
Hiding Communication Costs in Bandwidth-Limited

Parallel FFT Computation

Abhijit Sahay

Computer Science Division,

University of California, Berkeley

January 27, 1993

Abstract

This paper presents a novel computation schedule for FFT-type computations on
a bandwidth-limited parallel computer. Using P processors, we are able to process
an n-input FFT graph in the optimal time of n logn

P by carefully interleaving inter-
processor communication steps with local computation. Our algorithm is suitable for
both shared-memory and distributed memory machines and is analyzed in a simpli�ca-
tion of the LogP model [5] suitable for studying bandwidth-limited parallel machines.
Our parallel FFT algorithm incorporates several techniques that have long been used by
parallel programmers to reduce communication costs and our analysis provides theoret-
ical justi�cation for the success of these techniques in the context of highly structured
computations like FFTs. At another level, our algorithm can be viewed as an opti-
mal simulation of large butter
y networks on arbitrary machines (as modeled under
LogP.) Thus, we argue that computations thought to be inherently suited to butter-

y networks can be executed with no loss in e�ciency on arbitrary bandwidth-limited
networks, given su�cient slack.



1 Introduction

The problem of computing the Fourier transform of a vector of complex numbers has numerous
scienti�c applications and has been extensively studied [8, 4]. The Fast Fourier Transform (FFT)
algorithm for the problem [3] is one of the most widely used algorithms in computer science. In
addition to direct implementations of the FFT used in �elds such as signal processing and computer
algebra, the computational dependence graph of the FFT (also called the butter
y graph) has been
used in the interconnection network for parallel machines due to its rich symmetries and scalability
properties.

In this paper, we study parallelization of FFT-type computations, by which we mean computa-
tional tasks for which the dependence between subtasks can be represented by the butter
y. Such
computations include direct FFTs, applications of FFTs for polynomial evaluation and integer
multiplications [7, 14], bitonic sorting [2] and general computations on butter
y networks [10, 12].
We consider scheduling the n-input butter
y on a P -processor parallel machine in which inter-
processor communication is costly. On real machines, the high cost of communication arises from
three sources: network overhead, transit delay and limited bandwidth. If an algorithm requires
infrequent communication of long messages (as is the case with our parallel FFT algorithm) the
overhead and latency costs are generally small since they are incurred only once at every trans-
mission. (For shared memory machines, these costs are negligible regardless of the communication
pattern.) Bandwidth limitations impose a greater cost for both message passing and shared memory
machines since they imply a cost per byte of data sent and these cannot be mitigated by pipelining
or changing the size of message packets.

Accordingly, our primary focus is on minimizing bandwidth-induced communication costs. The
speci�c model used for analyzing our algorithm is a slight simpli�cation of the LogP model proposed
by Culler et al [5]. This model characterizes a parallel computer by four parameters that abstractly
capture computational bandwidth, and the bandwidth, latency and overhead of communication.
In keeping with the authors' suggestion for bandwidth-constrained networks, we drop the overhead
parameter for our analysis. Analysis in the complete model is a routine extension of the work
presented here and o�ers no new insights.

Other models that incorporate bandwidth considerations such as Valiant's BSP model [15] or
the LPRAM model of Aggarwal et al [1] emphasize the importance of reducing communication
but not that of scheduling it carefully. The former assumes the presence of an intelligent router
capable of routing h-relations (communication patterns in which no processor sends or receives
more than h messages) in a contention-free manner and the latter accounts only for the number
of communication steps. In real parallel programming, performance is often enhanced by paying
attention to the communication schedule [5] and we use the LogP model for our analysis since it
requires algorithms to specify their communication schedules explicitly.

1.1 Main Result

Our main contribution is a novel algorithm for partitioning the n logn nodes of the n-input butter
y
among P processors, and for interleaving the computation and communication steps resulting
from this allocation, so as to achieve a running time of n logn

P (and hence, ideal speedup) even
in the presence of substantial bandwidth limitations. Thus, we are able to completely hide the
communication cost of parallelization. Our algorithm uses O(n) messages altogether which is
optimal. Since the computation to communication ratio is logarithmic, it is not surprising that our
algorithm works better for larger problem sizes. The smallest problem size for which our algorithm
attains ideal speedup is large relative to P but not unreasonable for a large class of current machines

1



which have small numbers of extremely powerful processors. Even when n is moderate, our schedule
yields a speedup of at least P

1+1=(logn) .
The only known result on ideal speedup of FFT computations is for the PRAM model where

P � n processors can be used with a speedup of P . For models that include communication
costs, speedup of P=2 using P processors was demonstrated by Papadimitriou and Yannakakis
for their delay model [11] (which incorporates network latency but does not address bandwidth
requirements.) Essentially the same algorithm has been shown to yield P=2 speedup for the BSP
[15] and the LPRAM [1].

Even though the FFT and similar algorithms have been implemented on a variety of parallel
computers and even though techniques embodied in our algorithm { balanced data and load dis-
tribution, pipelining, overlapping communication and computation { have been used extensively
by parallel programmers [6, 9], attempts to quantify the savings made possible by such techniques
have been limited. Our results can be viewed as a justi�cation of these methods. Similar analyses
of matrix computations appears in [13].

Finally, our algorithm represents a general purpose simulation of butter
y networks on arbitrary
machines as modeled under LogP. We thus show that a parallel machine with a small number of
powerful processors can be used without any loss in performance for the simulation of specialized
networks even if the host machine has low communication bandwidth.

The rest of this paper is organized as follows. Section 2 de�nes the problem and speci�es
the variant of LogP that we use in the analysis. Section 3 describes the data allocation and load
distribution rules used by our algorithm and presents the analysis for a naive computation schedule.
Section 4 describes the main algorithm and proof of its optimality. Section 5 re�nes the analysis
for small n and presents a precise bound on the running time for cases where the speedup is less
than P . Section 6 contains additional comments and concluding remarks.

2 The Problem and The Model

The n-input butter
y is a directed graph with n(logn+1) nodes arranged in n rows and (logn+1)
columns. 1 Nodes are labeled (r; c) with 0 � r < n and 0 � c � logn. For 0 � r < n and
0 � c < logn, node (r; c) has directed edges to nodes (r; c+ 1) and (�rc; c+ 1) where r and �rc di�er
only in the (c+1)-th most signi�cant bit of their binary representations. Figure 1 shows an 8-input
butter
y.

The nodes in column 0 are the problem inputs and those in column log n represent the outputs of
the computation. Each non-input node represents an indivisible computation that must be carried
out on a single processor. Processing a node requires the results of the computations represented
by the node's immediate predecessors; if any of these are carried out at a di�erent processor,
the computed value(s) must be communicated before the node can be processed. Our goal is to
allocate the nodes of the butter
y among P processors and to design computation schedules for
each processor so as to minimize the time at which the last output node is processed.

The model we use for analyzing our algorithms is a variant of the LogP model [5], a model which
re
ects the communication bottlenecks of real machines realistically. In this model of distributed-
memory multiprocessors, processors communicate by point-to-point messages The model speci�es
the performance characteristics of the interconnection network, without specifying its structure.
The main parameters of the model are:

P : the number of processor/memory modules.

1We assume throughout that n and P are powers of 2 and all logarithms are to base 2.

2



0 1 2 3
0

1

2

3

4

5

6

7

Columns

R
ow

s

Figure 1: An 8-input butter
y.

L: an upper bound on the latency, or delay, incurred in communicating a message containing a
word from its source module to its target module.

o: the overhead, de�ned as the length of time that a processor is engaged in the transmission or
reception of each message; during this time, the processor cannot perform other operations.

g: the gap, de�ned as the minimum time interval between consecutive message transmissions or
consecutive message receptions at a processor. The reciprocal of g corresponds to the available
per-processor communication bandwidth.

The model assumes that g � 2o, since if a processor is sending and receiving messages, a gap
of 2o is enforced automatically between consecutive sends or receives. Furthermore, it is assumed
that the network has a �nite capacity, such that at most dL=ge messages can be in transit from any
processor or to any processor at any time. If a processor attempts to transmit a message that would
exceed this limit, it stalls until the message can be sent without exceeding the capacity limit. Since
L is only an upper bound the latency experienced by any message is unpredictable, and messages
directed to a given target module may not arrive in the same order as they are sent. In order to be
considered correct, an algorithm must produce correct results under all interleavings of messages
consistent with the upper bound of L on latency. The algorithm we present does not violate the
capacity constraints of the network and its running time can only improve if messages are received
out of order. In the rest of the paper, therefore, we shall not mention network capacity and assume
that each message incurs the maximum latency of L.

For many machines, the network bandwidth is small and such machines are modeled under
LogP by having a large g. If g is large compared to o, a simpler 3-parameter version has been
suggested in which in which the network overhead parameter is omitted (or set to 0), thus allowing
processors to perform g units of computation between consecutive sends or receives. Of course,
every real machine requires the processor's involvement in network transactions, precluding the
possibility of such an ideal overlap. Nevertheless, the approximation is good for bandwidth-limited
machines.

3



Finally, we assume without loss of generality that time is measured in units of butter
y op-
erations, i.e. We assume that each butter
y node can be processed in unit time on any of the
processors.

3 A Simple Algorithm

We assume that the processors are numbered 0; : : : ; P � 1 and that n � P 2. 2 Let m = n=P
and l = m=P . The following observations about the n-input butter
y are standard and will be
important in understanding our algorithm:

� For each j > 0, the nodes in columns 0 through j comprise n=2j disjoint 2j-input butter
ies
with the i-th butter
y being Ai = f(r; c) : r � i (mod n=2j); 0 � c � jg.

� For each k < logn the nodes in columns k through logn comprise 2k disjoint n
2k
-input

butter
ies with the i-th butter
y being Bi = f(r; k) : (i� 1) n
2k
� r < i n

2k
; k � c � log ng.

3.1 Processor Allocation

The processor assignment scheme for our algorithm is given by the following rules:

1. For 0 � c � logm, node (r; c) is assigned to processor r (mod P ). This yields a cyclic
allocation in which row 0 is assigned to processor 0, row 1 to processor 1 and so on.

2. For logm < c � logn, node (r; c) is assigned to processor b r
mc. This yields a blocked allocation

in which the �rst block of n=P rows are assigned to processor 0, the next to processor 1, etc.

Using the decomposition rules given above, it is easily veri�ed that the nodes assigned to a processor
by rule 1 (which we shall call the processor's Phase I computation load) comprise a single m-input
butter
y and those assigned to it by rule 2 (referred to as its Phase II load) comprise the non-input
nodes of l disjoint P -input butter
ies. Moreover, for each of the P -input butter
ies of Phase II,
exactly one input node appears as an output in each of the P m-input butter
ies of Phase I. Thus,
the only communication requirement imposed by this load distribution is that the outputs of each
processor's Phase I computation be evenly distributed among the P processors prior to Phase II
computation. The entire computation thus requires each pair of processors to exchange l messages,
resulting in a total of n �m messages. It has been shown that any processor assignment scheme
incurs 
(n) messages [1], implying that, up to constant factors, our scheme is optimal with respect
to total communication.

3.2 Computational Schedule

The computation schedule for our algorithm is simple: each processor processes the nodes assigned
to it in increasing order of column number. With this schedule, each processor �nishes its Phase
I computation by time m logm at which time it can start sending its Phase I outputs to other
processors. If processor i sends messages to processors i+ 1; : : : ; i+ P � 1 (mod P ) in order, each
processor would have received all its messages in L + (m� l � 1)g additional time steps. Finally,
Phase II computation requires m log p steps, yielding the following:

Theorem 3.1 In the LogP model with no overhead, an n-input butter
y can be processed in time
n
p logn + (np �

n
p2
� 1)g + L.

2The implication that each processor hold at least P data points is reasonable for all current parallel machines.

4



We see that, ignoring the additive contribution of latency, our simple algorithm is within a factor
(1 + g

logn ) of optimal. It is easily veri�ed that entirely cyclic or entirely blocked allocation would
increase the number of messages by a factor of log P . If we had chosen a bad communication sched-
ule for exchanging messages, for example, one in which every processor sent messages to processor
0, then to processor 1, etc. the number of messages would stay the same but the communication
time would be increased by a factor of P . Thus, even with this simple algorithm we see the virtue
of careful load distribution, balanced communication patterns and pipelining of messages to hide
network latency.

Our algorithm can be viewed as a simulation of the butter
y network on the LogP model. If
each node of the butter
y represents a processor and in a single step, processors can compute
locally or communicate with a neighbor, we see that with our processor allocation, a single step of
the butter
y takes no more than (n logn+ ng)=P time, which is close to optimal. The overlapped
algorithm of the next section improves this to the absolutely optimal n logn=P .

4 Hiding Communication Costs

The computation schedule of the algorithm just presented forces processors to idle while messages
are in transit. It is clear that higher speedup would be achieved if message transmission could be
overlapped with computation, another technique that is commonly employed in parallel program-
ming. The scheme we propose now attempts to generate the messages to be sent as early as possible
during Phase I computation. Unless n is extremely small, we expect that by the end of Phase I
computation, a signi�cant fraction of the communication would have been completed. This would
allow Phase II computation to be started without any delay and reduce (or eliminate) the idling
time for each processor. We make this idea more precise below.

4.1 Output-Driven Computation Schedules

Our new algorithm employs the same processor assignment scheme but an entirely di�erent com-
putation schedule for Phase I. The computation schedule for Phase II turns out to have little e�ect
on the running time and we consider it in detail in Section 5. Recall that processor i's Phase I
computation load comprises a single m-input butter
y, viz. the set Ai = f(ap + i; c) : 0 � a <

m; 0 � c � logmg. The computation schedule for processor i is determined by a permutation �(i)

of the set fa : 0 � a < mg. Processor i processes its Phase I outputs in the order determined by
�(i), always processing the smallest number of intermediate nodes required to generate the next
output in the sequence. We call this computation schedule the output-driven schedule determined
by �(i). As soon as an output node has been processed, the processor transmits it to the processor
that requires it for its Phase II computation. The output permutations f�(i)g are chosen from a
class of permutations that permit outputs to be generated at an optimal rate.

As an example, consider the case m = 8; P = 4 shown in Figure 2. Each processor has an
8-input butter
y in Phase I, the outputs of which are to be distributed among the 4 processors in
blocks of 2. It is clear that the �rst output cannot be generated until time 7 since each output
in column logm = 3 has 2 predecessors in column 2, each of which has 2 distinct predecessors in
column 1, for a total of 6 predecessors that must be processed before the output can be processed.
However, the next output can be generated at time 8 and the next two at time 11 and 12, as
shown in Figure 2, if the output permutation were, for example, (2 3 0 1 6 7 4 5). Of course, not
all processors should be driven by this permutation, for this would lead to every processor �rst
sending messages to processor 1, then to processor 0, then to processor 3 and �nally to processor 2.

5



11

12

7

8

23

24

19

20

In
pu

ts

Figure 2: Output permutation and schedule for P2 for m = 8, P = 4; �(2) = (1032); �(2) =
(23016745). Shaded portion indicates incremental work in producing successive outputs. Numbers

represent times at which outputs are generated.

Processor 2 would thus not start receiving its messages until late and would not be able to receive
its messages at the rate they were being sent to it.

This delay can be avoided by noting there are many output permutations that yield outputs
at the optimal rate. Let Tm be the full binary tree with m leaves labeled 0; : : : ; m� 1. Consider
a permutation of the leaves in which for each node, either all the leaves of the left subtree appear
before any leaf of the right subtree, or vice versa. The recursive structure of the butter
y ensures
that the time steps at which outputs are produced by a schedule driven by such a permutation do
not depend on the actual permutation but merely its structure. Our interest in these permutations
is chie
y due to the fact that these computation schedules produce outputs at an optimal rate:
the �rst output is produced at the earliest possible time and each subsequent output is produced
with minimum additional delay. The abundance of these permutations allows us to choose di�erent
optimal permutations for various processors in such a way that the reception schedules are also
balanced. We make these ideas more precise below.

4.2 Binary Permutations

De�nition 4.1 Let Si = f0; 1; : : : ; 2i � 1g; i � 0 and let � = (�0; : : : ; �2i�1) be a permutation of
Si. � is said to be binary if i = 0 or if i > 0 and the following conditions hold:

� b �0
2i�1 c = b

�j
2i�1 c for j = 1; : : : ; 2i�1 � 1.

� �(L) = (�0 (mod 2i�1); : : : ; �2i�1
�1 (mod 2i�1)) and �(R) = (�2i�1 (mod 2i�1); : : : ; �2i�1 (mod 2i�1))

are binary permutations of Si�1.

6



As a small example, (4 5 6 7 3 2 0 1) is a binary permutation of S3 while (4 5 6 7 3 0 2 1) is not,
since (3 0 2 1) is not a binary permutation of S2.

4.2.1 Maintaining Symmetry in Reception

As already noted, if each �(i) is binary, the message transmission schedules for the various processors
are identical. However, there is still the possibility of undesirable asymmetry in the reception
schedules. As an illustration, if each processor employed the identity permutation so that its
outputs are generated in increasing order of row number, all messages destined for processor i
would be sent out before any of the messages destined for processor i+ 1. Thus, processor P � 1
would idle for a much longer time than processor 0, adversely a�ecting the algorithm's completion
time. To ensure symmetry in reception, we would like that at each processor receive a message
whenever any other processor does. To this end, we use the following more general decomposition
property of binary permutations which is easily proved by induction:

Proposition 4.1 Let i = q + r with q and r non-negative and let � = (�0; : : : ; �2i�1) be a binary
permutation of Si. Then

� b�k2r2r c = b
�k2r+j

2r c for 1 � j < 2r and for 0 � k < 2q.

� For each k; 0 � k < 2q; �k = (�k2r (mod 2r); : : : ; �(k+1)2r�1 (mod 2r)) is a binary permutation
of Sr.

� The sequence (b�k2r2r c); k = 0; 1; : : : ; 2q � 1 is a binary permutation of Sq:

Thus, for any decomposition i = q + r, a binary permutation of Si can be thought of as being
uniquely determined by a binary permutation of Sq and 2q independent binary permutations of Sr.
Thus, for example, if q = 2; r = 1, the binary permutation (4 5 6 7 3 2 0 1) of S3 decomposes into
the binary permutation (2 3 1 0) of S2 and the 2q = 4 binary permutations (0 1); (0 1); (1 0); (0 1)
of S1.

To describe the binary permutations �(i), consider the decomposition logm = logP +log l. For

i = 0; : : : ; P � 1, let �(i) = (�
(i)
0 ; : : : ; �

(i)
P�1) be the binary permutation of SlogP given by �

(i)
j = �i� j

and let �(i) be the binary permutation of Slogm determined by �(i) and P copies of the identity
permutation of Slog l. In other words, processor i groups its m outputs into P blocks of l each, one
block to be sent to each of the P processors. It uses �(i) to determine the order in which blocks of
outputs will be processed, and within a block processes outputs in increasing order of row number.
Figure 2 shows a typical output driven schedule.

4.3 Running Time Analysis

Our choice of binary permutations ensures that the communication patterns for the various proces-
sors are identical and symmetric: whenever processor i sends a message to processor j, processor k
sends one to processor k�i�j. Thus, it su�ces to analyze the completion time of any processor. It
is most convenient to study processor P � 1 since its output permutation is the identity. It is clear
that Phase I computation completes at time m logm and that Phase II computation requires time
m logP . If T denotes the time at which the last message is sent from a processor, the completion
time for the algorithm is max fT +L;m logmg+m logP . Our goal is to determine T . To simplify
notation, we will identify the output node (ap+ (p� 1); logm) with the index a.

7



For 0 � a < m� l let ta denote the time at which output node a is processed 3, and let sa be
the time at which it is sent. We have s0 = t0 and for a � 1; sa = max fta; sa�1 + gg. Hence, if a�

is the largest index for which sa = ta, then T = ta� + g(m� l � a� � 1). In order to compute a�,
we need the following lemmas:

Lemma 4.1 For the output driven schedule determined by a binary permutation, t0 = m � 1. If
a = q2r�1 with q odd, ta = ta�2r�1 + r2r�1.

Proof: The �rst output can be processed only after all of its m � 2 predecessors: 2 in column
logm� 1, 4 in column logm� 2,: : : , m=2 in column 1. For general a, it is easy to see that all of a's
predecessors in columns 1 through logm� r have been processed by time Ta�2r�1 and that exactly
r=2 nodes in each of the columns logm� r + 1 through logm are processed in generating output
a. 2

Corollary 4.1 Let a = btbt�1 : : : b0 be the binary representation of a. Then ta = (m � 1) +
Pt

i=0 bi(i+ 1)2i.

Lemma 4.2 If a � 0 (mod 2g�1) then sa = ta; otherwise sa > ta.

Proof: The proof is by induction on a. Since s0 = t0, the base case holds. For the induction
step, it su�ces to show that ti2g�1+k < ti2g�1 + kg whenever 0 < k < 2g�1 and that t(i+1)2g�1 �

ti2g�1 + g2g�1. Letting k =
Pg�2

i=0 bi2
i, Corollary 4.1 gives ti2g�1+k � ti2g�1 =

Pg�2
i=0 bi(i + 1)2i <

kg, establishing the �rst inequality. Similarly, letting (i + 1)2g�1 = q2r�1, q odd, we see that
t(i+1)2g�1 � ti2g�1 = (r+ 1)2r �

Pr�1
i=g�1(i+ 1)2i � g2g�1 which proves the second inequality.

Lemma 4.2 allows us to characterize a� easily as the highest index less than m � l which
evenly divides 2g�1. Further, we can use 4.1 to explicitly compute ta� and hence T . We omit the
calculations and present only the �nal result.

Theorem 4.1 Let n and P be powers of 2 with n > P 2. Let T denote the time at which the last
message is sent by a processor in the output driven schedule determined by a binary permutation.
Then:

g � logm ) T = (m� 1) + (m� l � 1)g (1)

log
n

P 2
+ 1 < g < logm ) T = m logm+ 2g � g � 1� lg (2)

g � log l + 1 ) T = m logm+ (2g � 1)� l(log l+ 1) � m logm (3)

4.4 Implications for Speedup

An immediate implication of Theorem 4.1 is that for n � 2g=gP 2, there is no idling (except possibly
for L steps) even though O(n) messages are delivered by the network! Thus our schedule guarantees
a speedup of P for large n despite the fact that the number of messages grow proportional to the
problem size. Even if n is smaller (but at least P 2), our algorithm guarantees a speedup of at least

P
1+ 1

log n

as long as g < logP . If g � logP and n � 2gP , our output driven schedules cannot hide all

communication and we analyze this situation more precisely in the next section.

3Note that �(i) is chosen such that processor i sends out the �rst m � l outputs that it processes.

8



5 The Case of Small n

If the problem size is small and the bandwidth constraints stringent, some idling is inevitable since
there isn't enough computation time in Phase I to hide the communication cost. For such cases,
we will analyze the running time of the entire algorithm by considering overlap of messages with
Phase II computation as well.

Suppose that n < p2g. In this case, a� = 0 as implied by Lemma 4.2. Thus, messages are
sent at time steps (m � 1) + ig; i = 0; : : : ; m � l � 1. Recall that these messages contain the
inputs for Phase II computation and that each processor's Phase II load comprises l disjoint P -
input butter
ies. The computation schedule for Phase II computation is input driven: a processor
processes as many nodes as possible upon the arrival of an input and waits only if no more nodes can
be processed until the arrival of the next input. For each of its Phase II butter
ies, a processor has
exactly one input available locally (as an output of its Phase I computation) and we will consider
these inputs to be the �rst ones to \arrive". An input for which a processor waits will be called a
bottleneck. Our goal is to identify the last bottleneck.

For i = 0; 1; : : : ; m� 1, let �i denote the number of nodes that can be processed using the �rst
i inputs to arrive but that cannot be processed using only the �rst i � 1 inputs to arrive. The
following necessary condition for an input to be a bottleneck is obvious.

Lemma 5.1 If the i-th input to arrive is a bottleneck, then �i�1 < g.

In addition, the following implications of our choice of binary permutations can be veri�ed:

Fact 5.1 �il+j = �il for j = 1; 2; : : : ; l� 1.

Fact 5.2 If b0b1 : : : bt is the binary representation of i and j is the smallest index such that bj = 0
(j = t+ 1 if there is none such), then �il = 2(2j � 1).

Fact 5.3 For each i; �i � �i�1.

Let i� = minfi : �i � gg (with i� = m � 1 if there is no such i.) It follows from Lemma 5.1, and
Fact 5.3 that if there are any bottlenecks at all, then i� must be the last bottleneck. This gives a
simple characterization of the running time for the entire algorithm. If there are no bottlenecks,
the running time must be m logn; if there are any bottlenecks, we can precisely locate the last one
and hence determine its arrival time. Also, from the �-sequence, we know exactly how many nodes
remain to be processed after its arrival and can hence compute the overall running time. This is
formalized in the following.

Theorem 5.1 Let n and P be powers of 2 with n � P 2; n < 2gP . Let m = n
P . Let j� =

dlog(g+ 2)e � 1. If g > 2p� 2, let i� = m� 1 and R = 2p� 2; otherwise let i� = m(1� 1=2j
�

) and
R = m logP �m(j� � 3 + 1

2j��2 . Then, the running time of our algorithm is

maxfm logn; (m� 1) + L+ (i� � l)g+ Rg

6 Conclusion

We have presented a computational schedule for parallel execution of the FFT graph that permits
e�cient overlap of computation and communication, e�ectively hiding all communication costs
for large problems. We can also view this computational schedule as a communication-optimal
simulation of a butter
y network on bandwidth-limited machines in the presence of appropriate

9



slack. Thus, computations naturally suited to the butter
y can be implemented e�ciently on
low-bandwidth machines with `large nodes'. Indeed, the only communication step required is an
all-to-all personalized communication which can be easily and e�ciently implemented for most
networks.

Our schedule employs careful data distribution, pipelining of messages, and a dispersion of
messages over a computation-intensive period { all techniques that are rewarded in parallel pro-
gramming, especially for scienti�c computations. Our result can be viewed as helping explain the
success enjoyed by such techniques.

10



References

[1] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. Communication Complexity of PRAMs.
In Theoretical Computer Science, pages 3{28, March 1990.

[2] K. E. Batcher. Sorting networks and their applications. In Proc. AFIPS Spring Joint Computer
Coneference, volume 32, pages 307{314, 1968.

[3] J. M. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex Fourier
series. Math. Comp, 19:297{301, 1965.

[4] J.M. Cooley, P.A. Lewis, and P.D. Welch. History of the fast Fourier transform. In Proc.
IEEE, volume 55, pages 1675{1677, 1967.

[5] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subra-
monian, and T. von Eicken. LogP: Towards a Realistic Model of Parallel Computation. In
Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, May
1993. (to appear) Also appears as UCB/CS/92 713 report.

[6] J. J. Dongarra, R. van de Geijn, and D. W. Walker. A Look at Scalable Dense Linear Algebra
Libraries. In J. Saltz, editor, Proceedings of the 1992 Scalable High Performance Computing
Conference. IEEE Press, 1992.

[7] C.M.. Fiduccia. Polynomial evaluation via the division algorithm { the fast Fourier transform
revisited. In Proceedings of the 4th Annual ACM Symposium on Theory of Computing, pages
88{93, 1972.

[8] W.M. Gentleman and G. Sande. Fast Fourier transforms for fun and pro�t. In AFIPS 1966
Fall Joint Computer Conference, volume 29, pages 563{578, Washington, D.C., 1967. Spartan.

[9] S. L. Johnsson, C.T. Ho, M. Jacquemin, and A. Ruttenberg. Computing fast Fourier transforms
on Boolean cubes and related networks. In Advanced Algorithms and Architectures for Signal
Processing II, pages 223{231. Society of Photo-Optical Instrumentation Engineers, 1987.

[10] F. Thomson Leighton. Introduction to Parallel Algorithms and Architecture: Arrays, Trees,
Hypercubes. Morgan Kaufmann, San Mateo, CA, 1992.

[11] Christos H. Papadimitriou and Mihalis Yannakakis. Towards an Architecture-Independent
Analysis of Parallel Algorithms. In Proceedings of the Twentieth Annual ACM Symposium of
the Theory of Computing, pages 510{513. ACM, 1988.

[12] Abhiram G. Ranade. How to emulate shared memory. In Proceedings of the 28th IEEE Annual
Symposium on Foundations of Computer Science, pages 185{194, 1987.

[13] A. Sahay. Overlapping communication and computation in parallel matrix algorithms, in
preparation.

[14] A. Sch�onhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281{292,
1971.

[15] Leslie G. Valiant. A Bridging Model for Parallel Computation. Communications of the Asso-
ciation for Computing Machinery, 33(8):103{11, August 1990.

11


