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THE GENESIS OF CHUA'S CIRCUIT

Leon O. Chua

University of California, Berkeley

Editorial Remarks

Chua's circuit is the simplest autonomous circuit which is endowed with an immensely

rich variety of bifurcation and chaotic phenomena. It Is now routinely taught in courses

on nonlinear dynamics in many disciplines, and its various electronic implementations

have been widely exploited In research laboratories throughout the world, both as a phy

sical source of chaotic signals, and as an experimental research tool. Never has there

been an electronic circuit that is the object of such intense study and research: more

than 40 publications to date and a forthcoming 2-volume Special Issue of the Journal of

Circuits, Systems, and Computers entitled "Chua's Circuit: A Paradigm for Chaos" which

will be published in March and June of 1993. In recognition of the tremendous impact

that Chua's Circuit has had on nonlinear circuit research over the past 8 years, we have

invited Professor Leon Chua to contribute an essay for this Special Issue which remin

isce the history, thoughts and insights which led to his invention of this historic and

now classic circuit.

Wl Mathis and A. Reibiger
Guest Editors

Special Issue on
Nonlinear Networks and Systems

Archiv fur Elektronik und

Abstract Ubertragungstechnik

Following a non-technical personal reminiscence of the author's conception of Chua's circuit, this

paper presents the systematic sequence of technical steps which the author used to design his

chaotic circuit. The design procedure, though straightforward in nature, could not have been con

cocted without a working knowledge of several crucial properties of nonlinear circuits and their

physical realizations.



1. REMINISCENCE: A Historical Anecdote

The event which led to the discovery of Chua's circuit took place In the laboratory of Professor

T. Matsumoto of Waseda University on a late October afternoon in 1983. the day after my

arrival in Tokyo to begin serving my JSPS (Japan Society for Promotion of Science) fellowship.

There, in a well-orchestrated and instrument laden corner of Matsumoto's laboratory, I was to

have witnessed a live demonstration of presumably the world's first successful electronic cir

cuit realization of the Lorenz Equations, on which Professor Matsumoto's research group had

toiled for over a year. It was indeed a remarkable piece of electronic circuitry. It was pain

stakingly breadboarded to near perfection, exposing neatly more than a dozen IC components,

and embellished by almost as many potentiometers and trimmers for fine tuning and tweak

ing their incredibly sensitive circuit board. There would have been no need for inventing a

more robust chaotic circuit had Matsumoto's Lorenz Circuit worked. It did not. The fault lies

not on Matsumoto's lack of experimental skill, but rather on the dearth of a critical nonlinear

IC component with a near-ideal characteristic and a sufficiently large dynamic range: namely,

the analog multiplier. Unfortunately, this component was the key to building an autonomous

chaotic circuit in 1983. Only two autonomous systems of ordinary differential equations

were generally accepted then as being chaotic, namely.

The Lorenz Equations

x=-a{x-y)

y=$x-y -xz

z=xy -yz

and The Rossler Equations

x=-y-z

y-x + ay

z=$ + z [x -y)

where a, (5, and y are parameters. Note that the nonlinearity in both systems is a function of

two variables: namely, the productjunction.

Prior to 1983, the conspicuous absence of a reproducible functioning chaotic circuit or system

seems to suggest that chaos is a pathological phenomenon that can exist only in mathemati-



cal abstractions, and in computer simulations of contrived equations. Consequently, electri

cal engineers in general, and nonlinearcircuittheorists in particular, have heretofore paid lit

tle attention to a phenomenon which many had regarded as an esoteric curiosity. Such was

the state of mind among the nonlinear circuit theory community, circa 1983. Matsumoto's

Lorenz Circuit was to have turned the tide of indifference among nonlinear circuit theorists.

Viewed from this historical perspective and motivation, the utter disappointments that des

cended upon all of us on that uneventful October afternoon was quite understandable. So

profound was this failure that the wretched feeling persisted in my subconscious mind till

about bedtime that evening. Suddenly it dawned upon me, that since the main mechanism

which gives rise to chaos, in both the Lorenz and the Rossler Equations, is the presence of at

least two unstable equilibrium points — 3 for the Lorenz Equations and 2 for the Rossler

Equations — it seems only prudent to design a simpler and more robust circuit having these

attributes.

Having identified this alternative approach and strategy, it becomes a simple exercise in ele

mentary nonlinear circuit theory [Chua 1969] to enumerate systematically all such circuit

candidates, of which there were only 8 of them, and then to systematically eliminate those

that, for one reason or another, can not be chaotic. This simple exercise quickly led to two

contenders, which upon an application of some educated intuition, tempered by 2 decades of

daily exposure to nonlinear circuit phenomena, finally led me to the circuit shown In Fig.l.

The entire enumeration and elimination process was carried out in less than an hour, in the

form of nearly illegible circuit diagrams that I had scribbled on napkins and blank edges of

used envelopes. I had to resort to these makeshifts because no paper could be found at that

late hour in the dormitory that I had moved into only the night before.

Hie next morning I presented my proposed circuit to Matsumoto and Instructed him to

choose the value of R so that its load line [Chua 1969] would intersect the 3 inner segments

having a negative slope in Fig. 1(b).

Matsumoto Immediately programmed the circuit equations into his computer. Shortly after



that, greatly excited, he came running to my office and jubilantly announced that he had

found a strange attractorl For several months after this episode, Matsumoto continued to

simulate my circuit over a wider range of circuit parameters, and to double check his com

puter data to ensure that the strange attractor he had observed was not In fact an artifact of

his rather unsophisticated computer program, which was written in BASIC. In spite of my

numerous proddings, he had remained from actually breadboarding my circuit since his

research group has never synthesized a prescribed non-monotonic v-i characteristic before.

Subsequently, I wrote to Zhong Guo Qin and Farham Ayrom, who were members of my Non

linear Electronics Laboratory in Berkeley, and suggested that they apply the synthesis pro

cedure we had developed earlier to build this circuit. Their breadboard worked with virtually

no fine tuning. Consequently, Zhong & Ayrom became the first researchers to have docu

mented experimentally-observed chaos from Chua's circuit [Zhong & Ayrom 1984].

CThe following section presents a technical version of the design episode alluded to in the

proceeding narrative.)

2. THE NONLINEAR CIRCUIT THEORY BEHIND CHUA'S CIRCUIT

2.1 Circuit Specifications

Since our goal is to build an autonomous electronic circuit which exhibits a chaotic elec

tronic natural behavior, we can formulate our circuit specifications as follows:

Design a physically realizable autonomous circuit having exactly two or three

unstable equilibrium points. The circuit should contain the least possible

number of 2 terminal linear passive resistors, inductors, and capacitors, and

exactly one 2-terminal nonlinear resistor characterized by an eventually-

passive, piecewise-linear, voltage-controlled v-i characteristic.

Clearly, the nonlinear resistor must be active in order for the circuit to become chaotic.

In other words, the v-i characteristic must have a non-empty intersection with the open

2nd quadrant, and/or with the open 4th quadrant. However, in order for such a non

linear resistor to be physically realizable, it must be eventually passive in the sense that
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its v-i characteristic must lie exclusively in the 1st and the 3rd quadrants outside of

some circle of arbitrarily large but finite radius.

Note that we have stipulated that the v-i characteristic be piecewise-linear for two stra

tegic reasons. First, we have had extensive experience on synthesizing piecewise-linear

characteristics, having published several papers on this subject, e.g. [Chua 1967] and

[Chua 1968]. Secondly, we have had extensive experience In decomposing the dynamics

of piecewise-linear dynamic circuits into the analysis of several linear (or strictly speak

ing, affine) systems [Chua 1969], [Chua & Ying 1982], and [Chua etal 1982].

We have also stipulated that the nonlinear resistor be voltage-controlled because it is

easier to synthesize such elements using op-amps and pn-junction diodes as building

blocks [Chua & Wong 1978], [Chua & Ayrom 1986].

2.2 Systematic Design Procedure

Just like designing any circuit to satisfy a prescribed set of specifications, Chua's circuit

was designed using a step-by-step systematic synthesis procedure.

A. Determining The Minimum Number OfCircuit Elements

An autonomous system of ordinary differential equations having less than 3 state

variables can not be chaotic [Guckenheimer & Holmes 1983]. Let us therefore

choose 3 linear passive energy storage elements for our circuit. Since the

Specifications allow only one nonlinear 2-terminal resistor, the remaining elements

for our circuit are linear passive resistors. We do not need any independent

sources since the nonlinear resistor, being active, will already have an internal

power supply. The number of linear resistors can be minimized by applying stan

dard equivalent circuit techniques to the resulting circuit topology, which we deter

mine next.

B. Determining The Circuit Topology

Let us extract the 3 linear energy storage elements and the 2-terminal nonlinear



resistor R and connect them across the ports of a 4-port NR, made of 2-terminal

linear passive resistors. Depending on our choice of the type of energy storage ele

ments, there are 4 distinct circuit configurations, as shown in Fig.2. We can

immediately eliminate the RC circuit configuration of Fig.2(b), because two-element

kind reciprocal circuits can not oscillate, let alone become chaotic [Chua 1980a].

The remaining two circuit configurations in Fig.2 are dual of each other, and hence

are equally valid candidates. Let us choose the last circuit in Fig.2(d) because high

quality and tunable precision inductors are much more expensive than capacitors.

Having chosen the circuit configuration of Fig.2(d), and recalling that the nonlinear

resistor R is voltage-controlled (from our specifications), it immediately follows from

standard circuit modeling techniques [Chua 1980b] that one of the two capacitors

must necessarily be connected across R, so that the circuit configuration in

Fig.2(d) can be further simplified to that shown in Fig.3(a), where NR is now a 3-

port made exclusively of 2-terminal linear passive resistors.

At dc equilibriums, the capacitors can be replaced by open circuits and the induc

tor by a short circuit, as shown in Fig.3(b). Since the resulting one-port No con

tains only 2-terminal linear passive resistors, it can be replaced by a Thevenin

equivalent resistance Ro>0 as shown in Fig.3(c). Each intersection between the

load line vr=-RoIr with the vr-Ir characteristic of R (yet to be determined)

identifies the location of an equilibrium point of the circuit. Since the

Specifications called for the use of a minimum number of linear resistors, let us

assume that Nr contains only one linear resistor R>0. Having made this simplify

ing assumption, the circuit configuration of Fig.3(a) can assume only 8 distinct

topologies, as shown in Fig.4. Our next task Is to choose the most promising candi

date.

The dc equilibrium circuit corresponding to the 8 circuit topologies in Fig.4 are

shown in Fig.5. An examination of these topologies shows that the circuits in



Figs.5(a) and (b) can be eliminated from further consideration because the

equivalent linear resistor R0 in each case is a short circuit. The circuit in Fig.5(c)

and (d) can also be eliminated because Ro in this case is an open circuit. For the

remaining 4 circuits, the one shown in Fig.4(e) can also be eliminated because the

linear resistor R is In parallel with the nonlinear resistor R, and can therefore be

"absorbed" within R, thereby resulting in an open circuit for Ro. We can likewise

eliminate the circuit shown in Fig.4(f) because the two parallel capacitors C\ and C2

can be replaced by an equivalent capacitor, thereby resulting in a second-order cir

cuit, which can not be chaotic. We are finally left with only two candidates,

Figs.4(g) and 4(h), both of which have R0=R>0.

There is no sound technical reason to favor one candidate over the other at this

point. However, the presence of the L1C2 resonant sub circuit on the right hand

side of Fig.4(h) does provide an advantage, since its oscillatory mechanism is often

a precursor to chaos. Consequently, let us choose the circuit in Fig.4(h) as our

most likely circuit candidate for chaos.

C. Determining The vr1r Characteristic

Our final task is to determine the appropriate nonlinearity for R in order to satisfy

the specifications that the circuit must have exactly two, or three, unstable equili

brium points. Since, except for the nonlinear visitor R, all circuit elements are pas

sive, and hence the instability condition implies that each equilibrium point must

lie on a segment of the piecewise-linear vr-Ir characteristic that has a negative

slope. This negative-slope condition is equivalent to the small-signal equivalent cir

cuit about each equilibrium point being a negative resistance, which is essential for

instability [Chua etal 1987].

Since Ro>0, the load line is a straight line (through the origin) with a negativeslope

equal to G=- -^- <O. In order to have 2unstable equilibrium points, there are

only 4 distinct types of continuous 2-segment piecewise-linear characteristics that



have a negative slope for both segments, and which could intersect the load line at

2 points, as depicted in Figs.6 and 7. The characteristics in Flgs.6(a) and 7(a) can

be eliminated because they are not voltage-controlled functions. The two remaining

characteristics in Figs.6(b) and 7(b), which are dual of each other, are however

viable candidates. Unfortunately, they are not eventually passive. The simplest

eventually-passive vr-Ir characteristic which contains Figs.6(b) and 7(b) as a sub

set are shown in Figs.8(a) and (b), respectively. Since they are dual of each other,

either one can be chosen. Since this circuit has only 2 unstable equilibrium points,

we could expect that any strange attractor from this circuit would have a structure

that resembles the Rossler attractor [Abraham & Shaw 1981].

To obtain 3 unstable equilibrium points, as in the Lorenz Equations, only two dis

tinct types of continuous 3-segment piecewise-linear characteristic, with a negative

slope for each segment, could satisfy the instability condition, as depicted in

Figs.9(a) and (b), respectively. The characteristic in Fig.9(a) can be eliminated

because it is not a voltage-controlled function. The remaining characteristic in

Fig.9(b) is, however, perfectly valid in so far as satisfying the instability condition is

concerned. However, it is not eventually passive. The simplest eventually-passive

piecewise-linear characteristic which contains Fig.9(b) as a subset is the 5-segment

characteristic shown in Fig. 10.

Although the vr-Ir characteristics given in Figs.8(a), 8(b), and 10(a) do satisfy both

the instability condition and the eventual passivity condition stipulated in the

specifications, let us choose the latter for three reasons.

First —

the characteristics of Fig.10(a) contains both characteristics of Figs.8(a) and

8(b) as subsets, and hence if the circuit associated with either Fig.8(a) or 8(b)

has a strange attractor, so will Fig.10(a). Moreover, the presence of a third

unstable equilibrium point in Fig.10(a) provides the strong possibility for the

existence of other strange attractors, thereby making this circuit richer in
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chaotic dynamics.

Secondly —

it is actually easier to realize the vr-1r characteristic of Fig.10(a) because it

exhibits odd symmetry: there exist simple techniques to synthesize odd-

symmetrical v-i characteristics [Chua 1969]. Moreover, since the associated

state equation will also be odd symmetric, the analytical study of this circuit

will be no more complicated than that of the circuit associated with Fig.8.

Thirdly —

although the piecewise-linear characteristic of Fig.8. has two unstable equili

brium points, an extraneous third but stable equilibrium point(3) had been

inadvertently introduced because this point falls on the positive-slope segment

which we have augmented earlier to ensure eventual passivity. While it is

theoretically possible to push the breakpoint of this segment as far to the right

as possible to prevent it from interfering with the originally intended dynamics,

this approach may not be easy to implement in practice in view of the limited

cut-in voltage (less than 1 volt) in pn-junction diodes, and the limited satura-

tion voltage (less than 20 volts) in op-amps.

The above considerations therefore suggest that we choose the odd-symmetric 5-

segment piecewise-linear function of Fig. 10(a) as the vr-Ir characteristic for the

nonlinear resistor R. Note that the two positive-slope segments we augmented ear

lier to ensure eventual passivity did not introduce any new equilibrium points, pro

vided the resistance R is not too large to cause its load line to swing beyond the

outermost breakpoints, as depicted in Fig. 10(b). Having made this choice, we

obtain the Chua's circuit of Fig.l.

3. CONCLUDING REMARKS

The chaotic circuit of Fig.l was first announced in [Matsumoto 1984] where Matsumoto had

named it Chua's Circuit. However, since this seminal article on Chua's Circuit involves only



computer simulations where the two end segments needed for physical realization are

irrelevant, Matsumoto uses only the 3 negative-slope segments of Fig.9(b) and refers to this

characteristic In his article as a "simplified version" of my original circuit. For the more

hardware-oriented readers, however, it Is important to stress that any electronic circuit reali

zation of this 3-segment characteristic — and there exist many such realizations — will neces

sarily result in the eventual characteristic rolling off, either gently, or abruptly, so that the

outermost portion of the characteristic will eventually lie in the 1st and the 3rd quadrants. In

the simplest cases, each outermost portion of the vr-1r characteristics will approach a

positive-slope straight line. Indeed, the measured characteristics of all known electronic cir

cuit realizations [Zhong & Ayrom 1985], [Matsumoto etal 1985], [Kennedy 1992] of the 3-

segment vr-Ir characteristic of Fig.9(b) are virtually identical to the 5-segment characteristic

shown in Fig. 1(b).

As a final remark, we wish to point out that the contending circuit candidate in Fig.4(g) which

we had abandoned earlier in favor of Chua's Circuit is interesting in Its own right. In particu

lar. If we add a linear passive resistor in series with the inductor L, in Fig.4(g), we would

obtain the canonical circuit realization [Chua & Lin 1990] of Chua's Circuit family [Wu 1987].

More than 30 distinct strange attractors have so far been discovered from this canonical cir

cuit!
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Figure Captions

Fig.l. Chua's circuit (a), and the 5-segment vr-1r characteristic (b) for the nonlinear resistor
R. For computer simulations, chaos can be observed with only the 3 Inner negative-
slope segments. The small-signal equivalent circuit corresponding to an equilibrium
point lying on any one of these 3 segments is a negative resistance.

Fig.2. Four distinct configurations involving 3 energy storage elements. The 4-port NR is made
of 2-terminal linear passive resistors.

Fig.3. (a) Circuit configuration which defines a well-posed circuit having 2 linear capacitors, 1
linear inductor, a 2-terminal non-monotonic voltage-controlled resistor, and linear passive
resistors.

(b) The dc equivalent circuit associated with the circuit In (a).
(c) The 1-port No in (b) is equivalent to a single linear passive resistance -Ro. Since
Ro>0, the load line has a negative slope in the vr-Ir plane.

Fig.4. Assuming the linear 3-port NR in Fig.3(a) contains a single linear positive resistance
R>0, there are only 8 distinct circuit topologies.

Fig.5. The dc equilibrium circuits associated with the 8 chaotic circuit candidates from Fig.4.

Fig.6. Only 4 distinct piecewise-linear curves having 2 connected negative-slope segments can
exist which intersect the negative-slope load line at exactly two points. The characteris
tic In (a) is a double-valued function of both vr and (r. The characteristic In (b) is a
single-valued function, whose segments. If extended indefinitely,' will remain within the
4th quadrant, and is hence not physically realizable.

Fig.7. The remaining piecewise-linear characteristics alluded to in the preceding figure caption
are the dual of those in Fig.6. Consequently, the characteristic in (a) is also a double-
valued function of both vr and fe, while the characteristic in (b) is a single-valued func
tion, whose segments, if extended indefinitely, will remain within the 2nd quadrant, and
is hence not physically realizable.

dual
Fig.8. The 2A4-segment characteristic in (a) and (b) 4mdL are the simplest eventually passive,

hence physically realizable vr-Ir characteristic which include that of Figs.6(b) and 7(b),
respectively, as a subset.

Fig.9. Only 2 distinct piecewise-linear curves having 3 negative-slope segments can exist which
intersect the'negative-slope load line at exactly 3 points. The characteristic in (a) is a
triple-valued function of both vr and fe. The characteristic in (b) is a single-valued func
tion of vr.» However, if the end segments are extended indefinitely, the curve will remain
in the 2nd and the 4th quadrants, and hence is not physically realizable.

Fig. 10. The simplest 5-segment piecewise-linear characteristic which is eventually passive, and
hence physically realizable, and which contains the 3-segment characteristic of Fig.9(b)
as a subset. The load line in (a) intersects this characteristic at 3 points in the
negative-slope segments, as called for In the specifications. If the value of Ro is chosen
too large, however, the two outer equilibrium points will fall on the positive-slope outer
segments, and become stable equilibrium points, thereby violating the specifications.
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