Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

LEARNING STATE SPACE TRAJECTORIES
IN CELLULAR NEURAL NETWORKS

by

Andreas J. Schuler, Peter Nachbar, Josef A. Nossek,
and Leon O. Chua

Memorandum No. UCB/ERL M92/106

29 September 1992

LEARNING STATE SPACE TRAJECTORIES
IN CELLULAR NEURAL NETWORKS

by

Andreas J. Schuler, Peter Nachbar, Josef A. Nossek,
and Leon O. Chua

Memorandum No. UCB/ERL M92/106

29 September 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

This work is supported in part by the Office of Naval Research under grant N00014-89-
J-1402 and the National Science Foundation under grant MIP-9001336.

LEARNING STATE SPACE TRAJECTORIES
IN CELLULAR NEURAL NETWORKS

by

Andreas J. Schuler, Peter Nachbar, Josef A. Nossek,
and Leon O. Chua

Memorandum No. UCB/ERL M92/106
29 September 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

This work is supported in part by the Office of Naval Research under grant N00014-89-
J-1402 and the National Science Foundation under grant MIP-9001336.

Learning State Space Trajectories in Cellular Neural Networks

Andreas J. Schuler, Peter Nachbar; and Josef A. Nossek
Institute for Network Theory and Circuit Design,
Technical University Munich, Germany

Leon O. Chua
Electronics Research Laboratory, College of Engineering
University of California, Berkeley, USA

September 29, 1992

Abstract

This paper presents a learning algorithm similar to the Backpropagation-Through-Time approach,
which is well known for other dynamical neural networks. The algorithm is based on the mini-
mization of an error criterion of the continuous dynamical system. The overall error is a product of
a function of the state at a given time and the integral of an entire time function of the state over the
trajectory prior to this time. The technique of variational calculus provides a way of calculcating
the gradient of the error, which can be used to descend to a minimum on the error surface.

We will adopt this theory to CNNs and show its ability to work with piecewise linear systems
as well. The described algorithm learns the parameter vector of a locally connected CNN with
translationally invariant weights, where the error functional is a minimum over the parameter space.
With this algorithm not only the stable and unstable patterns, but whole trajectories of the dynamical
system in the state space can be learned.

Some examples show that the algorithm works, but is restricted to small problems due to compu-
tational complexity.

1 Introduction

Neural networks have become useful because of their ability to perform a wide variety of useful tasks
by choosing a suitable set of weights. There are many different ways of adjusting the weights such that
the neural network will perform a specified task.

For dynamic recurrent neural networks Hebbian leaming was traditionally used until Almeida (2] and
Pineda [11, 12, 13] generalized the feedforward backpropagation algorithm [14] to recurrent neural
networks. Pearlmutter [10] described a procedure to design not only the fixed points, but the trajectory
of recurrent dynamic neural networks.

We concentrate on a subclass of neural networks: Cellular Neural Networks (CNNs) [3, 9], where the
interconnections between the neurons or cells are translationally invariant and only local. Therefore,
the number of weights, which have to be leamed or designed, is very small. One first step towards the
systematic design of CNNs has been proposed by Zou et. al. [17], and later by Slot and Kacprzak [16].

*Supported by a grant from the Emst von Siemens foundation.

Chua and Thiran [4] provide a method for synthesizing CNNs for simple applications, and Seiler, et. al.
[15] show how to systematically design a CNN with stable and unstable outputs while simultaneously
maximizing its robustness.

Except for [4], which is restricted to relatively simple problems, the correct operation of the network is
not guaranteed, but only the stable or unstable points of the dynamical system are designed correctly.
We adopt the method of leaming fixed points, namely recurrent backpropagation, and non-fixed points,
namely backpropagation-through-time, to the problem of learning state space trajectories in CNNs.
After a short review of CNNs in Section 2, we will discuss the purpose of leaming in Section 3. In
Section 4, the calculus-of-variations technique will be introduced for arbitrary dynamical systems in
very similar way as given by Miesbach in [8]. This technique will be applied to CNNs in Section 5.
Examples of CNN leaming to perform different tasks are given in Section 6.

2 The Architecture of CNNs

Cellular Neural Networks or CNNs were introduced by Chua and Yang [3], where the definition was
given for regular and locally connected structures. Nossek, Seiler, Roska, and Chua [9] later presented
a description with abstract language and arbitrary topologies. For our purpose a description between
them is best suited in abstract language and restricted to regular and only locally connected structures,
as follows:

Definition 2.1 Strict Cellular Neure.ﬂ Network

If the feedback operator a and the control operator b are translationally invariant and only local, then
the state equation of a Strict Cellular Neural Network can be written as

. 1 o & :
Ted = Foa = — (""“’C.d + 0 Y (6 metvarn + 0¥, p)uctvdsu] + z) - (1)

z y=—r p=-—r

The summation is restricted to the rectangular cell grid CG, which is a two-dimensional grid of cells
definedby 1 < ¢ < Nand 1 < d < M. Its output equations read

e(®) = f(@ea®) = 5 (1 + 24l ~ |1 = 2ea(®)) @

The interconnections are local, i.e. only cells inside a neighbourhood r are connected by weights.

Usually only the state and output values z. 4 and y. 4 are time-dependent in a CNN, whereas the feed-
back and control coefficients a(v, p) and b(v, 1) as well as the offser ¢ are constant. The inputs u. 4 are
also usually constant. 7 is the time constant of the dynamics.

Furthermore, the initial state values z. 4(0) and the input values . 4 are bounded by:
lzca(0)] £ 1, 3)
luca(t)) < 1, Ve20. @

A system of the form (1), (2), which additionally satisfies (3) is called a Strict Cellular Neural Network
or Strict CNN.

Definition 2.2 Two-dimensional Convolution Operator

The feedback operator a, which defines the dynamical behaviour of the CNN, can be arranged as a vec-
torin IR@+1)7+1) and contains the translationally invariant weights between cells in a r-neighborhood.
The two-dimensional convolution operator x defines the weighted sum over the cells inside this neigh-
borhood.

+r +r :
a*Yed = E Z a(¥, 1)Yetv,dtu - (5)
V=—r p=-—r
0
A corresponding equation holds for the control operator b,
Definition 2.3 Parameter Space [15]
The parameter space P of a CNN is R™, where
m=202r+1)7 +2. (6)
and r is the neighbourhood. o
The parameter vector p € P of a particular CNN can be written as follows:
P= (aT, bTa i Tz)T . (7)
o

With the use of the two-dimensional convolution operator, the description of a CNN can be simplified,
so that:
Teded = ~TcdHa*Yed +bruca+i. (8)

The state, the output and the input of the CNN can be arranged to a vector in IRV™ each and therefore
the CNN can be written in the standard form of an ordinary dynamical system

x = F(x,u,t,p), 9)

y = f(x). (10)

3 Learning as a Two Point Boundary Value Problem (TPBVP)

Leaming for CNNs means to determine the network parameter p such that the system will perform a
specified task. The desired task of a CNN can be described by a set of L triple of pattemns (xg,u”,y%),
where xg is the initial state, u” the input and y the desired output of the CNN.

The CNN has to be trained to perform the mapping

(xg,u")—yy, v=1,...,L. (11)

The information can be fed into the input as well as into the initial states, as usually done in an associa-
tive recall memory. This is often called an attractor mechanism [6): the state converges to this stable
fixed points, which provides the desired output.

The goal of learning is to find a parameter vector p, such that this mapping (11) will be performed, i.e.:
for each of the given pair of patterns for the input and the initial state, the output of the CNN converges
to the desired output:

yi-T)=y’, v=1,...,L. (12)

As the transfer function of a CNN is piecewise linear, the output can be specified to converge in finite
time T'.

The differential equations (1) are required to satisfy boundary conditions at the starting and the ending
values, therefore the resulting problem is called Two Point Boundary Value Problem (TPBVP) [1]. The
boundary condition of the state has the form of a set of inequalities, as for the value at the time T only
the output of the CNN is prescribed,

This in general is very hard to solve, because of the high dimension of the problem. There are LN M
differential equations with two boundary conditions each, usually at time ¢ = 0 and ¢t = T'. Therefore
shooting methods or relaxation methods require immense computational effort to solve this problem.

The next section will show an alternativ approach for solving this problem.

4 The Backpropagation-through-Time Algorithm

We will introduce a scalar error functional to measure the system performance. The problem is then to
find the parameter, where the error functional takes its lowest value. Therefore we obtain a nonlinear
minimization problem, for which at least a local minimum can be found using gradient techniques.
Because of the piecewise linear transfer function of the CNNs the error functionals of Almeida [2] and
Pineda [11, 12, 13], which are backpropagation algorithms generalized for recurrent neural networks,
can not be used.

Based on the idea of Pearlmutter [10] to design the trajectory of recurrent dynamic neural networks
with the backpropagation-through-time algorithm, we will use the trajectory of the CNN state to gain
information about the gradient of a modified error functional.

The backpropagation-through-time algorithm (BTT) can be derived from solving a classical variation
problem [8].

Examine the dynamical system, which is given by a system of differential equations

x = F(x,1,p), (13)

where x € IR" is the system state. In the case of CNNs: n = N M.

The performance of the system is assumed to be measured by a scalar functional £ which bookkeeps
the errors over the whole transient, i.e. over the finite interval [0, T}, where T is the given time:

T
E = LY(x(T)) f La(x, %, t)dt . (14)
0

L; : R® — IR" measures the error at the given time T', whereas Lz : R™ x R® x R — R" is
integrated over the given interval, to take into account the effect of a change of the parameters on the
trajectory. This can be used to leam a specific trajectory as well.

The existence of the definite integrals defining the cost or error functional is assumed, and the mini-
mizing functions are to be chosen from the set of all functions having continuous second derivatives
over the time interval.

The problem is to adjust the parameter in order to find a function x(¢) such that the error functional
E given by (14) is minimal. Minimize the error functional (14) under the equality constraint given by
the differential equations (13), which can be written as

F(x,t,p)—%x=0. (15)

It can be shown that the solution to the constrained problem can be obtained by minimizing the modified
error functional, which includes the contraints

T
E= / [EL(x(T)Lax, %, 2) + X (F(x, 1, p) ~ %)] dt, (16)
0

where A € R™ is the vector equivalent of the Lagrange multiplier.

4.1 The Calculus-of-Variations Approach

A necessary condition for an extremum of E’ is that the first variation of £’ (the Frechet-derivative)
5 E' be zero (independent of the variations éx, 6x and §)):!

T
i5'= | [L;%«SxIT +L] (%&: + ‘9—;‘),‘35*) oy (g_iax - 65:) + (F(x,t,p) - i)Ték] dt.
0
(18)

Since the variation § E’ must be zero independent of A, which can be chosen independent of the other
terms, the factor of §\ must be zero. This guarantees, that the contraints are fulfilled.

"The partial derivative of a scalar function f(x) with respect to a vector X is defined to be a row vector:

After rearranging and integrating by parts the terms containing 6%, the variation of E’ becomes:

/ L;dtal‘la (((T))‘?I‘2 ,\T) 6le+

" /[(LN Z2 4T ~ L) G T2 43T) oxlar. a9
0

Since 6 E’ must equal zero independent of the first variation éx of x, the second line of (19) yields the
Euler-Lagrange equation:

g (3:’:) At (‘?;2 - %%’)T Ly(x(T)) = 0. (20)

The initial state x(0) = xg is fixed, thus the variation of x is zero for ¢ = 0:

6x(0) =0 (21)

The variation x| is arbitrary, and the first two terms of (19) can be combined to get a condition for the
Lagrange multipliers) at the time T'. This condition is called the associated transversality condition:

NT) = (wﬁy /T Lodt + (%)T L1(x(T))
0

This is once again a two point boundary value problem (TPBVP) of x and A, which in the general case
cannot be solved analytically.

(22)

t=

42 Calculating the Gradients of the Error

The objective is to minimize E with respect to the parameter vector p. This can be done by using
efficient gradient techniques, where the gradlent2 can be obtained by the formal differentiation of
(14) with respect to p:

T
0F _ 0Ly 0x 0Lo _6_x 0L2 ax)
8p—o/Ldt |+ /(6x8p+6x0 dt. (23)

This can be simplified by integrating the second term of the integral in (23) by parts

T
3_E _ T4 3L1 ox (% _ iaLz) dx TaLz ax|T
op —b/Lz I +L / Ox dt 9% 6pd gy 9% Op (24)

2This is again a row vector corresponding to the idea of 1-forms in differential geometry.

6

and from the definition of A from the Euler-Lagrange equation (20), the parenthesized term in the
integral can be substituted

T
OFE _ T 3L1 ox T 3L2 3x| (T__ _ T) Jx
op ‘0/1‘2 I th %3 +/ A A) (25)

Using integration by parts again we obtain

T T
OE _ [v, 0L10x (TOLa _ T) "’xl / T (‘9_"‘. _ f’EQ}.)
ap_o/Lz at 22 ap|T+ L5e -) 5ol + /[dt. (26)

The differentiation of (13) with respect to p gives:

0x OFo0x OF

Since the initial state does not depend on the parameters
6x|
— =0, 28
ap t=0 ()

the first two terms of (26) comprise the transversality condition, and thus are zero. This finally leads
together with (27) to a simplified equation for the gradient of E with respect to p:

T . (F
_.=o/,\ (Eﬁ)dt. (29)

A necessary condition for an extremum of E is

OE
3 =0 (30)

4.3 Minimizing the Error Functional using the Gradients

Using the gradients of the error, minima of the error functional can be found by using various gradient
techniques like conjugate gradient methods or Newton-like methods. Of course, this algorithm does
not always find the global minimum of the error functional, but descends only to a local minimum.
The algorithm stops if the gradient gets zero, whether it has found a local minimum or the global one.

The algorithm works as follows:

begin Minimizing the Error Functional E
start with a random parameter vector p
repeat
integrate X fromt=0to T
integrate X from =T to 0 and simultaneously evaluate the gradient
perform a gradient step to reduce the value of the error
until gradient of E becomes zero
end.

5 The BTT-Algorithm for CNNs

In this section the backpropagation-through-time algorithm will be applied to CNNs. Eqn. (1) and (2)
have to be used for the dynamical system (13) and an appropriate measure of the error has to be found.
The partial derivative of the state equations with respect to the state variables, which describes the

influence of the change of one state z. 4 to the time derivative 4,4+, Of a cell ¢ + v,d + u, can be
computed from the right hand side of (1):

. : 0, ifly] >rorlp|>r;
- 5—”"’* F=— { -1+4a(0,0)f(zc,4), ifv=0andp=0; (31)
Zcd Tz a(-v,—p)f'(zcq), else.

The partial differentiation of (1) with respect to the parameters yields:

2T = L fmnara) - -
Ba(v,p) T R Gblu,p) T et Tei T o,

OFea _ 1 et oL Pede i ()
T

The gradient of the error can now be written with the use of A, which has the same dimension as x:

OF 1 /Tf:i
— = — f(Zetvdiu)Acadt (33
da(v, 1) Tz ¢ e=1d=1 ’
OE 1 /T” %
—_— = — 'uc+,,'d+ Ac'ddt) (34)
ob(v, p) 7= ; = g
T
OE 1 (XXM
7 = = [hat. (35)
t Te o c=ld=l
T
OF 1 [y,
o = [T dearcadt. (36)
Tz Tz § =1d=1

The equations so far were independent of the choice of an error functional, but of course, the equations
for A, which are the Euler-Lagrange-Equations (20) and the associated transversality conditions (22),
are not.

5.1 Selection of an Error Functional

We will now show the error functional, which we used for the learning in CNNs. The component ¢, d
of the vector valued errors depend only on the corresponding state z. 4 and measure the distance of a
function of the state to the desired output y; , using a given norm 2k, where k € IN:

L1 .(x(T))

L2c'4 (x, i: t)

o7 (0(zed™) — 322)"" = |otaea(™) - v2a|.2;

2’
% (9(zealt)) - 3/2‘,4)% = ||y(wc.d(t)) = ¥ed

2 37
2k @37

To assure that the state is not trained to be exactly on the boundary of the saturation regions, we use
not the transfer function f(z.q) directly for g(z.,q), but one of the family with a parameter p:

9o(Tcd) = f (l—z—_%d;) , p20. (38)

The boundaries of the saturation regions of g,(z.,q4) are at an absolute value of |z. 4| = 1 + p. Conse-
quently the functions L,_, and L,_, get zero, if the state x4 is in the saturation where the output of
this cell is equal to the desired output, and has at least a distance of p to the boundary of the saturation
in the transfer function.

If p = 0, the function g,(z,q) clearly is equal to the transfer function of the CNN, go(zc,4) = f(zcq),
and therefore the error functions L, , and Ly, measure the distance of the actual output to the desired
one.

With the definitionof L, , and L, _, (37) the error functional, which will be minimized, becomes:

N M T
E=) > 51,; (oeaa(T) - v20)™ / %k (9(zea(®)) - v2a) "t - (39)
c=1d=1 °

Remarks: Properties of this Error Functional

¢ The error (39) is non-negativ, as it is a sum of a product of non-negative terms.
e The integrated error of a cell ¢, d does not influence the error E, if Ly_,(zc,q¢(T')) is zero.

o The error functional (39) gets zero with the use of (38), if and only if the output of all cells are
in the desired saturation and the state variables have at least a distance of p from the boundaries

of the transfer function.
Minimizing this functional, where
oF oF oF OF
—— — — = — 4
G- wem Y wm o wm Y 40)

yields the Euler-Lagrange equation for the CNN:

. 1 +r 4r
Ao = —({Acd- E Z [a("”v_l‘)f’(mc.d)’\c+md+u]) -

Tz y=-r p=—r

~ (9(zea(®)) - yZ,a)zk—l g’(zc,d(t))% (9(zca(T)) - y;’,d)% , @D

and the associated transversality condition:

T
Aed(T) = (9(@ed TN = o) o(2ed(T) [5 (o(zea®) - 124) . (@2)
0

6 Examples

In this section some examples of leaming state space trajectories in CNNs are given, most of them
requiring only the knowledge of the desired output. The whole transient must not be given by a teacher,
but it is used for leaming, as the error may be integrated over the whole transient.

The descent in the parameter space to minimize the error functional is done with the conjugate gradient
minimization method of Fletcher and Reeves [5], but a simpler method such as steepest descent will
WOIK in general, requiring more iteration steps.

A measure of the computational effort of the minimization is the number of function evaluations, that
is running of the CNN forward and integrating the error over the transient, and the number of gradient
evaluations, that is running the CNN backward in time simultaneously evaluating the gradients.

The last example will show the use of the learning algorithm not only to leamn fixed points, but as well
learning the complete transient of a simple oscillatory two-cell CNN, which was designed robustly
[15].

We start the procedure of leaming with a initial parameter vector, where all components are zero except
the time constant 7, = 1. Thus all cells are decoupled from the input as well from each other, and the
state of each cell exponentially tends to zero as time evolves to infinity. In some examples we have not
trained the time constant 7, of the CNN, although it is useful especially for leaming the oscillations in
Section 6.3. In most cases we used the transfer function for the error directly, and the squared error,
ie. k=1.

6.1 State-based Logical OR

The design of a simple two-cell CNN which produces an output of both cells which is equal the logical
"OR" of the initial state, where +1 is interpreted as 'true’ and —1 as ’false’ was reported in [15]. As
there is no input of the CNN the operation is called state-based. The four different combinations of
logical values were used as the leamning samples. After three gradient steps with a total number of seven
forward and backward integrations the error was zero. The resulting template values (Fig. 1) and the
phase-plane trajectory of the four different initial conditions of this two-cell CNN are shown together
with the boundary of the basins of attraction in Fig. 2. Although the self-feedback is slightly smaller
than one, this template obtains a stable CNN. The symmetry of the templates is obtained automatically
because of the symmetry of the problem.

10

a= (0716 | 0.964 | 0.716
b= |0.000 | 0.000 | 0.000
i= |[0.033
T = | 1.000 | (fixed)

Fig. 1: The trained template values of the State-based logical OR CNN.

2p

N

[ad

w
B e -| it

o

w

Z
A S vy Uy N

-1.5F

Fig. 2: The phase-plane trajectories together with the boundary of the basins of attraction.

62 Connected-Component-Detector

To leamn the task of "Connected-Component-Detection” [7] we used all possible combinations of black
and white cells in a linear CNN with five cells, which were the 32 leaming samples. After only 13
gradient descents with 47 forward and backward integrations the error and the gradient were zero. In
Fig. 3 the learned template values for this problem are given.

a= 0.430 | 1.509 | —0.430
b= 0.000 | 0.000 | 0.000
i= | -0.003

7= | 1.000 | (fixed)

Fig. 3: The resulting template values of the Connected Component Detector.

11

6.3 Two-Cell Oscillator

The last examples will show that this algorithm can be used to train one cell of a simple two-cell CNN
to follow a given trajectory. Depending on the desired waveform of the signal and its amplitude we
will use the state or the output of one cell as the signal. For this examples, the functions L; and L,
were chosen differently to measure only the error of the state of the output of one cell.

Sinusoidal Oscillator: As a first example we trained the trajectory of cell 1 to be a sinusoidal function
of the time with an amplitude of 1 and a period time of 5: z}(¢) = sin(27t¢/5). Since we wanted to
learn the state we used the following error functional:

E =

[

T
JICIOEE O 43)
0

Fig. 4 shows the trained trajectory of cell 1, starting from the initial state x = (0,1)". The error can
be reduced further with an increased value of the time T'. The corresponding values of this CNN are
shown in Fig. 4.

-0.5p

Fig. 4: The trajectory of cell 1 of a sinusoidal oscillating two-cell CNN.

a= |-0.875]0.961 | 1.931
b= | 0.000 | 0.000 | 0.000
i= | 0000
T = | 1.000 | (fixed)

Fig. 5: The template values of a sinusoidal oscillating two-cell CNN.

12

In the following examples we always trained the output of one cell to follow a desired trajectory.
Therefore the error functional was:

T
E=y 0/ (S (®) - i (0)dt . ()

Trapezoidal Oscillator: The desired trajectory of the output of cell 1 was a trapezoidal function of the
time with an amplitude of 1, a period of 5 units of time and an absolute value of the slopes of 2. The
saturation of the piecewise linear transfer function is used to get the saturated parts of the trapezoidal
function. Fig. 6 shows the trained output of cell 1, starting from the initial state x = (0,0.7)7 and
Fig. 7 the corresponding values of the template.

-1 b

Fig. 6: The output of cell 1 of the trapezoidal two-cell oscillator.

ea= | —-0.672 | 1.197 | 4.000
b= 0.000 | 0.000 | 0.000
1= 0.006

== | 1.000 | (fixed)

Fig. 7: The template values of the CNN with an trapezoidal output.

Triangular Oscillator with three cells: The last example will show an CNN with three cells, where
the output of cell 1 is trained to be a triangular signal with an amplitude of 1 and a period time of 5.
Of course the output is continuous in the linear region and the straight edges can not be obtained, but
the output approximates the triangular signal (see Fig. 9). This time we learned the time constant of
the system 7, too (see Fig. 8). The initial condition was x(0) = (0,2, -2)".

13

a= | —4426| 1217 | 2.146
b= 0.000 | 0.000 { 0.000
i= 0.095
T = 2.447

Fig. 8: The template values of the CNN with an triangular output.

Fig. 9: The output of cell 1 of the triangular oscillator with three cells.

7 Conclusion

Our goal has been to find aleaming algorithm for CNNs, which is able to leam the parameters of a CNN
to perform a transition from an initial state to a state, which yields a prescribed output. We have shown a
gradient technique which is able to learn the parameters such that a given error functional is minimized.
Of course we find not always the global minimum, because the proposed algorithm uses the gradient
of the error functional in the parameter space. Thus the algorithm stops, if the gradient is zero, whether
this is a local minimum or a global one. Another drawback of the algorithm is the computational
complexity. In order to compute the gradient of the error functional not only the differential equation
of the CNN has to be integrated forward in time, but also the Euler-Lagrange equation, which is of the
same dimensionality has to be integrated backward in time. Therefore the complete trajectory of the
states has to be stored. This restricts the application of this algorithm to small examples. But in most
cases this is not a severe restriction, as the leaming can be achieved with relatively small samples.

Further investigations have to be made to examine the influence of error norm 2k and the parameter p
on the speed, the ability to generalize and the avoidance of reaching local minima. And it is necessary
to find algorithms with less computational effords in storage space and computing time.

14

References

[1] Forman S. Acton. Numerical Methods That Work. Harper and Row, New York, 1970.

[2] Luis B. Almeida. A learning rule for asynchonous perceptrons with feedback in a combinatorial
environment. In Proc. of the ICNN, volume II, pages 609-618, San Diego, Calif., USA, 1987.

[3] L. O. Chua and Lin Yang. Cellular Neural Networks: Theory. /EEE Tr. CAS, 35:1257-1272,
1988.

[4] Leon O. Chua and Patrick Thiran. An analytic method for designing simple Cellular Neural
Networks. IEEE Trans. CAS, 38(11):1332-1341, November 1991.

[5] R.Fletscher. Practical Methods of Optimization. Wiley + Sons, Chichester, second edition, 1989.

[6] J. J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. In Proc. Natl. Acad. Sci., volume 79, pages 2554-2558, April 1982.

[7] T. Matsumoto, L. O. Chua, and H. Suzuki. CNN cloning template: Connected component detec-
tor. IEEE Trans. CAS, 37:633-635, 1990.

[8] Stefan Miesbach. Efficient gradient computation for continuous and discrete time-dependent
neural networks. Proc. of the ISCAS-91, Singapore, pages 2337-2342, June 1991,

[9] J. A. Nossek, G. Seiler, T. Roska, and L. O. Chua. Cellular Neural Networks: Theory and circuit
design. Technical Report TUM-LNS-TR-90-7, Technical University Munich, 12 December 1990.

[10] Barak A. Pearlmutter. Leamning state space trajectories in recurrent neural networks. Neural
Computation, 1:263-269, 1989.

[11] Femando J. Pineda. Generalization of back-propagation to recurrent neural networks. Physical
Review Letters, 59(19):2229-2232, November 1987.

[12] Fernando J. Pineda. Dynamics and architecture for neural computation. Journal of Complexity,
4:216-243, November 1988.

[13] Femando J. Pineda. Recurrent backpropagation and the dynamical approach to adaptive neural
computation. Neural Computation, 1:161-172, 1989.

[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel Distributed Processing, volume 1.
M.LT. Press, 1986.

[15] Gerhard Seiler, Andreas J. Schuler, and Josef A. Nossek. Design of robust Cellular Neural Net-
works. Technical Report No. TUM-LNS-TR-91-13, Technical University Munich, September
1990.

[16] Krysztof Slot and Thomasz Kacprzak. Cellular neural network design problems for certain class
of applications. In Proc. of the ECCTD-91, pages 516-523, Copenhagen, Denmark, 1991.

[17] Fan Zou, S. Schwarz, and J. A. Nossek. Cellular Neural Network design using a learning algo-
rithm. In Proc. of the first IEEE Int. Workshop on Cellular Neural Networks and their Applica-
tions, CNNA-90, pages 73-81, December 1990.

15

	Copyright notice1992
	ERL-92-106

