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Abstract

This paperpresentsa learningalgorithmsimilarto the Backpropagation-Through-Time approach,
which is well known for other dynamical neural networks. The algorithm is based on the mini
mization ofan errorcriterionof the continuous dynamical system. The overall erroris a product of
a function of the state at a given time and the integralofan entire time function of the state over the
trajectory prior to this time. The technique of variational calculus provides a way of calculating
the gradient of the error, which can be used to descend to a minimum on the error surface.

We will adopt this theory to CNNs and show its ability to work with piecewise linear systems
as well. The described algorithm learns the parameter vector of a locally connected CNN with
translationallyinvariantweights, where the errorfunctionalis a minimum over the parameterspace.
With this algorithm not only the stableandunstablepatterns,but whole trajectoriesofthe dynamical
system in the state space can be learned.

Some examples show that the algorithm works, but is restricted to small problems due to compu
tational complexity.

1 Introduction

Neural networks have become useful because of their ability to perform a wide variety ofuseful tasks
by choosing a suitable set ofweights. There aremany different ways ofadjusting the weights such that
the neural network will perform a specified task.

For dynamic recurrentneural networks Hebbian learning was traditionally used until Almeida [2] and
Pineda [11,12, 13] generalized the feedforward backpropagation algorithm [14] to recurrent neural
networks. Pearlmutter [10] described a procedure to design not only the fixed points, but the trajectory
of recurrent dynamic neural networks.

We concentrate on a subclass ofneural networks: Cellular Neural Networks (CNNs) [3,9], where the
interconnections between the neurons or cells are translationally invariant and only local. Therefore,
the number of weights, which have to be leamed or designed, is very small. One first step towards the
systematic design ofCNNs has been proposedby Zou et. al. [17], and later by Slot and Kacprzak [16].

'Supported by a grant from the Ernst von Siemens foundation.



ChuaandThiran [4]providea method forsynthesizing CNNsfor simpleapplications,andSeiler,et. al.
[15] show how to systematically designa CNNwithstableand unstableoutputs while simultaneously
maximizing its robustness.

Except for [4], which is restrictedto relatively simpleproblems,the correct operation of the network is
not guaranteed, but only the stable or unstablepointsof the dynamical system are designed correctly.

Weadoptthe methodof learningfixedpoints, namely recurrent backpropagation, andnon-fixedpoints,
namely backpropagation-through-time, to the problem of learning state space trajectories in CNNs.
After a short review of CNNs in Section 2, we will discuss the purpose of learning in Section 3. In
Section 4, the calculus-of-variations technique will be introduced for arbitrary dynamical systems in
very similar way as given by Miesbach in [8]. This technique will be applied to CNNs in Section 5.
Examples of CNN learning to perform different tasks are given in Section 6.

2 The Architecture of CNNs

Cellular Neural Networks or CNNswere introduced by Chua and Yang [3], where the definition was
given for regular and locally connected structures. Nossek, Seiler, Roska, and Chua [9] later presented
a description with abstract language and arbitrary topologies. For our purpose a description between
them is best suited in abstract language and restricted to regular and only locally connected structures,
as follows:

Definition 2.1 Strict Cellular Neural Network

If thefeedbackoperator a and the control operator b are translationallyinvariant and only local, then
the state equation of a Strict CellularNeuralNetwork can be written as

1 ( +r +r \xc,d =FCfd =—I-xc4 + Y, J2 M^/O&W+m+K^Kw+m] +*J • (i)

The summation is restricted to the rectangular cell grid CG, which is a two-dimensional grid of cells
defined by 1 < c < N and 1 < d < M. Its output equations read

MO =/(MO) =5(li +MOI - li - MOD • P)
The interconnections are local, i.e. only cells inside a neighbourhood r are connected by weights.

Usually only the stateand output values xc,<f and yc,d are time-dependent in a CNN, whereas thefeed
backandcontrol coefficients a(vtp) and b(uy p) as well as the offseti are constant. The inputs uCtd are
also usually constant. rx is the time constant of the dynamics.

Furthermore, the initial state values a:c>d(0) and the inputvalues uCtd are boundedby:

IM0)| < 1, (3)
IMOI < i, vt>o. (4)

A system of the form (1), (2), which additionally satisfies (3) is called a StrictCellular Neural Network
or Strict CNN.



Definition 22 Two-dimensionalConvolutionOperator

The feedback operator a, whichdefinesthe dynamicalbehaviourof the CNN, can be arranged as a vec-
torin lR(2r+1)(2r+i) ^d contains the translationally invariant weights between cells inar-neighborhood.
The two-dimensional convolution operator •defines the weighted sum over the cells inside this neigh
borhood.

a •&,<* = Y Y, a(">/0yc+i/,d+M- (5)

D

A corresponding equation holds for the control operator b.

Definition 23 Parameter Space [15]

The parameter space V of a CNN is IRm, where

m = 2(2r+l)2+2. (6)

and r is the neighbourhood. a

The parameter vector peVofa particular CNN can be written as follows:

p = (aT,bT,i,rx)T. (7)

a

With the use of the two-dimensional convolution operator, the description of a CNN can be simplified,
so that:

rxxCid = -xCtd + a * yc,d + b * uCfd + i. (8)

Thestate, theoutput and theinput of the CNN can bearranged toa vector in IR^** each and therefore
the CNN can be written in the standard form of an ordinary dynamical system

x = F(x,u,*,p), (9)

y = f(x). (10)

3 Learning as a Two Point Boundary Value Problem (TPBVP)

Learning for CNNs means to determine the network parameter p such that the system will perform a
specifiedtask. The desiredtask of a CNNcanbe described by a set of L triple of patterns (xj, u", y£),
where xj[ is the initial state, u" the inputand y£ the desiredoutput of the CNN.



The CNN has to be trained to perform the mapping

(xs,u")~y;:, i/ = i,...,i. (ii)

The information can be fed into the input as well as into the initial states, as usually done in an associa
tive recall memory. This is often called an attractor mechanism [6]: the state converges to this stable
fixed points, which provides the desired output.

The goal oflearning is to find a parameter vector p, such that this mapping (11) will be performed, i.e.:
foreach ofthe given pairof patterns forthe inputandthe initial state,the output of the CNN converges
to the desired output:

y(*-T) = y;, i/ = i,...,i. (12)

As the transfer function of a CNN is piecewise linear, the output can be specified to converge in finite
timeT.

The differential equations (1) arerequired to satisfy boundary conditions at the starting and the ending
values, therefore the resulting problem is called TwoPoint Boundary ValueProblem (TPBVP) [1]. The
boundary condition of the state has the form of a set of inequalities, as for the value at the time T only
the output of the CNN is prescribed,

This in general is very hardto solve, because of the high dimension of the problem. There are LNM
differential equations with two boundary conditions each, usually at time t = 0 and t = T. Therefore
shooting methods or relaxationmethods require immense computational effort to solve this problem.

The next section will show an altemativ approach for solving this problem.

4 The Backpropagation-through-Time Algorithm

We will introduce a scalarerror functional to measure the system performance. The problem is then to
find the parameter, where the error functional takes its lowest value. Therefore we obtain a nonlinear
minimization problem, for which at least a local minimum can be found using gradient techniques.
Because of the piecewise linear transfer function of the CNNs the error functional of Almeida [2] and
Pineda [11,12,13], which arebackpropagation algorithms generalized for recurrent neural networks,
can not be used.

Based on the idea of Pearlmutter [10] to design the trajectory of recurrent dynamic neural networks
with the backpropagation-through-timealgorithm, we will use the trajectory of the CNN state to gain
information about the gradientof a modified error functional.

The backpropagation-through-time algorithm(BTT) can be derived from solving a classical variation
problem [8].

Examine the dynamical system, which is given by a system of differential equations

x = F(x,i,p), (13)

where x € IRn is the system state. In the case of CNNs: n = NM.



The performance of the system is assumed to be measured by a scalar functional E which bookkeeps
the errors over the whole transient, i.e. overthe finite interval [0, T], whereT is the given time:

T

E=L\(x(T))JL2(x,x,t)dt. (14)
o

Li : Rn -*• Rn measures the error at the given time T, whereas L2 : Rn x Rn x 1R -• IRn is
integrated over the given interval, to take into account the effect of a change of the parameters on the
trajectory. This can be used to learn a specific trajectory as well.

The existence of the definite integrals defining the cost or error functional is assumed, and the mini
mizing functions are to be chosen from the set of all functions having continuous second derivatives
over the time interval.

The problem is to adjust the parameter in orderto find a function x(t) such that the error functional
E given by (14) is minimal. Minimize the error functional (14) under the equality constraint given by
the differential equations (13), which can be written as

F(x,t,p)-x = 0. (15)

It canbe shown that the solution to the constrained problemcanbe obtained by minimizing the modified
error functional, which includes the contraints

T

E' =J [Lj(x(r))L2(x,x,*) +AT(F(x,*,p) - *)] dt, (16)
0

where A 6 Rn is the vector equivalent of the Lagrange multiplier.

4.1 The Calculus-of-Variations Approach

A necessary condition for an extremum of E' is that the first variation of E' (the Frechet-derivative)
8E'be zero (independent of the variations 6x, 6x and 6X):1

6E> =j.[l^x +L\ fex +§«) +AT (g*x -«) +(F(x, t, p) -xfa] dt.
0 T

(18)

Since the variation6E' must be zero independentof <5A, which can be chosen independent ofthe other
terms, the factor of 6X must be zero. This guarantees, that the contraints are fulfilled.

'The partial derivative of a scalar function /(x) with respect toavector x isdefined tobe arow vector

*£.= (& °l) (17)



After rearranging and integrating by partsthe terms containing Jx, the variationof E' becomes:

SE'= /l5*^fa +(lI(x(D)^ -AT) *x|o +
0 t

+J {{*«T»a-t -*T1 -^r»m+AT) H* • ™
0

Since SEf must equal zero independent of the firstvariation 6xof x, the second line of (19) yieldsthe

Euler-Lagrange equation:

The initial state x(0) = xo is fixed, thus the variation of x is zero for t = 0:

(20)

«x(0) = 0 (21)

Thevariation 6x\T isarbitrary, andthefirst two terms of(19) canbecombined togeta condition forthe
Lagrange multipliers Aat the time T. This condition is called the associated transversalitycondition:

^-(^)7^(*)Tw» (22)

t-T

This is once again a two point boundary value problem (TPBVP) ofx and A,which in the general case
cannot be solved analytically.

42 Calculating the Gradients of the Error

The objective is to minimize E with respect to the parameter vector p. This can be done by using
efficient gradient techniques, where the gradient2 |^ can be obtained by the formal differentiation of
(14) with respect to p:

dE_f
dp ~ J

— = fdp " J

.T .. 0Li#x
V2dt

o " * o

+17 / (ft* a* , ou a*\
+ XJ \dx dp* dx dp) dt

dx dp

This can be simplified by integrating the second term of the integral in (23) by parts

dE Tf'Tdt dLidx
dx dp r

o x

T f(dL2 ddL2\dx TdL
+Ll J Vdx~ - Jt-dx-J dp"1* +Ll~di

dL2 dx

dx dp

This is againa row vector corresponding to the ideaof 1-formsin differential geometry.

(23)

(24)



and from the definition of A from the Euler-Lagrange equation (20), the parenthesized term in the
integral can be substituted

_jTdL1dx TdL2dx\T Jf TdF iT\dx
9p 0

Using integration by parts again we obtain

dE _ /t Tj. dLtdx\ t frTdL2 xT\dx\T t }^Tfdx dFdx
o

The differentiation of (13) with respect to p gives:

S-K*T&£L+('s5f-»T)a+/»T(S-5sB)*- <M>

dx _ dFdx dF
dp~ dxdp + dp' ( }

Since the initial state does not depend on the parameters

= 0, (28)
dx

dp t=o

the first two terms of (26) comprise the transversality condition, and thus are zero. This finally leads
together with (27) to a simplified equation for the gradient of E with respect to p:

dE

-MS)*- (29)d> 0
A necessary condition for an extremum of E is

M-0. ,30,

43 Minimizing the Error Functional using the Gradients

Using the gradients of the error, minima of the error functional can be found by using various gradient
techniques like conjugate gradient methods or Newton-like methods. Of course, this algorithm does
not always find the global minimum of the error functional, but descends only to a local minimum.
The algorithm stops if the gradient gets zero, whether it has found a local minimum or the global one.

The algorithm works as follows:



begin Minimizing the Error Functional E
start with a random parameter vector p
repeat

integrate x from t = 0 to T

integrate A from t —T to 0 and simultaneously evaluate the gradient
perform a gradient step to reduce the value of the error

until gradient of E becomes zero
end.

5 The BTT-Algorithm for CNNs

In this section the backpropagation-through-time algorithm will be appliedto CNNs. Eqn. (1) and (2)
have to be used for the dynamical system (13) andan appropriate measureof the errorhas to be found.

The partial derivative of the state equations with respect to the state variables, which describes the
influence of the change of onestate xCid to thetimederivative xc+t,td+tl of acell c + v, d + p, can be
computed from the right hand side of (1):

dF^ ^ 1 f0' if\v\>ror\p\>r;
or*+">d+fi =- { -1 +a(0,0)/'(sCttf), ifi/ =0and//=0; (31)

oxc4 r* U(-f,-/i)/'(^), else.

The partial differentiation of (1) with respect to the parameters yields:

Wc,d _ 1 f, . dFCtd 1 dFc4 1 dFCtd 1 .
oa(u,p) tx ob(v,p) tx ^ dt tx drx rx

The gradient of the error can now be written with the use of A, which has the same dimension as x:

N MdE 1 /^^3^5 = -yZ.l,/(^W+JAc,^, (33)

dE 1 }»"
M(w) = ^iLLuc+M+,M^ (34)

q c=l a=l

dE 1?f "

## i }N M

(35)

(36)

The equations so far wereindependent ofthechoice ofanerror functional, butofcourse, the equations
for A, whichare the Euler-Lagrange-Equations (20) and the associated transversality conditions (22),
are not.



5.1 Selection of an Error Functional

We will now show the error functional, which we used for the learning in CNNs. The component c, d
of the vector valued errors depend only on the corresponding state xCid and measure the distance of a
functionof the state to the desiredoutput y*d usinga given norm 2k, where A; € IN:

V«m) = ^{9(*c,d(T))-yld)2k ==|p(o;c,d(r))-^||22",
1 / \ 2Jk ii i 2Jb£2c,a(x,x,t) = jr (g(xc,d(t)) - yld) =\\g(xctd(t))-ymc,d\ . (37)

To assure that the state is not trained to be exactly on the boundary of the saturation regions, we use
not the transfer function f(xCfd) directly for g(xCjd), but one of the family with a parameter p:

9p(*c4) =f(j^)> P>0. (38)
The boundaries of the saturation regions of gp(xCid) are at an absolute value of \xCid\ = 1 + p. Conse
quently the functions L\ed and Z^c dget zero, if the state xCyd is in the saturation where the output of
this cell is equal to the desired output, and has at least a distance of p to the boundary of the saturation
in the transfer function.

If p = 0, the function gp{xCyd) clearly is equal to the transfer function of the CNN,go(xCtd) = f(xCtd)>
and therefore the error functions L\cd and lacd measurethe distance ofthe actual output to the desired
one.

With the definitionof L\cd and L2 d(37) theerror functional, which will be minimized,becomes:

T

2k

N M

* =££
c=ld=l

(39)

Remarks: Properties ofthis ErrorFunctional

• The error (39) is non-negativ, as it is a sum of a product of non-negative terms.

• The integrated error of a cell c, ddoesnot influence the error Ey if L2cd(xCid(T)) is zero.

• The error functional (39) gets zero with the use of (38), if and only if the output of all cells are
in the desired saturation and the state variables have at least a distance of p from the boundaries
of the transfer function.

Minimizing this functional, where

dE _n dE _n a*; ^_n un\
da(v, p) ~U' db(u, p)~Vi di ~U' drx "U' {V)

yields the Euler-Lagrange equation for the CNN:



1 / +r +r \
Ac,* = —\Kd-J2 £ [a(-i/,-/z)/'(zc,d)Ac+^M]j -

- {g(*c,d(t)) - y^d)21"19\xCid(t))^ (g(*cAT)) - vuT . <41>
and the associated transversality condition:

r

\c4(T) =(g(xCid(T)) - yld)2k'1 g'(xc,d(T)) J-L (g(xc4(t)) - y^f'dt. (42)
o

6 Examples

In this section some examples of learning state space trajectories in CNNs are given, most of them
requiring only the knowledgeof thedesiredoutput.The wholetransientmust not be given by a teacher,
but it is used for learning, as the error may be integrated over the whole transient.

The descent in the parameterspaceto minimizetheerror functional is done with the conjugate gradient
minimizationmethod of Fletcher and Reeves [5], but a simplermethod such as steepest descent will
work in general, requiring more iterationsteps.

A measure of the computationaleffort of the minimizationis the number of function evaluations, that
is runningof the CNNforward and integrating theerroroverthe transient, and the numberof gradient
evaluations, that is running the CNNbackward in timesimultaneously evaluating the gradients.

The last examplewill showthe useof thelearning algorithm not only to learn fixedpoints,but as well
learning the complete transient of a simple oscillatory two-cell CNN, which was designed robustly
[15].

Westart the procedureof learningwitha initialparametervector,whereall components are zeroexcept
the time constant rx = 1. Thus all cells are decoupled from the input as well from each other, and the
state of each cell exponentially tendsto zeroas timeevolves to infinity. In some exampleswe havenot
trained the time constant tx of the CNN,although it is usefulespeciallyfor learning the oscillationsin
Section 6.3. In most cases we used the transfer function for the error directly, and the squarederror,
i.e. k — \.

6.1 State-based Logical OR

The design ofa simple two-cellCNN whichproduces an outputof bothcells which is equal the logical
"OR" of the initial state, where +1 is interpreted as 'true' and -1 as 'false* was reported in [15]. As
there is no input of the CNN the operation is called state-based. The four different combinations of
logical values were used as the learningsamples. Afterthreegradientsteps with a total number ofseven
forward and backward integrations the error was zero. The resulting template values (Fig. 1) and the
phase-plane trajectory of the four differentinitialconditionsof this two-cell CNN are shown together
with the boundaryof the basins of attraction in Fig. 2. Although the self-feedback is slightly smaller
than one, this templateobtainsa stableCNN. The symmetry of the templates is obtainedautomatically
because of the symmetry of the problem.

10



a =

b =

i =

0.716 0.964 0.716

0.000 0.000 0.000

0.033

1.000 (fixed)

Fig. 1: The trained template values of the State-based logical OR CNN.
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/ " -1.5 • l \

" -2 L I \

Fig. 2: The phase-plane trajectories together with the boundary of the basins of attraction.

62 Connected-Component-Detector

To learn the task of"Connected-Component-Detection" [7] we used all possible combinations ofblack
and white cells in a linear CNN with five cells, which were the 32 learning samples. After only 13
gradient descents with 47 forward and backward integrations the error and the gradient were zero. In
Fig. 3 the learned template values for this problem are given.

a =

6 =

i =

Tx =

Fig. 3: The resulting template values of the Connected Component Detector.

0.430 1.509 -0.430

0.000 0.000 0.000

-0.003

1.000 (fixed)

11



63 Two-Cell Oscillator

The last examples willshowthatthisalgorithm canbeusedto trainonecell of a simpletwo-cell CNN
to follow a given trajectory. Depending on thedesired waveform of the signal and its amplitude we
will use the state or the output of onecell as the signal. For this examples, the functions Li and L2
were chosen differently to measure only the errorof the stateof the output of one cell.

Sinusoidal Oscillator: Asa firstexample wetrained thetrajectory of cell 1to be a sinusoidal function
of thetime with an amplitude of 1 and a period time of 5: xf(t) = sin(27rt/5). Since we wanted to
learn the state we used the following error functional:

E=±J(x1(t)-x*l(t))2<lt- (43)

Fig. 4 shows thetrained trajectory ofcell 1,starting from the initial state x = (0,1)T. The error can
be reduced further withan increased value of the timeT. The corresponding values of this CNN are
shown in Fig. 4.

0.5

-0.5

Fig. 4: The trajectory of cell 1of a sinusoidal oscillating two-cell CNN.

a =

6 =

i =

-0.875 0.961 1.931

0.000 0.000 0.000

0.000

1.000 (fixed)

Fig. 5: The template values of a sinusoidal oscillating two-cell CNN.
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In the following examples we always trained the output of one cell to follow a desired trajectory.
Therefore the error functional was:

E=y(fWt))-ym)2dt. (44)

Trapezoidal Oscillator: Thedesired trajectory of theoutput ofcell 1was a trapezoidal function of the
time with an amplitude of 1,a period of5 units of time and an absolute value of theslopes of 2. The
saturation of thepiecewise linear transfer function is used toget thesaturated parts of the trapezoidal
function. Fig. 6 shows the trained output ofcell 1, starting from the initial state x = (0,0.7)T and
Fig. 7 the correspondingvalues of the template.

0.5

-0.5

4

Fig. 6: The output ofcell 1 of the trapezoidal two-cell oscillator.

a =

6 =

i =

Fig. 7: The template values of the CNN with an trapezoidal output.

Iriangular Oscillator with three cells: The last example will show an CNN with three cells, where
the output of cell 1 is trained to be a triangular signal with an amplitude of 1 and a period time of 5.
Of course the output is continuous in the linear region and the straight edges can not be obtained, but
the output approximates the triangular signal (see Fig. 9). This time we leamed the time constant of
thesystem tx too(see Fig. 8). The initial condition was x(0) = (0,2, -2)T.

-0.672 1.197 4.000

0.000 0.000 0.000

0.006

1.000 (fixed)
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a =

6 =

i —

TV =

-4.426 1.217 2.146

0.000 0.000 0.000

0.095

2.447

Fig. 8: The template valuesof the CNN with an triangular output.
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Fig. 9: The output of cell 1 of the triangular oscillatorwith three cells.

7 Conclusion

Ourgoal hasbeento find alearning algorithm for CNNs, which is able tolearn theparameters of aCNN
to perform atransition from aninitial state toastate, which yields aprescribed output. Wehaveshown a
gradient technique whichis able to learn the parameters suchthatagivenerror functional is minimized.
Of course we find not always the global minimum, because the proposed algorithm usesthe gradient
of theerror functional in theparameter space. Thus thealgorithm stops, if thegradient is zero, whether
this is a local minimum or a global one. Another drawback of the algorithm is the computational
complexity. In order to compute the gradient of theerror functional not only the differential equation
of theCNN has to be integrated forward intime, butalso theEuler-Lagrange equation, whichisof the
same dimensionality has to be integrated backward in time. Therefore the complete trajectory of the
states hasto be stored. This restricts the application of this algorithm to small examples. But in most
cases this is nota severe restriction, as thelearning can beachieved withrelatively small samples.

Further investigations have to bemade to examine theinfluence of error norm 2k and the parameter p
on the speed, the ability to generalize and theavoidance of reaching local minima. And it is necessary
to find algorithms withlesscomputational effords in storage space and computing time.
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