=1 and CSL**2+SNL**2=1.
C
C .. Parameters ..

REAL ZERO, HALF, ONE, TWO, FOUR
PARAMETER (ZERO = 0.0, HALF = 0.5, ONE = 1.0, TWO = 2.0, FOUR = 4.0)

C .. Local Scalars ..
LOGICAL GASMAL, SWAP
INTEGER PMAX
REAL A, CLT, CRT, D, FA, FT, GA, GT, HA, HT, L, M,
REAL MM, R, S, SLT, SRT, T, TEMP, TSIGN, TT

C .. Intrinsic Functions ..
INTRINSICABS, SIGN, SQRT

C
FT = F
FA = ABS(FT)
HT = H
HA = ABS(H)
PMAX = 1 /* PMAX points to maximum absolute entry of matrix */
SWAP = (HA.GT.FA)
IF(SWAP) THEN

PMAX = 3
TEMP = FT
FT = HT
HT = TEMP
TEMP = FA
FA = HA
HA = TEMP

END IF /* Now FA .ge. HA */
GT = G
GA = ABS(GT)
IF(GA.EQ.ZERO) THEN /* Diagonal matrix */

SSMIN = HA
SSMAX = FA
CLT = ONE
CRT = ONE
SLT = ZERO
SRT = ZERO

ELSE
GASMAL = .TRUE.
IF(GA.GT.FA) THEN

PMAX = 2
IF(ABS(FA / GA).LE.EPS) THEN /* Case of very large GA, EPS is machine epsilon */

GASMAL = .FALSE.
SSMAX = GA /* 1 ulp error */
IF(HA.GT.ONE) THEN

SSMIN = FA / (GA / HA) /* 2 ulps error */
ELSE

SSMIN = (FA / GA)*HA /* 2 ulps error */
END IF
CLT = ONE /* 1 ulp error */
SLT = HT / GT /* 1 ulp error */
SRT = ONE /* 1 ulp error */
CRT = FT / GT /* 1 ulp error */

END IF

The GSVD Algorithm 20

END IF
IF(GASMAL) THEN /* Normal case */

D = FA - HA /* 1 ulp error */
IF(D.EQ.FA) THEN /* Copes with in�nite F or H */

L = ONE /* 0 ulps error */
ELSE

L = D / FA /* 2 ulps error */
END IF /* Note that 0 � L � 1 */
M = GT / FT /* 1 ulp error; Note that jMj � 1/EPS */
T = TWO - L /* 3 ulps error; Note that T � 1 */
MM = M*M /* 3 ulps error */
TT = T*T /* 7 ulps error */
S = SQRT(TT+MM) /* 5 ulps error; Note that 1 � S � 1 + 1/EPS */
IF(L.EQ.ZERO) THEN

R = ABS(M) /* 0 ulps error */
ELSE

R = SQRT(L*L+MM) /* 3.5 ulps error */
END IF /* Note that 0 � R � 1 + 1/EPS */
A = HALF*(S+R) /* 6 ulps error; Note that 1 � A � 1 + jMj */
SSMIN = HA / A /* 7 ulps error */
SSMAX = FA*A /* 7 ulps error */
IF(MM.EQ.ZERO) THEN /* Note that M is very tiny */

IF(L.EQ.ZERO) THEN
T = SIGN(TWO, FT)*SIGN(ONE, GT) /* 0 ulps error */

ELSE
T = GT / SIGN(D, FT) + M / T /* 6 ulps error */

END IF
ELSE

T = (M / (S+T)+M / (R+L))*(ONE+A) /* 17 ulps error */
END IF
L = SQRT(T*T+FOUR) /* 18.5 ulps error */
CRT = TWO / L /* 19.5 ulps error */
SRT = T / L /* 36.5 ulps error */
CLT = (CRT+SRT*M) / A /* 46.5 ulps error */
SLT = (HT / FT)*SRT / A /* 45.5 ulps error */

END IF
END IF
IF(SWAP) THEN

CSL = SRT
SNL = CRT
CSR = SLT
SNR = CLT

ELSE
CSL = CLT
SNL = SLT
CSR = CRT
SNR = SRT

END IF
C Correct the signs of SSMAX and SSMIN

IF(PMAX.EQ.1) TSIGN = SIGN(ONE, CSR)*SIGN(ONE, CSL)*SIGN(ONE, F)
IF(PMAX.EQ.2) TSIGN = SIGN(ONE, SNR)*SIGN(ONE, CSL)*SIGN(ONE, G)
IF(PMAX.EQ.3) TSIGN = SIGN(ONE, SNR)*SIGN(ONE, SNL)*SIGN(ONE, H)
SSMAX = SIGN(SSMAX, TSIGN)
SSMIN = SIGN(SSMIN, TSIGN*SIGN(ONE, F)*SIGN(ONE, H))
RETURN
END

Acknowledgement The authors are grateful to S. Hammarling and W. Kahan for valuable com-
ments. We would also like to express thanks to the referees, whose comments led to improvement
in the presentation.

References

[1] IEEE Standard for Binary Floating Point Arithmetic. ANSI/IEEE, New York, Std 754-1985
edition, 1985.

[2] Z. Bai, Note on the quadratic convergence of Kogbetliantz algorithm for computing the singular
value decomposition, Lin. Alg. Appl., 104:131{140(1988).

[3] Z. Bai, Numerical treatment of restricted Gauss-Markov linear model, Comm. Statis. B17
2:131{140(1988).

[4] Z. Bai, The direct GSVD algorithm and its parallel implementation. Ph.D. thesis, Fudan
University, China, 1987. Also available as Comput. Sc. TR-1901, Univ. of Maryland, College
Park,1987

The GSVD Algorithm 21

[5] J. L. Barlow, Error analysis and implementation aspects of deferred correction for equality
constrained least squares problems. SIAM J. Numer. Anal., 25:1340{1358(1988).

[6] A. W. Bojanczyk, M. Ewerbring, F. T. Luk and P. van Dooren, An accurate product SVD
algorithm, in SVD and Signal Processing, II, Algorithms, Analysis and Applications, R. J.
Vaccaro ed. Elsevier Sci. Publishers, B.V. 1991.

[7] J. P. Charlier and P. Van Dooren, On Kogbetliantz's SVD algorithm in the presence of Clusters,
Lin. Alg. Appl. 95:136{160(1987).

[8] B. L. R. De Moor and G. H. Golub, Generalized Singular Value Decompositions: A proposal
for a standardized nomenclature, Manuscript NA-89-05, Stanford Univ. , Stanford, CA, 1989

[9] B. L. R. De Moor and H. Zha, A tree of generalizations of the ordinary singular value decom-
position, ESAT-SISTA report 1989-21, Katholieke Universiteit Leuven, Belgium.

[10] J. Demmel and W. Kahan, Accurate Singular Values of Bidiagonal Matrices, SIAM J. Sci.
Stat. Comput. 11:873{912(1990).

[11] J. Demmel and A. Mckenney, A test matrix generation suite, LAPACK working notes # 9,
MCSD, Argonne National Lab. 1989.

[12] J. J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart, LINPACK User's Guide, SIAM,
Philadelphia, PA, 1978.

[13] L. M. Ewerbring and F. T. Luk, Canonical correlations and generalized SVD: Applications
and New Algorithms, J. Comput. Appl. Math. 27:37-52(1989).

[14] K. V. Fernando, Linear convergence of the row cyclic Jacobi and Kogbetliantz methods, Numer.
Math. 56:73{91(1989).

[15] K. V. Fernando and S. J. Hammarling, A product induced singular value decomposition for
two matrices and balanced realization, in Linear Algebra in Signals Systems and Control, B.
N. Datta et al eds. SIAM, Philadelphia, PA. pp.128{140(1988).

[16] G. E. Forsythe and P. Henrici, The cyclic Jacobi method for computing the principal values
of a complex matrix. Trans. Amer. Math. Soc. 94:1{23(1960).

[17] G. H. Golub and C. F. Van Loan, Matrix Computations (2nd ed), The Johns Hopkins Univ.
Press, Baltimore, MD, 1989

[18] S. J. Hammarling, private communications, 1989.

[19] V. Hari and K. Veseli�c: On Jacobi methods for singular value decomposition, SIAM J. of Sci.
Stat. Comp. 6:741{754(1987)

[20] M. T. Heath, J. A. Laub, C. C. Paige and R. C. Ward, Computing the singular value decom-
position of a product of two matrices. SIAM J. Sci. Stat. Comput. 7:1147{1159(1986).

[21] S. V. Hu�el and J. Vandewalle, Analysis and properties of the generalized total least squares
problem AX � B when some or all columns in A are subject to error, SIAM J. Mat. Anal.
Appl. 10:294{315(1989).

[22] B. K�agstr�om, The generalized singular value decomposition and (A � �B)-problem. BIT,
24:568{583(1984).

The GSVD Algorithm 22

[23] E. G. Kogbetliantz, Solution of linear equations by diagonalization of coe�cients matrix,
Quart. Appl. Math. 13:123{132(1955).

[24] F. T. Luk and H. T. Park, On parallel Jacobi orderings, SIAM J. Sci. Stat. Comput. 10:18{
26(1989).

[25] C. C. Paige and M. A. Saunders, Towards a generalized singular value decomposition, SIAM
J. Numer. Anal. 18:398{405(1981).

[26] C. C. Paige, A note on a result of Sun Ji-guang: sensitivity of the CS and GSV decomposition,
SIAM J. Numer. Anal. 21:186{191(1984).

[27] C. C. Paige, The general linear model and generalized singular value decomposition, Lin. Alg.
Appl. 70:269{284(1985).

[28] C. C. Paige, Computing the generalized singular value decomposition, SIAM J. Sci. Stat.
Comput. 7:1126{1146(1986).

[29] C. C. Paige and P. Van Dooren, A note on the convergence of Kogbetliantz's iterative algorithm
for obtaining the singular value decomposition, Lin. Alg. Appl. 77:301{313(1986).

[30] J. M. Speiser and C. F. Van Loan, Signal processing computations using the generalized
singular value decomposition, Proc. SPIE Vol.495, Real Time Signal Processing VII, pp.47-
55(1984).

[31] G. W. Stewart, Computing the CS-decomposition of a partitioned orthonormal matrix, Numer.
Math. 40:297{306(1982).

[32] J. Sun, Perturbation analysis for the generalized singular value problem, SIAM J. Numer.
Anal. 20:611{625(1983).

[33] C. F. Van Loan, Generalizing the singular value decomposition, SIAM J. Numer. Anal. 13:76{
83(1976).

[34] C. F. Van Loan, Computing the CS and the generalized singular value decomposition, Numer.
Math. 46:479{491(1985).

[35] C. F. Van Loan, On the method of weighting for equality- constrained least-squares problems,
SIAM J. Numer. Anal. 22:851{864(1985).

[36] H. Zha, A numerical algorithm for computing restricted singular value decomposition of matrix
triplets, Lin. Alg. Appl. 168:1-26(1992).

